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We describe the connected components of the complement of a natural “diagonal”
of real codimension 1 in a stratum of quadratic differentials onCP

1. We establish
a natural bijection between the set of these connected components and the set of
generic configurations that appear on such “flat spheres”. Wealso prove that the
stratum has only one topological end. Finally, we elaboratea necessary toolkit
destined to evaluation of the Siegel–Veech constants.
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1 Introduction

The article deals with families of flat metric on surfaces of genus zero, where the
flat metrics are assumed to have conical singularities,Z/2Z linear holonomy and a
fixed vertical direction. The moduli space of such metrics isisomorphic to the moduli
space of meromorphic quadratic differential onCP

1 with at most simple poles and is
naturally stratified by the number of poles and by the orders of zeros of a quadratic
differential.

Any stratum is non compact and a neighborhood of its boundaryconsists of flat surfaces
that admit saddle connections of small length. The structure of the neighborhood of the
boundary is also related to counting problems in a generic surface of the stratum (the
“Siegel–Veech constants”, see Eskin, Masur and Zorich [EMZ] for the case of Abelian
differentials).

When the length of a saddle connection tends to zero, some other saddle connections
might also be forced to shrink. In the case of an Abelian differential this corresponds
to homologous saddle connections. In the general case of quadratic differentials, the
corresponding collections of saddle connections on a flat surface are said to bêhomo-
logous1 (pronounced “hat-homologous”). Configurations associated to collections of
ĥomologous saddle connections have been described for general strata by Masur and

1The corresponding cycles are in fact homologous on the canonical double cover ofS,
usually denoted aŝS, see section1.2.

http://www.ams.org/mathscinet/search/mscdoc.html?code=32G15,(30F30, 57R30)
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Zorich in [MZ] and more specifically for genus zero and in hyperelliptic connected
components by the author in [B].

Usually, the study of the structure of the neighborhood of the boundary is restricted to
a thick part, where all short saddle connections are pairwiseĥomologous (see Masur
and Smillie [MS], and also [EMZ, MZ]). Following this idea, we will consider the
complement of the codimension 1 subset∆ of flat surfaces that admit a pair of saddle
connections that are both of minimal length, but which are not ĥomologous.

For a flat surface in the complement of∆, we can define the configuration of the
maximal collection of̂homologous saddle connections that contains the smallest saddle
connection of the surface. This defines a locally constant map outside∆ (see section5
for more details).

We will prove the following result.

Main Theorem Let Q1(k1, . . . , kr ) be a stratum of quadratic differentials onCP
1

with at most simple poles. There is a natural bijection between the configurations of
ĥomologous saddle connections existing in that stratum andthe connected components
of Q1(k1, . . . , kr )\∆.

We will call the connected components ofQ1(k1, . . . , kr )\∆ theconfiguration domains
of the stratum. These configuration domains might be interesting to the extend that
they are “almost” manifolds in the following sense:

Corollary 1.1 Let D be a configuration domain of a stratum of quadratic differentials
on CP

1. If D admits orbifoldic points, then the corresponding configuration is “sym-
metric” and the locus of such orbifoldic points are unions ofcopies (or coverings) of
submanifolds of smaller strata.

Restricting ourselves to the neighborhood of the boundary,we show the following:

Proposition 1.2 Let D be a configuration domain of a stratum of quadratic differen-
tials onCP

1. ThenD has only one topological end.

Corollary 1.3 Any stratum of quadratic differentials onCP
1 has only one topological

end.

Corollaries1.1and1.3will be stated later as Corollary5.4and Corollary5.5.
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1.1 Basic definitions

Here we first review standard facts about moduli spaces of quadratic differentials. We
refer to Hubbard and Masur [HM], Masur [M] and Veech [V1] for proofs and details,
and to Masur–Tabachnikov [MT] or Zorich [Z] for general surveys.

Let S be a compact Riemann surface of genusg. A quadratic differentialq on S is
locally given byq(z) = φ(z)dz2 , for (U, z) a local chart withφ a meromorphic function
with at most simple poles. We define the poles and zeroes ofq in a local chart to be
the poles and zeroes of the corresponding meromorphic function φ. It is easy to check
that they do not depend on the choice of the local chart. Slightly abusing notations, a
marked point on the surface (resp.a pole) will be referred to as a zero of order 0 (resp.
a zero of order−1). An Abelian differential onS is a holomorphic 1–form.

Outside its poles and zeros,q is locally the square of an Abelian differential. Integrating
this 1–form gives a natural atlas such that the transition functions are of the kind
z 7→ ±z+ c. Thus S inherits a flat metric with singularities, where a zero of order
k ≥ −1 becomes a conical singularity of angle (k + 2)π . The flat metric has trivial
holonomy if and only ifq is globally the square of any Abelian differential. If not,
then the holonomy isZ/2Z and (S, q) is sometimes called ahalf-translationsurface
since transition surfaces are either half-turns, or translations. In order to simplify the
notation, we will usually denote byS a surface with a flat structure.

We can associate to a quadratic differential the set with multiplicities {k1, . . . , kr}

of orders of its poles and zeros. The Gauss–Bonnet formula asserts that
∑

i ki =

4g − 4. Conversely, if we fix a collection{k1, . . . , kr} of integers, greater than or
equal to−1 satisfying the previous equality, we denote byQ(k1, . . . , kr ) the (possibly
empty) moduli space of quadratic differential which are notglobally squares of Abelian
differential, and which have{k1, . . . , kr} as orders of poles and zeros. It is well known
that Q(k1, . . . , kr ) is a complex analytic orbifold, which is usually called astratum
of the moduli space of quadratic differentials on a Riemann surface of genusg. We
usually restrict ourselves to the subspaceQ1(k1, . . . , kr ) of area one surfaces, where
the area is given by the flat metric. In a similar way, we denoteby H1(n1, . . . , ns) the
moduli space of Abelian differentials of area 1 having zeroes of degree{n1, . . . , ns},
whereni ≥ 0 and

∑s
i=1 ni = 2g− 2.
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There is a natural action of SL2(R) onQ(k1, . . . , kr ) that preserve its stratification: let
(Ui, φi )i∈I is a atlas of flat coordinates ofS, with Ui open subset ofSandφi(Ui) ⊂ R

2.
An atlas ofA.S is given by (Ui , A ◦ φi)i∈I . The action of the diagonal subgroup of
SL2(R) is called the Teichmüller geodesic flow. In order to specifynotations, we
denote bygt and rθ the following matrices of SL2(R):

gt =

[
e

t
2 0

0 e−
t
2

]
rθ =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]

A saddle connection is a geodesic segment (or geodesic loop)joining two singularities
(or a singularity to itself) with no singularities in its interior. Even ifq is not globally
a square of an Abelian differential we can find a square root ofit along the saddle
connection. Integrating it along the saddle connection we get a complex number (de-
fined up to multiplication by−1). Considered as a planar vector, this complex number
represents the affine holonomy vector along the saddle connection. In particular, its
euclidean length is the modulus of its holonomy vector. Notethat a saddle connection
persists under any small deformation of the surface.

Local coordinates for a stratum of Abelian differential areobtained by integrating the
holomorphic 1–form along a basis of the relative homologyH1(S, {sing}, Z), where
{sing} denotes the set of conical singularities ofS. Equivalently, this means that local
coordinates are defined by the relative cohomologyH1(S, {sing}, C).

Local coordinates in a stratum of quadratic differentials are obtained in the following
way: one can naturally associate to a quadratic differential (S, q) ∈ Q(k1, . . . , kr ) a
double coverp: Ŝ → S such thatp∗q is the square of an Abelian differentialω .
The surfacêS admits a natural involutionτ , that induces on the relative cohomology
H1(Ŝ, {sing}, C) an involution τ∗ . It decomposesH1(Ŝ, {sing}, C) into an invariant
subspaceH1

+(Ŝ, {sing}, C) and an anti-invariant subspaceH1
−(Ŝ, {sing}, C). One can

show that the anti-invariant subspaceH1
−(Ŝ, {sing}, C) gives local coordinates for the

stratumQ(k1, . . . , kr ).

1.2 Ĥomologous saddle connections

Let S∈ Q(k1, . . . , kr ) be a flat surface and denote byp: Ŝ→ S its canonical double
cover andτ its corresponding involution. LetΣ be the set of singularities ofS
andΣ̂ = p−1(Σ).

To an oriented saddle connectionγ on S, we can associateγ1 and γ2 its preimages
by p. If the relative cycles [γ1] and [γ2] in H1(Ŝ, Σ̂, Z) satisfy [γ1] = −[γ2], then we
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define [γ̂] = [γ1]. Otherwise, we define [ ˆγ] = [γ1] − [γ2]. Note that in all cases, the
cycle [γ̂] is anti-invariant with respect to the involutionτ .

Definition 1.4 Two saddle connectionsγ andγ′ areĥomologous if [ ˆγ] = ±[γ̂′].

Example 1.5 Consider the flat surfaceS∈ Q(−1,−1,−1,−1) given in Figure1 (a
“pillowcase”), it is easy to check from the definition thatγ1 and γ2 areĥomologous
since the corresponding cycles for the double coverŜ are homologous.

Ŝ

S

2′

2′

1′

1′

2

2

1

1

3

3

γ1

γ2

±[γ̂1]

±[γ̂2]

Figure 1: An unfolded flat surfaceS with two ĥomologous saddle connectionsγ1 andγ2 .

Example 1.6 Consider the flat surface given in Figure2, the reader can check that the
saddle connectionsγ1 , γ2 andγ3 are pairwisêhomologous.

The following theorem is due to Masur and Zorich [MZ]. It gives in particular a simple
geometric criterion for deciding whether two saddle connections areĥomologous. We
give in the appendix an alternative proof.

Theorem (H. Masur, A. Zorich) Consider two distinct saddle connectionsγ, γ′ on
a half-translation surface. The following assertions are equivalent:

• The two saddle connectionsγ andγ′ areĥomologous.

• The ratio of their length is constant under any small deformation of the surface
inside the ambient stratum.
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Figure 2: Unfolded flat surface with threeĥomologous saddle connectionsγ1 , γ2 , andγ3 .

• They have no interior intersection and one of the connected component of
S\{γ ∪ γ′} has trivial linear holonomy.

Furthermore, ifγ and γ′ are ĥomologous, then the ratio of their length belongs to
{1/2, 1, 2} and they are parallel.

A saddle connectionγ1 will be calledsimpleif they are no other saddle connections
ĥomologous toγ1. Now we consider a set of̂homologous saddle connectionsγ =

{γ1, . . . , γs} on a flat surfaceS. Slightly abusing notation, we will denote byS\γ the
subsetS\

(
∪s

i=1γi
)
. This subset is a finite union of connected half-translationsurfaces

with boundary. We define a graphΓ(S, γ) called the graph of connected components
in the following way (see [MZ]): the vertices are the connected components ofS\γ ,
labelled as “◦” if the corresponding surface is a cylinder, as “+” if it has trivial
holonomy (but is not a cylinder), and as “−” if it has non-trivial holonomy. The
edges are given by the saddle connections inγ . Eachγi is on the boundary of one or
two connected components ofS\γ . In the first case it becomes an edge joining the
corresponding vertex to itself. In the second case, it becomes an edge joining the two
corresponding vertices.

Each connected components ofS\γ is a non-compact surface but can be naturally
compactified (for example considering the distance inducedby the flat metric on a
connected component ofS\γ , and the corresponding completion). We denote this
compactification bySj . We warn the reader thatSj might differ from the closure of
the component in the surfaceS: for example, ifγi is on the boundary of just one
connected componentSj of S\γ , then the compactification ofSj contains two copies
of γi in its boundary, while in the closure ofSj these two copies are identified. The
boundary of eachSi is a union of saddle connections; it has one or several connected
components. Each of them is homeomorphic toS

1 and therefore the orientation ofS
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defines a cyclic order in the set of boundary saddle connections. Each consecutive
pair of saddle connections for that cyclic order defines aboundary singularitywith
an associated angleθ which is a integer multiple ofπ (because the boundary saddle
connections are parallel). We callorder of the boundary singularitythe integerθ−π

π .
The surface with boundarySi might have singularities in its interior. We call them
interior singularities.

Definition 1.7 Let γ = {γ1, . . . , γr} be a maximal collection of̂homologous saddle
connections on a flat surface. Aconfigurationis the following combinatorial data:

• The graphΓ(S, γ)

• For each vertex of this graph, a permutation of the edges adjacent to the ver-
tex (encoding the cyclic order of the saddle connections on each connected
component of the boundary of theSi ).

• For each pair of consecutive elements in that cyclic order, anonnegative inte-
ger corresponding to the order of the boundary singularity defined by the two
corresponding saddle connections.

• For eachSi , a collection of integers greater than or equal to−1 that are the
orders of the interior singularities ofSi .

We refer to Masur and Zorich [MZ] for a more detailed definition of a configuration
(see also the author’s paper [B]).

1.3 Neighborhood of the boundary, thick-thin decomposition

For any compact subsetK of a stratum, there exists a constantcK such that the length
of any saddle connection of any surface inK is greater thancK . Therefore, we can
define theδ–neighborhood of the boundary of the stratum to be the subsetof area 1
surfaces that admit a saddle connection of length less thanδ .

According to Masur and Smillie [MS], one can split theδ–neigborhood of the boundary
of a stratum into athin part (of negligibly small measure) and athick part. The thin
part being for example the subset of surfaces with a pair of nonĥomologous saddle
connections of length respectively less thanδ and Nδ , for some fixedN ≥ 1 (the
decomposition depends on the choice ofN). We also refer to [EMZ] for the case of
Abelian differentials and to [MZ] for the case of quadratic differentials.

Let N ≥ 1, we considerQN(k1, k2, . . . , kr ) the subset of flat surfaces such that, ifγ1

is the shortest saddle connection andγ′
1 is another saddle connection nonĥomologous
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to γ1, then|γ′
1| > N|γ1|. Similarly, we defineQN

1 (k1, k2, . . . , kr ) to be the intersection
of QN(k1, k2, . . . , kr ) with the subset of area 1 flat surfaces.

For any surface inQN(k1, k2, . . . , kr ), we can define a maximal collectionF of ĥomo-
logous saddle connections that contains the smallest one. This is well defined because
if there exists two smallest saddle connections, they are necessaryĥomologous. We
will show in section5 that the associated configuration defines a locally constantmap
from QN

1 (k1, k2, . . . , kr ) to the space of configurations. This leads to the following
definition:

Definition 1.8 A configuration domainof Q1(k1, . . . , kr ) is a connected component
of QN

1 (k1, . . . , kr ).

Remark 1.9 The previous definition of a configuration domain is a little more general
than the one stated in the introduction that corresponds to the caseN = 1.

Definition 1.10 An endof a locally compact topological spaceW is a function

ǫ : {K, K ⊂ W is compact} → {X, X ⊂ W}

such that:

• ǫ(K) is a (unbounded) component ofW\K for eachK

• if K ⊂ L, thenǫ(L) ⊂ ǫ(K).

Proposition If W is σ–compact, then the number of ends ofW is the maximal number
of unbounded components ofW\K , for K compact, when the number is bounded.

We refer to the book of Hughes and Ranicky [HR] for more details on the ends of a
space.

1.4 Example on the moduli space of flat torus

If T is a flat torus (i.e. a Riemann surface with an Abelian differentialω ), then, up
to rescalingω , we can assume that the holonomy vector of the shortest geodesic is 1.
Then, choosing a second smallest non horizontal geodesic with a good choice of its
orientation, this defines a complex numberz = x + iy, with y > 0, −1/2 ≤ x ≤ 1/2
and|z| ≥ 1. The corresponding domainD in C is a fundamental domain ofH/SL2(Z).

It is well know that this defines a map from the moduli space of flat torus with trivial
holonomy (i.e. H(∅)), to H/SL2(Z) which is a bundle, withC∗ as fiber. Orbifoldic
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points ofH(∅) are over the complex numberz1 = i andz2 = 1+i
√

3
2 . They correspond

to Abelian differential on torus obtained by identifying the opposite sides of a square,
or a regular hexagon.

Now with this representation,HN(∅) is obtained by restricting ourselves to the subdo-
mainDN = D ∩ {z, |z| > N} (see Figure3). This subdomain contains neitherz1 nor
z2, soHN(∅) is a manifold. In the extreme caseN = 1, the codimension one subset
∆ is an arc joiningz1 to z2.

$P_2$P2

P1

P1

P2

∆

∆N

Figure 3: Configuration domain inH(∅).

1.5 Reader’s guide

Now we sketch the proof of the Main Theorem.

(1) We first prove the theorem for the case of configuration domains defined by
a simple saddle connection (we will refer to these configuration domains as
simple). We will explain how we can shrink a simple saddle connection, when
its length is small enough (therefore, describe the structure of the stratum in a
neighborhood of an adjacent one). This is done in section4.
There is one easy case, when the shrinking process is done by local and canonical
surgeries. The other case involves some non-local surgeries (hole transport) that



10 Corentin Boissy

depend on a choice of a path. We will have to describe the dependence of the
choice of the path. More details on these surgeries appear insection3.

(2) The list of configurations was established by the author in [B]. The second
step of the proof is to consider each configuration and to showthat the subset
of surface associated to this configuration is connected. This will be done in
section5 and will use the “simple case”.

2 Families of quadratic differentials defined by an involution

Consider a polygon whose sides come by pairs, and such that, for each pair, the
corresponding sides are parallel and have the same length. Then identifying these pair
of sides by appropriate isometries, this gives a flat surface. In this section we show that
any flat surface can arise from such a polygon and give an explicit construction. We
end by a technical lemma that will be one of the key arguments of Theorem4.2.

The construction presented in this section is a natural generalization for the case of
quadratic differentials of the well knownzippered rectange construction, due to Veech
(see [V1]). This idea was developped later by the author and Lanneau (see [BL]).

ζ1
ζ2 ζ3

ζ4 = ζ2

ζ5

ζ6

ζ7 = ζ6 ζ8 = ζ3

ζ9 = ζ5
ζ10 = ζ1

Figure 4: Flat surface unfolded into a polygon.

2.1 Constructions of a flat surface

Let σ be an involution of the set{1, . . . , l + m}, without fixed points.

We denote byQσ,l the set ofζ = (ζ1, . . . , ζl+m) ∈ C
l+m such that:

(1) ∀i ζi = ζσ(i)

(2) ∀i Re(ζi) > 0
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(3) ∀1 ≤ i ≤ l − 1 Im(
∑

k≤i ζk) > 0

(4) ∀1 ≤ j ≤ m− 1 Im(
∑

1≤k≤j ζl+k) < 0

(5)
∑

k≤l ζk =
∑

1≤k≤m ζl+k .

Now we will construct a mapZR from Qσ,l to the moduli space of quadratic differen-
tials. Slightly abusing conventional terminology, we willcall a surface inZR(Qσ,l) a
suspensionover (σ, l), and a vector inQσ,l is then asuspension data.

Note thatQσ,l might be empty for someσ . Furthermore, sinceQσ,l is convex, the
connected component of the stratum is uniquely determined by (σ, l). This is discussed
in detail in [BL] .

Easy case

Now we consider a broken lineL1 whose edge numberi (1 ≤ i ≤ l ) is represented by
the complex numberζi . Then we consider a second broken lineL2 which starts from
the same point, and whose edge numberj (1 ≤ j ≤ m) is represented byζl+j . The last
condition implies that these two lines also end at the same point. If they haveno other
intersection points, then they form a polygon (see Figure4). The sides of the polygon,
enumerated by indices of the corresponding complex number,naturally come by pairs
according to the involutionσ . Gluing these pair of sides by isometries respecting the
natural orientation of the polygon, this construction defines a flat surface which have
trivial or non-trivial holonomy.

For this case, we will say that the suspension data defines asuitablepolygon.

First return map on a horizontal segment

Let Sbe a flat surface andX be a horizontal segment with a choice of a positive vertical
direction (or equivalently, a choice of left and right ends). We consider the first return
map T1 : X → X for geodesics starting fromX in the positive direction (with speed
one). Any such geodesic which is infinite will intersectX again. Therefore, the mapT1

is well defined outside a finite number of points that correspond to vertical geodesics
that stop at a singularity before intersecting the intervalX again. This setX\{sing}
is a finite unionX1, . . . , Xl of open intervals and the restriction ofT1 on eachXi is
of the kind x 7→ ±x + ci . For eachi , the first return time for the vertical geodesics
starting fromXi (in the positive direction) is constant. Similarly, we define T2 to be the
first return map for geodesics in the negative direction and denote byXl+1, . . . , Xl+m
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the corresponding intervals. Remark that fori ≤ l (resp. i > l ) , T1(Xi) = Xj (resp.
T2(Xi) = Xj ) for some 1≤ j ≤ l + m. Therefore, (T1, T2) induce a permutationσX

of {1, l + m}, and it is easy to check thatσX is an involution without fixed points.
When S is a translation surface,T2 = T−1

1 and T1 is called aninterval exchange
transformation.

Note that the pair (T1, T2) can also be seen as a particular case of alinear involution,
which was introduced by Danthony and Nogueira [DN] in order to encode the first
return map of a mesured foliation on a transverse segment. See also [BL].

If S∈ ZR(Qσ,l), constructed as previously, we chooseX to be the horizontal line whose
left end is the starting point of the broken lines, and of length Re(

∑
k≤l ζk) . Then it is

easy to check thatσX = σ .

Veech zippered rectange construction

The broken linesL1 andL2 might intersect at other points (see Figure5).

However, we can still define a flat surface by using an analogous construction as the
well known zippered rectangles construction due to Veech. We give a description
of this construction and refer to Veech [V1] and Yoccoz [Y] for the case of Abelian
differentials. This construction is very similar to the usual one, although its precise
description is quite technical. Still, for completeness, we give an equivalent but rather
implicit formulation.

ζ1

ζ2

ζ3
ζ4 ζ5

ζ6

ζ7
ζ8

ζ9

ζ10

Figure 5: Suspension data that does not give a “suitable” polygon.

We first consider the previous case whenL1 and L2 define an suitable polygon. For
each pair of intervalXi, Xσ(i) on X, the return timehi = hσ(i) for the corresponding
geodesics starting fromx ∈ Xi and returning iny ∈ Xσ(i) is constant. This value
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depends only on (σ, l) and on the imaginary part ofζ . For each pairα = {i, σ(i)}
there is a natural embedding of the open rectangleRα = (0, Re(ζi)) × (0, hi ) into the
flat surfaceS (see Figure6). For eachRα , we glue a horizontal side toXi and the other
to Xσ(i) . The surfaceS is then obtained after suitable identifications of the vertical
sides of the the rectangles{Rα}α . These vertical identifications only depend on (σ, l)
and on the imaginary part ofζ .

1

2

2
1

R{1,10}

R{2,4}

Figure 6: Zippered rectangle construction, for the case theflat surface of Figure4.

For the general case, we construct the rectangles{Rα}α by using the same formulas.
Identifications for the horizontal sides are straightforward. Identifications for the
vertical sides do not depends on the horizontal parameters,and will be the same as for
a suspension dataζ ′ that have the same imaginary part asζ , but which correspond to
a suitable polygon. This will be well defined after the following lemma.

Lemma 2.1 Let ζ be a collection of complex numbers inQσ,l then there exists
ζ ′ ∈ Qσ,l with the same imaginary part asζ , that defines a suitable polygon.

Proof We can assume that
∑l

k=1 Im(ζk) > 0 (the negative case is analogous and there
is nothing to prove when the sum is zero). If we find a suspension dataζ ′ with the
same imaginary part asζ , and such thatRe(ζ ′l+m) < Re(ζ ′l ) + ε, for ε small enough.
Then such suspension data defines a suitable polygon.

It is clear thatσ(l + m) 6= l otherwise there would be no possible suspension data.
If σ(l + m) < l , then we can shorten the real part ofζl+m and of ζσ(l+m) , keeping
conditions (1)—(5) satisfied, and get a suspension dataζ ′ with the same imaginary
part asζ , and such thatRe(ζ ′l+m) is less thanRe(ζ ′l ). This last condition implies that
ζ ′ defines a suitable polygon.
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Similarly, if σ(l) > l , then one can freely increase the real part ofζl andζσ(l) , keeping
conditions (1)—(5) satisfied and get a suspension dataζ ′ with the same imaginary part
asζ , and such thatζ ′ defines a suitable polygon.

Now we assume thatσ(l + m) > l . If there existsi, σ(i) > l , such that{i, σ(i)} 6=

{l + m, σ(l + m)}, then we defineζ ′ by decreasing arbitrarily the real part of the
correspondingζl+m, ζσ(l+m) , and increasing the real parts ofζi , ζσ(i) such that the sum∑

l<k≤l+m ζk is constant. More precisely:

Re(ζ ′l+m) = Re(ζ ′σ(l+m)) = x

Re(ζ ′i ) = Re(ζ ′σ(i)) = Re(ζi) + Re(ζl+m) − x

Re(ζ ′k) = Re(ζk) for all k /∈ {i, σ(i), l + m, σ(l + m)}

Im(ζ ′k) = Im(ζk) for all k.

Then ζ ′ satisfy condition (1)—(5) and defines a suitable polygon forinstance for
x < Re(ζl).

The last remaing case corresponds to when{l + m, σ(l + m)} is the only pair{k, σ(k)}
such thatk, σ(k) > l , and whenσ(l) < l . There existsi0, σ(i0) < l , such that
{i0, σ(i0)} 6= {l, σ(l)} otherwise condition (5) implies thatζl = ζl+m, and ζ is not
a suspension data. Now for each pair{i, σ(i)}, with i, σ(i) < l and different from
{l, σ(l)} we can shorten arbitrarily the real part of the corresponding ζi, ζσ(i) , and
increase the real parts ofζl , ζσ(l) such that the sum

∑
k≤l ζk is constant, in a similar

way as previously. If we do this operation for each pairi, σ(i) < l , then we get a new
suspension dataζ ′ such thatRe(ζ ′l+m) < Re(ζ ′l ) + ε, for ε arbirarily small. This gives
a suitable polygon.

2.2 The converse: construction of suspension data from a flatsurface

Now we give a sufficient condition for a surface to be in someQσ,l . Note that an
analogous construction for hyperelliptic flat surfaces hasbeen done by Veech in [V2].

Proposition 2.2 Let S be a flat surface with no vertical saddle connection. There
exists an involutionσ and an integerl such thatS∈ ZR(Qσ,l).

Proof Let X be a horizontal segment whose left end is a singularity. Up tocutting X
on the right, we can assume that the vertical geodesic starting from its right end hits a
singularity before meetingX again.
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x1,1 x1,2X2 T1(X2)

Figure 7: Construction of a polygon from a surface.

Let x1,1 < . . . < x1,l−1 be the points of discontinuity ofT1 and (x1,0, x1,l) be the
endpoints ofX. For each positivek, there existsτ1,k > 0 such that the vertical
geodesic starting fromx1,k in the positive direction stops at a singularity at timeτ1,k

(hereτ1,0 = 0, since by conventionx1,0 is located at a singularity). Then fork ≥ 1 we
defineζk : (x1,k − x1,k−1) + i(τ1,k − τ1,k−1). Now we perform a similar construction
for geodesics that starts in the negative direction: letx2,1 < . . . < x2,m−1 be the points
of discontinuity ofT2 and (x2,0, x2,m) be the extremities ofX. For eachk /∈ {0, m},
the vertical geodesic starting fromx2,k in the positive direction stops at a singularity
at time τ2,k < 0 (here againτ2,0 = 0 and τ2,l > 0). For 1≤ k ≤ m, we define
ζk+l : (x2,k − x2,k−1) + i(τ2,k − τ2,k−1). So, we have a collection of complex numbers
ζl+1, . . . , ζm+l that defines a polygonP .

We have alwaysRe(ζk) = Re(ζσX(k)) = |Xk|. Let 1 ≤ k ≤ l . If σX(k) ≤ l , then
τ1,k−1 + τ1,σX(k) = τ1,k + τ1,σX(k)−1 = hk (with hk the time of first return toX for
the vertical geodesics starting from the subintervalXk), otherwise there would exist a
vertical saddle connection (see Figure8). So Im(ζk) = Im(ζσX(k)). The other cases are
analogous. Thusζ is a suspension data, andZR(ζ) is isometric toS.

Remark 2.3 In the previous construction, the suspension data constructed does not
necessary give a suitable polygon. However, a sufficient condition to get a suitable
polygon is to haveτ1,l = min(τ1,k, 0 < k ≤ l), were τ1,k are as in the proof of the
previous proposition. Up to choosing carefully a subinterval X′ of X, this condition is
satisfied and the construction will give a true polygon. Since for any surface, we can
find a direction with no saddle connection, we can conclude that any surface can be
unfolded into a polygon as in Figure4, up to rotating that polygon.
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Figure 8: The complex numbersζk andζσX(k) are necessary equal.

2.3 A technical lemma

The following lemma is a technical lemma that will be needed in section4.2. It can
be skipped in a first reading. We previously showed that a surface with no vertical
saddle connection belongs to someZR(Qσ,l). Furthermore, the corresponding pair
(σ, l) is completely defined by first return maps of the vertical foliation on a well
chosen horizontal segment.

We define the setQ′
σ,l defined in a similar way asQσ,l , but here we replace Condition 2

by the following two conditions:

(2) ∀i /∈ {1, σ(1)} Re(ζi) > 0.

(2′) Re(ζ1) = Re(ζσ(1)) = 0.

In other words, the first vector of the top broken lineL1 is now vertical and no other
vector is vertical except the other one of the correspondingpair. Then we define in a
very similar way a mapZR′ from Q′

σ,l to a stratum of the moduli space of quadratic
differentials.

Note that the subsetQ′
σ,l is convex.

Lemma 2.4 Let S be a flat surface with a unique vertical saddle connection joining
two singularitiesP1 andP2. Let X be a horizontal segment whose left end isP1, and
such that the vertical geodesic starting from its left end isthe unique vertical saddle
connection joiningP1 to P2. There exists(σ, l), that depends only on the first return
maps onX of the vertical foliation and on the degree ofP2, such thatS∈ ZR′(Q′

σ,l).

Proof We define as in Proposition2.2 the xi,j , τi,j and ζj , with the slight difference
that now,τ1,0 > 0. Now, because there exists only one vertical saddle connection, the
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same argument as before says that there exists at most one unordered pair{ζi0, ζσ(i0)}

such thatζi0 6= ζσ(i0) . If this pair doesn’t exists, then the union of the vertical geodesics
starting fromX would be a strict subset ofS, with boundary the unique vertical saddle
connection. Therefore, we would haveP1 = P2, contradicting the hypothesis.

Now we glue on the polygonP an Euclidean triangle of sides given by{ζi , ζσ(i), iτ1,0},
and we get a new polygon. The sides of this polygon appear in pairs that are parallel
and of the same length. We can therefore glue this pair and geta flat surface. By
construction, we get a surface isometric toS, and soS belongs to someZR′(Q′

σ̃,l).
The permutation ˜σ is easily constructed fromσ as soon as we knowi0 . This value is
obtained by the following way: we start from the vertical saddle connection, close to
the singularityP2. Then, we turn aroundP2 counterclockwise. Each half-turn is easily
described in terms of the permutationσ . Then after performingk2 + 2 half-turns, we
must arrive again on the vertical saddle connection. This gives us the value ofi0.

3 Hole transport

Hole transport is a surgery used by Masur and Zorich in [MZ] to show the existence of
some configurations and especially to break an even singularity to a pair of odd ones.
It was defined along a simple path transverse to the vertical foliation. In this section,
we generalize this construction to a larger class of paths and show that breaking a zero
using that procedure does not depend on small perturbationsof the path.

Hole transport also appears in the paper of Eskin, Masur and Zorich [EMZ] for the
computation of the Siegel–Veech constants for the moduli space of Abelian differen-
tials. This improved surgery, and “dependence properties”that are Corollary3.5 and
Lemma4.5are a necessary toolkit for the future computation of the these Siegel–Veech
constants for the case of quadratic differentials.

Definition 3.1 A hole is a connected component of the boundary of a flat surface given
by a single saddle connection (loop). The saddle connectionbounds a singularity. If
this singularity has angle 3π , this hole is said to be simple.

Convention 1 We will always assume that the saddle connection defining thehole is
vertical
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A simple holeτ has a natural orientation given by the orientation of the underlying
Riemann surface. In a neighborhood of the hole, the flat metric has trivial holonomy
and thereforeq is locally the square of an Abelian differential.

Convention 2 When defining the surgeries around a simple hole using flat coordinates,
we will assume (unless explicit warning) that the flat coordinates come from a local
square rootω of q, such that

∫
τ ω ∈ iR+ .

S

Vertical hole

Figure 9: A hole in flat coordinates.

Remark 3.2 Under Convention2, we may speak of theleft or theright direction in a
neighborhood of a simple hole. Note that there exists two horizontal geodesics starting
from the singularity of and going to the right, and only one starting from the singularity
and going to the left.

3.1 Parallelogram constructions

We first describe the three basic surgeries on the surface that allow us to transport a
simple hole along a segment (see Figure10). Consider a simple holeτ and chose
flat coordinates in a neighborhood of the hole that satisfy Convention 2. We consider
a vectorv such thatRe(dz(v)) > 0 (i.e. the vectorv goes “to the right” in our flat
coordinates). Consider the domainΩ obtained as the union of geodesics of length|v|,
starting at a point ofτ with direction v. WhenΩ is an embedded parallelogram, we
can remove it and glue together by translation the two sides parallel to v. Here we
have transported the simple hole by the vectorv. Note that the area changes under this
construction.

WhenRe(dz(v)) < 0, this construction (removing a parallelogram) cannot work. The
singularity is the unique point of the boundary that can be the starting point of a
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geodesic of directionv. Now from the corresponding geodesic, we perform the reverse
construction with respect to the previous one: we cut the surface along a segment of
lengthv and paste in a parallelogram. By means of this construction we transport the
hole along the vectorv.

WhenRe(dz(v)) = 0, we consider a geodesic segment of directionv starting from the
singularity, and cut the surface along the segment, then glue it with a shift (“Earthquake
construction”).

Figure 10: Parallelogram constructions.

There is an easy way to create a pair of holes in a compact flat surface: we consider a
geodesic segment embedded in the surface, we cut the surfacealong that segment and
paste in a parallelogram as in the previous construction. Weget parallel holes of the
same length (but with opposite orientation). Note that we can assume that the length
of these holes is arbitrary small. In a similar way, we can create a pair of holes by
removing a parallelogram.

3.2 Transport along a piecewise geodesic path

Now we consider a piecewise geodesic simple pathγ = γ1 . . . γn with edges repre-
sented by the vectorsv1, v2, . . . , vn . We assume for simplicity that none of thevi is
vertical. The spirit is to transport the hole by iterating the previous constructions. We
make the hole to “follow the path”γ in the following way (under Convention2):

• At step numberi , we ask that the geodesicγi starts from the singularity of the
hole.
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• WhenRe(dz(vi )) > 0, we askγi to be the bottom of the parallelogramΩ defined
in the previous construction.

Naive iteration does not necessary preserve these conditions. The surgery can indeed
disconnect the path but then we can always reconnectγ by adding a geodesic segment.
If the first condition is satisfied, but not the second, we can add a surgery along a
vertical segment of the size of the hole to fulfill it. We just have to check that each
iteration between two consecutive segments of the initial path can be done in a finite
number of steps, see Figure11.

3)

2)

1)

vi

vi+1 vi+1
vi+1

vi+1

vi+1vi+1

vi+1

vi

vi

ṽ

a)

b)

c)

Figure 11: Hole transport along a piecewise geodesic curve.

(1) If Re(dz(vi )) andRe(dz(vi+1)) have the same sign, then as soon as both transports
are successively possible, our two conditions keep being fulfilled.

(2) If Re(dz(vi )) > 0 andRe(dz(vi+1)) < 0, and if (vi , vi+1) is positively oriented,
the surgery withvi disconnect the path, and we must add a new segmentṽ, but
thenRe(ṽ) andRe(vi+1) are both negative, therefore, we can iterate the surgery
keeping the two conditions fulfilled.

(3) If Re(dz(vi )) < 0 andRe(dz(vi+1)) > 0, and if (vi , vi+1) is negatively oriented,
we must add a surgery along a vertical segment to fulfill the second condition.

(4) It is an easy exercise to check that for any other configuration of (vi , vi+1), the
direct iteration of the elementary surgeries works.
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Of course, in the process we have just described, we implicitly assumed that at each
step, the condition imposed for the basic surgeries (i.e. the parallelogram must be
imbedded in the surface) is fulfilled. But considering any compact piecewise geodesic
path, the process will be well defined as soon as the hole is small enough.

Remark 3.3 We can also define hole transport along a piecewise geodesic path that
have self intersections. Here hole transport will disconnect the path at each intersec-
tions, but we can easily reconnect it and hole transport alsoends in a finite number of
steps. We will not need hole transport along such paths.

3.3 Application: breaking up an even singularity

We consider a singularityP of orderk = k1 + k2. Whenk1 andk2 are not both odd,
there is a local surgery that continuously break this singularity into pair of singularities
of orderk1 andk2 (see section4.1.1). Whenk1 andk2 are both odd, this local surgery
fails. Following Masur and Zorich [MZ] we use hole transport instead.

I II

Figure 12: Breaking a singularity.

Consider a pair (I , II ) of sectors of angleπ in a small neighborhood ofP, and such that
the image of the first one by a rotation of (k2 + 1)π is the second sector. Now letγ be
a simple broken line that starts and ends atP, and such that its first segment belongs to
sectorI and its last segment belongs to sectorII . We require parallel transport alongγ
to beZ/2Z (this has sense becausek is even, soP admits a parallel vector field in its
neighborhood).
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Then, we create a pair of holes by cutting the first segment andpasting in a parallelo-
gram. Denote byε the length of these holes. One hole is attached to the singularity.
The other one is a simple hole. We can transport it alongγ , to the sectorII . Then
gluing the holes together, we get a singular surface with a pair of conical singularities
that are glued together. If we desingularise the surface, weget a flat surface with a pair
of singularities of orderk1 and k2 and a vertical saddle connection of lengthε. We
will denote byΨ(S, γ, ε) this surface. The construction is continuous with respectto
the variations ofε.

3.4 Dependence on small variations of the path

The previous construction might depend on the choice of the broken line. We show the
following proposition:

Proposition 3.4 Let γ andγ′ be two broken lines that both start fromP, sectorI and
end toP, sectorII . Let ε be a positive real number. We assume that there exists an
open subsetU of S, such that:

• U containsγ\{P} andγ′\{P}.

• U is homeomorphic to a disc and have no conical singularities.

• The surgery described in section3.3, with parameters(γ, ε) or (γ′, ε) does not
affect ∂U\P.

ThenΨ(S, γ, ε) andΨ(S, γ′, ε) are isometric.

$U$

I

II

γ

U V or V′

Figure 13: The boundary ofU andV (or V′ ).

Proof We denote by∂U the boundary of the natural compactification ofU (that differ
from the closure ofU in S, see section1.2). We denote bỹP and P̃′ the ends ofγ in
∂U (that are also the ends ofγ′ by assumption). We denote byV (resp. V′ ) the flat
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discs obtained fromU after the hole surgery alongγ (resp. γ′ ). Our goal is to prove
that V andV′ are isometric.

The hole surgery alongγ (resp. γ′ ) does not change the metric in a neighborhood
of ∂U\{P̃, P̃′}. Furthermore, the fact that bothγ and γ′ start and end at sectorsI
and II correspondingly implies thatV andV′ are isometric in a neighborhood of their
boundary. We denote byf this isometry. Surprisingly, we can find two flat discs
that are isometric in a neighborhood of their boundary but not globally isometric (see
Figure14).

Figure 14: Immersion inR2 of two non isometric flat discs with isometric boundaries.

In our case, we have an additional piece of information that will make the proof
possible: hole transport does not change the vertical foliation (recall that the hole
is always assumed to be vertical). Therefore, for each vertical geodesics inV with
endpoints{x, y} ⊂ ∂V , then{f (x), f (y)} are the endpoints of a vertical geodesic of
V′ .

For eachz∈ V we definexz ∈ ∂V (resp. yz) the intersection of the vertical geodesic
starting fromz in the negative direction (resp. positive direction) and the boundary
of V (see Figure15). We also calllz the length of this geodesic. We can assume that
∂V is piecewise smooth. So we can restrict ourself to the open dense subsetV1 ⊂ V
of z such thatxz andyz are regular and nonvertical points.

Then we defineΦ : V1 → V′ that sendz to φlz(f (xz)), where,φ is the vertical geodesic
flow. BecauseVandV′ are (noncompact) translation surfaces, the length of the vertical
segment [xz, yz] is obtained by integrating the corresponding 1–form alongany path
betweenxz and yz. Such a path can be chosen in a neighborhood of the boundary
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z

lz

xz

yz

Figure 15: Parameters on a flat disc.

of V . Then, the isometryf implies that this length is the same as the length of the
vertical segment [f (xz), f (yz)]. ThereforeΦ is well defined and coincides tof in a
neighborhood of the boundary ofV . This map is also smooth becausez 7→ (xz, lz) are
smooth onV1. It’s easy to check thatDΦ(z) ≡ Id and thatΦ continuously extends to
an isometry fromV to V′ .

Corollary 3.5 Let γ′ be close enough toγ and such thatγ andγ′ intersect the same
sectors of a neighborhood ofP. ThenΨ(S, γ, ε) andΨ(S, γ′, ε) are isomorphic forε
small enough.

Proof If γ′ is close enough toγ (and intersect the same sectors in a neighborhood of
P), then there exists a open flat disk that containsγ and γ′ , and forε small enough,
the last condition of Proposition3.4 is fullfilled

Remark 3.6 Using proposition3.4, one can also extend hole transport along a differ-
entiable curve.

4 Simple configuration domains

Recall the following notation: ifQ(k1, k2, . . . , kr ) is a stratum of meromorphic
quadratic differentials with at most simple poles, thenQ1(k1, k2, . . . , kr ) is the subset
of area 1 flat surfaces inQ(k1, k2, . . . , kr ), andQ1,δ(k1, k2, . . . , kr ) is the subset of flat
surfaces inQ1(k1, k2, . . . , kr ) that have at least a saddle connection of length less than
δ .
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Definition 4.1 A configuration domain is said to besimple if the corresponding
configuration is realized by a simple and non closed saddle connection.

The goal of this section is to prove the following theorem, which proves the Main
Theorem for the case of simple configuration domains (but fora larger class of strata).

Theorem 4.2 LetQ(k1, k2, . . . , kr ) be a stratum of quadratic differentials with(k1, k2) 6=
(−1,−1) and such that the stratumQ(k1 + k2, k3, . . . , kr ) is connected. LetC be the
subset of flat surfacesS in QN(k1, . . . , kr ) such that the shortest saddle connection ofS
is simple and joins a singularity of orderk1 to a distinct singularity of orderk2. For any
pair N ≥ 1 andδ > 0, the setsC , C ∩ Q1(k1, k2, . . . , kr ) andC ∩ Q1,δ(k1, k2, . . . , kr )
are non empty and connected.

In this section we denote byP1 andP2 the two zeros of orderk1 andk2 respectively
and byγ the simple saddle connection between them. There are two different cases.

• Whenk1 andk2 are not both odd, then there exists a canonical way of shrinking
the saddle connectionγ if it is small enough. Furthermore, this surgery doesn’t
change the metric outside a neighborhood ofγ . This is the local case.

• Whenk1 andk2 are both odd, then we still can shrinkγ , to get a surface in the
stratumQ(k1+k2, k3, . . . , kr ), but this changes the metric outside a neighborhood
of γ and this is not canonical. This is done by reversing the procedure of section
3.3.

4.1 Local case

4.1.1 Breaking up a singularity

Here we follow Eskin, Masur and Zorich [EMZ, MZ]. Consider a singularityP of
orderk ≥ 0, and a partitionk = k1 + k2 with k1, k2 ≥ −1. We assume thatk1 andk2

are not both odd. Ifρ is small enough, then the set{x ∈ S, d(x, P) < ρ} is a metric
disc embedded inS. It is obtained by gluingk + 2 standards Euclidean half-disks of
radiusρ.

There is a well known local construction that breaks the singularity P into two singu-
larities of orderk1 and k2 , and which is obtained by changing continuously the way
of gluing the half-discs together (see Figure16, or [EMZ, MZ]). This construction is
area preserving.
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Figure 16: Breaking up a zero into two zeroes (after [EMZ, MZ]).

4.1.2 Structure of the neighborhood of the principal boundary

When γ is small enough, (for example|γ| ≤ |γ′|/10, for any other saddle connec-
tion γ′ ), then we can perform the reverse construction because a neighborhood ofγ is
precisely obtained from a collection of half-discs glued asbefore. This defines a canon-
ical mapΦ : V → Q(k1 + k2, k3, . . . , kr ), whereV is a subset ofQ(k1, k2, k3, . . . , kr ).
We can chooseUN ⊂ V such thatΦ−1({S̃}) ∩ UN is the set of surfaces such that the
shrinking process leads tõS, and whose smallest saddle connection is of length smaller

than min
( ˜|γ|

100,
˜|γ|

2N

)
with γ̃ the smallest saddle connection ofS̃. From the proof of

Lemma 8.1 of [EMZ], this map gives toUN a structure of a topological orbifold
bundle overQ(k1 + k2, k3, . . . , kr ), with the punctured disc as a fiber. By assumption,
Q(k1 + k2, k3, . . . , kr ) is connected, and thereforeUN is connected, so the proof will
be completed after the following three steps:

• UN ⊂ C .

• There existsL > 0 such thatQL(k1, . . . , kr ) ∩ C ⊂ UN .

• For any S ∈ C , there exists a continous path (St)t in C that joins S to
QL(k1, . . . , kr ).
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4.1.3 Proof of Theorem4.2: local case

To prove the first step, it is enough to show thatUN is a subset ofQN(k1, k2, . . . , kr ):
let S be a flat surface inUN and let S̃ = Φ(S). We denote byγ the smallest
saddle connection ofS. The surgery doesn’t change the surface outside a small
neighborhood of the corresponding singularity ofS̃. If |γ̃| is the length of the smallest
saddle connection of̃S, then S has no saddle connections of length smaller than
˜|γ| − |γ| except γ , which has length smaller than

˜|γ|
2N by construction. We have

|γ̃|−|γ|
|γ| =

|γ̃|
|γ| − 1 > 2N − 1 ≥ N, so S belongs toQN(k1, k2, . . . , kr ). Hence we have

proved thatUN ⊂ C .

To prove the second step, we remark that ifS∈ QL(k1, . . . , kr ) ∩ C , for L ≥ 10, then
the smallest saddle connection ofΦ(S) is of length at leastL|γ| − |γ|, whereγ is the

smallest saddle connection ofS. Hence if|γ| ≤ min
(

(L−1)|γ|
100 , (L−1)|γ|

2N

)
thenS∈ UN .

So we have proved thatQL(k1, . . . , kr ) ∩ C ⊂ UN for L ≥ max(101, 2N + 1).

The last step is given by the following lemma:

Lemma 4.3 Let S be a surface inQN(k1, . . . , kr ) whose smallest saddle connection
S is simple and joins a singularity of orderk1 to a singularity of orderk2 , and letL be
a positive number. Then we can find a continuous path inQN(k1, . . . , kr ), that joinsS
to a surface whose second smallest saddle connection is at least L times greater than
the smallest one.

Proof The setQN(k1, . . . , kr ) is open, so up to a small continuous perturbation ofS,
and up to changingSby rθ.S for some suitableθ , we can assume thatShas no vertical
saddle connection except the smallest one.

Now we use the geodesic flowgt on S. There is a natural bijection from the saddle
connections ofS to the saddle connections ofgt.S. The holonomy vectorv = (v1, v2)
of a saddle connection becomesvt = (e−tv1, etv2). This imply that the quotient of the
length of a given saddle connection to the length of the smallest one increases and goes
to infinity.

The set of holonomy vectors of saddle connections is discrete, and therefore, any other
saddle connection ofgt.S has length greater thanL times the length of the smallest
one, as soon ast is large enough.

Note that the previous proof is the same if we restrict ourselves to area 1 surfaces. The
case when restricted to theδ–neighborhood of the boundary is also analogous, since
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UN ∩ Q1,δ(k1, . . . , kr ) is still a bundle overQ1(k1, . . . , kr ) with the punctured disc as
a fiber.

Hence the theorem is proven whenk1 andk2 are non both odd.

4.2 Proof of theorem4.2: non-local case

We first show that two surfaces that are close enough to the stratumQ(k1+k2, k3, . . . , kr )
(in a certain sense that will be specified below) belong to thesame configuration domain.
Then we show that we can always continuously reach that neighborhood.

4.2.1 Neighborhood of the principal boundary

Contrary to the local case, we do not have a canonical map froma subset ofQ(k1, k2, . . . , kr )
to Q(k1 + k2, . . . , kr ) that gives to this subset a structure of a bundle.

Let S∈ Q(k1 + k2, . . . , kr ), and letν be a path inS, we will say thatν is admissible
if it satisfies the hypothesis of the singularity breaking procedure of section3.3. Let ν

be an admissible closed path whose endpoint is a singularityP of degreek1 + k2 and
let ε > 0 be small enough for the breaking procedure. Recall thatΨ(S, ν, ε) denotes
the surface inQ(k1, k2, . . . , kr ) obtained after breaking the singularityP, using the
procedure of section3.3along the pathν , with a vertical hole of lengthε.

Proposition 4.4 Let (S, S′) be a pair of surfaces inQ(k1 + k2, . . . , kr ) and ν (resp.
ν ′ ) be an admissible broken line inS (resp. S′ ). Then Ψ(S, γ, ε) and Ψ(S′, γ′, ε)
belong to the same configuration domain for any sufficiently small ε.

Proof By assumption,Q(k1+k2, . . . , kr ) is connected, so there exists a path (St)t∈[0,1] ,
that joinsSandS′ . We can find a family of broken linesγt of St such that, forε small
enough, the mapt 7→ Ψ(St, γt, ε) is well defined and continuous fort ∈ [0, 1]. The
surfaceΨ(S′, γ1, ε) might differ from Ψ(S′, γ′, ε) for two reasons:

• The pathsγ1 andγ′ , that both start from the same singularityP , might not start
and end at the same sectors. In that case, we consider the pathrθS′ obtained by
rotating the surfaceS′ by an angle ofθ . We find as before a family of broken
lines γ1,θ ∈ rθS′ . Then, for someθk an integer multiple ofπ , we will have
rθkS

′ = S′ andγ1,θk that starts and ends on the same sectors thanγ′ .
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• Even if the pathsγ1 andγ′ start and end in the same sectors of the singularity
P, they might be very different (for example in a different homotopy class
of S′\{sing}, where{sing} denotes the set of conical singularities ofS), so
Proposition3.4 does not apply. This case is solved by the following lemma,
which says that the resulting surfaces are in the same configuration domain.

Lemma 4.5 For any surfaceS∈ Q(k1+k2, k3, . . . , kr ), the configuration domain that
contains a surface obtained by the non-local singularity breaking construction does not
depend on the choice of the admissible path, once sectorI is chosen, and the hole is
small enough.

Proof We consider a surfaceS in Q(k1 +k2, . . . , kr ) and perform the breaking proce-
dure. We do not change the resulting configuration domain if we perform some small
perturbation ofS. Therefore, we can assume thatS has no vertical saddle connections
(this is the case for almost all surface). Now we consider an admissible path and
perform the corresponding singularity breaking procedureand get a surfaceS1 . Then
we choose a horizontal segmentX1 in sectorI adjacent to the singularityk1 . Then we
perform the same construction for another admissible path (and get a surfaceS2) and
consider a horizontal segmentX2 of the same length as before (see Figure17).

Because the hole transport preserves the vertical foliation, the first return maps onX1

and X2, of the vertical flow in the two surfaces are isomorphic as soon as the hole is
small enough.

Now from Lemma2.4, there exists (σ, l) such thatS1 andS2 belong toZR′(Q′
σ,l), with

parametersζ1
1, . . . , ζ1

l+m andζ2
1, . . . , ζ2

l+m. Note thatRe(ζ1
i ) = Re(ζ2

i ), because these
depends only on the first returns maps of the vertical foliation (and they coincide). The
family of polygons with parameterstζ1

i + (1− t)ζ2
i gives a path inMZ′(Q′

σ,l) that joins
S1 andS2 . Furthermore, the singularity breaking procedure is continuous with respect
to ε. Hence, for alli , ζ1

i and ζ2
i are arbitrary close as soon asε is small enough.

Consequently, the constructed path inMZ′(Q′
σ,l) keeps being in a configuration domain.

Now for eachS ∈ Q(k1 + k2, . . . , kr ) and each admissible pathγ , we can findεS,γ

maximal such thatΨ(S, γ, ε) ∈ QN(k1, . . . , kr ) for all ε < εS,γ . Now we consider the
set

UN
=

⋃

θ∈[0,2π]

⋃

S,γ

⋃

0<ε<εS,γ

rθ(Ψ(S, γ, ε))

This set is in a connected subset ofQN(k1, . . . , kr ) from Proposition4.4.
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Figure 17: Breaking a singularity with two different paths.

4.2.2 Reaching a neighborhood of the principal boundary

Now we consider a surface inQN(k1, . . . , kr ) whose unique smallest saddle connection
joins a singularity of orderk1 to a singularity of orderk2. As in the local case, we
can assume that its smallest saddle connection is vertical and that there are no other
vertical saddle connections. Then we make use of the Teichmüller geodesic flow. This
allows us to assume that the smallest saddle connection is arbitrary small compared to
any other saddle connection.

We then want to contract the saddle connection using the reverse procedure of sec-
tion 3.3.

Proposition 4.6 Let N be greater than or equal to1. There existsL > N such that
QL(k1, . . . , kr ) ∩ C ⊂ UN .

Proof We chooseL large enough such that we can findL′ satisfying 2N < L′ , and
1 ≪ L′ ≪ L. Denote byγ the smallest saddle connection and byε its length. We want
to find a path suitable for reversing the construction of section 3.3. When contractingγ
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in such way, we must insure that the surface stay inQN(k1, . . . , kr ), by keeping a lower
bound of the length of the saddle connections different fromthe shortest one.

Let B be the openL′ε–neighborhood ofγ , and{Bi}i∈{3,...,r} the openL′ε–neighborhoods
of the singularities that are not endpoints ofγ . Note that each of these neighborhoods
is naturally isometric to a collection of half-disk glued along their boundary. We denote
by S′ the closed subset ofS obtained by removing toS the set∪iBi ∪ B.

$B$B B

B1 B1

B2 B2

γ

ν1 ν3

Figure 18: Constructing a suitable path.

Now we consider the set of paths ofS′ whose endpoints are on∂B and with nontrivial
holonomy (which makes senses in a neighborhood of∂B), and we choose a pathν1 of
minimal length with this property. Note that, we do not change the holonomy of a path
by “uncrossing” generic self intersections (see Figure19). Therefore, we can choose
our path such that, after a small perturbation, it has no selfintersections.

Now the conditionL′ ≪ L implies that we can find a pathν2 in the same homotopy
class, such that theε–neighborhood ofν2 is homeomorphic to a disk. Now joining
carefully the endpoints ofν2 to each sides ofγ , we get a pathν3. By construction,
we can use this path to contract the saddle connectionγ . The surgery doesn’t touch
the εN–neigborhoods of the singularities, except for the endpoints of γ , hence any
saddle connection that starts from such singularity will have a length greater thanNε
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ν ν′

Figure 19: Uncrossing an intersection does not change the holonomy.

during the shrinking process. A saddle connection startingfrom an endpoint aγ , and
different fromγ will leave B. Choosing properlyν3, then the length of such saddle
connection will have a length greater than (L′ − 1)ε during the shrinking process, and
L′ − 1 ≥ N + (N − 1) ≥ N.

Therefore, when contractingγ , there is no saddle connection exceptγ that is of length
smaller thanN|γ| ≤ Nε, wereε is the initial length of the saddle connectionγ . Up to
rescaling the surface, we can assume that the area of the surface is constant under the
deformation process.

Now let C be the open subset of surfaces inQN(k1, . . . , kr ) whose unique smallest
saddle connection joins a singularity of orderk1 to a singularity of orderk2. The
previous proposition shows that there exists a path from anyS ∈ C to UN , which is
pathwise connected. ThereforeC is pathwise connected and hence, connected. This
also implies the connectedness ofC ∩ Q1(k1, . . . , kr ).

Now let δ > 0 and letS1 andS2 be two surfaces inC ∩Q1,δ(k1, . . . , kr ). There exists
a path (St)t∈{1,2} in C ∩ Q1(k1, . . . , kr ) that joins S1 to S2 . We can easily deduce
from (St)t a path inQ1,δ(k1, . . . , kr ) that join S1 and S2 . Indeed, denote byl(t) the
length of the shortest saddle connection ofSt . The functionl is continous, and there
exists a continuous functionl′ with l′(j) = l(j), for j = 1, 2, and such thatl′(t) is
always smaller thanδ . Then we apply toSt the matrixA(t) in SL2(R) that multiply
the length of this saddle connection by the factorλ(t) =

l′(t)
l(t) and multiply byλ(t)−1

the distances in the orthogonal direction. By construction, we get a continous path in
C ∩ Q1,δ(k1, . . . , kr ) that joinsS1 andS2.

Hence we have proven the theorem for the case whenk1 andk2 are odd.
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5 Configuration domains in strata of quadratics differentials
on the Riemann sphere

Theorem5.1 describes all the configurations ofĥomologous saddle connections that
exist on a given stratum of quadratic differential onCP

1. It was proved by the author
in [B]. We now show that they are in bijections with the configuration domains. In this
section, we denote byγ a collection{γi} of saddle connections.

Theorem 5.1 Let Q(k1, . . . , kr ) be a stratum of quadratic differentials onCP
1 differ-

ent fromQ(−1,−1,−1,−1), and letγ be a maximal collection of̂homologous saddle
connections on a generic surface in that stratum. Then the possible configurations forγ
are given in the list below (see Figure20).

a) Let {k, k′} ⊂ {k1, . . . , kr} be an unordered pair of integers such that(k, k′) 6=
(−1,−1). The setγ consists of a single saddle connection joining a singularity
of orderk to a distinct singularity of orderk′ .

b) Let (a1, a2) be a pair of positive integers such thata1 + a2 = k ∈ {k1, . . . , kr}

(with k ≥ 2), and letA1⊔A2 be a partition of the set{k1, . . . , kr}\{k} such that
(
∑

a∈Ai
a) + ai ≡ 2 mod 4 for eachi . The setγ consists of a simple saddle

connection that decomposes the sphere into two 1–holed spheres S1 and S2,
such that eachSi has interior singularities of order given byAi , and has a single
boundary singularity of orderai .

c) Let {a1, a2} ⊂ {k1, . . . , kr} be a pair of positive integers. LetA1 ⊔ A2 be a
partition of{k1, . . . , kr}\{a1, a2} such that for eachi , we have(

∑
a∈Ai

a)+ai ≡

2 mod 4. The setγ consists of two closed saddle connections that decompose
the sphere into two 1–holed spheresS1 andS2 and a cylinder, and such that each
Si has interior singularities of orders given byAi and has a boundary singularity
of orderai .

d) Let k ∈ {k1, . . . , kr} be a positive integer. The setγ is a pair of saddle
connections of different lengths, and such that the largestone starts and ends
from a singularity of orderk and decompose the surface into a 1– holed sphere
and a half-pillowcase, while the shortest one joins a pair ofpoles and is on the
other end of the half pillowcase.

When the stratum isQ(−1,−1,−1,−1), there is only one configuration, which corre-
sponds to two saddle connections that are the two boundary components of a cylinder
(the surface is a “pillowcase”, see Figure1).
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e)

c)

b)a)

d)

a) b)

c) d)

e)

Figure 20: “Topological picture” of configurations forCP
1 .

Now let S ∈ QN(k1, . . . , kr ) . We can defineFS to be the maximal collection of
ĥomologous saddle connections that contains the smallest one. We have the following
lemma:

Lemma 5.2 The configuration associated toFS is locally constant with respect toS.

Proof Any saddle connection inFS persists under any small continuous deformation.
This lemma is obvious as soon the number of elements ofFS is locally constant.

Let γ1 be a saddle connection of minimal length. We assume that after a small
perturbationS′ of S, we get a bigger collection of saddle connections. That means that
a new saddle connectionγ2 appears. Therefore there was another saddle connection
γ3 non̂homologous toγ1, of length less than or equal to|γ2/2| (see Figure21). But
this is impossible since it would therefore be of length lessthan or equal to the length
of γ1, contradicting the hypothesis.

The following lemma (due to Kontsevich) implies that Theorem 4.2 can be used for
any stratum of quadratic differentials onCP

1 (see also Kontsevich and Zorich [KZ]).

Lemma (Kontsevich) Any stratum of quadratic differentials onCP
1 is non empty

and connected.
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$S$

γ3 γ3

γ2

S S′

Figure 21: The configuration associated toFS is locally constant.

Proof There is only one complex structure onCP
1. Therefore, we can work on the

standard atlasC ∪ (C∗ ∪∞) of the Riemann sphere.

Now we remark that if we fix (z1, . . . , zr ) ∈ C
r that are pairwise distincts, andk1, . . . , kr

some integers greater than or equal to−1, then the quadratic differential onC,
q(z) =

∏
(z− zi)ki dz2 , extends to a quadratic differential onCP

1 with possibly a
singularity of order−4−

∑
i ki over the point∞. Now two quadratic differentials on

a compact Riemann surface with the same singularities are equal up to a multiplicative
constant (because they differ by a holomorphic function).

Therefore, any stratum of quadratic differentials onCP
1 is a quotient ofC times a

space of configurations of points on a sphere, which is connected.

Main Theorem Let Q(k1, . . . , kr ) be a stratum of quadratic differentials with at most
simple poles. LetN be greater than or equal to1. There is a natural bijection between
the configurations of̂homologous saddle connections onQ(k1, . . . , kr ) described in
Theorem5.1and the connected components ofQN(k1, . . . , kr ).

Proof Lemma5.2implies that there is a well defined mapΨ from the set of connected
components ofQN(k1, . . . , kr ) to the set of existing configurations for the stratum. This
map is surjective because if we choose a generic surfaceS with a maximal collection
of ĥomologous saddle connectionsγ that realizes the given configurationC , then after
a small continuous perturbation of the surface, we can assume that there are no other
saddle connections onS parallel to an element ofγ . Then we use the Teichmüller
geodesic flow to contract the elements ofγ , until γ contains the smallest saddle
connection of the surface. Then by construction, this surface belongs toΨ−1(C).
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Now we prove thatΨ is injective. We keep the notations of Theorem5.1, and consider
U = Ψ−1({C}), for C any existing configuration:

-If C belongs to the a) case, thenU is connected from Theorem4.2and the lemma of
Kontsevich.

-If C belongs to the b) case, then we consider a surfaceS in U . Its smallest saddle
connectionγ0 is closed and separates the surface in a pair (S′1, S′2) of 1–holed spheres
with boundary singularities of ordersa1 and a2 correspondingly. Now for eachS′i
we decompose the boundary saddle connection ofS′i in two segments starting from
the boundary singularity, and glue together these two segments, then we get a pair of
closed flat spheresSi ∈ Q(Ai , ai −1,−1), i = 1, 2. For each of the sphere, the smallest
saddle connectionγ′

i is simple and joins a singularityQi of order (ai −1) to a newborn
pole Pi , and is of length|γ0|/2, where|γ0| is the length ofγ0. Let ηi be the smallest
saddle connection ofSi exceptγ′

i .

• If ηi intersects the interior ofγ′
i , then it is easy to find another saddle connection

on Si , smaller thanηi and different fromγ′
i .

• If ηi does not intersectγ′
i , or intersect it inQi , thenηi was a saddle connection

on S, hence|ηi | > 2N|γ′
i |.

• If ηi intersectsPi , then we can find a saddle connection inS of length smaller
than |ηi | + |γ0|/2.

These remarks imply thatSi is inQ2N−1(Ai , ai−1,−1) which is a subset ofQN(Ai , ai−

1,−1). Hence we have defined a mapf from U to U1 × U2, with Ui a simple
configuration domain ofQN(Ai, ai − 1,−1).

Conversely, let{Si}i∈{1,2} be two surfaces inQ2N(Ai , ai − 1,−1), such that for each
Si , the smallest saddle connectionγi is simple and joins a pole to a singularity of order
ai − 1. If γ1 and γ2 are in the same direction and have the same length, then we
can reconstruct a surfaceS= f−1(S1, S2) in Q(k1, . . . , kr ) by cuttingSi alongγi , and
gluing together the two resulting surfaces by an appropriate isometry. The surfaceS
belongs toQN(k1, . . . , kr ). Note that in the reconstruction of the surface, the lengthof
smallest saddle connection is doubled, hence we must start from Q2N(Ai, ai − 1,−1),
and notQN(Ai, ai − 1,−1).

Now we prove the connectedness ofU : let X1, X2 be two flat surfaces inU . After
a small perturbation and after using the geodesic flow, we geta surfaceS1 (resp.
S2) in the same connected component ofU as X1 (resp X2), with S1 and S2 in
Q2N(k1, . . . , kr ).
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There exists continuous paths (Si,t)t∈[1,2] ∈ Q2N(Ai, ai − 1,−1) such that (S1,j , S2,j ) =

f (Sj) for j = 1, 2. The pair (S1,t, S2,t) belongs tof (U) if and only if their smallest saddle
connections are parallel and have the same length. This condition is not necessary
satisfied, but rotating and rescalingS2,t gives a continous pathAt in GL2(R) such
that S1,t and At.S2,t satisfy that condition. Note that we necessary haveA2.S2,2 =

S2,2. Thereforef−1
(
S1,t, A2.S2,t

)
is a continuous path inU that joinsS1 to S2. So

the subsetU is connected. Note that the connectedness ofU clearly implies the
connectedness ofU ∩ Q1(k1, . . . , kr ).

The cases c) and d) are analogous and left to the reader, hencethe Main Theorem is
proven.

Note that the connectedness ofU also implies the connectedness ofU∩Q1,δ(k1, . . . , kr )
by using the same argument as in the end of section4.2. Hence Proposition1.2is proven
too.

Definition 5.3 A configuration is said to besymmetricif there exists a nontrivial
isomorphismf of the corresponding graph of connected componentΓ, such that:

• f commutes with the permutations of the edges associated to the configuration,

• f preserves the order of the boundary singularities,

• f preserves the interior singularities.

Corollary 5.4 Let Q(k1, . . . , kr ) be a stratum of quadratic differentials onCP
1, and

let N ≥ 1. If a connected component ofQN(k1, . . . , kr ) admits orbifoldic points, then
the corresponding configuration is symmetric and the locus of orbifoldic points are a
finite union of copies (or coverings) of open subset of configuration domains, which
are manifolds, of smaller strata.

Proof Recall thatS corresponds to an orbifoldic point if and only ifS admits a
nontrivial orientation preserving isometry. Now letU be a connected component of
QN(k1, . . . , kr ), S ∈ U an orbifoldic point, and letτ be an orientation preserving
isometry ofS.

Suppose thatU corresponds to thea) case of Theorem5.1. Then τ must preserve
the smallest saddle connectionγ0 of S. Either τ fixes the endpoints ofS, either it
interchanges them. In the first case,τ = Id , in the other case it is uniquely determined
and is an involution that fixes the middle ofγ0. In that case the endpoints ofγ0
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have the same orderk ≥ 0. ThenS/τ is a half-translation surface whose smallest
saddle connection is of length|γ0|/2 and joins a singularity of orderk ≥ 0 to a pole.
Any other saddle connection inS/τ is of length l or l/2 for l the length of a saddle
connection (different fromγ0) on S. Therefore,S/τ belongs to a configuration domain
of a) type in the corresponding stratum. The flat surfaceS/τ does not have a nontrivial
orientation preserving isometry becausek 6= −1. Therefore the configuration domain
that containsS/τ is a manifold. The involutionτ induces an involution on the set of
zeros ofS and the stratum and configuration domain corresponding toS/τ depends
only on that involution. This induces a covering from the locus of orbifoldic points
whose corresponding involution share the same combinatorial data to an open subset
of a manifold.

If U corresponds to theb) case, then similarly, a nontrivial isometric involutionτ
interchanges the two 1–holed spheres of the decomposition.We haveA1 = A2 and
a1 = a2 > 0 (see notations of Theorem5.1), hence the configuration is symmetric.
The set of orbifoldic points is isomorphic to the configuration domain ofa) type with
data{a1,−1} which is a manifold.

If U corresponds to thec) case then similarly,τ interchanges the two 1–holed sphere
of the decomposition. We must haveA1 = A2 anda1 = a2 > 0. The set of orbifoldic
points is isomorphic to an open subset of a configuration domain of d) type, which is
a manifold (see next).

In the d) case, any isometryτ fix the saddle connectionγ1 that separates the surface
in a 1–holed sphere and a half-pillowcase, which are nonisometric. Hence they are
fixed by τ . Now sinceτ is orientation preserving, it is easy to check that necessary, τ

is trivial.

Here we use Theorem4.2and the description of configurations to show that any stratum
of quadratic differentials onCP

1 admits only one topological end.

Corollary 5.5 Let Q1(k1, . . . , kr ) be any stratum of quadratic differential onCP
1.

Then the subsetQ1,δ(k1, . . . , kr ) is connected for anyδ > 0.

Proof Let S∈ Q1,δ(k1, . . . , kr ). We first describe a path fromS to a simple config-
uration domain with corresponding singularities of orders{−1, k}. Then we show
that all of these configuration domains are in the same connected component of
Q1,δ(k1, . . . , kr ).
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Let γ1 be a saddle connection ofS of length less thanδ (we can assume thatγ1 is
vertical). Up to the Teichmüller geodesic flow action, we canassume thatγ1 is of
length less thanδ2. Now let P be a pole. There exists a saddle connectionγ2 of length
less than 1 starting fromP, otherwise the 1–neighborhood ofP would be an embedded
half-disk of radius 1 in the surface, and would be of areaπ

2 > 1. Then up to a slight
deformation, we can assume that there are no other saddle connections parallel toγ1

or γ2 (except the ones that areĥomologous toγ1 or γ2). Now we contractγ2 using
the Teichmüller geodesic flow. This gives a path (gt.S)t≥0 in Q1(k1, . . . , kr ). For each
t ≥ 0 the saddle connections correponding toγ1 andγ2 in gt.S are of length at most
δ2et/2 and e−t/2 respectively. Hence the first one is smaller than or equal toδ for
0 ≤ t ≤ −2 ln(δ), and the second one is smaller thanδ for t > −2 ln(δ). Hence the
pathgt.S is in theδ–neigborhood of the boundary, and we now can assume thatγ2 is
of length smaller thanδ .

The other end ofγ2 is a singularity of orderk. If k ≥ 0, then from the list of
configurations given in Theorem5.1, the saddle connectionγ2 is simple.

Figure 22: Deformation of a surface inQ1,δ(k1, . . . , kr ).

We assume thatk = −1, then the surface is a 1–holed sphere glued with a cylinder,one
end of this cylinder isγ2 (we have a half-pillowcase), and the other end of that cylinder
is a closed saddle connection whose endpoint is a singularity P′ of orderk′ > 0. We
can assume, up to using the Teichmüller geodesic flow, thatγ2 is of length at most
(1−c)δ , wherec is the area of the cylinder. Now we considerγ3 to be the shortest path
from P to P′ . It is clear thatγ3 is a simple saddle connection. Now up to twisting and
shrinking the cylinder, we can make this saddle connection as small as possible (see
Figure22). However, this transformation, is not area preserving andwe must rescale
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the surfaces to keep area one surfaces . This rescalling increase the length ofγ2 by
a factor which is at most 1

1−c , and therefore the length ofγ2 is always smaller than
δ during this last deformation, and the resulting surface is in a simple configuration
domain with corresponding singularities of orders{−1, k′}.

Now let (Ui)i=1,2 be simple configuration domains. Up to renumbering, we can
assume that their corresponding configurations are represented by simple paths that
joins a pole to a singularity of orderki > 0, for i = 1, 2 (here we assume that there
exists two distinct singularities of positive order, the complementary case is trivial).
From Theorem4.2, for each i = 1, 2, the setUi ∩ Q1,δ(k1, . . . , kr ) is connected.
So, it is enough to find a path between two specific surfaces inUi that stays in
Q1,δ(k1, . . . , kr ). We haver ≥ 4, so we can assume thatkr−1 = kr = −1. We start
from a surface inQ(k1−1, k2−1, k3, . . . , kr−2) and fori = 1, 2, we successively break
a singularity of orderki −1 into two singularities of orderki and−1. We get a surface
in Q1,δ(k1, . . . , kr ) with two arbitrary small saddle connections. We can assumethat
one of these short saddle connections is vertical, and the other not. Then action on this
surface by the Teichmüller geodesic flow easily gives a path betweenU1 andU2 that
keeps being inQ1,δ(k1, . . . , kr ).

Remark 5.6 As was seen previously, one can see more or less a stratum of quadratic
differentials as a space of configuration of points in a sphere, hence one could use
it to prove Corollary1.3. However, Corollary5.5 is stated in terms of flat metrics,
and it is not clear how to relate precisely the degenerationswe have described in
terms of configurations of̂homologuous saddle connections and the corresponding
degenerations in the space of configurations of points. Moreover, the previous proof
could be more easily extended to other strata.

Appendix. A geometric criterion for ĥomologous saddle con-
nections

Here we give a proof of the following theorem:

Theorem (H. Masur, A. Zorich) Consider two distinct saddle connectionsγ, γ′ on
a half-translation surface. The following assertions are equivalent:

a) The two saddle connectionsγ andγ′ areĥomologous.

b) The ratio of their length is constant under any small deformation of the surface
inside the ambient stratum.
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c) They have no interior intersection and one of the connected component of
S\{γ ∪ γ′} has trivial linear holonomy.

Proof The proofs of the statementsa ⇔ b andc ⇒ b are the same as in Masur and
Zorich [MZ]. We will write them for completeness. Our proof ofb ⇒ c is new and
more geometric than the initial proof.

We first show that statementa) is equivalent to statementb). We have defined [ ˆγ] and
[γ̂′] in H−

1 (Ŝ, P̂, Z). We claim that they are primitive cycles. Letγ1 andγ2 be the two
preimages ofγ in Ŝ. If [γ1] = −[γ2], then [γ̂] = [γ1] is primitive since it is realized
by a simple curve. Otherwise [γ1] and [γ2] are independent inH1(Ŝ, P̂, Z), since they
cannot be equal and are primitive. We assume first thatγ1 and γ2 are closed paths.
If they have no intersection point, then by choosing suitably a path joiningγ1 andγ2,
one can realize [ ˆγ] = [γ1] − [γ2] by a simple curve, and hence it is a primitive cycle.
If they have an intersection point̂P, then it is the preimage of the adjacent singularity
P of γ , which is therefore a ramification point. Since the natural involution onŜ is a
rotation in a neigborhood of̂P, one can always deformγ1 and γ2 to get two simple
closed curves with no intersection point.

Now we assume thatγ1 andγ2 are not closed, then we can find a basis ofH1(Ŝ, P̂, Z)
that contains [γ1] and [γ2]. Hence we can find one that contains [γ1] − [γ2] and [γ2],
hence [γ1] − [γ2] is primitive. So we have proved that [ ˆγ] and [γ̂′] are primitive.

If γ and γ′ are ĥomologous, then integratingω along the cycles [ ˆγ] and [γ̂′], we
see that the ratio of their length belongs to{−1/2, 1, 2}, and this ratio is obviously
constant under any small deformations of the surface. Conversely, if they are not̂homo-
logous, then (γ, γ′) is a free family onH−

1 (Ŝ, P̂, C) (since they are primitive elements
of H−

1 (Ŝ, P̂, Z)) and so
∫
γ̂ ω and

∫
γ̂′ ω correspond to two independent coordinates in

a neighborhood ofS. Therefore the ratio of their length is not locally constant.

Now assumec). We denote byS+ a connected component ofS\{γ, γ′} that has trivial
holonomy. Its boundary is a union of components homeomorphic to S

1. The saddle
connections have no interior intersections, so this boundary is a union of copies ofγ
and γ′ and it is easy to check that bothγ and γ′ appears in that boundary. The flat
structure onS+ is defined by an Abelian differentialω . Now we have

∫
∂S+ ω = 0,

which impose a relation on|γ| and |γ′|. This relation is preserved in a neighborhood
of S, and therefore, the ratio is locally constant and belongs to{1/2, 1, 2} depending
on the number of copies of each saddle connections on the boundary of S+ .
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Now assumeb). We can assume that the saddle connectionγ is vertical. Then using
the Teichmüller geodesic flowgt on S, for some smallt , induce a small deformation
of S. The hypothesis implies that the saddle connectionγ′ is necessary vertical too,
and so the two saddle connections are parallel and hence haveno interior intersections.
Let S1 and S2 the connected components ofS\{γ, γ′} that boundsγ (we may have
S1 = S2), and assume thatS1 has nontrivial linear holonomy. That implies there
exists a simple broken lineν with nontrivial linear holonomy that starts and ends on
the boundary ofS1 that correspond toγ . Now, we create an small hole by adding a
parallelogram on the first segment of the pathν . This creates only one holeτ in the
interior of S1 because the other one is sent to the boundary (this procedureadds the
length of the hole to the length of the boundary). If we directly move the holeτ to the
boundary, we obtain a flat surface isometric to the initial surface S1. But if we first
transportτ alongν , then this will change its orientation, and its length will be added
again to the length of the boundary. So the resulting surfacehas a boundary component
corresponding toγ bigger than the initial surfaceS1 . The surgery did not affect the
boundary corresponding toγ′ . Assume now thatS2 has also nontrivial holonomy,
then performing the same surgery onS2 , and gluing backS1 andS2 , this gives a slight
deformation ofS that change the length ofγ and not the length ofγ′ . This contradicts
the hypothesisb).
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