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ABSTRACT. We prove that the dilatation of any pseudo-Anosov homeptrism on a translation sur-
face that belongs to a hyperelliptic component is boundeth foelow uniformly byy/2. This is in
contrast to Penner’s asymptotic. Penner proved that ttegitbg of the least dilatation @iny pseudo-
Anosov homeomorphism on a surface of gegiisnds to zero at rate/j (asg goes to infinity).

We also show that our uniform lower bouré® is sharp. More precisely, the least dilatation of a
pseudo-Anosov on a gengs> 1 translation surface in a hyperelliptic component beldogke interval

]ﬁ,ﬂJer*g [ The proof uses the Rauzy-Veech induction.

1. INTRODUCTION

Pseudo-Anosov homeomorphisms play an important role ichieiiller theory. Calculating prob-
lems for their dilatations have a long history in differahtijeometry. The unit cotangent bundle of
the moduli space of compact gengRiemann surfacessy can be viewed as the moduli space of
holomorphic quadratic differentialgy — a/4. This space is naturally stratified by strata of quadratic
differentials with singularities of prescribed multipties. The Teichmuller geodesic flow acts nat-
urally on these strata, and closed loops of lengti{@pg- O for this flow correspond to conjugacy
classes of Pseudo-Anosov homeomorphisms with dilatdétionl. An important problem concerns
the asymptotic behavior of the smallest dilatations.

The strata are not necessarily connected (Kontsevich &A@KZ03], Lanneau [Lan08]). In this
paper we use a discretization of the Teichmiiller geodesig, fle. the Rauzy-Veech induction, in
order to tackle the minimization problem fayperelliptic componentsThis is the first instance of
dilatation asymptotics for components of the moduli spa@és shall prove

Theorem. Let g> 2. Let 6'g‘yp be the least dilatation of pseudo-Anosov homeomorphisatsatie
affine on translation surfaces belonging to some hypetalliponnected component of the moduli
spaceQg. Then
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We will give a precise statement later.
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Mapping class group. The mapping class group M@) of a closed orientable surfa&of genus

g > 1 is defined to be the group of homotopy classes of orientatieserving homeomorphisms of
S. Anirreducible mapping class is an isotopy class of homeaphisms such that no powers preserve
a nontrivial subsurface db. By the Thurston-Nielsen classification [Thu88], irrechlei mapping
classes are either periodic (analogous to roots of unitgjeof a type called pseudo-Anosov [FLP79].
To each pseudo-Anosov mapping cl@gss Mod(S) one can attach a dilatation fact®fp) > 1. The
logarithm of6(¢g) can be viewed as the minimal topological entropy of any eldrirethe homotopy
class ofg (uniquely realized by some elemeny,

Thurston proved that this number is an algebraic integerexed a Perron numbef(¢) > 1 is
also the exponential growth rate of lengths of curves unt@éeation ofg (in any metric onS). These
numbers appear naturally as the length spectrum of the ingide of genug Riemann surfaces.

It is an open question to characterize the set of dilatat@nzsseudo-Anosov homeomorphisms.
Thurston has conjectured that pseudo-Anosov dilatatigm®King genus) are precisely the algebraic
units that are Perron and also larger than the Galois cotgsigd their inverses.

Minimization problem. The set of dilatations for fixed genus is discrete as a sulhde(see [AY81,
Iva88]. Hence the least dilatatialy is well defined. We know very little about the values of the
constantdy. The precise value 0¥, has been recently calculated (see Cho & Ham [CHO8] and
Lanneau & Thiffeault [LT10]) but the values of for g > 3 are still unknown.

Upper bounds are not hard to derive from examples and thera kat of results in that direction
(see e.g. Penner, McMullen, Hironaka, Kin, Minakawa). Sotlfi@ best general upper bound for
glog(dy) is the one given by Hironaka [Hir09] and Kin & Takasawa [KT18Jut again very little is

known aboutower bounds. Penner [Pen91] proved that(ig > |gg£2g’ using general properties of

the Perron-Frobenius matrices. There is also a result af Tsa09] for pseudo-Anosov gounctured
surfaces.

In general lower bounds are much subtle to obtain than uppends. In contrast to our under-
standing of the asymptotic of 108y), we still do not know the answer to the following question,
posed by McMullen [McMO0O, Section 10]:

Doesg IiT glog(dy) exist? What is its value?
— 00

Subgroups of the modular group and strata. In his book [Far06], Farb proposed two natural re-
finements of the minimization problem.

The first one is related to subgroups of the modular group. eMmwecisely, for a subgrouid C
Mod(S), the problem is to understand the least dilataBigf ) of pseudo-Anosov classég € H.

Leininger [Lei04] and then Farb, Leininger & Margalit [FLNDtackled the minimization prob-
lem for the subgroups dflod(S) given by the Thurston’s construction and by the Torelli grou
respectively. They provide evidence for the principle thlgebraic complexity implies dynamical
complexity.

In order to state the second problem, let us recall the diefinif what we will refer to as strata here
(see Section 2 for precise statements). A pseudo-Anosoebtimorphisntp on a compact surfacd
defines uniquely a pair of transverse measured foliationS. dihis well known [HM79] that these
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data are equivalent to a pdiX,q) whereX is a Riemann surface homeomorphicSandq is a non
zero holomorphic quadratic differential. Moreow@e= «? (wherew is an holomorphic Zform) if
and only if the foliations are orientable; In this case wd aadlll the pair(X,w) a translation surface
(see Section 2.1). These data endédwith an Euclidean structure for whighis affine.

A stratum is the moduli space of quadratic differentialdwpitescribed multiplicities of the zeroes
of the differentials. Givertks,..., k) satisfying the Gauss-Bonnet equalft) ; ki = 2g— 2 we define

. L . pseudo-Anosow whose correspondingX, w)
&7 (kg,. . Kn) == 'nf{log(e((p)) " isin the stratum defined bk, ..., kq) ‘

Similarly we defined™ (ky,...,kn) for non-orientable measured foliations. These quantéreswell
defined (up to three exceptions) by a result of Masur & SniM&93]. Obviously one has

8y = min{8" (Ky,... . kn), 8 (Ka,....Kn)1,

where the min is taken over & that correspond to genugg It is thus natural to study the minimal
dilatation in a given stratum as proposed by Farb [Far06].

It turns out that strata are not connected in general [KZ@B0J8]. We can thus consider the natural
following refinement of Farb’s question: give the minimdbtktion of a pseudo-Anosov homeomor-
phism on a surface in a given connected component of a stratum

From now on we will restrict to the case where the foliations @rientable. The components are
distinguished by two invariants: thgarity of the spin structurand thehyperellipticity The latter are
defined as follows.

Recall that a Riemann surfa¢é of genusg > 2 is hyperelliptic if there exists an holomorphic
involution T with 2g+ 2 fixed points.

Convention. In all of this paper, we will use the following convention: rartslation surfaceX, w)
is hyperelliptic if the underlying Riemann surface is hyghgstic. The fixed points of are usually
called the Weierstrass points.

Definition 1.1. A surface(X, w) is in a hyperelliptic connected component if and only if tifving
hold

(1) (X,w) is hyperelliptic,

(2) whas at most two zeroes,

(3) 1 permutes the two zeroes (in case of two zeroes).

Remark 1.1.

(1) If (X,w) is hyperelliptic but does not satisfy the condition (2) ortfgen the property of being
hyperelliptic is destroyed by some small perturbationgimshe ambient stratum (s@i€Z03]
for more details).

(2) Condition (3) in Definition 1.1 can be replaced by “the twoaes are not Weierstrass points”.
Of course ifw has a single zero then it is at a Weierstrass point.

In this paper we will investigate the second problem and ansvguestion of Farb [Far06, Problem
7.5]. We shall prove
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Theorem 1.1. Let g> 2. Let@ be a pseudo-Anosov homeomorphism affine on a genus g tianslat
surface(X, w) in a hyperelliptic connected component. Then

8(p) > V2.

This theorem provides further evidence for the principke tiigebraic complexity implies dynam-
ical complexity.

Recall that Penner [Pen91] proved that, as the genus imsetiere are pseudo-Anosov homeo-
morphisms with dilatations arbitrarily close to 1.

This uniform lower bound is sharp as shows Theorem 1.2.

Theorem 1.2. Let g> 2. Let3"P(2g— 2) (respectivelyd™P(g— 1,g— 1)) be the least dilatation of
pseudo-Anosov homeomorphisms affine on a genus g tramskatitace(X, w) in the hyperelliptic
connected component corresponding to one zero (resplctiwe zeroes). Then

V2 < 8YP(2g-2) < V2+ 51, and

V2 <dWYP(g—1,g-1) <2+ %g.

Remark 1.2. Let us remark that all the inequalities in the above stateare strict, since the bounds
we give are never a dilation.

Non-hyperelliptic components. The reader may wonder why we impose restrictions on theractio
of the hyperelliptic involution on the zeroes in the defimitiof hyperelliptic connected component. It
turns out that if we relax the condition (3) in Definition 1hen the asymptotic behavior may be very
different if we consider different connected components.

As for example one can construct (see Appendix B) a sequ@ngg-3 (with g odd) of pseudo-
Anosov homeomorphisms on a hyperelliptic translationasafXg, wy) of genusy having two zeroes
of degreeg — 1,g— 1, and such that the dilatation ¢f; is the Perron root of the polynomial

X290 —X2971_4x9 X +1.
In particular
lim 6 =1
Jm (doki1)

Of course in that case the hyperelliptic involution fixes the zeroes. In the above case, tiher-
hyperelliptiQ components are distinguished by a parity of the spin siracfsee [KZ03] and Sec-
tion 2.2). Letcg‘;Old be the flon-hyperellipti} odd component of the stratum with two zeroes in genus
g. Then we shall prove

Theorem 1.3. Let g> 2, be an odd integer. Lai(cé’dd) be the least dilatation of pseudo-Anosov
homeomorphisms affine on a genus g translation surféce) € c$4. Then

1
1<d(c <1+ 5

Remark 1.3. E. Hironaka noticed that the dilatations of the above exasmoincide with the di-
latations found in[HKO06]. It could be interesting to know whether or not these exampte the
same.
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Quadratic differentials. A quadratic differential X, q) is strictly quadratic if it is not the square of
any holomorphic 1-form. In Section 2.3 we derive from ouroiteen some results for some strata of
strict quadratic differentials, namely we will prove Theor 2.2, page 8.

Rauzy-Veech induction. If ¢ is a connected component of some strata then there is a fnitiéied
coveringE — ¢ consisting of marking a zero and a separatrix on surfaces ifihe Rauzy-Veech
induction provides a discrete representation (symboldira) of the Teichmdiller flow o [Vee82]
(see Section 3 for precise definitions). Periodic orbits torrespond to conjugacy classes of pseudo-
Anosov on(X,w) € C.

As shown by Veech, to each periodic orbit of the Teichmulleodgsic flowy C ¢ there corre-
sponds a closed loop in some graph (called a Rauzy diagrai)) and a renormalization matrix
V(y) € SLh,Z), whereh = 2g+ n— 1. This matrix corresponds to the action of the correspandin
pseudo-Anosov homeomorphism in relative homology of thidedying surface with respect to the
singularities of the Abelian differential. Hence the spaictadius ofV (y) is the dilatation of the
pseudo-Anosov ofX,w) € C.

Two crucial points in this paper are the following

e we show that “enough” pseudo-Anosov are obtained by the yR&eeech induction;
e we carefully analyze thglobal geometry of the Rauzy diagrams. This approach was already
used by Avila & Viana [AV07] for the dynamical properties tiet Teichmiller geodesic flow.

Outline of a proof of our main result. The Rauzy-Veech induction allows one to relate pseudo-
Anosov homeomorphisms and closed loops in Rauzy diagrarescontlude by sketching its use in
the proof of Theorem 1.1.

1. Letgbe a pseudo-Anosov homeomorphism affine with respect toal&t@on surfacéX, w)
in a hyperelliptic component"™P. We prove thatpcommutes with the hyperelliptic involution
(Lemma 2.3). Thuginduces a pseudo-Anosov homeomorphism on the sphere.

2. Using the Brouwer fixed point theorem, we show tirafixes a separatrix of the horizontal
measured foliation oX (Proposition 4.1).

3. Hencey’ is also affine with respect to a surfagé, w) € C/hyp (with a marked separatrix). Thus
¢ is obtained by taking a suitable closed lopin the Rauzy diagram)rhyp corresponding to

chyp,

4. We use the representation introduced by Kerckhoff [Kpe8& formalized later by Bufe-
tov [Buf06] and Marmi, Moussa &Yoccoz [MMYO05], which furries a finite coveringy"YP —
P Lift of yin »"WP, denoted), is easier to describe tharin »™",

5. Analyzing carefully the combinatorics of these Rauzygdhans we show that the spectral
radius ofV (V) is greater than 2 implyin@(¢?) > 2 (see Section 3.7.2 and Section 4). Since
8(¢?) = 6(p)? one gets the desired result.

6. In Appendix A we prove that our uniform bound is sharp byikiting a suitable sequence of
pseudo-Anosov homeomorphisms. In Appendix B we show tlesaittion of the hyperelliptic
involution on the zeroes is crucial.
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Further results and notes. Fehrenbach & Los [FL87] proved the following inequality feseudo-
Anosov homeomorphismghaving a periodic orbit of length > 3: log(¢) > tlog(1+ v/2). However
this does not easily imply a uniform lower bound. Indeed farexamples in Appendix A we checked
(for g < 10) that

min{n > 3, there exists a periodic orbit of lengt} = 2g+ 1.

Our examples also give the systdl¥P(2g— 2) andd"P(g—1,g— 1) for g < 4 [LT10]. Also we have
&, = 8WP(2) = 57(1,1,2). See also [LT10] for a presentation of the examples in teriheforaid

group.
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2. BACKGROUND

We review basic notions and results concerning Abeliarerfitials, translation surfaces, pseudo-
Anosov homeomorphisms and moduli spaces. For generatrefes see say [MT02, Vee82, Rau79,
MS93, MMYO05].

2.1. Flat surfaces and pseudo-Anosov homeomorphismsA flat surface Ss a (real, compact, con-
nected) genug surface equipped with a flat atlas i.e. a tripw« , ) such that is a finite subset of
S(whose elements are callsthgularitieg andu = {(U;,z)} is an atlas o6\ Z with transition maps
z— + z+ constant. We will require that for eade %, there is a neighborhood sfisometric to a
Euclidean cone. Therefore we getjaadratic differentialdefined locally in the coordinategs by the
formulaq = dZ. This form extends to the points @fto zeroes, simple poles or marked points (we
will usually call the zeroes and polsggular pointsor simply singularitieg.

If there exists a sub-atlas such that all transition fumdiare translations then the quadratic differ-
entialq is the global square of an Abelian differentiakc H1(X,C). We will then say thafX, w) is a
translation surface.

A homeomorphismf : X — X is anaffine homeomorphisiifi f restricts to a diffeomorphism of
X'\ Z of constant derivative. It is equivalent to say tHatestricts to an isomorphism of \ £ which
preserves the induced affine structure givergby

Lemma 2.1. If (X, w) is a hyperelliptic translation surface then the hypereitignvolution is affine.

Proof of the lemmaThe hyperelliptic involutiont induces onH(X,C) a linear involution, which
splits this space as a direct sum between an invariant anttiasimeariant subspace. Since the invariant
part is isomorphic t¢11(P1(C),C), hence it is trivial. Therefore*w= —w. O

There is a standard classification of elements of(Bl into three types: elliptic, parabolic and hy-
perbolic. This induces a classification of affine diffeonasms. An affine diffeomorphism is para-
bolic, or elliptic, or pseudo-Anosov, respectivelyitiacg D f)| = 2, [trac€Df)| < 2, or|trac€Df)| >
2, respectively. Ifpis pseudo-Anosov, in the coordinates of the stable and bilestaeasured folia-
tions determined by, one hadDe = (951 9) where|6] > 1. The numbet8] is called thedilatation
of @. From now all flat surfaces considered will be translatiorfesaes, except in Section 2.3 and

Appendix B.
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Forg > 1, we define the moduli space of Abelian differentialgas the moduli space of paifX, w)
whereX is a genugy (compact, connected) Riemann surface and Q(X) a non-zero holomorphic
1—form defined onX. The term moduli space means that we identify the pdiKtso) and (X', o)
if there exists an analytic isomorphisfint X — X’ such thatf*wY = w. The group Sk(R) naturally
acts on the moduli space of flat surfaces by post compositichecharts.

One can also see a translation surface obtained as a polygariinite union of polygons, whose
sides come in pairs such that the two sides in each pair asflgdarith equal lengths. To get the
surface, these parallel sides are glued together by ttarsland we assume that this identification
preserves the natural orientation of the polygons. In thigext, two translation surfaces are identified
in the moduli space of Abelian differentials if and only iEthorresponding polygons can be obtained
from each other by “cutting” and “gluing” and preserving tidentifications (i.e. the two surfaces
represent the same point in the moduli space). Also, the€SLaction in this representation is just
the natural linear action on the polygons.

Veech showed that an affine homeomorphism with a derivatae which is not the identity is not
isotopic to the identity. Hence a homeomorphi$éns an affine homeomorphism on the flat surface
(X,w), with derivative maD f = A, if and only if the matrixA stabilizes the surfaceX,w). That is
(X,w) can be obtained fror- (X, w) by “cuttings” and “gluings” on the corresponding polygons.

2.2. Connected components of the strataThe moduli space of Abelian differentials is stratified
by the combinatorics of the zeroes; We will denotesbyks, ... k) the stratum of# consisting of
(classes of) pairsX, w) such that possesses exacttyzeroes orX with multiplicities (ky, ..., k).

Itis a well known part of the Teichmduller theory that thesacgs are (Hausdorff) complex analytic,
and in fact algebraic, orbifolds.

These strata are non-connected in general but each stratuat most three connected components
(see [KZ03] for a complete classification). In particular §p> 4 the stratum with a single zero,
#H (29— 2), has three connected components. The stratuim— 1,g— 1) has two or three connected
components depending whetltgis even or odd, respectively.

2.2.1. Hyperelliptic componentThis component contains precisely pai¥s w) whereX is a hyper-
elliptic surface andwo is a one-form whose zeroes (if there are two) are interclthihgethe hyper-
elliptic involution. An equivalent formulation is to reqeithat there exists a ramified double cover
1t: X — P! over the sphere and a quadratic differengjah P! having only one zero and simples poles
such thatw? = T*q. We will denote these components #y"YP(2g — 2) and# "P(g—1,g—1).

2.2.2. Other componentsThe other fon-hyperellipti components are distinguished by a parity of
the spin structure. There are two ways to compute the pafitiheospin structure of a translation
surfaceX. The first way is to use the Arf formula on a symplectic basee (8KZ03]). The second
possibility applies ifX comes from a quadratic differential, i.e Xfpossesses an involution such that
the quotient produces a half-translation surface [Lar€}4bVe will apply this in Appendix B.

2.3. Application of Theorem 1.1 to quadratic differentials. In this section, we extend Theorem 1.1
to some other strata in the moduli space of quadratic diftealks. This part is independent from the
rest of the paper and can be skipped for a first reading. Hawkegexma 2.3 will be needed later.
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As for Abelian differentials, strata of the moduli space ofdratic differentials are not connected
in general (see [Lan08] for a complete classification). We @aduce from Theorem 1.1 results on
some hyperelliptic components in the quadratic case.

We denote by (ki,...,k,) strata of the moduli space of half translation surfaces e/t vector
(Kq,...,kn) agrees with the Gauss-Bonnet formgig ; ki = 49— 4. Forg > 2, let us consider the
two strataQ (—1,—1,2g—1,2g— 1) andQ (—1,—1,4g— 2) of the moduli space of genus Their
hyperelliptic component can be defined as follows (see [E§n0

che._ (X,q) X is hyperelliptic,t is affine forq, (X,q) € @ (—1,-1,2g—1,2g— 1),
1 - @ and the involution permutes the two zeroes and the two poles '

chve._ (X,q): X is hyperelliptic,t is affine forq, (X,q) € Q (—1,—1,49— 2),
2 »V " and the involution permutes the two poles '

Theorem 2.2. Let g> 2. Letc be nyp or C;yp be defined as above. L@tbe a pseudo-Anosov

homeomorphism affine on a half translation surf@geq) € ¢. Then the dilatatior®(¢) satisfies

8(p) > V2.
We will use the following result.

Lemma 2.3. Let f be an affine homeomorphism on hyperelliptic flat surt#fagenus greater than or
equal to two. The map f commutes with the hyperelliptic unvanh T.

Proof of Lemma 2.3Since the derivative map f of f is constant in the affine charts, the conjugate
f~1tf is conformal and is an involution withg2- 2 fixed points. It is thus the hyperelliptic involution
T [FK92]. This proves the result. O

Proof of Theorem 2.2Let (X,q) € @ (—1,—1,2g— 1,2g— 1) be a half translation surface in the hy-
perelliptic component. Lep be a pseudo-Anosov homeomorphism Xrand 1 the hyperelliptic
involution.

Passing to the quotient we get a meromorphic quadratiardiff@al g on the projective lin@* with
2g+ 3 simple poles and a single zero of degrge-2.. Taking the standard orientating covery — P*
over P! having ramification points precisely over odd degree siwiigs (namely the poles and the
zero) we obtain a translation surfa®é w) wherew? = 1°q/. By construction (see Subsection 2.2.1)
(Y,w) belongs to the hyperelliptic componeat™P(2g). Now by Lemma 2.3p commutes witht
onY. Thusginduces a pseudo-Anosov homeomorphisan P* with the same dilatation. Singe
preserves the set of ramification pointsrofp lifts to a new pseudo-Anosov homeomorphism, gay
ony.

X—=X YLY

Now () = 8(¢) = 8($). By Theorem 1.1 we get th&(p) > /2.
The second case is similar and left to the reader. O
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3. RAUZY-VEECH INDUCTION AND PSEUDGANOSOV HOMEOMORPHISMS

In this section we recall the basic construction of pseudosbvy homeomorphisms using the
Rauzy-Veech induction (for details see [Vee82], 88, andu[®a MMYO05]). We first review the
link between interval exchange maps and translation sesfac

3.1. Interval exchange transformations. Let | C R be an open interval and let us choose a finite
partition of into d > 2 open subinterval§l;, j =1,...,d}. Aninterval exchange transformation is
a one-to-one map from| to itself that permutes, by translation, the subintervaldt is easy to see
thatT is precisely determined by the following data: a permutatiat encodes how the intervals are
exchanged, and a vector with positive entries that encdaelengths of the intervals.

We use the representation introduced first by Kerckhoff @&¢rand formalized later by Bufe-
tov [Buf06] and Marmi, Moussa &Yoccoz [MMYO05]. This will siplify the description of the induc-
tion which will be very useful for the proof of our result.

We will attribute a name to each interdal In this case, we will speak tdbeledinterval exchange
maps. One gets a pair of one-to-one m@psTy) (t for “top” and b for “bottom”) from a finite
alphabetz to {1,...,d} in the following way. In the partition of into intervals, we denote the
k" interval, when counted from the left to the right, wl(k). Once the intervals are exchanged,
the interval numbek is Ingl(k>. Then with this convention, the permutation encoding th@ mas

Tho T, 1. We will denote the length of the intervals by a vedios (Ay)ges -

Definition 3.1. We will call the pair (1%, T5,) a labeledpermutation, andt, oy * a permutation (or
reducedpermutation). If it is clear from the context, then we wikfwse the term permutation. We
will also usually write a reduced permutation as a labele@ eithz = {1,...,d} andg = Id.

One usually represents labeled permutatines (1, 1,) by a table:

() wh2) ... mid)
”‘(n&(l) w2 .. nﬁ(d))‘

3.2. Suspension data.The next construction provides a link between interval exge transforma-
tions and translation surfaces. A suspension datund fer(1tA) is a collection of vector§tg }aca
such that

° Vl S k S d — 1, ZTE(G)SKTG > 0,

e V1<k<d-1, ZT[b(U)SkTU < 0.

We will often use the notatiod= (A,1). To each suspension datuwe can associate a translation
surface(X, w) = X(1t,¢) in the following way.

Consider the broken link; on C = R? defined by con-
catenation of the vectorén(l(j) (in this order) forj =
1,...,d with starting point at the origin. Similarly, we con-
sider the broken ling, defined by concatenation of the ve
torsznglm (in this order) forj = 1,...,d with starting point
at the origin. If the lined; and Ly have no intersections
other than the endpoints, we can construct a translatidacaX by identifying each sid€; on L;
with the side(; onLy by a translation. The resulting surface is a translatiofasarendowed with the
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form dZ. Note that the lines; andL, might have some other intersection points. But in this case,
one can still define a translation surface by usingZippered rectangle constructipdue to Veech
([Vee82]).

Let| C X be the horizontal interval defined by= (0,5, Aq) x {O}. Then the interval exchange
transformationT is precisely the one defined by the first return map of thecadrfiow onX to .

Each (1, A) with ttirreducible (i.e. ¢ *({1,...,K}) # 5, ({1,...,k}) for all 1 < k < d) admits
suspension data.

3.3. Rauzy-Veech induction. The Rauzy-Veech inductior (T) of T is defined as the first return
map of T to a certain subinterval of | (see [Rau79, MMY 05] for details).
We recall very briefly the construction. Following [AGY06pwefine theypeof T byt if }\n{—l(d) >

}\T[b (d )andbif A 71( )<)\ i) WhenT is of typet (respectivelyb) we will say that the labety *(d)

(respectivelyt, 1(d)) is the winner and thanrb (d) (respectivelyyg 1(d)) is the looser. We define a
subintervall ofI by
j_ I\T(Ingl(d)) if T is of type t;
I\In(l(d) if T is of type b.

The image ofT by the Rauzy-Veech inductior is defined as the first return map Bfto the subin-
terval J. This is again an interval exchange transformation, defored letters (see e.g. [Rau79]).
The data ofg (T) are very easy to express in term of thosé of

There are two cases to distinguish depending whékhsrof typet or b; the labeled permutations
of ® (T) only depends omand on the type of . If € € {t,b} is the type ofT, this defines two maps
Ry and Ry by % (T) = (R£(17),A"). We will often make use of the following notation: gfe {t,b} we
denote by 1- € the other element dft, b}.

(1) T has typet. Letk € {1,...,d — 1} such thatg, }(k) = ¢ *(d). Then® (T, 1) = (T¢, T,)
whererg = ¢ and

() i<k
() =1 ) if j=k+1
m,*(j—1) otherwise.

(2) T has typeb. Letk € {1,...,d — 1} such thatg *(k) = 13, *(d). Then®y(T¢, ) = (T¢, 1))
whererty, = 11, and

i) ifj<k
(i) =4 i) if j=k+1
% H(j—1) otherwise.
(3) Letus denote b¥,g thed x d matrix of which thea, B-th element is equal to 1, all others to

0. If T is of typet then let(a, B) = (¢ *(d), 1, (d)) otherwise lefa, B) = (15, *(d), ¢ *(d)).
ThenVgg\ = A, whereVyg is the transvection matrik+ Eqg.

Remark 3.1. In the Veech'’s original construction, the matrices usedhtam A\’ in terms ofA were
more complicated: of the form P E,g where P is a permutation matrix. Indeed, after the Rauzy
induction “bottom”, we usually havet # Id, and we must “renumber” the intervals.
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This construction is due to Rauzy. This induction is calleel Rauzy-Veech induction since Veech
observed that one can actually define the induction on thgesisgon data in the following way. tf
is a suspension data ovr,A) then we definer (TL A, T) by

R (LA, T) = (Re(0),V I\ V1),

whereg is the type ofT = (T,A) andV is the corresponding transition matrix. In other teivpg(’ = ¢
wherel = (A, 1).

Remark 3.2. By construction the two translation surface$rX¢) and X(17,{’) are naturally isomet-
ric (as translation surfaces).

Now if we iterate the Rauzy induction, we get a sequefmex) of winners/losers. Denoting
® V(L A) = (W, A(M), the transition matrix that relateg™ to A is the product of the transition
matrices:

1 - Vo | A =A.
(1) (I!jl kBk)

3.4. Rauzy diagrams.

3.4.1. Labeled Rauzy diagramd:or a labeled permutatior;, we call thelabeled Rauzy diagram
denoted byp (1), the graph whose vertices are all labeled permutationswhatan obtained from
Tt by the combinatorial Rauzy moves. From each vertices, theréwo edges labeledandb (the

type) corresponding to the two combinatorial Rauzy moves WAl denote byn&g m for the
edge corresponding (1) = T wheree € {t,b} anda /B is the winner/looser. To each pajtof
this diagram, there is thus a sequence of winners/loserswilVdenote byV (y) the product of the
transition matrices in Equation (1). The next lemma is cte@n the definition.

Lemma 3.1. Lety, = T4...T, be a path in the labeled Rauzy diagram, and Igtbé the matrix

associated to the paty,. Leta, 3 be the winner/looser associated to the edge; G—B> . Then

is obtained from \_1 by adding the column to the columrf3.
Definition 3.2. A closed path in the labeled Rauzy diagram is said to be grienif the associated
matrix V is primitive,i.e. if there exists a power of V such that all the entries are pasit\We will
also say that a path contains the letteias winner (respectively, looser) if it contains the edéxég .
(respectively; B—°(> -), for someg3.

We have the following proposition (see [MMYO05], propositi; section 12.3),

Proposition 3.2(Marmi, Moussa & Yoccoz) A closed patlyin a labeled Rauzy diagram is primitive
if and only ify contains all the letters as winner at least once.

3.4.2. Reduced Rauzy diagramgVe have previously defined Rauzy induction and Rauzy diagram
for labeled interval exchange transformations. One can défine the same for reduced interval

exchange transformations, as it was first, for which theesponding labeled permutation is just a
permutation of{1,...,d} (see [Vee82]). These are obtained after identifying 1) with (¢, 1)) if

ThoTg 1 = n{)on{‘l. In the next we will use the notation, (1) to denote the reduced Rauzy diagram
associated to the permutation
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Note that the labeled Rauzy diagram is naturally a coverintdpe reduced Rauzy diagram, and
they are usually not isomorphic.

Convention. Letttbe a permutation. We will denote by(m) the labeled Rauzy diagram afand by
D¢ (M) the reduced one.

Given a closed pathin the reduced Rauzy diagram, as previously, one can ags@cimatrixV as
follows: we take(Ty, Ty,) the labeled permutation corresponding to the endpoigtsaf thatrg = Id.
Then we considey a lift of y in the labeled Rauzy diagram. The ptls not necessarily closed and
it ends at a permutatiofty, 14,). We can associate to it a mathias before. LeP be the permutation
matrix defined by permuting the columns of ttlex d identity matrix according to the permutation
T¢, i.e. theP = [pjj], with pjj = 1 if j = ¢(i) and O otherwise. The transition matrix associated to the
path is then:

2) V=V-P

As before, a closed path in the reduced Rauzy diagram iddgadienitive if V is primitive. A standard
reference for the next two sections is [Vee82].

3.5. Construction of pseudo-Anosov homeomorphismsThere is a natural Si(R)-action on the

strata. In particular, the one-parameter subgrgupg (‘g th) is called the Teichmuller geodesic
flow. It can be shown that conjugacy classes of pseudo-Anlesmeomorphisms are one-to-one with
closed geodesics of the Teichmuller geodesic flow on stréiteere is a very nice construction of
pseudo-Anosov homeomorphisms using the Rauzy-Veechtindyand we recall now this construc-

tion.

Lettbe an irreducible permutation and \dte a closed loop in the reduced Rauzy diagram associ-
ated tort. One can associate yoa matrixV (y) (see section above). Let us assume Yhat primitive
and let® > 1 be its Perron-Frobenius eigenvalue. We choose a positjeavectorA for 0. It can be
shown thatv is symplectic [Vee82], thus let us choose an eigenvecfor the eigenvalu®—! with
Tl > 0. It turns out that defines a suspension data o¥et (Tt A). Indeed, the set of suspension

data is an open cone, that is preserve®by. Since the matri¥ ~! has a dominant eigenval@gfor
the eigenvector), the vectort must belong to this cone. = (A,1), one has

& (M) = (V1) = (mV-AV 11) = (6 1A, 01) =
=g (TLA,T), where  t=log(6) > 0.

Hence the two surfaces$(1t, ) andg: X (11, ) differ by some element of the mapping class group (see
Remark 3.2). In other words there exists a pseudo-Anosovebamrphismg affine with respect
to the translation surfac¥(t, ¢) and such thabD@= g;. The action ofgp on the relative homology
of (X,w) is V(y) thus the dilatation ofp is 6. Note that by constructiop fixes the zero on the left
of the intervall and also a horizontal separatrix adjacent to this zero (harie oriented half line
corresponding to the intervé).

It turns out that this construction is very general as we sék in the coming section.
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3.6. Discrete representation of the geodesic flowlLet us fix an irreducible permutation defined
overd letters. If ¢ is the connected component of some stratumEIéE the ramified cover over
obtained by considering the set of triplgds, w,|) where(X,w) € ¢ andl is a horizontal separatrix
adjacent to a zero ab.

Clearly the set ofA,1) such thatt is a suspension data ovatis a connected space and the map
(A, 1) = { — X(m ) is continuous. Thus all surfaces obtained by this constnudbelong to the
same connected component of some stratacgay C # (o). Moreovero can be computed easily in

terms ofr. We also defing (1) to be the set ofX(1,{),l) wherel is the horizontal separatrix that
corresponds t&* x {0} in the Veeech’s construction. We define

T(E) = {(H,Z); E(Tt) = ¢, andZ is a suspension datum fm}.

o~

The Rauzy-Veech induction is (almost everywhere) well defiand one-to-one on (¢ ). Hence let
3 (C) be the quotient of (¢) by the induction.

The Veech zippered rectangle’s construction provides datreverywhere) a one-to-one map
3 (C) — C (see [Boi09] for detalils).

c C #H(o)

One can define the Teichmiiller geodesic flowsonc ) by g (T,2) = (T,gZ). The Teichmiiller flow

on ¢ lifts to a flow g; on C.ltis easy to check thay; is equivariant withZ i.e. geZ = Zg.
By construction, periodic orbits @ on ¢ corresponding to pseudo-Anosov homeomorphisms that
fix the separatri® lift to periodic orbits on¢ for g;. Thus they produce periodic orbits fgr acting

~

on the level of suspensions (¢).

In fact Veech proved that all pseudo-Anosov homeomorphifixirtey a separatrix arise in this way.
To see that one can show that the subset af ) defined by

{(T[,Z) eT(c); 1<|ReY)| <1+ min(qunfl(d)),qungl(d)))}'

is a fundamental domain af (¢) for the quotient mag (¢) — 7 (), and the Poincaré map of the
Teichmiller flow on the section

$ = {(mq); mirreducible [Re()| =1}/ ~
is precisely theenormalizedRauzy-Veech induction on suspensions:
R (TLN) = (Re(T0,V A /|VIA)).
We can summarize the above discussion by the following #mor

Theorem (Veech) Lety be a closed loop, based & in a reduced Rauzy diagram, (1) and let
V =V(y) be the product of the associated transition matrices. Letassime that V is primitive. Let
A be a positive eigenvector for the Perron-Frobenius eigkre/@ of V and lett be an eigenvector for
the eigenvalu®* of V witht,.+,) > 0. Then

(1) ¢= (A,1) is a suspension datum for=F (TLA);
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(2) The matrix A= (961 9) is the derivative map of an affine pseudo-Anosov homeonsoni
on X(1,{); The action on relative homology @fis given by the matrix V (in a suitable basis).

(3) The dilatation ofpis 6;

(4) All pseudo-Anosov homeomorphisms that fix a separatrix lst@eed in this way.

We will use this theorem in order to prove our main result. d¥e&g construction can only build a
pseudo-Anosov homeomorphism fixing a separatrix. But thbarebe many pseudo-Anosov home-
omorphism that do not fix any separatrix [Los09, Lan10]. In case, Proposition 4.1 allows us to
restrict to the setting of Veech'’s theorem.

3.7. Examples of labeled and reduced Rauzy diagramsWe detail here two examples of Rauzy
diagrams (hyperelliptic connected component and hypgtiellconnected component with a marked
point) that will correspond to the two cases in Propositiadh 4

3.7.1. Hyperelliptic connected componentiset n > 2. A representative labeled permutation for the
connected component "YP(2g — 2) (respectively YP(g—1,g— 1)) is

3) =(nn’123"2"0)

wheren = 2g (respectivelyn = 2g+ 1). We use these “non standards” labels in order to simplify
the notations in the next sections. It turns out that thebeléal and reduced Rauzy diagrams are
isomorphic. The precise description of the diagrams wasrghy Rauzy [Rau79]. Let us recall his
result here.

If T= (T%,T}) is a labeled permutation, fare {t,b} we defineG*(m) to be the subdiagram of the
Rauzy diagram oftwhose vertices are obtained framby a simple path, and whose first step is the
mapR.. Recall that fore € {t,b}, we denote by 1 ¢ the other element dft, b}.

Proposition (Rauzy) Lett, be the labeled permutation defined in Equation (3). Then

(1) The vertices of the Rauzy diagranmgfis the disjoint union of the vertices ofGp), G}(tn),
and{1n}.

(2) Letthk = ®K(Tn), for somee € {t,b} and ke {1,...,n—1}. Then G~¢(tny) is naturally
isomorphic to G—5(tp_x).

(3) The cardinality of the Rauzy diagrama8~1 — 1.

Using this result, one can show that the labeled and reduiegplatins are isomorphic. We will
denote byp"™P = o (1,) ~ D, (1,) this Rauzy diagram. A consequence of the previous propasii
the following:

Corollary 3.3. Lety be a closed (oriented) path in"P. Assume that it contains the stepﬁ 14
with Tt 17, then there existg’ such that it contains the stap LA

Proof. A consequence of the Rauzy descriptionzg¥? is thato "YP\ {11} is not connected any more.

Assume that, in the step foIIowinga—’B> 17, the symbol is looser, then the new permutation amd
belong to two different connected componentspdP\1t. Looking at the sequence of permutations
that appear, one must come back to the connected comportrdatitainst, and hence, the step

it 2P, eventually appears. O
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FIGURE 1. The diagramp™P = o (1)) ~ D, (1,) for n = 4.

3.7.2. Hyperelliptic connected components with a marked poltere we present a second family of
Rauzy diagrams that will be useful for our proof. There digsion is a little bit more technical, but
will be needed later. We start with a very informal descdptof the labeled Rauzy diagram. The
precise description can be skipped in a first reading.

The labeled Rauzy diagram is a covering of the reduced one. c@itdinalities of these labeled
Rauzy diagrams have been calculated (see Delecroix [Dell0je degree of the covering is also
known [Boi10].

A fundamental domain of this covering can be roughly seencagw of the hyperelliptic Rauzy di-
agram described previously, with some added permutatseesKigure 2). This fundamental domain
(aleaf) is composed at first glance by two principal loops that seet in acentral permutationand
from the other vertices of these loops start a secondary [Blog whole diagram is obtained by taking
several copies of this “leaf”. The different leaves are ¢airiogether by th&ansition permutations
each secondary loop contains a unique such transition pationy and a “k-th secondary loop” of a
leaf is attached to a “k-th secondary loop” of another leag (Bigure 3, and compare it with Figure 2).

We now give the precise description of this diagram. A regméstive permutation for the connected
componentr YP(0,2g — 2) (respectively "YP(0,g— 1,9 — 1)), with a regular marked point, is
(@) Th=(nn’1 23" 1),
wheren = 2g (respectivelyn = 2g+ 1). Contrary to the previous case, the labeled diagram and th
reduced diagram are not isomorphic anymore. As we will see#indinality of the reduced diagram
is 2'~1 — 1+ nand the cardinality of the labeled diagram(28—! —1+n)(n—1).

Our next goal is to describe the reduced Rauzy diagraiits,) and o, (Tt,) associated to the above
permutationt,. The key point is to observe that if we forbid the letter 1 towdaner or looser in

the construction of the diagram (T1,) starting fromrt, then one gets more or less the diagrafyP
(compare with Avila & Viana [AV07]). Remark that with our cioe of permutatiorrg,, whenn is
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FIGURE 2. The augmented hyperelliptic diagram, and added periongatorn = 4.

the winner it has to be on top and similarly 0 when winner is ottdim. Thus one can obtain a
subdiagram o (t,) starting fromo ™P as follows.

(1) To each permutatiort € »™P construct a new permutatidne o (T,) by adding the letter 1
to the left of the letten on the top and to the left of the letter O on the bottom. We weiler
to theaugmented hyperelliptic diagram

(2) Replace each edgek’—n> 0 in 2P by two edgesﬁﬂ i ¥4 #in o (T,), where the permu-
tationT’ has the letter 1 for the last letter on the top.

(3) Replace each edgek’—0> ™ in 2P by two edgesﬁﬂ w5 #in o (), where the permu-
tationTt’ has the letter 1 for the last letter on the bottom.

(4) We will denote bya, C o (T,) the added permutations of the operations (2) and (3). All the
edges are built except the cases whr 4, and where 1 is winner.

Observe that operation (2) (respectively, (3)) arises txadhen the lettem (respectively, 0) is
looser in the diagranm™P. Hence the description given in the previous section of tigjserelliptic
diagram leads to the following.

Lemma 3.4. In 2P, the edges where n (respectivelyjs looser are

RE(Tn) 25 Rp® (1)) (respectively® () > & & K(Th)),

forke {0,...,n—2}. So, there are r 1 edges where n is looser and+1 edges wheré is looser.
Therefore, the added permutationg in 2 (11,) by the operations (2) and (3) are:

(5) RoR (M) = (92 rhokL -l

k _ 0n—k+2.. n-1 1 n 2 ..n-k+1
(6) KI'Rb(T[n) - (n n-1 ..n-k+2n-k+10n-k.. 1 )’



PSEUDO-ANOSQOV ON HYPERELLIPTIC SURFACES 17

forke {2,...,n—1}, and
(7) ®R(M) = (386,227 "5' 20
(8) ®p(M) = (Aa™ 233100

In addition for all k= 2,...,n— 1 the two new permutations in the labeled diagranir,) defined
by (5) and (6) correspond to the same permutation in the redwtiagram?, (1,); the renumber-
ing corresponds ta ¥ with o the cyclic permutatior(1,2,...,n—1). The two new permutations
corresponding ta; (T,,) and Ry (1) are different ino, (15,).

Proof of Lemma 3.4The proof is obtained by straightforward computation anifisto the reader.
[

Now in order to finish the construction af(15,) and 2, (11,), one has to consider from the added
permutationsa, the operations top/bottom where the letter 1 is winner. &t iflaturns out that the
reduced diagranp, (Tt,) is already constructed. Namely,

Corollary 3.5. The diagram?, (11,) corresponds to adding the new permutations defined in above
Lemma 3.4, namely;, to the augmented hyperelliptic diagram, up to renumberingparticular the
cardinality of this diagram i€"* —14-n.

Proof of Corollary 3.5.Let ' € 4,, be an added permutation. Assume that it is given by (5), that i
T = RpR,(T0,) for somek. The edget — ®,,(1¢) was constructed when definiog,. By Lemma 3.4,
we also have that' = %;%,(T4,) in the reduced Rauzy diagram, hence the edge (1) was also
already constructed. This corresponds to2 added permutations.

The remaining cases are whehs given by (7) or (8). Then it is clear that the array correxfing
to 1 being winner are arrays from to itself. This corresponds to 2 permutations.

Hence, the diagram, (T1,) is completely built. Since#"YP=2"-1_1 one has #, (1) = 2" 1 —
1+n.

O

Lemma 3.4 and Corollary 3.5 imply the following descriptiofithe diagrano (TT,).

Proposition 3.6. The augmented hyperelliptic diagram together with the pgations 7, form a
fundamental domain for the covering magm,) — 2, (T,). A fiber for this covering consists of
labeled permutations of the kifdt, 1o g, ..., o 6"~2}, whererto 6k means the labeled permutation
nafter renumbering wittoX. In particular the cardinality of this diagram i€2" — 1+ n)(n—1).

The following technical lemma is similar to Corollary 3.3.i$ a very important lemma since it
will allow us to give information aboull irreducible paths.

Lemma 3.7. Lety be a closed oriented path in (1,): Letke {2,...,n—2} and letK € {2,n—k}
and lete € {t,b}.

a) If y contains the stegX & . (1) — K %X (1), then it also contains the following step

R RE ¢ (Th) — REFIRS  (Th)).

b) If ycontains the steg< (1) — X(Th,), then it also contains the stegk(1h,) — & <1 (1),

or the stepgf . (Thoo') — %/} (M, 00"), for some i {0,...,n—2}.
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FIGURE 3. The complete diagram (1t,) for n = 4. The vertices labeled by letters
A, B,C andD should be identified.

This property is also true if is a nonclosed path that starts and ends in the{sgtT,00,...,T,o
O-n—Z}'
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Proof. a) Using the construction ab (Ty,) from ©"P, we see that, as in Corollary 3.3, the diagram

D (Th)\{ & R . (Th) } is nonconnected.
b) Here, we have thab (T,)\{%(Th), % .(Thod')} is nonconnected, for the parametesuch

thatRs ¢ RK(Th) = RR < (Thod'). O

4. MINIMAL DILATATIONS IN A HYPERELLIPTIC CONNECTED COMPONENT

4.1. A key proposition. Veech'’s construction can only build a pseudo-Anosov honaphism fix-
ing a separatrix. But there can be many pseudo-Anosov howmdiism that do not fix any separa-
trix [Los09, Lan10]. In our case, we are saved by the follapkey proposition.

Proposition 4.1. Let g> 1 and let(X, w) be a flat surface in some hyperelliptic connected component
7WP(2g — 2) or s™WP(g—1,g—1). Then for any pseudo-Anosov homeomorphisatfine with
respect ta X, w), ¢ has a fixed point of negative index i¢. fixes a point and a outgoing separatrix
issued from that point.

Proof of Proposition 4.1Let T be the hyperelliptic involution oX. Firstly by Lemma 2.3, the invo-
lution T commutes withp. Thus@ descends to a pseudo-Anosov homeomorphisom the sphere.
By assumption, the quadratic differential associatefl kas a single zero (of ordeg2- 3 or 29— 2
depending the case). Thdidixes this zero and induces a disc pseudo-Anosov homeonsonplsay

g. Remark thay can be defined as a homeomorphism on the closed disc by exgeindio the rays
emanating from the zero. Now by Brouwer’s theoregrhas a fixed point on the disc. Either this
point is inside the disc (thus this is a regular point) or amltloundary. If the last case occur, thin
fixes the separatrices issued from the singularity. It is thet hard to see that eithef fixes a regular
point and the outgoing separatrix, or a singular point aediltgoing separatrices. Proposition 4.1 is
proven. 0

Remark 4.1. Another Brouwer’s theorem states that a homeomorphism@pltne with a periodic
orbit has a fixed point. With this theorem, it is easy to shaat there actually exists a regular fixed
point for ¢?. However, we believe that the case where the separatrixtastad to a singularity is
useful to present the main ideas without the technical diffes of the other case.

The next two sections analyze the two cases depending whikéiéxed point is singular or regular.

4.2. Case when the fixed separatrix is adjacent to the singularity In this section, we study the
case when the pseudo-Anosov homeomorphism fixes a horizmparatrix starting from a singular
point. We thus have to consider the corresponding diagraf¥%& We first prove a sufficient condition
for a primitive path to have a transition matrix with a spattadius greater than 2.

Proposition 4.2. Lety be a primitive closed path in some reduced Rauzy diagramud assume that
there is a lifty of yin the labeled Rauzy diagram that contains all the letterboasrs, or all the letters
as winners. Then the Perron-Frobenius eigenvalue of theix\éty) is bounded from below B3

Proof of the propositionlf § contains all the looser (respectively, all the winner) themma 3.1
implies that the minimum of the sums of the columns (respelsti the lines) of the corresponding
matrixV, before remuneration, is at least 2. Sing) =V -P whereP is a permutation matrix (see
Equation 2) the same property on the sums of the columnsegésely, the lines) holds fov (y).
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By assumption, the matriX =V (y) is primitive. Up to replacing/ by 'V, which does not change
its eigenvalues, we can assume that the sum of the coefficeneach lines is at least 2. bebe
a Perron-Frobenius eigenvector with positive entries @ated to the Perron-Frobenius eigenvalue
p(V) of V. Letip be such thalt lming =X, > 0. Then

d d
P(V)Xio = 3 VigiXj = Xig ) Vioj-
=1 =1

Sincex;, > 0, we see that there exigtssuch that

d
p(V) > z Vioj > 2.
=1

O

Proposition 4.3. Let @ be a pseudo-Anosov homeomorphism affine on a translatidacs(iX, w) €
aWP(2g —2) or (X,w) € #WP(g—1,g—1). If @fixes a horizontal separatrix emanating from a
singular point ofw then the dilatation ofpis bounded from below b

Proof. By Veech’s Theoremis obtained by taking a closed loop in a Rauzy diagram. By arham
of Rauzy (see [Rau79]), any Rauzy diagram contains a veftdedind:

v=(5 0 8)

Since the underlying flat surface is in the hyperelliptic mected component, it is easy to see that
v = T, and therefore this Rauzy diagram is necessanifyf” (one can also use the main theorem of
[Boi09]). As we have seen, the labeled and reduced diagrainside. Hence, for any closed path
in the reduced diagram whose associated matrix is primithe corresponding lift contains all the
letters as winner (see Proposition 3.2). Hence by Proposti2 the associated dilatation is at least
2. O

4.3. Case when the fixed separatrix is adjacent to a regular pointOne needs to prove the follow-
ing proposition.

Proposition 4.4. Let @ be a pseudo-Anosov homeomorphism on a surface in eitféP(2g — 2)
or stWP(g—1,g—1). If @fixes a separatrix adjacent to a regular point, then the dil@in of @ is
bounded from below b.

The idea of the proof is similar to the one of Proposition 4M& must consider pseudo-Anosov
homeomorphisms that are obtained by the Veech construatimmg the diagran, (15,), wereTt, =
(9.2, 35110, In this case, the reduced diagram is different from thelébeliagram (see
section 3.7.2). But we will show that we can still apply Prsition 4.2.

Remark 4.2. Our case is more subtle than the previous case. Indeed, witittthe permutation
(33928 € »(1u). If we consider the path bt —b—t —t —t then the lettei3 is never winner nor
looser. But the corresponding path i (1y) is closed and primitive. Nevertheless the lift based at
the permutation(; 539 9) ist—t—t—b—t—b, and all the letters are looser.
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We will call the permutations in the diagram(t,) that are in{Tt,, T, 0 0, ..., T, 0 6" ~2} thecentral
permutations We will call permutations in the diagram (11,) that corresponds ta, up to renum-
bering withoX thetransition permutations

We have the following technical lemmas.

Lemma 4.5. Lety be a primitive closed path im, (Tt,). There is a lifty of yin 2 (11,), not necessarily
closed, that starts and ends at central permutations.

Lemma 4.6. Lety be a path inp, (T,) that starts and ends at central permutations. Theontains
all the letters0,1,2,...,n as looser.

We first prove the proposition assuming Lemma 4.5 and Lem#a 4.

Proof of Proposition 4.4Let ¢ be a pseudo-Anosov homeomorphism that fixes a separatéx e

to a regular point. By Veech’s theoregnis obtain by taking a closed loop in some Rauzy diagram.
Using Rauzy Lemma stated in the proof of Proposition 4.3, are show that the Rauzy diagram is
necessarilyp, (Tt,) (one can also use the main theorem of [Boi09]). ke the corresponding closed
primitive path ino, (T,). By Lemma 4.5, there is a lift ofthat starts and ends at central permutations.
This lift contains all the letters as losers by Lemma 4.6, lan&roposition 4.2, the Perron-Frobenius
eigenvalue of the corresponding matrix, and hence theatiibat of @ is at least 2. O

The proof of the lemmas is strongly related to the geometth@fliagrano (11,). Before giving a
formal proof, we first present a very informal proof that udesinformal description of the diagram
given in the beginning of Section 3.7.2.

(1) For the first lemma it is enough to prove that a primitiveseld path in the labeled Rauzy
diagram must pass through a central permutation. Such past pass through a principal
loop where the letter O or the lettetis winner. If it enters in a k-th secondary loop (attached
to the k-th vertex of a principal loop) , the geometry of thagitam imposes that it either
leaves the secondary loop from the same vertex (and thergiois the (k+1)-th vertex of the
principal loop) or joins a k-th secondary loop in anothef kad escape it at the k-th vertex
of another principal loop, and therefore joins the (k+1)Antex of this loop. Iterating this
argument, it eventually joins a central permutation.

(2) The key observation for the second lemma is that a patimjgitwo central permutations will
either pass through all the vertices of a principal loop, drpass from one principal loop to
another one through a transition permutation and the quoreing pair of secondary loops.
In any cases all the letters will appear as losers.

We now give a proof of the lemmas.

Proof of Lemma 4.5Let y be a primitive closed path im,(T,), and lety be a lift of y in © (T,).
The pathy is not necessarily closed, but a poweryaddmits a liftn which is closed and primitive.
Furthermoren consists of a concatenation of lifts fBy Proposition 3.2 the patf contains all the
letter Q...,nas winner, in particular the letter 0 as winner.

The point is that the letter 0 appears as winner only on thessté the form,<*(m, 0 o') —

%

R¥(Thod'). One can assume that= 0. By Lemma 3.7, there exists i the step®,X(T,) O,
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Rk (1) or the stepgX(Th o ol) 25 &*"*(m, 0 o1), wherej corresponds to the index such that
RoR((Th 0 01) = Ry Ry ().

Since, 0 and play a symmetric role, we can iterate the argument and thierefve must reach
k = n, which corresponds to a central permutation. Hem@®ntains a central permutation. Singe
is a concatenation of lifts of, this path passes through the reduced permutatioSincey is closed,
we can assume that it starts and ends,atHence, any lift ofy has endpoints that are in the preimage
of 1, which are the central permutations. Lemma 4.5 is proven. O

Proof of Lemma 4.6Let y be a path inp (11,) connecting two central permutations. For simplicity,
assume thaj(1) is ,. Again, by symmetry, one can assume that the first arrow sngby the map

Ry, i.e. y(1) no, ¥(2) = ®:(T,). By Lemma 3.7 there exisis, ... ,in_1 such that the patfi contains
the stepk2(Tho0'2) — RS (THho0"2),..., R (oo 1) — &) (Thoa™).
The first possibility is thay does not change of leafe. forallk € {2,...,n— 1}, ix = 0. Then the

steps previously written form a subpath that can be revaréss(1) no, ¥(i2) ol ¥(i3) n2, el

¥(1). Then all the letters 0..,n— 1 are losers. The pathis closed, sa cannot always be winner.
Hence it is also looser.

The second possibility is thgtchanges a leaf,e. there exists a smallektsuch thaiy > 0. Then
by Lemma 3.7, a subpath giis obtained by the following way (compare with Figure 3):

e We start fromrt,.

e We applyk times the Rauzy move; (these are the moveg1) o, ¥(i2) UL

V(ik1) = & (). |

e We apply once the Rauzy movg, (we reach the permutatior, %.*(Th,) = %Rbk(rrn o a'v)).
This is the movey(jkc1) =2 Y(jks2)- |

e We applyk’ = n—k times the Rauzy move; (until we get the permutatiovtbk(moo'k)).

ol 1K o - 1k+1 1n-1 ..
These are the mové$ji.2) — ¥(jki3z) —— ... = V(int2)-
We see that all the letters are losers. This proves Lemma 4.6. O

APPENDIXA. EXAMPLES IN HYPERELLIPTIC COMPONENTS

In this appendix we show that the uniform lower bound on dilahs of pseudo-Anosov homeo-
morphisms in Theorem 1.1 is sharp by constructing suitakaengles. This will thus give a proof of
Theorem 1.2.

A.1. Hyperelliptic connected components "YP(2g — 2).

Proposition A.1. Let g> 2. There exists a pseudo-Anosov homeomorplpgaifine on a translation
surface in# "YP(2g— 2) whose dilatation is the Perron root of the polynomiag®x! — 2X29-1 — 2X2 1
1. This dilatation satisfies

1
0<0(qy) —V2< T
Lemma A.2. The polynomial pP= X290+l _2x20-1 _ 2X? 4 1 admits a unique real roott greater
thanv/2.
Proof. R(v/2) = -4+ 1< 0andPj(x) > 0 forx > v/2. 0
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Lemma A.3. Let M= [mj] be the matrix of dimensio?g defined by:

o forallje{g+1,...,20}, mj=1andmg=2,
o forallie{2,...,0},mj;g-1=1,

o forallje{g+1,...,29-1},mj_g=1,

® Mygg=Mpg2g=1.

o all the other elements are zero.

2 1 1 1
0 1 O 0 0
Ogxg-1 | : :
0
0 0 1 0
Ig—lxg—l Og—lxg
0
0 1 0 --- -+ 0 1

Then My hasa and1/a as eigenvalues whereis defined by the previous lemma.

Proof. We must compute the characteristic polynomyigl= det Mg — Xlog.2g). SincePy is reciprocal,
i.e. X®9P)Py(x~1) = Py(x), anda # —1, we just need to show théx+ 1)xq = Py for all g> 2. We
denote byL; thei —thline of Mg — Xlag. 2. For each € {1,...,g} we replacd.; by L; +xLi.4. Then
we develop the determinagttimes along the first column, to get:

detMg—x1) = (=1)820 (21— x)+(-1)9"2((~1)%"1.14+x(1—x)Dg-1))
2(1-%)+ (1) + (=1)%(1 - x)Dg_1,

wereDgy_1 is the(g— 1) x (g— 1) determinant:

1-x¢ 1 1 ... ... 1
1 - 0 ... ... 0

0 1 —x* 0 ... O

0 . ... 0 1 -x

DevelopingDg on the last column, we obtalg = —x?Dg_1 + (—1)¢"1. Then using this last expres-
sion, we see that:

(X+1) (Xgr1—XXg) = (x+ 1) (L= x— 2+ 2¢) = (2 =3¢+ 1) = Pyy1 — Xy

Since(1+ x)X2 = P», we deduce thatl + x)xg = Py for all g > 2, which proves the proposition. [J
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Lemma A.4. LetA (respectivelyr) be an eigenvector of M for the eigenvaladrespectivelyl/a).
Then, up to replacing or T by its opposite(A, 1) defines a suspension datum for the permutations
andt, with:

n— (1 2: ZQfl 2 ) and - - <g+1 o 29j1 1. gzlg)

Moreover(,A,T) and (17, A, 1) define the same two surfaces in the moduli space.

Proof. We haveMg\ = aX andMgt = 21. This gives:

, 1
) Vie{l,....29-2}\{g} Ai=a’Aj1 and = 2+t
1

Sincea > 1, Equation (11) implies thaty is of the same sign agg. The other equations imply that
all theA; are of the same sign. Hence all theare positive if we chooskyg > 0.

By a similar argument, for, we see that we can choosg < 0 and haver; > 0 for all i < 2g.
Furthermore, the label “2g” is the last of the first linerofrespectively;t) and the first of the second
line of Tt (respectively,’). Then in order to prove thdl, 1) is a suspension data ferand T, it is
enough to show that= z?gl T; is negative. By Equations (9) and (10), we have

S=Tyq+ —Tg= —Toq+ —Tg=...= ——=Tyq < 0.
g kZO ok 9 g X k; ok 9 029129

Hence we have proven théir A, 1) and (17, A, 1) define translation surfaces by the Veech’s con-
struction (see Section 3.2). Now we remark thafifis the polygon associated fat A, 1), andP;
is the polygon associated fat,A,T), then we obtairP, from P, by a 180 rotation. Since these
flat surfaces are hyperelliptic we conclude that the twoasa$ defined byr A, 1) and (17,A, 1) are
isometric. O

Lemma A.5. There is a pseudo-Anosov homeomorphism on the surfacedigfirtbe data(tt A, 1)
with dilatationa.

Proof. We start fromrt, and consider the pathin the corresponding Rauzy graph obtained by apply-
ing g times the mafRy, to @ and once the mag;. We obtain the permutation

= <g+1 v 23119 29)
29 129-1 .. ... 2 )
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The sequence of winners/losers(1s2g), (1,9),...,(1,2),(2g,1). And therefore, the corresponding
transition matrix is:

2 1 ... ... 1 1
o1 0 --- 0 0
ngg—l
0
0 0 1 0
My = 5
nglxg |gflngl
0
1 0 --- .. 0 0 1

The permutatiort’ is obtained fromt after renumbering. MultiplyindM’ by the corresponding
permutation matrix, one get precisely the matky. Let us applyg+ 1 times the Rauzy-Veech
induction on(1t, A, T) to obtain after renumberingrt, %)\,GT). But the two surfaceX (T, %)\,ar) and
X(T, 2A,a1) are the same surface by above lemma. Therefdmé, 21X, at) and X (1, A, 1) define
also the same surface in the moduli space, h&t{ce A, 1) admits a pseudo-Anosov homeomorphism

with dilatationa. O

Proof of the proposition.The existence of the pseudo-Anosov homeomorphggns clear from the
previous lemmas. We have= 6(¢y), and:

02+ 0%l 262 1= 2 (0% 120293 _2) 1 1=0,
thus
azg—l _ 2a29—3 _2_ a29—3 (GZ _ 2) —_2<0.
i i 2 1
Sincea > /2 we obtain 0< a — /2 < GveeET < m T

A.2. Hyperelliptic connected components WP(g—1,g—1).

Proposition A.6. Let g> 2. There exists a pseudo-Anosov homeomorphism on a trasktiface
in 21 "YP(g—1,g— 1) with dilatation the Perron root of the polynomial:

X29+2 _2X29 _ 29t _2X2 41, if g is even,
X29+2 _2X29 _ 4X 92 4 4X94+-2X%2 1, ifgis odd.
The dilatation satisfies
4
\/zg
Proof. The idea of the proof is very similar to the previous one. Vg juesent here the corresponding
paths in the Rauzy diagram.

0<8(qy) —V2<
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e If gis even, we start from the permutation= (2911 g SR %9;1). As previously,

we consider the “reverse” permutation = (2%121 5 0 gtagin O 291“). Then the path in

the Rauzy diagram starting fromi and defined by{g+ 1) timesb, two timest. One gets

the permutationt’ = (2%;21 184 et 29;1) , which is a renumbering af, and the

associated matrix is:

2 2 1 ... 1 1
o1 o0 --- 0 0
Og+lngl :
.0
0 0 1 0
Ig—lxg—l Og—lxg+1
0
0 110 --- --- 0 1

One can check thaiX + 1)x, (X) = X272 - 2X20 — 2x9+1 — 2X2 4 1, and that, foa the
Perron root ofxn, (X), the eigenvectors dfly corresponding ta and% define a suspension
data formt (and ). Then the corresponding translation surface admits theined pseudo-
Anosov homeomorphism by construction.

Also, we have
a?(a? - 2) < 2a9™ + 202

2 1 1 2
a—v2
< L (wen) < 7

Thus,

sincea > /2.
e If g is odd, we considert as previously and we take the path definedgoymesb, then
t—b—t—t. We obtain the required pseudo-Anosov with the same catgiruwe presented

have above. Also, we have:
1 4a%0a?-1)+1-202 4 4
a—V2= il
V2 a++/2 % RE-CIG:

APPENDIXB. EXAMPLES IN NON HYPERELLIPTIC COMPONENTS

In this appendix we motivate assumptions of Theorem 1.1. M&/ghat if we relax the condition
on the hyperelliptic involution, one can construct pseédamsov homeomorphisms in the non hyper-
elliptic connected components whose dilatations tend tdvénithe genus tends to infinity. This will
thus give a proof of Theorem 1.3.
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We will construct a sequence of pseudo-Anosov homeomanshig on the flat sphere i.eq is
affine with respect to a quadratic differentigl on the sphere. The construction involves the Rauzy-
Veech induction for quadratic differentials [BL0O9], usiggneralized permutations

Proposition B.1. For each g> 3, there exists a pseudo-Anosov homeomorpiign the flat sphere
with 2g poles and two zeroes of order®, fixing a pole, and having for dilatatior®{¢4) the Perron
root of the polynomial

P=X20_X2"1_4x9_X+1.

Proof of the propositionWe consider the Rauzy diagram corresponding to the strafupadratic
differentials on the sphere having the given singularittad# is sufficient to give a closed path in this
diagram and to check that the renormalization matrix islucgble and ha§y for eigenvalue, where
8y is the Perron root oP.

Let us consider the following generalized permutation (Qr-2 letters)

1 2 2 3 3 ... 9g+1 g+1
g+2 g+3 g+3 ... 29+1 2g+1 g+2 1 ‘

For instance fog = 3 this gives

1 2 2 3 3 4 4

56 6 775 1)
The Rauzy path we will consider is-b—t—b—t —b. A simple calculation shows that the renor-
malization matrixV (for the labeled permutation) and permutation mariare, respectively

2 1
1
0
V=] 2 11 2| and P=| l2ge2g |
12 0
1 | 0O --- 0
1 1 1

where the “2” in the diagonal of the matrix appears at the positiom+ 2. All the other entries in
V are zeroes. Thus the renormalization matrix (for the redysemutations) i¥ =V -P. One can
show that the matri¥ is irreducible and its characteristic polynomial is

(X —1)(X?9 - X271 _4X9 - X +1) = (X - 1)P(X).

Then as in the previous section, we see that some eigensaiftdrdefine suspension data, and the
corresponding flat surface has a pseudo-Anosov homeonsanplihose dilatation is the Perron root
of P. O

Finally we have the following corollary, which justifies tlessumptions of Theorem 1.1 on the
hyperelliptic involution

Corollary B.2. For g > 3 odd, there exists an affine pseudo-Anosov homeomorpgisma transla-
tion surface(X, w) with the following properties:
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(1) (X70‘)) € }[Odd(g_ 179_ 1);

(2) (X,w) is hyperelliptic,

(3) @ fixes a separatrix oX, w) (issued from a Weierstrass point),
(4) the dilatation ofy is the Perron root of the polynomial

X2 X291 _4x9 X 4+1.

In particular
li =1
oim_6(gy)
Remark B.1. Obviously the hyperelliptic involution on X fixes the twooesrofw, and (X, w) is not
in the hyperelliptic connected component of the correspanstratum.

Proof of the corollary. Forg odd, the examples given by Proposition B.1 lift to pseud@gav home-
omorphismsp, on the orientating coveiX,w) € # (g—1,g— 1). By construction the surface is hy-
perelliptic and since the poles are ramification pointsietti one lift that fixe a regular (Weierstrass)
point and the separatrix issued from that point.

To identify the connected component, we use the formula @am{l4bis]. SincéX,w) — (P1,q) is
the orientating cover, the spin structure determine@yw) is

[Ny1— Ny
wheren, 1 is the number of singularities ofof degrees 1 mod 4 amd 1 is the number of singulari-
ties ofg of degrees-1 mod 4.
(1) Ifg=1 mod 4: therg— 2= —1 modulo 4, thus,; = 0 andn_1 = 2g+ 2. Hence the parity
of the spin structure ofX,w) is (with g = 1+ 4k)
Iny1—n_a|] 2g+2
4 4

(2) If g=—1 mod 4: therg— 2 =1 modulo 4, thus,; = 2 andn_; = 2g. Hence the parity of
the spin structure ofX, w) is (with g = —1+- 4k)

Inyi—naf]  29-2
4 4

=14+2k=1 mod2

=—-14+2k=1 mod?2
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