Degenerations of quadratic differentials onCP*

CORENTIN BoOIssy

We describe the connected components of the complementatfieah“diagonal”
of real codimension 1 in a stratum of quadratic differest@i CP*. We establish
a natural bijection between the set of these connected coemp® and the set of
generic configurations that appear on such “flat spheres”aMé prove that the
stratum has only one topological end. Finally, we elaboaatecessary toolkit
destined to evaluation of the Siegel-Veech constants.

32G15; 30F30, 57R30

1 Introduction

The article deals with families of flat metric on surfaces ehgs zero, where the
flat metrics are assumed to have conical singulariti&Z linear holonomy and a
fixed vertical direction. The moduli space of such metridgs@norphic to the moduli

space of meromorphic quadratic differential &* with at most simple poles and is
naturally stratified by the number of poles and by the ordézeoos of a quadratic

differential.

Any stratum is non compact and a neighborhood of its bounctamgists of flat surfaces
that admit saddle connections of small length. The straatfithe neighborhood of the
boundary is also related to counting problems in a generiace of the stratum (the
“Siegel-Veech constants”, see Eskin, Masur and ZoiZ4] for the case of Abelian

differentials).

When the length of a saddle connection tends to zero, sonee sdldldle connections
might also be forced to shrink. In the case of an Abelian défféial this corresponds
to homologous saddle connections. In the general case diafiadifferentials, the
corresponding collections of saddle connections on a fléace are said to beomo-
logoug (pronounced “hat-homologous”). Configurations assoditecollections of
ﬁomologous saddle connections have been described forajestata by Masur and

'The corresponding cycles are in fact homologous on the d¢aalodouble cover ofS,
usually denoted aS, see sectiod.2
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Zorich in [MZ] and more specifically for genus zero and in hyperelliptiareected
components by the author iB].

Usually, the study of the structure of the neighborhood eftibundary is restricted to
athick part where all short saddle connections are pairvﬁemologous (see Masur
and Smillie MS], and also EMZ, MZ]). Following this idea, we will consider the
complement of the codimension 1 subgebf flat surfaces that admit a pair of saddle
connections that are both of minimal length, but which areﬁumologous.

For a flat surface in the complement &f, we can define the configuration of the
maximal collection ohomologous saddle connections that contains the smadiegtes
connection of the surface. This defines a locally constaptoagsideA (see sectio®
for more details).

We will prove the following result.

Main Theorem Let Qi(ki,...,k) be a stratum of quadratic differentials @P*
with at most simple poles. There is a natural bijection betwthe configurations of
homologous saddle connections existing in that stratunttedonnected components

of Qi(ki. ..., k)\A.

We will call the connected components@f(ki, . . ., k:)\ A theconfiguration domains
of the stratum. These configuration domains might be intiegeso the extend that
they are “almost” manifolds in the following sense:

Corollary 1.1 LetD be a configuration domain of a stratum of quadratic diffesésit
on CPY. If D admits orbifoldic points, then the corresponding confitjarais “sym-

metric” and the locus of such orbifoldic points are uniongapies (or coverings) of
submanifolds of smaller strata.

Restricting ourselves to the neighborhood of the boundegyshow the following:

Proposition 1.2 Let D be a configuration domain of a stratum of quadratic differen-
tials onCPY. ThenD has only one topological end.

Corollary 1.3  Any stratum of quadratic differentials dP* has only one topological
end.

Corollariesl.1and1.3will be stated later as Corollafy.4 and Corollarys.5.
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1.1 Basic definitions

Here we first review standard facts about moduli spaces afrgtia differentials. We
refer to Hubbard and MasuHM], Masur [M] and Veech Y1] for proofs and detalils,
and to Masur-TabachnikoW[T] or Zorich [Z] for general surveys.

Let S be a compact Riemann surface of gemusA quadratic differentialg on S'is
locally given byq(2) = ¢(2)dZ, for (U, 2) alocal chart withp a meromorphic function
with at most simple poles. We define the poles and zeroegiofa local chart to be
the poles and zeroes of the corresponding meromorphiciumet It is easy to check
that they do not depend on the choice of the local chart. Bjiglibusing notations, a
marked point on the surfacee§p. a pole) will be referred to as a zero of order€sp.
a zero of order—1). An Abelian differential orS is a holomorphic 1-form.

Outside its poles and zerogjs locally the square of an Abelian differential. Integnati
this 1-form gives a natural atlas such that the transitiorctions are of the kind
Z+— +z+ c. ThusS inherits a flat metric with singularities, where a zero ofeard
k > —1 becomes a conical singularity of angle- 2)x. The flat metric has trivial
holonomy if and only ifg is globally the square of any Abelian differential. If not,
then the holonomy i€./2Z and §, q) is sometimes called laalf-translationsurface
since transition surfaces are either half-turns, or tediwsis. In order to simplify the
notation, we will usually denote bg a surface with a flat structure.

We can associate to a quadratic differential the set withtipigities {ki, ..., k}

of orders of its poles and zeros. The Gauss—Bonnet formertasthat) ; ki =
49 — 4. Conversely, if we fix a collectiofky, ...,k } of integers, greater than or
equal to—1 satisfying the previous equality, we denote®@k, . . ., k;) the (possibly
empty) moduli space of quadratic differential which aregiobally squares of Abelian
differential, and which havék, ...,k } as orders of poles and zeros. It is well known
that O(ky, ..., k) is a complex analytic orbifold, which is usually calleds@atum
of the moduli space of quadratic differentials on a Riemamfase of genug. We
usually restrict ourselves to the subspaggk,, ..., k) of area one surfaces, where
the area is given by the flat metric. In a similar way, we demgté{1(n, ..., ns) the
moduli space of Abelian differentials of area 1 having zerokdegree{ny, ..., ns},
wheren; > 0 and) >, nj = 2g — 2.
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There is a natural action of 3(R) on Q(kq, ..., k) that preserve its stratification: let
(Ui, ¢iicl is a atlas of flat coordinates & with U; open subset o8 and ¢;(U;) C R2.
An atlas of A.S is given by Ui, Ao ¢i)ici. The action of the diagonal subgroup of
SLy(R) is called the Teichmiuiller geodesic flow. In order to specibtations, we
denote byg: andry the following matrices of Si(R):

B e 0 . cos@) sin@)
S 9_[—sin(9) cosf)

NI~

A saddle connection is a geodesic segment (or geodesicjmap)g two singularities

(or a singularity to itself) with no singularities in its arior. Even ifq is not globally

a square of an Abelian differential we can find a square roadt aliong the saddle
connection. Integrating it along the saddle connection ateagcomplex number (de-
fined up to multiplication by-1). Considered as a planar vector, this complex number
represents the affine holonomy vector along the saddle ctinne In particular, its
euclidean length is the modulus of its holonomy vector. Nioét a saddle connection
persists under any small deformation of the surface.

Local coordinates for a stratum of Abelian differential al#ained by integrating the
holomorphic 1-form along a basis of the relative homoloti(S, {sing}, Z), where
{sing} denotes the set of conical singularitiesfEquivalently, this means that local
coordinates are defined by the relative cohomolbidys, {sing}, C).

Local coordinates in a stratum of quadratic differentiaks @btained in the following
way: one can naturally associate to a quadratic differef8ag) € 9(ki,....k) a
double coverp: S — S such thatp*q is the square of an Abelian differential.
The surfaceS admits a natural involutiorr, that induces on the relative cohomology
HY(S {sing}, C) an involution7*. It decompose#i(S, {sing}, C) into an invariant
subspacéH? (S {sing}, C) and an anti-invariant subspat (S, {sing}, C). One can
show that the anti-invariant subspaldé (S, {sing}, C) gives local coordinates for the
stratumQ(ky, ..., k).

1.2 Homologous saddle connections

Let S€ O(ka, ..., k) be aflat surface and denote py S — Sits canonical double
cover andr its corresponding involution. LeE be the set of singularities o
andX® = p~1(2).

To an oriented saddle connectighon S, we can associate; and -, its preimages
by p. If the relative cycles4] and [y2] in H1(S 3, Z) satisfy b1l = —[92], then we
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define ] = [v1]. Otherwise, we define’["= [y1] — [72]. Note that in all cases, the
cycle [y] is anti-invariant with respect to the involution.

Definition 1.4 Two saddle connections and~’ arehomologous if §] = i[f;’].
Example 1.5 Consider the flat surfac8 € Q(—1,—1, —1, —1) given in Figurel (a

“pillowcase”), it is easy to check from the definition that and +, areﬁomologous
since the corresponding cycles for the double cé&vare homologous.

[Nl
1 £l

(7o)
N

2/

Figure 1: An unfolded flat surfacg with two ﬁomologous saddle connectiofisandy,.

Example 1.6 Consider the flat surface given in Fig2ghe reader can check that the
saddle connections;, 72 and~s are pairwisenomologous.

The following theorem is due to Masur and ZoridhZ]. It gives in particular a simple
geometric criterion for deciding whether two saddle cotioes arehomologous. We
give in the appendix an alternative proof.

Theorem (H. Masur, A. Zorich) Consider two distinct saddle connectionsy’ on
a half-translation surface. The following assertions au@\@lent:

e The two saddle connectionsand~’ areﬁomologous.

e The ratio of their length is constant under any small defdionzof the surface
inside the ambient stratum.
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Figure 2: Unfolded flat surface with thré@mologous saddle connectioms, 2, and~s.

e They have no interior intersection and one of the connectetdponent of
S\{y U~} has trivial linear holonomy.

Furthermore, ify and~' are homologous, then the ratio of their length belongs to
{1/2,1,2} and they are parallel.

A saddle connectiony; will be calledsimpleif they are no other saddle connections
ﬁomologous toy:. Now we consider a set cffomologous saddle connections=
{m1,...,7s} on aflat surface. Slightly abusing notation, we will denote I8¢~ the
subsetS\ (U?_7i) . This subset is a finite union of connected half-translasioriaces
with boundary. We define a gragh(S, ) called the graph of connected components
in the following way (seeMIZ]): the vertices are the connected component$\of,
labelled as %" if the corresponding surface is a cylinder, as™ if it has trivial
holonomy (but is not a cylinder), and as-” if it has non-trivial holonomy. The
edges are given by the saddle connections.ifcach~; is on the boundary of one or
two connected components 8f~. In the first case it becomes an edge joining the
corresponding vertex to itself. In the second case, it besoam edge joining the two
corresponding vertices.

Each connected components 8y is a non-compact surface but can be naturally
compactified (for example considering the distance indunedhe flat metric on a
connected component @&\v, and the corresponding completion). We denote this
compactification by§. We warn the reader th& might differ from the closure of
the component in the surfacg for example, if4; is on the boundary of just one
connected componer§g of S\~ , then the compactification & contains two copies

of ~; in its boundary, while in the closure & these two copies are identified. The
boundary of eacl§ is a union of saddle connections; it has one or several costhec
components. Each of them is homeomorphi§toand therefore the orientation &
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defines a cyclic order in the set of boundary saddle conmectidcach consecutive
pair of saddle connections for that cyclic order defindsandary singularitywith

an associated angke which is a integer multiple ofr (because the boundary saddle
connections are parallel). We calider of the boundary singularitthe integere‘T”.
The surface with boundar§g might have singularities in its interior. We call them
interior singularities

Definition 1.7 Let~y = {71,...,~} be a maximal collection diomologous saddle
connections on a flat surface. cdnfigurationis the following combinatorial data:

e The graphl’(S ~)

e For each vertex of this graph, a permutation of the edgesadijao the ver-
tex (encoding the cyclic order of the saddle connections arh eeonnected
component of the boundary of tl&).

e For each pair of consecutive elements in that cyclic ordegranegative inte-
ger corresponding to the order of the boundary singularfinéd by the two
corresponding saddle connections.

e For eachS, a collection of integers greater than or equaktt that are the
orders of the interior singularities & .

We refer to Masur and ZorichMZ] for a more detailed definition of a configuration
(see also the author’s papé].

1.3 Neighborhood of the boundary, thick-thin decompositio

For any compact subsét of a stratum, there exists a constaptsuch that the length
of any saddle connection of any surfaceknis greater tharck. Therefore, we can
define thed—neighborhood of the boundary of the stratum to be the sudismiea 1
surfaces that admit a saddle connection of length lessdhan

According to Masur and SmillieM S], one can split thé—neigborhood of the boundary
of a stratum into dhin part (of negligibly small measure) andthick part The thin
part being for example the subset of surfaces with a pair oﬁumologous saddle
connections of length respectively less thamand N§, for some fixedN > 1 (the
decomposition depends on the choiceNdf We also refer toEMZ] for the case of
Abelian differentials and taIZ] for the case of quadratic differentials.

Let N > 1, we consider@N(ky, ko, . . . , k) the subset of flat surfaces such thatyif
is the shortest saddle connection ayjds another saddle connection tmmologous
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to 71, then|y}| > N|vy1|. Similarly, we defineQ}(ki, ko, . . ., k) to be the intersection
of QN(kq, ko, . .., k) with the subset of area 1 flat surfaces.

For any surface i@V (ky, ko, . . . , k), we can define a maximal collectigh of homo-
logous saddle connections that contains the smallest dris.isTwell defined because
if there exists two smallest saddle connections, they acessaryhomologous. We
will show in sectionb5 that the associated configuration defines a locally constapt

from Q?(kl, ko, ..., k) to the space of configurations. This leads to the following
definition:
Definition 1.8 A configuration domairof Qi(ky, ..., k) is a connected component

of O (ki, ... k).

Remark 1.9 The previous definition of a configuration domain is a littlerengeneral
than the one stated in the introduction that correspondsetgaseN = 1.

Definition 1.10 An endof a locally compact topological spat® is a function
e: {K, K € Wis compac} — {X, X C W}
such that:

e ¢(K) is a (unbounded) component W\K for eachK
o if KCL,thene(ll) C ¢(K).

Proposition If W is o —compact, then the number of endd\bis the maximal number
of unbounded components WA\K, for K compact, when the number is bounded.

We refer to the book of Hughes and RanickyH] for more details on the ends of a
space.

1.4 Example on the moduli space of flat torus

If T is aflat torusite. a Riemann surface with an Abelian differentia), then, up
to rescalingw, we can assume that the holonomy vector of the shortest geadel.
Then, choosing a second smallest non horizontal geode#ficarngood choice of its
orientation, this defines a complex numizee x + iy, withy > 0, —1/2 <x < 1/2
and|zl > 1. The corresponding domaid in C is a fundamental domain @l /SLy(Z).

It is well know that this defines a map from the moduli spaceaifttbrus with trivial
holonomy (.e. H())), to H/SL,(Z) which is a bundle, withC* as fiber. Orbifoldic
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points of H(()) are over the complex number = i andz, = 1+'T‘/§ They correspond
to Abelian differential on torus obtained by identifyingetbpposite sides of a square,
or a regular hexagon.

Now with this representatiorf-(N(}) is obtained by restricting ourselves to the subdo-
main DN = DN {z |z] > N} (see Figures). This subdomain contains neither nor

2, so HN(D) is a manifold. In the extreme ca$é= 1, the codimension one subset
A is an arc joiningz; to z.

Py

/.T\v P2

i

I

I

I
/ I A
P, . I

Figure 3: Configuration domain ir((().

1.5 Reader’s guide

Now we sketch the proof of the Main Theorem.

(1) We first prove the theorem for the case of configuration @losndefined by
a simple saddle connection (we will refer to these configomatomains as
simple. We will explain how we can shrink a simple saddle connegtishen
its length is small enough (therefore, describe the straabfi the stratum in a
neighborhood of an adjacent one). This is done in seetion
There is one easy case, when the shrinking process is donediyahd canonical
surgeries. The other case involves some non-local sugg@rige transport) that
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depend on a choice of a path. We will have to describe the diepee of the
choice of the path. More details on these surgeries appeaciion3.

(2) The list of configurations was established by the authdBi]. The second
step of the proof is to consider each configuration and to sheivthe subset
of surface associated to this configuration is connecteds Whl be done in
section5 and will use the “simple case”.

2 Families of quadratic differentials defined by an involution

Consider a polygon whose sides come by pairs, and such tragath pair, the

corresponding sides are parallel and have the same lenlgém idlentifying these pair
of sides by appropriate isometries, this gives a flat surfacthis section we show that
any flat surface can arise from such a polygon and give anaitxptinstruction. We

end by a technical lemma that will be one of the key argumeiniheorem4.2

The construction presented in this section is a naturalrgéination for the case of
guadratic differentials of the well knowaippered rectange constructipdue to Veech
(see V1)). This idea was developped later by the author and LanresaifL]).

Figure 4: Flat surface unfolded into a polygon.

2.1 Constructions of a flat surface

Let o be an involution of the sefl, ..., | + m}, without fixed points.
We denote byQ, the set of¢ = (C1,...,(+m) € C'*™ such that:

1) Yi G =G0
(2) Vi Re()>0
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@) Vi<i<l-1 Im(> i) >0
(4) vV1<j<m-1 |m(21§k§j G4k) <0
(B) D k<1 k=D 1<kem Ci+k-

Now we will construct a ma@ZR from Q.| to the moduli space of quadratic differen-
tials. Slightly abusing conventional terminology, we vallll a surface irZR(Q,,) a
suspensiomver (o, 1), and a vector irQ, is then asuspension data

Note thatQ,| might be empty for some. Furthermore, sinc€),, is convex, the
connected component of the stratum is uniquely determigiée ). This is discussed
in detail in BL] .

Easy case

Now we consider a broken line; whose edge number(1 < i <) is represented by
the complex numbeg;. Then we consider a second broken linewhich starts from
the same point, and whose edge nunbr < j < m) is represented byjj. The last
condition implies that these two lines also end at the sanmé.pdthey haveno other
intersection pointsthen they form a polygon (see Figute The sides of the polygon,
enumerated by indices of the corresponding complex numbéasrally come by pairs
according to the involutiorr. Gluing these pair of sides by isometries respecting the
natural orientation of the polygon, this construction degim flat surface which have
trivial or non-trivial holonomy.

For this case, we will say that the suspension data defisagablepolygon.

First return map on a horizontal segment

Let Sbe a flat surface and be a horizontal segment with a choice of a positive vertical
direction (or equivalently, a choice of left and right enddje consider the first return
map T1: X — X for geodesics starting frorX in the positive direction (with speed
one). Any such geodesic which is infinite will intersectgain. Therefore, the map

is well defined outside a finite number of points that correspm vertical geodesics
that stop at a singularity before intersecting the inteiXagain. This seX\{sing}

is a finite unionXy, ..., X of open intervals and the restriction ®f on eachX; is

of the kindx — +x+ ¢;. For eachi, the first return time for the vertical geodesics
starting fromX; (in the positive direction) is constant. Similarly, we defify to be the
first return map for geodesics in the negative direction ambte byX,1,...,Xm
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the corresponding intervals. Remark that fot | (resp.i > 1), T1(X) = X (resp.
To(Xi) = Xj) for some 1< j < | 4+ m. Therefore, {1, T2) induce a permutationark
of {1,1 + m}, and it is easy to check thatx is an involution without fixed points.
When S is a translation surfacel, = T, 1 and T, is called aninterval exchange
transformation

Note that the pairTy, T2) can also be seen as a particular case lofear involution
which was introduced by Danthony and NogueitaN] in order to encode the first
return map of a mesured foliation on a transverse segmeantalSe BL].

If S€ ZRQ,,), constructed as previously, we chooééo be the horizontal line whose
left end is the starting point of the broken lines, and of thr@e(zkgl k) - Thenitis
easy to check thaix = o.

Veech zippered rectange construction

The broken lined.; andL, might intersect at other points (see Figbje

However, we can still define a flat surface by using an analgouastruction as the
well known zippered rectangles construction due to Veecle giVe a description
of this construction and refer to VeecW]] and Yoccoz Y] for the case of Abelian
differentials. This construction is very similar to the akone, although its precise
description is quite technical. Still, for completeness,give an equivalent but rather

implicit formulation.
Xz
s Ca

s

Figure 5: Suspension data that does not give a “suitablg/gool.

We first consider the previous case whenand L, define an suitable polygon. For
each pair of intervalX;, X, on X, the return timeh; = h, for the corresponding
geodesics starting from € X; and returning iny € X, is constant. This value
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depends only ong(|) and on the imaginary part af. For each pairv = {i,o(i)}
there is a natural embedding of the open rectafyle= (0, R€(;)) x (0, hy) into the
flat surfaceS (see Figuré). For eachR,, we glue a horizontal side & and the other
to X,). The surfaceS is then obtained after suitable identifications of the eaiti
sides of the the rectangld®, }.. These vertical identifications only depend anl}
and on the imaginary part @f.

Ri2,43

Ri1,10y

Figure 6: Zippered rectangle construction, for the casdl#ihsurface of Figurd.

For the general case, we construct the rectanfies,, by using the same formulas.
Identifications for the horizontal sides are straightfaidva Identifications for the

vertical sides do not depends on the horizontal parametadswill be the same as for
a suspension datd that have the same imaginary part@sut which correspond to
a suitable polygon. This will be well defined after the foliogy lemma.

Lemma 2.1 Let ¢ be a collection of complex numbers @, then there exists
¢’ € Q1 with the same imaginary part s that defines a suitable polygon.

Proof We can assume th@:(zl Im((k) > O (the negative case is analogous and there
is nothing to prove when the sum is zero). If we find a suspendata¢’ with the
same imaginary part as, and such thaR€((/, ) < Re(/) + ¢, for ¢ small enough.
Then such suspension data defines a suitable polygon.

It is clear thato(l + m) # | otherwise there would be no possible suspension data.
If o(l +m) < I, then we can shorten the real part@f, and of (,i+m), keeping
conditions (1)—(5) satisfied, and get a suspension dataith the same imaginary
part as¢, and such thaRg(/, ;) is less tharRg((). This last condition implies that

¢’ defines a suitable polygon.
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Similarly, if o(I) > |, then one can freely increase the real parfaind (, (), keeping
conditions (1)—(5) satisfied and get a suspension dfawdth the same imaginary part
as(, and such that’ defines a suitable polygon.

Now we assume that(l + m) > |. If there existsi, (i) > I, such that{i,o(i)} #

{l + mo(l + m)}, then we define’ by decreasing arbitrarily the real part of the
corresponding;+m, (»(+m), and increasing the real parts ¢f (»( such that the sum
> 1<k<1+m Gk IS constant. More precisely:

Rq{ll+m) = Rq{clr(l+m)) =X
Re() = RE() = REG) + Re(ym) — X
Re€¢) = R forallk ¢ {i,o(i),l + mo(l +m)}
M) = Im(G) for all k.

Then ¢’ satisfy condition (1)—(5) and defines a suitable polygon ifmtance for

X < Rg().

The last remaing case corresponds to whlepm, (I + m)} is the only pair{k, o(k) }
such thatk,o(k) > |, and wheno(l) < |. There existsig, o(ip) < I, such that
{ig,o(io)} # {l,o(l)} otherwise condition (5) implies thaj = (;+m, and ¢ is not
a suspension data. Now for each péiro(i)}, with i,o(i) < | and different from
{l,o(l)} we can shorten arbitrarily the real part of the correspandjn(,q, and
increase the real parts qf, (,qy such that the sun} ", , {« is constant, in a similar
way as previously. If we do this operation for each pair(i) < |, then we get a new
suspension datg such thatRe((/, ) < RE(/) + ¢, for € arbirarily small. This gives
a suitable polygon. O

2.2 The converse: construction of suspension data from a flaurface

Now we give a sufficient condition for a surface to be in so@g . Note that an
analogous construction for hyperelliptic flat surfacesleesn done by Veech ivR].

Proposition 2.2 Let S be a flat surface with no vertical saddle connection. There
exists an involutiorr and an integer such thalS € ZR(Q,,).

Proof Let X be a horizontal segment whose left end is a singularity. Ugutong X
on the right, we can assume that the vertical geodesicrajdriom its right end hits a
singularity before meeting again.
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Figure 7: Construction of a polygon from a surface.

Let X317 < ... < X1 -1 be the points of discontinuity ofy and i 0,x1) be the
endpoints ofX. For each positivek, there existsrix > 0 such that the vertical
geodesic starting fromy x in the positive direction stops at a singularity at time
(herery0 = 0, since by conventiom o is located at a singularity). Then far> 1 we
define(k : (Xpk — X1 k—1) + i(m1x — T1k—1). Now we perform a similar construction
for geodesics that starts in the negative directionxdgt< ... < xo m—1 be the points
of discontinuity of T, and &0, X2 m) be the extremities oK. For eachk ¢ {0, m},
the vertical geodesic starting from  in the positive direction stops at a singularity
at time o < 0 (here againmo = 0 andmp; > 0). For 1< k < m, we define
Ciepl = (Xok — Xok—1) + i(T2k — T2k—1). SO, we have a collection of complex numbers
(41, - - -, (myl that defines a polygo®.

We have alwayRg(k) = RE(yn) = [X/. Let 1 < k < 1. If ox(K) < I, then
Tik—1 + TLox(K) = Tik + TLox®—1 = Mk (with hg the time of first return toX for
the vertical geodesics starting from the subinteiX@g), otherwise there would exist a
vertical saddle connection (see Fig@)e SoIm(¢k) = Im((sx k). The other cases are
analogous. Thus is a suspension data, a#iR(() is isometric toS. O

Remark 2.3 In the previous construction, the suspension data constiwoes not
necessary give a suitable polygon. However, a sufficientition to get a suitable
polygon is to havery) = min(rk, 0 < k < 1), werery are as in the proof of the
previous proposition. Up to choosing carefully a subiraéX/ of X, this condition is

satisfied and the construction will give a true polygon. 8ifar any surface, we can
find a direction with no saddle connection, we can conclu@e &ny surface can be
unfolded into a polygon as in Figure up to rotating that polygon.
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i)

B

<— \Vertical
Saddle connexion
—_—
A KI A
B

X T X

Figure 8: The complex numbetg and (., are necessary equal.

2.3 Atechnical lemma

The following lemma is a technical lemma that will be neededeéction4.2. It can
be skipped in a first reading. We previously showed that aasarfvith no vertical
saddle connection belongs to somRQ,,). Furthermore, the corresponding pair
(o,1) is completely defined by first return maps of the verticalafidn on a well
chosen horizontal segment.

We define the se | defined in a similar way aQ,,, but here we replace Condition 2
by the following two conditions:

(2) Vi¢{1,0(1)} R€G)> 0.
(2) Re(1) = Re(o(1)) = 0.

In other words, the first vector of the top broken libg is now vertical and no other
vector is vertical except the other one of the correspongdaig Then we define in a
very similar way a majZR from Qf,’, to a stratum of the moduli space of quadratic
differentials.

Note that the subse®, | is convex.

Lemma 2.4 Let S be a flat surface with a unique vertical saddle connectiamrjgi
two singularitiesP1 andP,. Let X be a horizontal segment whose left endis and
such that the vertical geodesic starting from its left enthéunique vertical saddle
connection joiningP; to P,. There existgo,|), that depends only on the first return
maps onX of the vertical foliation and on the degreel®f, such thatS ¢ ZR’(Q’UJ).

Proof We define as in PropositioR.2 the X j, 7;j and ¢j, with the slight difference
that now, 710 > 0. Now, because there exists only one vertical saddle ctionethe
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same argument as before says that there exists at most orrgwpair{(,, () }
such thatgj, # (o) - If this pair doesn't exists, then the union of the verticabdesics
starting fromX would be a strict subset @&, with boundary the unique vertical saddle
connection. Therefore, we would hai?e = P,, contradicting the hypothesis.

Now we glue on the polygo® an Euclidean triangle of sides given b, (), iT1.0},
and we get a new polygon. The sides of this polygon appeariia {iet are parallel
and of the same length. We can therefore glue this pair ana flat surface. By
construction, we get a surface isometric3pand soS belongs to somiR’(QgJ).
The permutatiorv is easily constructed frora as soon as we knowg. This value is
obtained by the following way: we start from the vertical diedconnection, close to
the singularityP,. Then, we turn aroun&, counterclockwise. Each half-turn is easily
described in terms of the permutation Then after performing, + 2 half-turns, we
must arrive again on the vertical saddle connection. Thisgyis the value af.

3 Hole transport

Hole transport is a surgery used by Masur and ZorictMZ] to show the existence of
some configurations and especially to break an even sirityulara pair of odd ones.
It was defined along a simple path transverse to the vertitialtion. In this section,
we generalize this construction to a larger class of patishow that breaking a zero
using that procedure does not depend on small perturbatfthe path.

Hole transport also appears in the paper of Eskin, Masur amttZ [EMZ] for the
computation of the Siegel-Veech constants for the modalcsmf Abelian differen-
tials. This improved surgery, and “dependence propertigat are Corollan.5and
Lemmad.5are a necessary toolkit for the future computation of thedl®&egel-Veech
constants for the case of quadratic differentials.

Definition 3.1 A hole is a connected component of the boundary of a flat seigaen
by a single saddle connection (loop). The saddle connebtbamds a singularity. If
this singularity has angler3 this hole is said to be simple.

Convention 1 We will always assume that the saddle connection definingdfeis
vertical
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A simple holer has a natural orientation given by the orientation of theeulythg
Riemann surface. In a neighborhood of the hole, the flat mb&s trivial holonomy
and thereforey is locally the square of an Abelian differential.

Convention 2 When defining the surgeries around a simple hole using flatinates,
we will assume (unless explicit warning) that the flat cooaties come from a local
square rootv of ¢, such that| w € iR".

%— Vertical hole

Figure 9: A hole in flat coordinates.

Remark 3.2 Under Conventior2, we may speak of thieft or theright direction in a
neighborhood of a simple hole. Note that there exists twizbotal geodesics starting
from the singularity of and going to the right, and only oreeshg from the singularity
and going to the left.

3.1 Parallelogram constructions

We first describe the three basic surgeries on the surfataltbey us to transport a
simple hole along a segment (see FigliB. Consider a simple hole and chose
flat coordinates in a neighborhood of the hole that satisfyv€ntion 2. We consider

a vectorv such thatRgdzv)) > 0 (i.e. the vectorv goes “to the right” in our flat
coordinates). Consider the domdhobtained as the union of geodesics of length
starting at a point of- with directionv. When(2 is an embedded parallelogram, we
can remove it and glue together by translation the two sideallpl tov. Here we
have transported the simple hole by the vestoNote that the area changes under this
construction.

WhenRddzVv)) < 0, this construction (removing a parallelogram) cannotkwdihe
singularity is the unique point of the boundary that can ke dtarting point of a
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geodesic of direction. Now from the corresponding geodesic, we perform the revers
construction with respect to the previous one: we cut théasaralong a segment of
lengthv and paste in a parallelogram. By means of this constructietransport the
hole along the vectov.

WhenRgdZV)) = 0, we consider a geodesic segment of directigtarting from the
singularity, and cut the surface along the segment, themighith a shift (“Earthquake

construction”).

/A |
/A |

Figure 10: Parallelogram constructions.

There is an easy way to create a pair of holes in a compact flacsu we consider a
geodesic segment embedded in the surface, we cut the salfagpthat segment and
paste in a parallelogram as in the previous construction.g¥¥garallel holes of the
same length (but with opposite orientation). Note that we assume that the length
of these holes is arbitrary small. In a similar way, we carate pair of holes by

removing a parallelogram.

3.2 Transport along a piecewise geodesic path

Now we consider a piecewise geodesic simple patk v, ...y, with edges repre-
sented by the vectorg;, vo, ..., v,. We assume for simplicity that none of theis
vertical. The spirit is to transport the hole by iterating firevious constructions. We
make the hole to “follow the pathy in the following way (under Conventio):

e At step numbel, we ask that the geodesig starts from the singularity of the
hole.
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WhenRgdzv;)) > 0, we asky; to be the bottom of the parallelograthdefined
in the previous construction.

Naive iteration does not necessary preserve these camlitithe surgery can indeed
disconnect the path but then we can always reconpdgtadding a geodesic segment.
If the first condition is satisfied, but not the second, we cdd a surgery along a

vertical segment of the size of the hole to fulfill it. We justvie to check that each

iteration between two consecutive segments of the initiéh gan be done in a finite

number of steps, see Figuté.

(1)

(2)

®3)

(4)

a)::N/{l_.:M

m Vig1
DN TP — = f
~Vit+1 N

\

Vi*% Vig

0) — —

Figure 11: Hole transport along a piecewise geodesic curve.

If Rgdzv;)) andRgdZv; 1)) have the same sign, then as soon as both transports
are successively possible, our two conditions keep beitfitjed.

If Rgdzv;)) > 0 andRgdZVv;1)) < 0, and if 4,Vi11) is positively oriented,

the surgery withy; disconnect the path, and we must add a new segfndnit
thenRgV) and Rgv;1) are both negative, therefore, we can iterate the surgery
keeping the two conditions fulfilled.

If Rgdzv;)) < 0 andRgdZzv; 1)) > 0, and if {4, Vvi11) is negatively oriented,

we must add a surgery along a vertical segment to fulfill tleese condition.

It is an easy exercise to check that for any other configuraf (v, vi;1), the
direct iteration of the elementary surgeries works.



Degenerations of quadratic differentials @P* 21

Of course, in the process we have just described, we imglia#sumed that at each
step, the condition imposed for the basic surgerias (the parallelogram must be
imbedded in the surface) is fulfilled. But considering angnpact piecewise geodesic
path, the process will be well defined as soon as the hole il enwugh.

Remark 3.3 We can also define hole transport along a piecewise geodasidhmat
have self intersections. Here hole transport will discahtiee path at each intersec-
tions, but we can easily reconnect it and hole transportetsis in a finite number of
steps. We will not need hole transport along such paths.

3.3 Application: breaking up an even singularity

We consider a singularity of orderk = ki + ko. Whenk; andk, are not both odd,
there is a local surgery that continuously break this siadfyl into pair of singularities
of orderk; andk; (see sectiod.1.1). Whenk; andk, are both odd, this local surgery
fails. Following Masur and ZorichMlZ] we use hole transport instead.

Figure 12: Breaking a singularity.

Consider a pairl( Il') of sectors of angler in a small neighborhood d®, and such that
the image of the first one by a rotation ¢& ¢+ 1)= is the second sector. Now letbe

a simple broken line that starts and end®aand such that its first segment belongs to
sectorl and its last segment belongs to sedtorWe require parallel transport along

to beZ/2Z (this has sense becaukés even, sdP admits a parallel vector field in its
neighborhood).
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Then, we create a pair of holes by cutting the first segmenpasting in a parallelo-
gram. Denote by the length of these holes. One hole is attached to the sirigyula
The other one is a simple hole. We can transport it algngo the sectodl . Then
gluing the holes together, we get a singular surface withiragbaonical singularities
that are glued together. If we desingularise the surfaceyeta flat surface with a pair
of singularities of ordeik; andk, and a vertical saddle connection of length We
will denote by ¥ (S ~, ¢) this surface. The construction is continuous with respect
the variations ot.

3.4 Dependence on small variations of the path

The previous construction might depend on the choice of ithken line. We show the
following proposition:

Proposition 3.4 Let~ and~' be two broken lines that both start frdPy sectorl and
end toP, sectorll . Lete be a positive real number. We assume that there exists an
open subset) of S, such that:

e U containsy\{P} and+'\{P}.
e U is homeomorphic to a disc and have no conical singularities.

e The surgery described in sectiBB, with parametersy, ) or (v, <) does not
affect oOU\P.

Then¥(S v,¢) and¥(S,~, <) are isometric.

U VorV’

Figure 13: The boundary dd andV (or V).

Proof We denote byU the boundary of the natural compactificationb{that differ
from the closure ofJ in S, see sectior.?). We denote byP and P’ the ends ofy in
0U (that are also the ends of by assumption). We denote By (resp. V) the flat
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discs obtained fronU after the hole surgery along (resp. 7/). Our goal is to prove
thatV andV’ are isometric.

The hole surgery along (resp. +') does not change the metric in a neighborhood
of QU\{P,P’}. Furthermore, the fact that both and v’ start and end at sectots
andll correspondingly implies that andV’ are isometric in a neighborhood of their
boundary. We denote b¥ this isometry. Surprisingly, we can find two flat discs
that are isometric in a neighborhood of their boundary batghabally isometric (see
Figurel14).

,,,,,,,,

********************************************

Figure 14: Immersion iiR? of two non isometric flat discs with isometric boundaries.

In our case, we have an additional piece of information thiit wake the proof
possible: hole transport does not change the verticaltimtia(recall that the hole
is always assumed to be vertical). Therefore, for eachocargeodesics iV with
endpoints{x,y} C 9V, then{f(x),f(y)} are the endpoints of a vertical geodesic of
V.

For eachz € V we definex, € dV (resp. y) the intersection of the vertical geodesic
starting fromz in the negative directionrésp. positive direction) and the boundary
of V (see Figurel5). We also calll, the length of this geodesic. We can assume that
dV is piecewise smooth. So we can restrict ourself to the opasedsubseY; C V

of z such thatx, andy, are regular and nonvertical points.

Then we defineb: V, — V' that sendz to ¢y, (f (xz)), where,¢ is the vertical geodesic
flow. Because&/andV’ are (noncompact) translation surfaces, the length of theae
segment Xz, Y] is obtained by integrating the corresponding 1-form alang path
betweenx, andy,. Such a path can be chosen in a neighborhood of the boundary
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Figure 15: Parameters on a flat disc.

of V. Then, the isometry implies that this length is the same as the length of the
vertical segmentf[x,),f(y,)]. Therefore® is well defined and coincides tbin a
neighborhood of the boundary df. This map is also smooth because- (x;, 1,) are
smooth onV;. It's easy to check thaD®(z) = Id and that® continuously extends to
an isometry fromV to V'. O

Corollary 3.5 Let+' be close enough te and such thaty and~’ intersect the same
sectors of a neighborhood Bf. Then¥(S,~,¢) and¥(S v/, ) are isomorphic foe
small enough.

Proof If v/ is close enough tg (and intersect the same sectors in a neighborhood of
P), then there exists a open flat disk that contajnand +/, and fore small enough,
the last condition of Propositiod.4 is fullfilled O

Remark 3.6 Using propositior8.4, one can also extend hole transport along a differ-
entiable curve.

4 Simple configuration domains

Recall the following notation: ifQ(ky, ko, ..., k) is a stratum of meromorphic
quadratic differentials with at most simple poles, th@i(ks, ko, . .., k) is the subset

of area 1 flat surfaces i@(ki, ko, . .., k), and Q1 s(k1, ko, . . ., k) is the subset of flat
surfaces inQ1(ky, ko, . . ., k) that have at least a saddle connection of length less than
0.
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Definition 4.1 A configuration domain is said to b&mpleif the corresponding
configuration is realized by a simple and non closed saddiaexdion.

The goal of this section is to prove the following theorem,ichhproves the Main
Theorem for the case of simple configuration domains (buafarger class of strata).

Theorem4.2 LetQ(ky, ko, ..., k) be astratum of quadratic differentials with , ko) #
(—1,—1) and such that the stratu@(k; + ko, ks, ..., k) is connected. Lef be the
subset of flat surfaceSin QN (ki, ..., k) such that the shortest saddle connectio8 of
is simple and joins a singularity of ordky to a distinct singularity of orddt,. For any
pairN > 1 andé > 0, the setg, C N Q1(Ky, ko, ..., k) andC N Q1 s(ky, ko, ..., Kr)
are non empty and connected.

In this section we denote by, and P, the two zeros of ordek; andk, respectively
and by~ the simple saddle connection between them. There are tfeoetit cases.

e Whenk; andk, are not both odd, then there exists a canonical way of simgnki
the saddle connectiom if it is small enough. Furthermore, this surgery doesn't
change the metric outside a neighborhoodyofThis is the local case.

e Whenk; andk, are both odd, then we still can shrink to get a surface in the
stratumQ(ki+ko, ks, . . ., k), but this changes the metric outside a neighborhood
of ~ and this is not canonical. This is done by reversing the phaeeof section
3.3

4.1 Local case
4.1.1 Breaking up a singularity

Here we follow Eskin, Masur and ZorickeMZ, MZ]. Consider a singularity? of
orderk > 0, and a partitiork = k; + ko with ki, ko > —1. We assume thag andk;
are not both odd. I is small enough, then the séx € S d(x,P) < p} is a metric
disc embedded i1s. It is obtained by gluing + 2 standards Euclidean half-disks of
radiusp.

There is a well known local construction that breaks thewdengy P into two singu-
larities of orderk; andky, and which is obtained by changing continuously the way
of gluing the half-discs together (see Figl& or [EMZ, MZ]). This construction is
area preserving.
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Figure 16: Breaking up a zero into two zeroes (afieviZ, MZ]).

4.1.2 Structure of the neighborhood of the principal bounday

When v is small enough, (for example/| < |4/|/10, for any other saddle connec-
tion ~'), then we can perform the reverse construction becausghbwhood ofy is
precisely obtained from a collection of half-discs gluetefre. This defines a canon-
icalmap®: V — Q(ky + ko, ks, ..., k), whereV is a subset o©(ky, ko, ks, ..., k).

We can choos&JN ¢ V such thatd—1({S}) N UN is the set of surfaces such that the
shrinking process leads & and whose smallest saddle connection is of length smaller
than min(%, %) with 5 the smallest saddle connection 8f From the proof of

Lemma 81 of [EMZ], this map gives toUN a structure of a topological orbifold
bundle overQ(k; + ko, ks, ..., k), with the punctured disc as a fiber. By assumption,
Q(ky + ko, ks, ..., k) is connected, and therefotgN is connected, so the proof will
be completed after the following three steps:

e UNCC.

e There existd > 0 such thatQ(ky, ..., k)N C c UN.

e For any S € C, there exists a continous patlg) in C that joins S to
Qt(ky, - -, k).
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4.1.3 Proof of Theorem4.2 local case

To prove the first step, it is enough to show thit is a subset 0N (ky, ko, . .., k/):

let S be a flat surface ifUN and letS = &(S). We denote byy the smallest
saddle connection 08. The surgery doesn’t change the surface outside a small
neighborhood of the corresponding singularitySfif |5| is the length of the smallest
saddle connection o8, then S has no saddle connections of length smaller than
\:y] — || excepty, which has length smaller tha%‘ by construction. We have

W = % —1>2N —1> N, soSbelongs toQN(ky, ko, . .., k). Hence we have

proved thatuN c C.

To prove the second step, we remark tha® i Q-(ky,...,k)NC, for L > 10, then
the smallest saddle connection ®(S) is of length at least || — |v|, where~ is the
smallest saddle connection 8f Hence if|y| < min (“‘1—32)'7', (L_z—,l\lw) thenSe UN.
So we have proved tha@-(ky, ..., k)N C c UN for L > max(1012N + 1).

The last step is given by the following lemma:

Lemma 4.3 Let S be a surface il@N(ky, . .., k) whose smallest saddle connection
Sis simple and joins a singularity of ordkt to a singularity of ordek,, and letL be

a positive number. Then we can find a continuous pa@ki, . .. k), that joinsS

to a surface whose second smallest saddle connection igstt léimes greater than
the smallest one.

Proof The setQN(ki,..., k) is open, so up to a small continuous perturbatio$of
and up to changin by r,.S for some suitabl®, we can assume th&has no vertical
saddle connection except the smallest one.

Now we use the geodesic flogy on S. There is a natural bijection from the saddle
connections ofS to the saddle connections gf.S. The holonomy vectov = (v, Vo)

of a saddle connection becomas= (e~'v¢, €'v,). This imply that the quotient of the
length of a given saddle connection to the length of the swidine increases and goes
to infinity.

The set of holonomy vectors of saddle connections is discegid therefore, any other
saddle connection of;.S has length greater than times the length of the smallest
one, as soon dsis large enough. O

Note that the previous proof is the same if we restrict oueseto area 1 surfaces. The
case when restricted to the-neighborhood of the boundary is also analogous, since
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uNn Q15(K, ..., k) is still a bundle overQ;(ky, . .., k) with the punctured disc as
a fiber.

Hence the theorem is proven whknandk, are non both odd.

4.2 Proof of theorem4.2 non-local case

We first show that two surfaces that are close enough to thieistrQ(k; + ko, K3, . . ., k)
(inacertain sense that will be specified below) belong teéime configuration domain.
Then we show that we can always continuously reach that bergbod.

4.2.1 Neighborhood of the principal boundary

Contrary tothe local case, we do not have a canonical mapdisarhset oD (ky, ko, . . ., k)
to O(k: + ko, ..., k) that gives to this subset a structure of a bundle.

Let Se Ok + ko, ..., k), and letr be a path inS, we will say thatv is admissible
if it satisfies the hypothesis of the singularity breakinggadure of sectioB.3. Let v

be an admissible closed path whose endpoint is a singuRritfydegreek; + k, and
let ¢ > 0 be small enough for the breaking procedure. Recall¥H& v, ) denotes
the surface inQ(ky, ko, ..., k) obtained after breaking the singulariB, using the
procedure of sectio.3along the path/, with a vertical hole of length.

Proposition 4.4 Let (S, S) be a pair of surfaces i@(ky + ko, ..., k) andv (resp.
V') be an admissible broken line B (resp. S). Then¥(S,~v,e) and ¥(S,v/,¢)
belong to the same configuration domain for any sufficientialée .

Proof ByassumptionQ(ki+ko, ..., k) isconnected, sothere exists a pa#)i£o,1,
that joinsSandS. We can find a family of broken lineg of S such that, for: small
enough, the map — W (S, v, ¢) is well defined and continuous fdare [0,1]. The
surface¥ (S, 71, €) might differ from ¥(S,~, ¢) for two reasons:

e The pathsy; and/, that both start from the same singular®y, might not start
and end at the same sectors. In that case, we consider the,Batbtained by
rotating the surfac& by an angle ofd. We find as before a family of broken
linesy19 € rgS. Then, for somej an integer multiple ofr, we will have
re.S = S and~; g, that starts and ends on the same sectors than
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e Even if the pathsy; and+’ start and end in the same sectors of the singularity
P, they might be very different (for example in a different hatopy class
of S\{sing}, where {sing} denotes the set of conical singularities $ff so
Proposition3.4 does not apply. This case is solved by the following lemma,
which says that the resulting surfaces are in the same coafign domain.

]

Lemma4.5 Forany surfac& € Q(k1+ko, ks, ..., k), the configuration domain that
contains a surface obtained by the non-local singulargaking construction does not
depend on the choice of the admissible path, once séatochosen, and the hole is
small enough.

Proof We consider a surfacgin Q(k; + ko, .. ., k) and perform the breaking proce-
dure. We do not change the resulting configuration domaireiperform some small
perturbation ofS. Therefore, we can assume ti&lhas no vertical saddle connections
(this is the case for almost all surface). Now we consider dmissible path and
perform the corresponding singularity breaking procedun@ get a surfac&;. Then
we choose a horizontal segmefit in sectorl adjacent to the singularit; . Then we
perform the same construction for another admissible att ¢et a surfac&) and
consider a horizontal segmeXs of the same length as before (see Figlirg

Because the hole transport preserves the vertical faliatie first return maps oK
and X, of the vertical flow in the two surfaces are isomorphic amsa® the hole is
small enough.

Now from Lemma2.4, there existsd, I) such thatS, and$, belong toZR(Qy, ), with
parametersy, ... ¢ and¢Z, ..., (2. Note thatRe(l) = Rg(?), because these
depends only on the first returns maps of the vertical falie{end they coincide). The
family of polygons with parametetg® + (1 — t)¢? gives a path iMZ'(Q,, ) that joins
S andS,. Furthermore, the singularity breaking procedure is ecmmtiis with respect
to . Hence, for alli, ¢} and ¢? are arbitrary close as soon ass small enough.
Consequently, the constructed pathZ’(QgJ) keeps being in a configuration domain.

]

Now for eachS € O(ky + ko, ..., k) and each admissible path we can findes,
maximal such that? (S v, ) € OV(ky, ..., k) for all € < es.,. Now we consider the

set
W= U U U m@sy.e)

0€[0,2r] Sy O<e<es

This set is in a connected subset@¥ (ki, . . ., k) from Propositiord.4.
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Figure 17: Breaking a singularity with two different paths.

4.2.2 Reaching a neighborhood of the principal boundary

Now we consider a surface @V (kq, . . ., ki) whose unique smallest saddle connection
joins a singularity of ordek; to a singularity of ordek,. As in the local case, we
can assume that its smallest saddle connection is vertichtiat there are no other
vertical saddle connections. Then we make use of the Teilbang&odesic flow. This
allows us to assume that the smallest saddle connectiohiisaay small compared to
any other saddle connection.

We then want to contract the saddle connection using theseywocedure of sec-
tion 3.3

Proposition 4.6 Let N be greater than or equal ta There existd > N such that
O4(ky, ..., k)NnC c UN,

Proof We choosel large enough such that we can fihf satisfying N < L', and
1 < L’ < L. Denote byy the smallest saddle connection anciys length. We want
to find a path suitable for reversing the construction ofiea@.3. When contractingy
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in such way, we must insure that the surface sta@'tki, . .. , k), by keeping a lower
bound of the length of the saddle connections different ftioenshortest one.

Let B be the opert’s—neighborhood ofy, and{B; Yiea,...ry the open.’s—neighborhoods
of the singularities that are not endpointshafNote that each of these neighborhoods
is naturally isometric to a collection of half-disk gluedaty their boundary. We denote
by S the closed subset @& obtained by removing t& the setU;B; U B.

g B, V3 @ B,
. o

Bl Bl

B B

Figure 18: Constructing a suitable path.

Now we consider the set of paths 8fwhose endpoints are @’B and with nontrivial
holonomy (which makes senses in a neighborhoodB); and we choose a paih of
minimal length with this property. Note that, we do not chatige holonomy of a path
by “uncrossing” generic self intersections (see Figl@e Therefore, we can choose
our path such that, after a small perturbation, it has noistdfsections.

Now the conditionl’ < L implies that we can find a path in the same homotopy
class, such that the—neighborhood of, is homeomorphic to a disk. Now joining
carefully the endpoints of, to each sides ofy, we get a path/3. By construction,
we can use this path to contract the saddle connectioiihe surgery doesn't touch
the eN—neigborhoods of the singularities, except for the endpaoirh v, hence any
saddle connection that starts from such singularity willha length greater thaNe
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Figure 19: Uncrossing an intersection does not change tlombimy.

during the shrinking process. A saddle connection staftimg an endpoint &, and
different from~ will leave B. Choosing properlyss, then the length of such saddle
connection will have a length greater thdrl 1) during the shrinking process, and
L'-1>N+(N-1)>N.

Therefore, when contracting, there is no saddle connection excephat is of length
smaller tharN|vy| < Ne, weree is the initial length of the saddle connectign Up to
rescaling the surface, we can assume that the area of tleesusfconstant under the
deformation process. O

Now let C be the open subset of surfaces@(ki, ..., k:) whose unique smallest
saddle connection joins a singularity of order to a singularity of ordetk,. The
previous proposition shows that there exists a path fromS@uayC to UN, which is
pathwise connected. Therefofeis pathwise connected and hence, connected. This
also implies the connectednessdh Q1 (K, . . ., k).

Now let§ > 0 and letS; and S, be two surfaces i€ N Q1 5(ki, . . . , k). There exists
a path Gleqizy in €N Qi(ky, ..., k) that joins § to . We can easily deduce
from (S); a path inQy s5(ki, ..., k) that join § andS. Indeed, denote bi(t) the
length of the shortest saddle connectionSaf The functionl is continous, and there
exists a continuous functio with I'() = 1(j), for j = 1,2, and such that'(t) is
always smaller tha. Then we apply td5 the matrixA(t) in SLy(R) that multiply
the length of this saddle connection by the fackt) = % and multiply by\(t)~*
the distances in the orthogonal direction. By constructioa get a continous path in

C N Q1s(ki, ... k) thatjoinsS and S,.

Hence we have proven the theorem for the case vihendk, are odd.
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5 Configuration domains in strata of quadratics differentials
on the Riemann sphere

Theoremb.1 describes all the configurations Evbmologous saddle connections that
exist on a given stratum of quadratic differential 6. It was proved by the author
in [B]. We now show that they are in bijections with the configunatiiomains. In this
section, we denote by a collection{~;} of saddle connections.

Theorem 5.1 Let Q(ki, ..., k) be a stratum of quadratic differentials 6P differ-
entfromQ(—1,—-1,—1, —1), and lety be a maximal collection d?omologous saddle
connections on a generic surface in that stratum. Then tglge configurations foy
are given in the list below (see Figu2é).

a) Let{k,K} C {ki,...,k} be an unordered pair of integers such ttiak’) #
(—1,-1). The sety consists of a single saddle connection joining a singylarit
of orderk to a distinct singularity of ordek’ .

b) Let(a1,az) be a pair of positive integers such tleat+ a, = k € {ky, ..., k}
(with k > 2), and letA; LI A, be a partition of the seltky, . . .,k }\{k} such that
(X aca @ +a =2 mod 4for eachi. The sety consists of a simple saddle
connection that decomposes the sphere into two 1-holedespBe and S,
such that eacl has interior singularities of order given By, and has a single
boundary singularity of ordes; .

c) Let{a;,a} C {ki,...,k} be a pair of positive integers. Lét LI A, be a
partition of {ky, . ..,k }\{a1, &} such that for each we have(y_, 5 @)+a =
2 mod 4 The sety consists of two closed saddle connections that decompose
the sphere into two 1-holed sphef&sandS, and a cylinder, and such that each
S has interior singularities of orders given By and has a boundary singularity
of orderg;.

d) Letk € {ki,...,k} be a positive integer. The set is a pair of saddle
connections of different lengths, and such that the largeststarts and ends
from a singularity of ordek and decompose the surface into a 1- holed sphere
and a half-pillowcase, while the shortest one joins a pagasés and is on the
other end of the half pillowcase.

When the stratum i®(—1, —1, —1, —1), there is only one configuration, which corre-
sponds to two saddle connections that are the two boundampaoents of a cylinder
(the surface is a “pillowcase”, see Figukke
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) ' b)
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Figure 20: “Topological picture” of configurations f@rP*.

Now let S € OQN(ki,...,k) . We can defineFs to be the maximal collection of
homologous saddle connections that contains the smatiestWe have the following
lemma:

Lemma 5.2 The configuration associated ¥ is locally constant with respect &

Proof Any saddle connection itfs persists under any small continuous deformation.
This lemma is obvious as soon the number of element&sat locally constant.

Let v; be a saddle connection of minimal length. We assume that aftemall
perturbationS of S, we get a bigger collection of saddle connections. That st

a new saddle connectiof, appears. Therefore there was another saddle connection
~3 norhomologous toy1, of length less than or equal to2/2| (see Figure21). But

this is impossible since it would therefore be of length ks or equal to the length

of 1, contradicting the hypothesis. O

The following lemma (due to Kontsevich) implies that Thenré.2 can be used for
any stratum of quadratic differentials @P* (see also Kontsevich and ZorickZ]).

Lemma (Kontsevich) Any stratum of quadratic differentials oBiP* is non empty
and connected.
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Figure 21: The configuration associated#g is locally constant.

Proof There is only one complex structure @P*. Therefore, we can work on the
standard atlag€” U (C* U co) of the Riemann sphere.

Now we remark thatifwe fix4, ..., z) € C" thatare pairwise distincts, afg, . . . , k
some integers greater than or equal-td, then the quadratic differential o@,
ad@ = [I(z - z)<dZ, extends to a quadratic differential diP! with possibly a
singularity of order—4 — ", k; over the point>o. Now two quadratic differentials on
a compact Riemann surface with the same singularities aia e to a multiplicative
constant (because they differ by a holomorphic function).

Therefore, any stratum of quadratic differentials @R* is a quotient ofC times a
space of configurations of points on a sphere, which is caadec O

Main Theorem Let Q(ky,..., k') be a stratum of quadratic differentials with at most
simple poles. LeN be greater than or equal 1o There is a natural bijection between
the configurations oﬁomologous saddle connections @fky,...,k;) described in
Theorems5.1and the connected components@¥(ki, . .., k).

Proof Lemmab.2implies that there is a well defined madpfrom the set of connected
components 0N (ky, . . . , k) to the set of existing configurations for the stratum. This
map is surjective because if we choose a generic suBagih a maximal collection

of homologous saddle connectiofghat realizes the given configuratidh then after

a small continuous perturbation of the surface, we can asshat there are no other
saddle connections 08 parallel to an element of. Then we use the Teichmduller
geodesic flow to contract the elements -of until v contains the smallest saddle
connection of the surface. Then by construction, this serfeelongs tal —1(C).
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Now we prove tha is injective. We keep the notations of Theorgr, and consider
U = ¥~1({C}), for C any existing configuration:

-If C belongs to the a) case, théhis connected from Theoreth2 and the lemma of
Kontsevich.

-If C belongs to the b) case, then we consider a surfage U. Its smallest saddle
connectiory is closed and separates the surface in a [#irS,) of 1-holed spheres
with boundary singularities of order and a; correspondingly. Now for eacl

we decompose the boundary saddle connectiof afi two segments starting from
the boundary singularity, and glue together these two setgnthen we get a pair of
closed flat sphere§ € Q(A;,a —1,—1),i = 1, 2. For each of the sphere, the smallest
saddle connection; is simple and joins a singularit®; of order @ — 1) to a newborn
pole P;, and is of length~o|/2, where|yo| is the length ofy. Let r; be the smallest
saddle connection d§ excepty!.

o If 7 intersects the interior of/, then it is easy to find another saddle connection
on S, smaller thany; and different fronmy/.

o If n; does not intersecy, or intersect it inQ;, thenn; was a saddle connection
on S, hence|n;| > 2N|+/|.

e If 7 intersectsP;, then we can find a saddle connectionSof length smaller
than|ni| + |vol/2.

These remarks imply th& isin Q2N~1(A, a;— 1, —1) which is a subset N (A;, a —
1,—1). Hence we have defined a méapfrom U to U; x Uy, with U; a simple
configuration domain oN(A, & — 1, —1).

Conversely, lef{S }ic(1,2; be two surfaces irON(A, a — 1, —1), such that for each

S, the smallest saddle connectionis simple and joins a pole to a singularity of order

a — 1. If vy and~, are in the same direction and have the same length, then we
can reconstruct a surfa@= (S, ) in O(ky, ..., k) by cutting§ along~;, and
gluing together the two resulting surfaces by an apprapigimetry. The surfac8
belongs toQN(ky, . . ., k). Note that in the reconstruction of the surface, the lendth
smallest saddle connection is doubled, hence we must giart®@?N(A;, a — 1, —1),

and notoN(A, & — 1, —1).

Now we prove the connectednessWf let X1, X? be two flat surfaces itV. After
a small perturbation and after using the geodesic flow, weagstrfaceSt (resp.
&) in the same connected componentfas X! (resp X), with St and & in
ON(ky, .., k).
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There exists continuous path§ f)tc(1,2] € ON(A;, g — 1, —1) such that %, S)) =
f(9) forj = 1,2. The pair 611, St) belongs td (U) if and only if their smallest saddle
connections are parallel and have the same length. Thigtmnd not necessary
satisfied, but rotating and rescalir§j; gives a continous pati; in GLy(R) such
that S;; and A;.S ¢ satisfy that condition. Note that we necessary hAyes, , =
$2. Thereforef ~1(Sy, A>.St) is a continuous path i that joins S to S, So
the subsetU is connected. Note that the connectednessJotlearly implies the
connectedness & N Q1(ky, ..., k).

The cases c) and d) are analogous and left to the reader, tlenbéain Theorem is
proven.

Note that the connectednessldfalso implies the connectednesdbf Qg s(ky, . .., k)
by using the same argument as in the end of sedtidrHence Propositiof.2is proven
too.

]

Definition 5.3 A configuration is said to beymmetricif there exists a nontrivial
isomorphismf of the corresponding graph of connected comporgrguch that:

o f commutes with the permutations of the edges associate@ twotffiguration,
o f preserves the order of the boundary singularities,

o f preserves the interior singularities.

Corollary 5.4 Let Q(ki, ..., k) be a stratum of quadratic differentials @', and

letN > 1. If a connected component @ (k, . .., k) admits orbifoldic points, then
the corresponding configuration is symmetric and the lodwstmfoldic points are a
finite union of copies (or coverings) of open subset of coméiian domains, which
are manifolds, of smaller strata.

Proof Recall thatS corresponds to an orbifoldic point if and only 8 admits a
nontrivial orientation preserving isometry. Now let be a connected component of
ON(ky,...,k), S € U an orbifoldic point, and letr be an orientation preserving
isometry of S.

Suppose thatU corresponds to tha) case of Theorend.1. Thenr must preserve
the smallest saddle connectiag of S. Either 7 fixes the endpoints o8, either it
interchanges them. In the first cases= Id, in the other case it is uniquely determined
and is an involution that fixes the middle ef. In that case the endpoints af
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have the same orddr > 0. ThenS/7 is a half-translation surface whose smallest
saddle connection is of lengtho|/2 and joins a singularity of ordée > 0 to a pole.
Any other saddle connection i®/7 is of lengthl or 1/2 for | the length of a saddle
connection (different fromg) on S. Therefore S/7 belongs to a configuration domain
of a) type in the corresponding stratum. The flat surf8¢e does not have a nontrivial
orientation preserving isometry becausg¢ —1. Therefore the configuration domain
that containsS/r is a manifold. The involution induces an involution on the set of
zeros ofS and the stratum and configuration domain corresponding/todepends
only on that involution. This induces a covering from theus®f orbifoldic points
whose corresponding involution share the same combiiteia to an open subset
of a manifold.

If U corresponds to th®) case, then similarly, a nontrivial isometric involutian
interchanges the two 1-holed spheres of the decompositmhaveA; = A, and
a; = a > 0 (see notations of Theoretl), hence the configuration is symmetric.
The set of orbifoldic points is isomorphic to the configusatdomain ofa) type with
data{a;, —1} which is a manifold.

If U corresponds to the) case then similarlyr interchanges the two 1-holed sphere
of the decomposition. We must ha¥e = A, anda; = ap > 0. The set of orbifoldic
points is isomorphic to an open subset of a configuration dowfad) type, which is

a manifold (see next).

In the d) case, any isometry fix the saddle connection; that separates the surface
in a 1-holed sphere and a half-pillowcase, which are norésgaen Hence they are
fixed by 7. Now sincer is orientation preserving, it is easy to check that necgssar
is trivial.

]

Here we use Theorem?2and the description of configurations to show that any stmatu
of quadratic differentials of©P* admits only one topological end.

Corollary 5.5 Let Qi(ki,...,k) be any stratum of quadratic differential GP*.
Then the subse@; s(ki, . .., k) is connected for any > 0.

Proof LetSe Qis(ki,..., k). We first describe a path froré to a simple config-
uration domain with corresponding singularities of ordérsl, k}. Then we show
that all of these configuration domains are in the same céedecomponent of

Qrs(Ke, ..., Kr).
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Let v; be a saddle connection & of length less tha (we can assume thay is
vertical). Up to the Teichmiiller geodesic flow action, we easume thaty; is of
length less than?. Now let P be a pole. There exists a saddle connectignf length
less than 1 starting froR, otherwise the 1-neighborhood Bfwould be an embedded
half-disk of radius 1 in the surface, and would be of afea 1. Then up to a slight
deformation, we can assume that there are no other saddedomns parallel toy;
or ~» (except the ones that afm)mologous toy; or v2). Now we contracty, using
the Teichmiiller geodesic flow. This gives a paghQ)i>o in Qi(ky, ..., k). Foreach
t > 0 the saddle connections correpondingyioand~, in g;.S are of length at most
62€/2 and e'/2 respectively. Hence the first one is smaller than or equal for
0 <t < —-2In(9), and the second one is smaller thafor t > —21In(5). Hence the
pathg;.Sis in the §—neigborhood of the boundary, and we now can assumeyhiat
of length smaller tham.

The other end ofy, is a singularity of orderk. If k > 0, then from the list of
configurations given in Theorebl, the saddle connectiofp is simple.

‘

»-

Figure 22: Deformation of a surface D1 s(ki, . . ., k).

3

We assume thdt = —1, then the surface is a 1-holed sphere glued with a cylinder,
end of this cylinder isy, (we have a half-pillowcase), and the other end of that cglind
is a closed saddle connection whose endpoint is a singulriof orderk’ > 0. We
can assume, up to using the Teichmdller geodesic flow,4has of length at most
(1—c)d, wherec is the area of the cylinder. Now we considgrto be the shortest path
from P to P'. Itis clear thaty; is a simple saddle connection. Now up to twisting and
shrinking the cylinder, we can make this saddle connectanaall as possible (see
Figure22). However, this transformation, is not area preservingwwadnust rescale
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the surfaces to keep area one surfaces . This rescallingaiserthe length of, by
a factor which is at mosi%c, and therefore the length of is always smaller than
¢ during this last deformation, and the resulting surfacenia simple configuration
domain with corresponding singularities of ordérs1,k'}.

Now let (Uj)i—1> be simple configuration domains. Up to renumbering, we can
assume that their corresponding configurations are rempezsdy simple paths that
joins a pole to a singularity of orddg > 0, fori = 1,2 (here we assume that there
exists two distinct singularities of positive order, therq@ementary case is trivial).
From Theoremd.2, for eachi = 1,2, the setU; N Qy 5(ki, ..., k) is connected.
So, it is enough to find a path between two specific surfacedjirthat stays in
Q15(Ke, ..., k). We haver > 4, so we can assume thigt ; = k; = —1. We start
fromasurface ir@(k; —1, ko —1 ks, ..., k_») andfori = 1, 2, we successively break
a singularity of ordek; — 1 into two singularities of ordek; and—1. We get a surface
in Q. 5(Ke, . .., k) with two arbitrary small saddle connections. We can asstirae
one of these short saddle connections is vertical, and ke abt. Then action on this
surface by the Teichmiiller geodesic flow easily gives a pativéenU; and U, that
keeps being iy s(ky, ..., k). O

Remark 5.6 As was seen previously, one can see more or less a stratunadfagic
differentials as a space of configuration of points in a sphieence one could use

it to prove Corollaryl.3. However, Corollarys.5 is stated in terms of flat metrics,
and it is not clear how to relate precisely the degeneratiwashave described in
terms of configurations oﬁomologuous saddle connections and the corresponding
degenerations in the space of configurations of points. ®@ne the previous proof
could be more easily extended to other strata.

Appendix. A geometric criterion for homologous saddle con-
nections

Here we give a proof of the following theorem:

Theorem (H. Masur, A. Zorich) Consider two distinct saddle connectionsy’ on
a half-translation surface. The following assertions aua@\@lent:

a) The two saddle connectionsand~’ areﬁomologous.

b) The ratio of their length is constant under any small datdfon of the surface
inside the ambient stratum.
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c¢) They have no interior intersection and one of the conuectamponent of
S\{y U~'} has trivial linear holonomy.

Proof The proofs of the statemenés< b andc =- b are the same as in Masur and
Zorich [MZ]. We will write them for completeness. Our proof bf=- ¢ is new and
more geometric than the initial proof.

We first show that statemeasj is equivalent to statemeid). We have definechf"and
[3'] in Hy (S P, Z). We claim that they are primitive cycles. Lt and~, be the two
preimages ofy in S. If [v1] = —[72], then |] = [v4] is primitive since it is realized
by a simple curve. Otherwise{] and [y2] are independent iH1(§ P, 7Z), since they
cannot be equal and are primitive. We assume first thaind ~, are closed paths.
If they have no intersection point, then by choosing sujtaybath joiningy1 and~z2,
one can realizen[ = [v1] — [12] by a simple curve, and hence it is a primitive cycle.
If they have an intersection poilﬁt, then it is the preimage of the adjacent singularity
P of ~, which is therefore a ramification point. Since the natumgbiution onSis a
rotation in a neigborhood d®, one can always deformy; and ;2 to get two simple
closed curves with no intersection point.

Now we assume thaf; and~» are not closed, then we can find a basi$iefS, P, Z)
that contains4;] and [y,]. Hence we can find one that containg][— [2] and [2],
hence {1] — [72] is primitive. So we have proved that][and [y’] are primitive.

If v and~' are ﬁomologous, then integrating along the cyclesA and H’], we
see that the ratio of their length belongs{te1/2,1,2}, and this ratio is obviously
constant under any small deformations of the surface. Gselyeif they are nohomo-
logous, then+,~') is a free family onHl‘(§ P, C) (since they are primitive elements
of H1‘(§ P, 7)) and sof%w and fyﬁ, w correspond to two independent coordinates in
a neighborhood o8. Therefore the ratio of their length is not locally constant

Now assume). We denote by5" a connected component 8f{~,~'} that has trivial
holonomy. Its boundary is a union of components homeomongh§'. The saddle
connections have no interior intersections, so this bowynidaa union of copies ofy
and+’ and it is easy to check that bothand v/ appears in that boundary. The flat
structure onS' is defined by an Abelian differentiab. Now we havef(9S+ w =0,
which impose a relation ofyy| and|+/|. This relation is preserved in a neighborhood
of S, and therefore, the ratio is locally constant and belonggli@, 1, 2} depending
on the number of copies of each saddle connections on thedbouof S*.
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Now assumeb). We can assume that the saddle connectids vertical. Then using
the Teichmliller geodesic flog: on S, for some smalt, induce a small deformation
of S. The hypothesis implies that the saddle connectjoiis necessary vertical too,
and so the two saddle connections are parallel and hencenbanterior intersections.
Let S, and S, the connected components 8f{~,~’} that boundsy (we may have
S = $), and assume tha®;, has nontrivial linear holonomy. That implies there
exists a simple broken line with nontrivial linear holonomy that starts and ends on
the boundary of5; that correspond te;. Now, we create an small hole by adding a
parallelogram on the first segment of the pathThis creates only one hole in the
interior of S; because the other one is sent to the boundary (this proceddsethe
length of the hole to the length of the boundary). If we diseoiove the holer to the
boundary, we obtain a flat surface isometric to the initiafame S;. But if we first
transportr alongv, then this will change its orientation, and its length wi#l &added
again to the length of the boundary. So the resulting suffasex boundary component
corresponding toy bigger than the initial surfac&;. The surgery did not affect the
boundary corresponding t¢’. Assume now that, has also nontrivial holonomy,
then performing the same surgery 8n and gluing backs, and$, this gives a slight
deformation ofS that change the length af and not the length of’. This contradicts
the hypothesid).
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