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Abstract. Very few results are known about the topology of the strata of
the moduli space of quadratic differentials. In this paper, we prove that any
connected component of such strata has only one topological end. A typical
flat surface in a neighborhood of the boundary is naturally split by a collection
of parallel short saddle connections, but the discrete data associated to this
splitting can be quite difficult to describe. In order to bypass these difficul-
ties, we use the Veech zippered rectangles construction and the corresponding

(extended) Rauzy classes.
Interval exchange maps and Linear involutions and Rauzy classes and Qua-

dratic differentials and Moduli spaces

1. Introduction

We study compact surfaces endowed with a flat metric with isolated conical
singularities and Z/2Z linear holonomy. Such a surface is naturally identified with
a Riemann surface endowed with a meromorphic quadratic differential with at most
simple poles. The moduli space of such surfaces with fixed combinatorial data is
a noncompact complex-analytic orbifold Q and is called a stratum of the moduli
space of quadratic differentials.

There is an obvious way to leave any compact of Q by rescaling the metric so that
the area tends to infinity or to zero. Hence we usually consider normalized strata
that correspond to area one flat surfaces. A normalized strata is still noncompact,
and a neighborhood of the boundary corresponds to flat surfaces with a short
geodesic joining two singularities (not necessary distinct).

Very few results are known about the topology of these strata. Kontsevich, Zorich
and Lanneau have classified their connected components (see [KZ03] and [Lan08]).
Eskin, Masur and Zorich have described the neighborhood of the principal boundary,
which corresponds to the neighborhood of the boundary after removing a subset
of negligible measure (see [EMZ03, MZ08]). For the special case of genus zero flat
surfaces, we have proven that the corresponding strata have only one topological
end (see [Boi08]). In this paper, we extend this result to all strata.

Theorem 1.1. Let C be a connected component of a stratum of the moduli space

of quadratic differentials and let C1 be the subset of C that corresponds to area one

flat surfaces. Then, C1 has only one topological end.

The most natural approach is to describe a typical flat surface in the neighbor-
hood of the boundary. A saddle connection is a geodesic joining two singularities.
A flat surface is near the boundary if it has a saddle connection of short length. One
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can look at the set of saddle connections that are of minimal length. In general,
there are several such saddle connections and we can show that they are parallel for
a generic flat surface, and they stay parallel and of the same length for any small
perturbation of the surface. One can associate to such a collection of saddle con-
nections a “configuration” that describes how the collection splits the surface (see
[EMZ03, MZ08]). The number of different configurations tends to infinity when
the genus tends to infinity, and no canonical way is known to describe all the con-
figurations associated to a connected component of a stratum (see [MZ08, Boi09]).
We show in the Appendix some examples that illustrate the difficulties that appear
using this direct approach.

In order to bypass these difficulties, we use generalized permutations that give
another combinatorial description of a surface in a stratum. These combinatorial
data appear in a natural generalization of the well know relation between trans-
lation surfaces and interval exchange maps (see [Ma82, Vee82]). There is a nat-
ural construction that associates a flat surface to a generalized permutation and
a continuous parameter. This is the Veech construction. The set of generalized
permutations that can appear with this construction in a connected component of
a stratum is called the extended Rauzy class. The important fact is that it can
be built canonically using the (extended) Rauzy moves. A difficulty here is that a
generic surface near the boundary does not appear naturally from the Veech con-
strution with a “short” parameter (see section 4 for a precise statement). We will
proceed in the following way:

(1) Given a generalized permutation π, we define a subset Z(Dπ,ε), of flat
surfaces that are near the boundary, were we take “short” parameters.

(2) For any flat surface near the boundary, there is a path that stays near the
boundary and reaches Z(Dπ,ε), for some π (Lemma 4.4).

(3) We show that the subset ∪πZ(Dπ,ε) is connected, where the union is taken
on an extended Rauzy class (Lemma 4.5 and Lemma 4.6).

2. Flat surfaces and moduli space

2.1. Generalities. A flat surface is a real, compact, connected surface of genus
g equipped with a flat metric with isolated conical singularities and such that the
holonomy group belongs to Z/2Z. Here holonomy means that the parallel transport
of a vector along a loop brings the vector back to itself or to its opposite. This
implies that all cone angles are integer multiples of π. We also fix a choice of a
parallel line field in the complement of the conical singularities. This parallel line
field will be usually referred as the vertical direction. Equivalently a flat surface
is a triple (S,U ,Σ) such that S is a topological compact connected surface, Σ is a
finite subset of S (whose elements are called singularities) and U = {(Ui, zi)} is an
atlas of S \Σ such that the transition maps zj ◦ z−1

i : zi(Ui ∩Uj) → zj(Ui ∩Uj) are
translations or half-turns: zi = ±zj+c, and for each s ∈ Σ, there is a neighborhood
of s isometric to a Euclidean cone. Therefore, we get a quadratic differential defined
locally in the coordinates zi by the formula q = dz2i . This form extends to the points
of Σ to zeroes, simple poles or marked points (see [MT02, HM78]).

Observe that the holonomy is trivial if and only if there exists a sub-atlas such
that all transition functions are translations, or equivalently if the quadratic differ-
ential q is the global square of an Abelian differential. We usually say that S is a
translation surface. In this case, we can choose a parallel vector field instead of a
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parallel line field, which is equivalent to fix a square root of q. In the complementary
case, we sometime speak of half-translation surfaces.

The moduli space of quadratic differentials on a Riemann surface of genus g is
naturally stratified by considering the quadratic differentials that have prescribed
orders of zeroes (and poles). Each corresponding stratum is a complex analytic
orbifold.

A saddle connection is a geodesic segment (or geodesic loop) joining two singu-
larities (or a singularity to itself) with no singularities in its interior. Even if q is
not globally a square of an Abelian differential, we can find a square root of q along
any saddle connection. Integrating q along the saddle connection we get a complex
number (defined up to multiplication by −1). Considered as a planar vector, this
complex number represents the affine holonomy vector along the saddle connection.
In particular, its Euclidean length is the modulus of its holonomy vector. Note that
a saddle connection persists under any small deformation of the surface. Local co-
ordinates in a stratum of quadratic differentials are obtained by considering affine
holonomy vectors of a well chosen collection of saddle connections.

A normalized stratum corresponds to flat surfaces with area one. There is a
natural action of SL2(R) on any normalized stratum: let (Ui, zi)i∈I be an atlas of
flat coordinates of S, with Ui open subsets of S and zi(Ui) ⊂ R2. For A ∈ SL2(R),
an atlas of A.S is given by (Ui, A ◦ φi)i∈I . The action of the diagonal subgroup of
SL2(R) is called the Teichmüller geodesic flow. In order to specify notations, we
denote by gt, ht the matrices

gt =

[

e
t

2 0

0 e−
t

2

]

and ht =

[

1 t
0 1

]

.

It is well known (see [Ma82, Vee82, Vee86]) that the Teichmüller flow and the
SL2(R) action preserve a natural finite volume measure and are ergodic with respect
to this measure for each connected component of each normalized stratum.

2.2. Neighborhood of the boundary of a stratum. Let C1 be a connected
component of a normalized stratum of the moduli space of quadratic differentials.
Let Kε ⊂ C1 be the set corresponding to flat surfaces whose lengths of saddle
connections are all bigger than or equal to ε. Since the set of holonomy vectors
of saddle connections is discrete, we clearly have ∪ε∈Q+Kε = C1. Also, it is well
known that Kε is compact.

We will call the ε−boundary of C1 the subset C1,ε = C1\Kε.
Recall that for a σ-locally compact space W , the number of ends is the maximal

number of unbounded components of W\K, for K ⊂ W compact, when this number
is bounded from above (see [HR]). Hence, in order to prove the main result, it is
enough to show that the ε-boundary of C1 is connected.

3. The Rauzy–Veech induction

In this section, we present a generalization of the Veech construction and Rauzy-
Veech induction for the case of quadratic differentials. For more details, see [Vee82,
MMY05] for the case of Abelian differentials and [Boi08, BL09] for the case of
quadratic differentials.
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3.1. Veech zippered rectangle construction.

Definition 3.1. A generalized permutation, is a two-to-one map π : {1, . . . , 2d} →
{1, . . . , d}, which is represented by a table of two lines of symbols, with each symbol
appearing exactly two times.

π =

(

π(1) . . . π(l)
π(l + 1) . . . π(l +m)

)

.

The type of a generalized permutation is the pair (l,m), where l is the number of
elements of the first line and m is the number of element of the second line. We
clearly have l +m = 2d.

A generalized permutation is called reduced if for each k, the first occurrence
in {1, . . . , 2d} of the label k ∈ {1, . . . , d} is before the first occurrence of any label
k′ > k.

A renumbering of a generalized permutation corresponds to replacing π by f ◦π,
for f a permutation of {1, . . . , d}. In this paper, we look at generalized permutations
defined up to renumbering. It is easy to show that for each generalized permutation
π, there exists a unique reduced generalized permutation πr which is obtained from
π by renumbering.

Example 3.2. Consider the generalized permutation π = ( 3 4 1 2 1
4 2 5 5 3 ). It is not re-

duced since the first occurence of the number 3 is before the first occurence of 1.
In order to get a reduced generalized permutation, we clearly must replace 3 by
1, 4 by 2, etc. . . The corresponding reduced generalized permutation therefore is
( 1 2 3 4 3
2 4 5 5 1 ).

If for all k ≤ l the unique k′ 6= k such that π(k) = π(k′) satisfies the condition
k′ > l, then a reduced generalized permutation satisfies π(k) = k for all k ≤ d, and
corresponds to a permutation of {1, . . . , d}.
Definition 3.3. Let π be a generalized permutation of type (l,m). Let {ζk}k∈{1,...,d}
be a collection of complex numbers such that:

(1) ∀1 ≤ i ≤ l − 1 Im(
∑

j≤i ζπ(j)) > 0

(2) ∀1 ≤ i ≤ m− 1 Im(
∑

1≤j≤i ζπ(l+j)) < 0

(3)
∑

1≤i≤l ζπ(i) =
∑

1≤j≤m ζπ(l+j).

The collection ζ = {ζi}i∈{1,...,d} is called a suspension datum for π. We will say
that π is irreducible if π admits suspension data.

For the case when π corresponds to a permutation, i.e. when l = m = d and
π({1, . . . , d}) = π({d + 1, . . . , 2d}), being irreducible means that there exists no
1 ≤ k < d such that π({d + 1, . . . , d+ k}) = π({1, . . . k}). In the general case, the
combinatorial criterion for being irreducible is more complicated (see [BL09]).

Now we will associate to any pair (π, ζ) a flat surface. This construction will be
refered as the Veech construction1. We first describe a simple case. We consider
a broken line L1 whose edge number i (1 ≤ i ≤ l) is represented by the complex
number ζπ(i). Then we consider a second broken line L2 which starts from the
same point, and whose edge number j (1 ≤ j ≤ m) is represented by ζπ(l+j). The

1Note that the original paper of Veech [Vee82] does not explicitely use suspension datum as
parameter. This point of view is due to Marmi, Moussa and Yoccoz [MMY05] and is equivalent
to Veech’s original construction.
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Figure 1. Examples of suspension data associated to a general-
ized permutation

last condition of Definition 3.3 implies that these two lines also end at the same
point. If they have no other intersection points, then they form a polygon (see
Figure 1). The sides of the polygon, enumerated by indices of the corresponding
complex numbers, come naturally as pairs of segments that are parallel and of same
length. Gluing these pairs of sides by isometries respecting the natural orientation
of the polygon, this construction defines a flat surface. The holonomy of this surface
is either trivial or Z/2Z, depending on the generalized permutation π.
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Figure 2. Veech zippered rectangle construction, for two exam-
ples of suspension data, in the case of Abelian differentials

The two lines L1 and L2 might intersect in some other point, even if we start from
a suspension data (see Figure 1). However, we can define an alternative construction
that associates, to any suspension data, a flat surface. This construction coincides
with the first one when the lines Li have no other intersecting points. The general
idea is to consider a collection of (oriented) rectangles (Rα)α∈{1,...,d}, of width
Re(ζα) and height hα, where hα > 0 depends linearly on (Im(ζβ))β∈{1,...,d}. The
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surface is obtained from ⊔αRα by identifications of the boundaries of the Rα. The
identifications of the horizontal boundary are done in the following way:

• We consider the oriented interval I = [0,
∑l

i=1 Re(ζπ(i))].
• For each Rα, we choose a labeling of each horizontal sides by the preimages

of α by π.
• For each i ∈ {1, . . . , l}, we identify with an isometry the horizontal side of
Rπ(i), labeled by i, with the segment Ii = [

∑

j<i Re(ζπ(j)),
∑

j≤i Re(ζπ(j))] ⊂
I as in Figure 2. This gluing is done so that the orientation of I and the
one of ∂Rπ(i) coincide.

• For each i ∈ {l+1, . . . , l+m}, we identify as before with an isometry an hori-
zontal side of Rπ(i) with Ii = [

∑

l+1≤j<i Re(ζπ(j)),
∑

l+1≤j≤i Re(ζπ(j))] ⊂ I
as in Figure 2. This gluing is done so that the orientation of I and the one
of ∂Rπ(i) are opposite.

The identifications of the vertical boundary are done in the following way:

• For each i ∈ {1, . . . , l−1} we “zip” the adjacent rectangles Rπ(i) and Rπ(i+1)

starting from their common point on I, on a distance of
∑

j≤i Im(ζπ(j)).

• For each i ∈ {l + 1, . . . , l +m − 1} we “zip” the adjacent rectangles Rπ(i)

and Rπ(i+1) starting from I on a distance of −∑

l+1≤j≤i Im(ζπ(j)).

The hk are taken so that we obtain a closed surface. One can show that suitable
hk exist if and only if and only if there exists a suspension data.

On Figure 2, we can see the details of identifications for two examples of sus-
pension data. This more general construction is called the Veech zippered rectangle

construction. We refer to [Vee82, MMY05] for the case of Abelian differentials and
to [Boi08, BL09] otherwise for more details.

In all cases, we will denote by Z(π, ζ) the flat surface obtained from this con-
struction. We will need the following lemma:

Lemma 3.4. Let π be a irreducible generalized permutation and let ζ be a suspen-

sion datum for π. The flat surface Z(π, ζ) obtained by the Veech construction has

a saddle connection of length less than or equal to min{|ζα|, α ∈ A}.
Proof. In the case when the two lines L1 and L2 intersect only in their endpoints, it
is clear that the segments of the lines L1, L2 will corresponds to saddle connections.
Hence, each |ζα| is the length of a saddle connection for each α and the lemma is
proven.

Now, let us assume that the two lines intersect elsewhere. Then we must have
∑l

k=1 Im(ζπ(k)) 6= 0 otherwise there would be no other intersection points. Without
loss of generality, one can assume that this sum is positive. The other intersection
points correspond to the intersection of L1 with the rightmost segment of L2, since
it is the only one which is not a subset of {z ∈ C, Im(z) ≤ 0}. In particular, ζπ(l+m)

does not correspond to a saddle connection. However, all the other parameters ζα,
for α 6= π(l+m) correspond to a saddle connection which is inside the corresponding
rectangle in the zippered rectangle construction.

�

Let k0 be the maximal index smaller than l such that the vertex of L1 of coor-
dinates

∑

i≤k0
ζπ(i) is under the line L2. Let γ be the segment in C that joins the

two points of coordinates
∑

i≤k0
ζπ(i) to

∑

i≤l ζπ(i). By hypothesis on k0, for each

k0 < k < l, the point in the plane of coordinates
∑

i≤k ζπ(i) is above the point of
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γ

ζπ(l+m)

Figure 3. The dashed segment γ corresponds to a saddle connec-
tion of lenght less than |ζπ(l+m)|

γ with the same real part. Hence, it is easy to see that γ corresponds to a saddle
connection on the surface Z(π, ζ) (see Figure 3). Also, γ is of length smaller than
ζπ(l+m) since its real part and imaginary part are necessarily smaller than the ones
of ζπ(l+m).

3.2. Rauzy–Veech induction and extended Rauzy classes. Now we will de-
fine the Rauzy–Veech induction on the space of suspension data. Let us fix some
terminology: let k ∈ {1, . . . , l+m}. The other occurrence of the symbol π(k) is the
unique integer k′ ∈ {1, . . . , l +m}, distinct from k, such that π(k′) = π(k).

Now we define the combinatorial Rauzy moves for the generalized permutations.
We first define the unreduced maps R′

0, R′
1 and s′.

(1) R′
0(π):

• If the other occurrence k of the symbol π(l) is in {l + 1, . . . , l +m− 1},
then we define R′

0(π) to be of type (l,m) obtained by removing the symbol
π(l+m) from the occurrence l+m and putting it at the occurrence k+1,
between the symbols π(k) and π(k + 1).
• If the other occurrence k of the symbol π(l) is in {1, . . . , l−1}, and if there
exists another symbol α, whose both occurrences are in {l+ 1, . . . , l+m},
then we we define R′

0(π) to be of type (l+1,m−1) obtained by removing the
symbol π(l+m) from the occurrence l+m and putting it at the occurrence
k, between the symbols π(k − 1) and π(k) (if k = 1, by convention the
symbol π(l +m) is put on the left of the first symbol π(1)).
• Otherwise R′

0π is not defined.
(2) The map R′

1 is obtained by conjugating R′
0 with the transformation that

interchanges the two lines in the table representation.
(3) The map s′(π) is the generalized permutation of type (m, l) such that

s′(π)(k) = π(2d− k + 1).

Then we obtain R0(π), R1(π) and s(π) by renumbering R′
0(π), R′

1(π) and s′(π) in
order to get reduced generalized permutations. For a more explicit definition of R′

0

and R′
1 in terms of the map π, we refer to [BL09].

Example 3.5. Let π be the generalized permutation π = ( 1 2 3 4 3
2 4 5 5 1 ). We have

R′
0(π) =

(

1 2 1 3 4 3
2 4 5 5

)

= R0(π),
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and

R′
1(π) =

(

1 3 2 3 4
2 4 5 5 1

)

so R1(π) =

(

1 2 3 2 4
3 4 5 5 1

)

.

Also,

s′(π) =

(

1 5 5 4 2
3 4 3 2 1

)

so s(π) =

(

1 2 2 3 4
5 3 5 4 1

)

.

We now define the Rauzy–Veech induction on the space of suspension data.

• Let ζ be a suspension datum for π such that we haveRe(ζπ(l)) > Re(ζπ(l+m)).
We can define a suspension datum ζ′ for π′ = R′

0(π) in the following way:
ζ′k = ζk if k 6= π(l) and ζ′

π(l) = ζπ(l) − ζπ(l+m).

• Let ζ be a suspension datum for π such that Re(ζπ(l)) < Re(ζπ(l + m)).
We can define a suspension datum ζ′ for π′ = R′

1(π) in the following way:
ζ′k = ζk if k 6= π(l +m) and ζ′

π(l+m) = ζπ(l+m) − ζπ(l).

Remark 3.6. The parameter ζ′ defines a suspension datum for π′. The flat surfaces
Z(π, ζ) and Z(π′, ζ′) are naturally identified in the moduli space (see Figure 4).

ζ1

ζ1
ζ2

ζ2

ζ3

ζ3
ζ4

ζ4

ζ′1

ζ′1

ζ′2

ζ′2 ζ′3

ζ′3
ζ′4

ζ′4

Figure 4. Rauzy-Veech induction for a suspension datum.

A consequence of this remark is that if π is irreducible, then so are R0(π) and
R1(π), and they correspond to the same connected component of the moduli space
of quadratic differentials.

Note that when π does not correspond to a permutation, s(π) is not neces-
sary irreducible as shown in the next example. When s(π) is irreducible, then it
corresponds to the same connected component of the moduli space of quadratic
differentials.

Example 3.7. Let π = ( 1 2 1
2 3 3 4 4 ). This generalized permutation is irreducible:

for instance ζ = (2 + 2i, 1 − i, 1 − 2i, 1 + 4i) is a suspension data for π. However
s′(π) = ( 4 4 3 3 2

1 2 1 ) does not admit a suspension data. Indeed, if ζ′ were a suspension
datum for s′(π), then we would get:

Im(ζ′1) < 0 and 2Im(ζ′4) + 2Im(ζ′3) > 0

However, we must have ζ′1 = ζ′3 + ζ′4 which contradicts the previous inequalities.

Definition 3.8. (1) A Rauzy class is a minimal subset of irreducible general-
ized permutations (or permutations) which is invariant by the combinatorial
Rauzy maps R0,R1.
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(2) An extended Rauzy class is a minimal subset of irreducible generalized per-
mutations (or permutations) which is invariant by the combinatorial Rauzy
maps R0,R1 and s.

Extended Rauzy classes can be build by the following way: we start from a
generalized permutation and consider all its descendant by the Rauzy moves, were
we forbid the operation s on π when s(π) is reducible.

One have the following result, due to Veech (see [Vee90]) for the case of permu-
tations and to the author and E. Lanneau for the case of generalized permutation
(see Appendix B in [BL09]).

Theorem 3.9. Extended Rauzy classes are in one to one correspondence with the

connected components of the moduli space of quadratic differentials.

Remark 3.10. A sufficient condition for s(π) to be irreducible is that π admits a
suspension data such that

l
∑

k=1

Im(ζπ(k)) =

l+m
∑

k=l+1

Im(ζπ(k)) = 0.

Indeed, in this case, ζ is a suspension data for s(π) after suitable renumbering. In
the proof of Theorem 3.9 in [BL09], the operation s is only used on such generalized
permutations. Hence we can weaken the definition of extended Rauzy class by
authorizing the map s only for such permutations.

4. Ends of strata

In order to prove Theorem 1.1, we define a subset of C1,ε that corresponds to
flat surfaces obtained from the zippered rectangle construction, and with a “small”
parameter. We show that any connected component of C1,ε must intersect this set,
and that it is connected.

The following definition is needed for technical reasons when the corresponding
stratum corresponds to quadratic differentials.

Definition 4.1. Let π be a generalized permutation. A symbol α is said to be
regular if one of the following property holds:

• α appears in both lines,
• there exists β 6= α that appears only in the same line as α.

The geometric interpretation of this notion is the following: for a regular symbol
α, there exists a suspension datum ζ such that Re(ζα) is smaller than Re(ζβ) for
all β 6= α. For a nonregular symbol, such suspension does not exists since the
suspension data condition implies that ζα =

∑

β ζβ , were the sum is taken on all β
that appear only in the line different from α.

Example 4.2. Let π be the generalized permutation π = ( 1 2 3 4 3
2 4 5 5 1 6 6 ). The symbols

”1”, ”2” and ”4” satisfy the first condition, and the symbols “5”, “6” satisfy the second
condition, hence they are regular. The symbol ”3” satisfies none of the prescibed
condition, hence it is not regular.

Definition 4.3. Let π be a generalized permutation. We denote by Dπ,ε the set
of of pairs (π, ζ) , with ζ a suspension data for π, that define an area one surface
and such that there exists a regular symbol α ∈ {1, . . . , d} with |ζα| < ε.



10 CORENTIN BOISSY

Recall that we denote by Z(π, ζ) the flat surface obtained from (π, ζ) by the
Veech construction. By Lemma 3.4, we have Z(Dπ,ε) ⊂ C1,ε. Conversely, given a
surface in C1,ε, one would like to present it as in some Z(Dπ,ε). However, it is not
necessarily the case: even when the surface is obtained by the Veech construction,
there is not necessarily a small parameter in the corresponding suspension data. So
we will use the following lemma:

Lemma 4.4. Let S ∈ C1,ε. We assume that the underlying stratum is neither H(∅),
nor Q(−1,−1,−1,−1). There exists a generalized permutation π and a suspension

datum ζ such that (π, ζ) ∈ Dπ,ε and Z(π, ζ) is in the same connected component of

C1,ε as S.

Proof. We claim that we can find a surface S′ in the same connected component of
C1,ε as S, whose horizontal foliation consists of one cylinder, and with a horizontal
saddle connection of length smaller than ε.

The set of flat surfaces with a horizontal one cylinder decomposition is dense
in each connected component of a stratum (see [KZ03], Remark 7 and [Lan08],
Theorem 3.6). Hence, up to a small perturbation of S we can assume that it is
the case for S. It admits a smallest saddle connection γ. If γ is horizontal, then
the claim is true. We assume now that γ is not horizontal. Then, we apply on the
surface the matrix ht = ( 1 t

0 1 ) for a suitable continuous family of parameter t, so
that γ becomes vertical. Note that in the last operation, the area of the flat surface
does not change and the size of γ decrease, and therefore the flat surface stays in
C1,ε during that process.

The resulting surface, that we still denote by S can be represented by a rectangle
whose vertical sides are identified, and whose horizontal sides admit a partition in
pairs of segments, and for each pair, the segments are of the same length and are
identified either by translation or by a half-turn (see Figure 5). The endpoints
of each segments correspond to singularities of S. The bottom left corner can be
assumed to be a singularity which is an end point of γ, but the top left point does
not correspond in general to a singularity. Indeed, for a generic initial surface, the
corresponding rectangle is very long and very thin, and the saddle connection γ
is much bigger than the heigth of that rectangle. In particular, in the notation of
Figure 5, the segments labeled “2a”, and “2b” have a nonsingular endpoint, should
be seen as the two parts of a single a horizontal segment. Let N be ratio of the
length of γ by the heigth η of the rectangle. This ratio N is necessarily an integer.

0 0

1

1 2a2a2b2b

3

3

4

4

5 5

Figure 5. A small vertical saddle connection on a long thin cylinder

Now we assume that there is a pair (s1, s2) of horizontal segments on the rec-
tangle that are identified by a translation. Note that s1 or s2 might be the con-
catenation of the top-left and top-right horizontal segments We want to shrink s1
and s2 until they are very small. During the process, we must modify the surface
so that it stays in C1,ε.

Let A < 1 be the area of the limit rectangle obtained after collapsing the segments
s1, s2 to a point. Note that since S /∈ H(∅) by asumption, there exists other
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horizontal segments than s1, s2 on the initial rectangle, and therefore A 6= 0. Up
to applying the matrix gt0 for a suitable t0 to the surface S, we can assume that

N.η <
√
Aε. Now we continuously shrink the segments s1 and s2 until they are

small enough. We get a continuous family of flat surfaces (S̃t). There exists t1 ∈ R

such that the saddle connection γ persists for t ∈ [0, t1[, but does not necessarily
stay vertical. We can find a continuous function ϕ such that the saddle connection
corresponding to γ in hϕ(t).S̃t stays vertical. Rescaling hϕ(t).S̃t so that it has
area one, we get a continuous family of surfaces (St)t in C1,ε with a one cylinder
decomposition, and with a vertical saddle connection of length N.ηt, where ηt is
the heigth of the rectangle. Since the area At of hϕ(t).S̃t is bigger than A, and the

rescaling changes the lengths of all saddle connections by a factor 1/
√
At, then we

have N.ηt < ε. Hence St is in C1,ε for all t < t1.
Taking t1 maximal, either we find t < t1 such that the lenght of si is smaller than

ε, and therefore the corresponding surface St has a horizontal saddle connection of
length smaller than ε, or St converges to a surface St1 when t tends to t1. The
path corresponding to γ in St1 is not a saddle connection but a union of saddle
connections. This means that we have a saddle connection γ′

t1
, of length N ′ηt1 < ε

with N ′ an integer smaller than N . And we can continue the shrinking process.
There can be only a finite number of such steps, hence after a while, the segments
s1, s2 are of length smaller than ε, thus we have found the surface S′ of the claim.

If the pair (s1, s2) does not exist then the surface is a half-translation surface and
there exists two pairs of segments (s1, s2) and (s′1, s

′
2), one on each horizontal side

of the rectangle, whose corresponding identifications are half-turns. The previous
proof works if we shrink both of them at the same speed until the smallest one, say
(s1, s2), becomes small enough. Here the hypothesis that S /∈ Q(−1,−1,−1,−1)
implies that there is at least another pair of horizontal segment in the rectangle,
on the same side of the rectangle as the pair (s1, s2). In particular, the limit area
A is nonzero, since the limit rectangle is nontrivial.

Now, starting from S′, we can continuously change the vertical direction and
we get a area one surface obtained by the zippered rectangle construction with
data (π, ζ) such that |ζα| < ε for some α. In the first case of the proof α is
clearly regular. In the second case, the small ζα corresponds to the smallest pair
of horizontal segments (s1, s2). By the above remark, there is another pair of
horizontal segments on the same side as (s1, s2) that are identified together by an
half-turn. This precisely means that α is regular. �

Now we want to prove that ∪πZ(Dπ,ε) is contained in the same connected con-
nected component of C1,ε, where the union is taken over all the elements in the
extended Rauzy class. This is a consequence of the next two lemmas.

Lemma 4.5. Let π be an irreducible permutation or generalized permutation.

(1) Let π′ be R0(π) or R1(π). Then Z(Dπ,ε) ∩ Z(Dπ′,ε) 6= ∅.
(2) If π admits a suspension datum such that

∑

k≤l Im(ζπ(k)) = 0 then Z(Dπ,ε)

and Z(Ds(π),ε) have elements in the same connected component of C1,ε.

Proof. Let (l,m) be the type of π.
1) We assume that the step of the Rauzy induction we consider is R1. This

means in particular that π(l) is regular. We first build (π, ζ) ∈ Dπ,ε such that
|ζπ(l)| < ε and Re(ζπ(l)) < Re(ζπ(l+m)).
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Since π is irreducible and π(l) is regular, there exists a suspension data ζ such
that Re(ζπ(l)) is smaller than Re(ζπ(l+m)). Now we want to shrink Re(ζπ(l)) so that,
after area renormalization, we can assume that the product Re(ζπ(l)).Im(ζπ(l)) is

smaller than ε2/4. If the occurrences of π(l) appear on both sides, this is obviously
possible. If the occurrences of π(l) appear only on the top side, we must fulfill the
condition

∑

i≤l Re(ζπ(i)) =
∑

i>l Re(ζπ(i)). This is done by increasing Re(ζβ) for

some other (possibly all) symbols that appear only on the top side. Such symbols
exists because α is regular.

Once the condition Re(ζπ(l)).Im(ζπ(l)) < ε2/4 is obtained, we can apply the Te-
ichmüller geodesic flow gt on the corresponding flat surface until we have Re(ζπ(l)) <
ε/2 and Im(ζπ(l)) < ε/2. Then |ζπ(l)| < ε and Re(ζπ(l+m)) > Re(ζπ(l)). Since π(l)
is regular, (π, ζ) ∈ Dπ,ε.

Applying the Rauzy–Veech induction on (π, ζ), we obtain (π′, ζ′) that define the
same surface S and there is a symbol α such that ζ′α = ζπ(l). It is easy to check that
this symbol is regular for π′, and therefore (π′, ζ′) ∈ Dπ′,ε and Z(π, ζ) = Z(π′, ζ′) ∈
Z(Dπ,ε) ∩Z(Dπ′,ε). This proves the first point of the lemma for the map R1. The
other case is symmetric.

2) Now we start from a suspension datum with
∑

k≤l Im(ζπ(k)) = 0. First,
we remark that the existence of a suspension data implies that either the sym-
bol π(l) or the symbol π(l + m) is regular. Indeed, otherwise the suspension

data condition
∑l

k=1 ζπ(k) =
∑l+m

k=l+1 ζπ(k) implies 2ζπ(l) = 2ζπ(l+m), and therefore
∑l−1

k=1 Im(ζπ(k)) =
∑l+m−1

k=l+1 Im(ζπ(k)) is both positive and negative, which is impos-
sible. Therefore, at least one of the Rauzy moves R0, R1 is always possible. Then
the same construction as before gives (π, ζ′) ∈ Dπ,ε such that

∑

k≤l Im(ζ′
π(k)) = 0.

We claim that the parameter ζ′ is also suspension datum for the unreduced gener-
alized permutation s′(π). Indeed, by definition, s′(π)(k) = l+m− k + 1 and s′(π)
is of type (m, l). Then, for k < m

k
∑

i=1

Im(ζs′(π)(i)) =

l+m
∑

i=l+m−k+1

Im(ζπ(i))

=

l+m
∑

i=l+m−k+1

Im(ζπ(i))−
l+m
∑

i=l+1

Im(ζπ(i))

= −
l+m−k
∑

i=l+1

Im(ζπ(i)) > 0

Similarly, we have
∑m+k

i=m+1 Im(ζs′(π)(i)) < 0 for all 1 ≤ k < l.
If the underlying stratum is a not a stratum of Abelian differentials, then we

have Z(π, ζ′) = Z(s′(π), ζ′), and after renumbering, we have Z(π, ζ) ∈ Z(Ds(π),ε).
If the underlying stratum is a stratum of Abelian differentials, then we consider the

path (rθ.Z(π, ζ))θ∈[0,π] for rθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

. The latter path is clearly in C1,ε
and joins Z(π, ζ′) and Z(s′(π), ζ′). This proves the lemma.

�

Lemma 4.6. Let π be a generalized permutation whose corresponding stratum is

neither H(∅), nor Q(−1,−1,−1,−1). The set Dπ,ε is connected.
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Proof. We consider ζ, ζ′ that define two elements in Dπ,ε. There exists α, α′ in
{1, . . . , d} regular such that |ζα| < ε and |ζ′α′ | < ε (we may have α = α′).

Case 1 : We assume that there is a symbol β, with β 6= α and β 6= α′ that
appears in both lines of π.

Let ζt be the suspension data obtained after rescaling (1− t)ζ + tζ′ so that the
corresponding flat surface has area one. We denote by ht height of the rectangle
associated to the label β. Since t 7→ ζt is continuous on [0, 1], there exists h > 0
such that ht > h for all t and there exists c > 0 such that |ζt,α| < c and |ζt,α′ | < c
for all t.

Let N > 0. We consider ζ
(N)
t obtained from ζt after adding N to the parameter

ζt,β . This means that for each t we increase the length of the intervals Ik, Ik′ of the
corresponding linear involution by N . By construction, the area of the flat surface

defined by ζ
(N)
t is At = 1 +Nht.

Then, ζ̃
(N)
t = 1√

At

.ζ
(N)
t is a suspension data and we have, for all t:

|ζ̃(N)
t,α | < c√

1 +Nht

<
c√

1 +Nh

since ht > h, and similarly

|ζ̃(N)
t,α′ | < c√

1 +Nh

For N large enough, c√
1+Nh

is smaller than ε and hence (π, ζ̃t) is in Dπ,ε for all

t ∈ [0, 1].

Furthermore, rescaling suitably the path
(

ζ
(sN)
0

)

s∈[0,1]
(respectively, the path

(

ζ
(sN)
1

)

s∈[0,1]
), we see that (π, ζ) and (π, ζ̃) (resp. (π, ζ′) and (π, ζ̃′)) are in the

same connected component of Dπ,ε. This proves the lemma for Case 1.

Case 2: We assume that there are two symbols β, β′ different from α, α′, and
such that β appears only in the top line of π, and β′ appears only in the bottom
line. The same proof as before works if we add N to ζt,β and ζt,β′ .

Now we come back to the general case. For Abelian differentials, the Case 1 is
always true except if d = 2, but this corresponds to the stratum H(∅). For quadratic
differentials, recall that α and α′ are regular. There are several possibilities:

• Each of the symbols α and α′ appears in both lines of π, then Case 2 is
satisfied.

• The symbol α appears only in one line (for instance the top one) and the
symbol α′ appears in both. Then, there is β 6= α that appears only in the
top line because α is regular. Since there exists necessarily β′ that appears
only in the second line, Case 2 applies.

• The symbol α appears only in the top line and the symbol α′ appears only
in the bottom line. Then, Case 2 applies since α and α′ are regular.

• Both symbols α, α′ appear only in one line (for instance the top one). We
can assume that none of the previous assumption is valid. In particular
there are no other symbols in the first line. If there is only one symbol in
the second line, then the generalized permutation is defined with only three
symbols and therefore one can check that the stratum is Q(−1,−1,−1,−1),
contradicting the hypothesis. When there are at least two symbols β, β′ in
the bottom line, then as in the proof of Lemma 4.5, there is a suspension
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data ζ′′ such that |ζ′′β | < ε. And we can find paths in Dπ,ε that join (π, ζ)

to (π, ζ′′) and (π, ζ′) to (π, ζ′′).

�

Proof of Theorem 1.1. It is well known that H(∅) has only one topological end.
The stratum Q(−1,−1,−1,−1) can be naturally identified with H(∅), hence has
also one topological end (see also [Boi08]).

For the other cases, we combine Theorem 3.9, Lemma 4.5 and 4.6 to see that the
set ∪π∈CZ(Dπ,ε), for C the extended Rauzy class corresponding to C, is a subset
of the same connected component of C1,ε.

By Lemma 4.4, any connected component of C1,ε intersects the subset ∪π∈CZ(Dπ,ε).
Hence there is only one connected component in C1,ε. �

Appendix A. Geometric description of a neigborhood of the

boundary of a stratum

In this this part, we present natural splittings of a generic flat surface in C1,ε.
We show some examples of the difficulties that can arise if one wants to relate two
possible “configurations” that can occur in the same connected component of the
corresponding strata of the moduli space of flat surfaces.

A.1. Configurations of rigid collections of saddle connections. Let S be a
surface in C1,ε. The set of lengths of saddle connections is discrete, hence, there
exists a saddle connection whose length is minimal.

Such saddle connection is not necessarily unique even if the surface is generic.
Indeed, if two saddle connections on a translation surface are homologous, then they
are necessary parallel and of the same length. This property is preserved by any
small deformation of the surface inside the ambient stratum. One can show that
the converse is true: if the ratio of the length of two saddle connections is constant
for any small deformation of a translation surface, then they are homologous. The
analogous notion for half-translation surfaces is “ĥomologous”. In this case, two
ĥomologous saddle connections are parallel and the ratio of their lengths is in
{1/2, 1, 2} (see [EMZ03, MZ08] for more details).

Hence, a generic surface in C1,ε naturally defines a splitting of the surface by
a collection of small and parallel saddle connections. This collection is preserved
under small perturbation of the surface. We will call configuration, the discrete data
associated to this splitting which is preserved under any small deformation of the
surface (see also [EMZ03, MZ08]). Note that, contrary to the case of generalized
permutations, there is no canonical way to describe all the configurations that can
appear in a stratum, or in a connected component of a stratum (see [MZ08, Boi09]).

Example A.1. Consider an element S0 ∈ H(0) and S1 ∈ H(1, 1). We slit each of
these two surfaces along a segment of the same length and with the same direction
such that exactly one endpoint of the segment in S1 is a singularity. We get two flat
surfaces with one boundary component each, and each of these boundaries consists
of two saddle connections. Now let S be the translation surface obtained by gluing
the two previous surfaces with boundary so that we get a closed translation surface.
The segments of the boundary components of S1 and S2 correspond in S to a pair
(γ1, γ2) of homologous saddle connections. We see that the surface S has three
singularities: one corresponds to the singularity of S1 that does not intersect the
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segment, and two correspond to the endpoints of the segments, hence, are of angle
2π + 2π and 2π + 4π. Therefore S is in the stratum H(2, 1, 1). The configuration

of (γ1, γ2) can be seen as the combinatorial data associated to this construction.
Similarly, one can define a surface S′ with the same construction as before, but

using a surface S′
2 in H(2) and with a segment that does not intersect the degree two

singularity. It is easy to see that the surface S′ is also in the same stratum H(2, 1, 1).
The corresponding saddle connections (γ′

1, γ
′
2) have a different configuration.

Note that a configuration of homologous saddle connections is also preserved
by the SL(2,R) action on the stratum. Therefore, by ergodicity of this action,
as soon as there exists a translation surface with a collection of homologous saddle
connections, then such collection exists on almost all translation surfaces of the same
connected component of stratum. Moreover, a result of Eskin and Masur asserts
that the number of collections of saddle connections realizing a given configuration
on a generic surface has quadratic asymptotics (see [EM01]). However, there is
no lower bound on the length of a saddle connection that would realize a given
configuration.

In the case of the surfaces S, S′ of Example A.1, by choosing sufficiently small
segments in the construction, we can assume that the saddle connections γi, γ

′
i are

very small and the surfaces are in the ε-boundary of the stratum. There exists a
pair of homologous saddle connections (γ′′

1 , γ
′′
2 ) on S that realizes the configuration

of (γ′
1, γ

′
2), but the saddle connections γ′′

i might be very long, and therefore, it can
be difficult to shrink γ′′

i by staying in the ε-boundary of the stratum. A possible
solution is to look at some other saddle connections, not too long, that would
correspond to an intermediary configuration. In our case, it is easy to find on S
and on S′ a simple saddle connection joining for instance a singularity of degree
1 and a singularity of degree 2. Here by simple we mean that no other saddle
connection is homologous to it. However, such approach depends on the geometry
of S and S′, since there does not exists an analogous to the Rauzy induction for
configurations, i.e. a canonical operation that relates all the configurations of a
connected component of a stratum. Furthermore, as we will see, the relations
between configurations and the geometry of the surface are not simple.

A.2. Some strange examples. In this section we present two examples that cor-
respond to the stratum Q(−1, 9). This stratum is nonconnected and the only known
proof of this result uses extended Rauzy classes (see [Lan08, BL09]).

A.2.1. First example. Let S ∈ Q(−1, 9) with the following decomposition: there
exists two closed saddle connections γ1 and γ2 that start and end at the singularity
of order 9 and that are the boundary of a cylinder, and such that no other saddle
connections are ĥomologous to the γi.

The angle between γ1 and γ2 is kπ, for k ∈ {1, 2, 3, 4}. Lanneau ([Lan08]) has
proven the following.

• If k ∈ {1, 2, 4} then S belongs to the regular connected component of
Q(−1, 9), i.e. there exists a simple saddle connection joining the pole to
the zero of order 9.

• If k = 3, then S belongs to the irreducible connected component of Q(−1, 9),
and hence, there is no simple saddle connection joining the pole to the zero
of order 9.



16 CORENTIN BOISSY

γ1 γ2kπ

Figure 6. Cylinder attached to a singularity, bounded by two
saddle connections

Note that in the stratum Q(−1, 1 + 4n), for n ≥ 3, one can find surfaces with
analogous decomposition by a pair of saddle connections bounding a cylinder. But
in this case, for all parameters k, there exists a simple saddle connection joining the
pole to the zero of order 1 + 4n, because the stratum Q(−1, 1 + 4n) is connected.

A.2.2. Second example. Let S ∈ Q(−1, 9) and γ a simple closed horizontal saddle
connection of S joining the zero to itself. It defines at the zero an unordered pair of
angles (απ, βπ) with α, β ∈ N∗ and α+β = 11. We assume that this pair is (4π, 7π).
Then S can be obtained from the stratum by the following construction: we start
from a surface S0 ∈ Q(−1, 1, 4) and we denote by P1 and P2 the two singularities
of order 1 and 4. For each Pi, we choose an angular sector of angle π, between two
consecutive horizontal separatrices. We denote by I and II these sectors. Then, we
choose a path ν transverse to the horizontal foliation and without self intersections
that joins the sector I of P1 to the sector II of P2 (such path always exists by a
result of Hubbard and Masur [HM78]). Then, we cut the surface along this path
and paste in a “curvilinear annulus” with two opposite sides isometric to ν, and with
horizontal sides of length ε. We get a surface with two boundary components and
each of these components consists of a closed saddle connection. These two saddle
connections are parallel and of the same length, and therefore, we can isometrically
glue them together and get a flat surface which is in Q(−1, 9), and with a saddle
connection that realize the configuration described above.

One can show that the connected component containing the surface obtained
by this construction does not depend on the choice of the path ν (see [Boi08],
Lemma 4.5), once fixed the pair of sectors I and II. Also, the resulting connected
component does not change if we change continuously the initial surface. However,
since the numbers of possible sectors (respectively 3 and 6) are not relatively prime,
there remains a parameter in Z/3Z.

In this precise case, we have the following result: fix the sector II. Among the
3 possible choices for sector I, the following possibilities hold:

• Two choices we give a surface in the regular connected component of Q(−1, 9),
and hence, on the resulting flat surface, there exist a simple saddle connec-
tion joining the pole to the zero of order 9.
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• The last choice leads to the irreducible connected component of Q(−1, 9)
and hence, on the resulting flat surface, we cannot find a simple saddle
connection joining the pole to the zero of order 9.

To prove this, we start from the flat surfaces obtained starting from a rectangle
and gluing by translation or half turn the sides according to the left drawing of
Figure 7. Then we perform the previous construction using the 3 possible paths
that are indicated by dotted lines. This leads to 3 flat surfaces a), b) and c).

a)

b)

c)
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Figure 7. Three similar surgeries of a surface in Q(−1, 4, 1)

Continuously deforming these 3 surfaces and after some cutting and gluing, we
get three new surfaces in the same connected component as the initial ones. The
new surfaces are shown on Figure 8.
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Figure 8. Connected components of the surfaces of Figure 7

Then we have the following:

• In the case a), there is a flat cylinder corresponding to the closed vertical
geodesics starting from the segment 6. According to the criteria of Lanneau
(see [Lan08], section 5), this cylinder is simple. We can check that the
angle between the corresponding two saddle connections is 3π. Hence, by
the criteria of Lanneau described in Example A.2.1, the flat surface is in
the irreducible connected component of Q(−1, 9).

• In the case b), the criteria of Lanneau says that the vertical saddle connec-
tion corresponding to the segment labelled “0” is simple, hence we are in
the regular connected component of Q(−1, 9).
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• In the case c), it is clear that the saddle connection corresponding to the
segment labelled “6” is simple, hence we are in the regular connected com-
ponent of Q(−1, 9).
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