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Abstract. Using an unusual, yet natural invariant measure we show that there
exists a sensitive cellular automaton whose perturbations propagate at asymptotically
null speed for almost all configurations. More specifically, we prove that Lyapunov
Exponents measuring pointwise or average linear speeds of the faster perturbations
are equal to zero. We show that this implies the nullity of the measurable entropy.
The measure µ we consider gives the µ-expansiveness property to the automaton. It
is constructed with respect to a factor dynamical system based on simple “counter
dynamics”. As a counterpart, we prove that in the case of positively expansive
automata, the perturbations move at positive linear speed over all the configurations.

AMS classification scheme numbers: 37B15,37A35,37A25

1. Introduction

A one-dimensional cellular automaton is a discrete mathematical idealization of a space-

time physical system. The space AZ on which it acts is the set of doubly infinite

sequences of elements of a finite set A; it is called the configuration space. The discrete

time is represented by the action of a cellular automaton F on this space. Cellular

automata are a class of dynamical systems on which two different kinds of measurable

entropy can be considered: the entropy with respect to the shift σ (which we call

spatial) and the entropy with respect to F (which we call temporal). The temporal

entropy depends on the way the automaton “moves” the spatial entropy using a local

rule on each site of the configuration space. The propagation speed of the different one-

sided configurations, also called perturbations in this case, can be defined on a specific

infinite configuration, or as an average value on the configuration space endowed with

a probability measure. We can consider perturbations moving from the left to the

right or from the right to the left side of the two sided sequences. Here we prove that

the perturbations (going to the left or to the right) move at a positive speed on all

the configurations for a positively expansive cellular automata and that there exists a

sensitive cellular automata with the property that for almost all the configurations, the

perturbations can move to infinity but at asymptotically null speed.
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Cellular automata can be roughly divided into two classes: the class of automata

which have equicontinuous points and the class of sensitive cellular automata (Kůrka

introduces a more precise classification in [7]). This partition of cellular automata into

ordered ones and disordered ones also corresponds to the cases where the perturbations

cannot move to infinity (equicontinuous class) and to the cases where there always exist

perturbations that propagate to infinity.

In [8], Shereshevsky gave a first formal definition of these speeds of propagation (for

all points and for almost all points) and called them Lyapunov exponents because of the

analogy (using an appropriate metric) with the well known exponents of differentiable

dynamical systems. Here we use an alternative definition of these exponents proposed

by Tisseur [9]. The two definitions are close, but for each point, the first one uses

the maximum value over the shift orbit of the perturbation speeds while the second is

based on some “local velocities”. In our sensitive example (see Section 5), for almost

all infinite configurations, there exist some increasing (in size) sequences of finite sub-

configurations where the speed of propagation is not asymptotically null. In this case

the Shereshevsky’s definition gives a positive value to the exponent, not taking into

account the global dynamic of the automaton.

Using the initial definition of Lyapunov exponents due to Shereshevsky [8], Finelli,

Manzini, Margara ([3]) have shown that positive expansiveness implies positivity of

the Shereshevsky’s pointwise Lyapunov exponents at all points. Here we show that

the statement of Finelli, Manzini, Margara still holds for our definition of pointwise

exponents and the main difference between the two results is that we obtain that the

exponents are positive for all points using a liminf rather that a limsup.

Proposition 1 For a positively expansive cellular automaton F acting on AZ, there is

a constant Λ > 0 such that, for all x ∈ AZ,

λ+(x) ≥ Λ and λ−(x) ≥ Λ,

where λ+(x) and λ−(x) are respectively the right and left pointwise Lyapunov exponents.

The first part of the proof uses standard compactness arguments. The result is

stronger and the proof is completely different from the one in [3]. This result is called

Proposition 2 in Section 3 and it is stated for all F -invariant subshifts X.

Our main result concerns sensitive automata and average Lyapunov exponents (I+
µ

and I−µ ). We construct a sensitive cellular automaton F and a (σ, F )-invariant measure

µF such that the average Lyapunov exponents I±
µF are equal to zero.

By showing (see Proposition 3) that the nullity of the average Lyapunov exponents

implies that the measurable entropy is equal to zero, we obtain that our particular

automaton have null measurable entropy hµF (F ) = 0.

We also prove that this automaton is not only sensitive but µF -expansive which

is a measurable equivalent to positive expansiveness introduced by Gilman in [4].

So even if this automaton is very close to positive expansiveness (in the measurable
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sense), its pointwise Lyapunov exponents are equal to zero almost everywhere (using

Fatou’s lemma) for a “natural” measure µF with positive entropy under the shift.

The µF -expansiveness means that “almost all perturbations” move to infinity and the

Lyapunov exponents represent the speed of the faster perturbation, so in our example

almost all perturbations move to infinity at asymptotically null speed. Remark that

related examples with low speed of propagation are studied in [2] in the context of left

permutative cellular automata.

In view of our example, Lyapunov exponents or average speed of perturbations

appear a useful tool for proving that a cellular automata has zero measure-theoretic

entropy.

The next statement gathers the conclusions of Proposition 3, Proposition 5, Lemma

3 , Proposition 6, Proposition 7, Corollary 1, Remark 6.

Theorem 1 There exists a sensitive cellular automaton F with the following properties:

there exists a (σ, F )-invariant measure µF such that hµF (σ) > 0 and the Lyapunov

exponents are equal to zero, i.e., I±
µF = 0, which implies that hµF (F ) = 0. Furthermore

this automaton F has the µF -expansiveness property.

Let us describe the dynamics of the cellular automaton F and the related “natural”

invariant measure µF that we consider.

In order to have a perturbation moving to infinity but at a sublinear speed, we

define a cellular automaton with an underlying “counters dynamics”, i.e. with a factor

dynamical system based on “counters dynamics”.

Consider this factor dynamical system of F and call a “counter” of size L a set

{0, . . . , L − 1} ⊂ N. A trivial dynamic on this finite set is addition of 1 modulo L.

Consider a bi-infinite sequence of counters (indexed by Z). The sizes of the counters

will be chosen randomly and unboundly. If at each time step every counter is increased

by one, all counters count at their own rhythm, independently. Now we introduce a (left

to right) interaction between them. Assume that each time a counter reaches the top

(or passes through 0; or is at 0), it gives an overflow to its right neighbour. That is, at

each time, a counter increases by 1 unless its left neighbour reaches the top, in which

case it increases by 2. This object is not a cellular automaton because its state space is

unbounded. However, this rough definition should be enough to suggest the idea.

• The dynamics is sensitive. Choose a configuration, if we change the counters to

the left of some coordinate −s, we change the frequency of apparition of overflows in the

counter at position −s (for example this happens if we put larger and larger counters).

Then the perturbation eventually appears at the coordinate 0.

• The speed at which this perturbation propagates is controlled by the sizes of the

counters. The time it takes to get through a counter is more or less proportional to the

size of this counter (more precisely, of the remaining time before it reaches 0 without an

overflow). So a good choice of the law of the sizes of the counters allows us to control

this mean time. More specifically, we prove that that with high probability, information

will move slowly. If the size of the counters were bounded the speed would remain linear.
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In the cellular automaton F , we “put up the counters” horizontally: we replace

a counter of size L = 2l by a sequence of l digits and we separate sequences of digits

by a special symbol, say E. Between two Es the dynamics of a counter is replaced by

an odometer with overflow transmission to the right. More precisely, at each step the

leftmost digit is increased by 1 and overflow is transmitted.

Note that to model the action of a cellular automaton we need to introduce in the

factor dynamics a countdown which starts when the counter reaches the top. The end

of the countdown corresponds to the transmission of the overflow. When the countdown

is running, the time remaining before the emission of the overflow does not depend on

a possible overflow emmited by a neighbouring counter. Nevertheless the effect of this

overflow will affect the start of the next countdown.

Finally, we construct an invariant measure based on Cesaro means of the sequence

(µ ◦ F n) where µ is a measure defined thanks to the counter dynamic of the factor

dynamical system .

2. Definitions and notations

2.1. Symbolic systems and cellular automata

Let A be a finite set or alphabet. Denote by A∗ the set of all concatenations of letters

in A. AZ is the set of bi-infinite sequences x = (xi)i∈Z also called configuration space.

For i ≤ j in Z, we denote by x(i, j) the word xi . . . xj and by x(p,∞) the infinite

sequence (vi)i∈N with vi = xp+i. For t ∈ N and a word u we call cylinder the set

[u]t = {x ∈ AZ : x(t, t + |u|) = u}. The configuration set AZ endowed with the product

topology is a compact metric space. A metric compatible with this topology can be

defined by the distance d(x, y) = 2−i, where i = min{|j| : x(j) 6= y(j)}.
The shift σ: AZ → AZ is defined by σ(xi)i∈Z = (xi+1)i∈Z. The dynamical system

(AZ, σ) is called the full shift. A subshift X is a closed shift-invariant subset X of AZ

endowed with the shift σ. It is possible to identify (X, σ) with the set X.

Consider a probability measure µ on the Borel sigma-algebra B of AZ. When µ is σ-

invariant the topological support of µ is a subshift denoted by S(µ). We shall say that the

topological support is trivial if it is countable. If α = (A1, . . . , An) and β = (B1, . . . , Bm)

are two partitions of X, we denote by α ∨ β the partition {Ai ∩ Bj, i = 1, . . . , n, j =

1, . . . ,m}. Let T : X → X be a measurable continuous map on a compact set X.

The metric entropy hµ(T ) of T is an isomorphism invariant between two µ-preserving

transformations. Let Hµ(α) =
∑

A∈α µ(A) log µ(A), where α is a finite partition of X.

The entropy of the finite partition α is defined as hµ(T, α) = limn→∞ 1/nHµ(∨n−1
i=0 T−iα)

and the entropy of (X, T, µ) as hµ(T ) = supα hµ(T, α).

A cellular automaton is a continuous self-map F on AZ commuting with the

shift. The Curtis-Hedlund-Lyndon theorem [5] states that for every cellular automaton

F there exist an integer r and a block map f : A2r+1 7→ A such that F (x)i =

f(xi−r, . . . , xi, . . . , xi+r). The integer r is called the radius of the cellular automaton.
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If X is a subshift of AZ and F (X) ⊂ X, then the restriction of F to X determines a

dynamical system (X, F ) called a cellular automaton on X.

2.2. Equicontinuity, sensitivity and expansiveness

Let F be a cellular automaton on AZ.

Definition 1 (Equicontinuity) A point x ∈ AZ is called an equicontinuous point (or

Lyapunov stable) if for all ε > 0, there exists η > 0 such that

d(x, y) ≤ η =⇒ ∀i > 0, d(T i(x), T i(y)) ≤ ε.

Definition 2 (Sensitivity) The automaton (AZ, F ) is sensitive to initial conditions

(or sensitive) if there exists a real number ε > 0 such that

∀x ∈ AZ, ∀δ > 0, ∃y ∈ AZ, d(x, y) ≤ δ, ∃n ∈ N, d(F n(x), F n(y)) ≥ ε.

The next definition appears in [4] for a Bernoulli measure.

Definition 3 (µ-Expansiveness) The automaton (AZ, F ) is µ-expansive if there exists

a real number ε > 0 such that for all x in AZ one has

µ
(
{y ∈ AZ : ∀i ∈ N, d(F i(x), F i(y)) ≤ ε}

)
= 0.

Notice that in [4] Gilman gives a classification of cellular automata based on the

µ-expansiveness and the µ-equicontinuity classes.

Definition 4 (Positive Expansiveness) The automaton (AZ, F ) is positively expan-

sive if there exists a real number ε > 0 such that,

∀(x, y) ∈ (AZ)2, x 6= y ,∃n ∈ N such that d(F n(x), F n(y)) ≥ ε.

Kůrka [7] shows that, for cellular automata, sensitivity is equivalent to the absence

of equicontinuous points.

2.3. Lyapunov exponents

For all x ∈ AZ, the sets

W+
s (x) = {y ∈ AZ : ∀i ≥ s, yi = xi}, W−

s (x) = {y ∈ AZ : ∀i ≤ s, yi = xi},

are called right and left set of all the perturbations of x, respectively.
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For all integer n, consider the smallest “distance” in terms of configurations at which

a perturbation will not be able to influence the n first iterations of the automaton:

I−n (x) = min{s ∈ N : ∀1 ≤ i ≤ n, F i(W−
s (x)) ⊂ W−

0 (F i(x))}, (1)

I+
n (x) = min{s ∈ N : ∀1 ≤ i ≤ n, F i(W+

−s(x)) ⊂ W+
0 (F i(x))}.

We can now define the pointwise Lyapunov exponents by

λ+(x) = lim
n→∞

inf
I+
n (x)

n
, λ−(x) = lim

n→∞
inf

I−n (x)

n
.

For a given configuration x, λ+(x) and λ−(x) represent the speed to which the left and

right faster perturbations propagate.

Definition 5 (Lyapunov Exponents) For a µ shift-invariant measure on AZ, we call

average Lyapunov exponents of the automaton (AZ, F, µ), the constants

I+
µ = lim inf

n→∞

I+
n,µ

n
, I−µ = lim inf

n→∞

I−n,µ

n
, (2)

where

I+
n,µ =

∫
X

I+
n (x)dµ(x), I−n,µ =

∫
X

I−n (x)dµ(x).

Remark 1 The sensitivity of the automaton (AZ, F, µ) implies that for all x ∈ AZ,

(I+
n (x) + I−n (x))n∈N goes to infinity.

3. Lyapunov exponents of positively expansive cellular automata

Similar versions of the next lemma appear in [1] and [7]. The proof of similar results in

[3] using limsup is based on completely different arguments.

Lemma 1 Let F be a positively expansive cellular automaton with radius r acting on a

F -invariant subshift X ⊂ AZ. There exists a positive integer N+ such that for all x and

y in X that verify x(−∞,−r − 1) = y(−∞,−r − 1) and Fm(x)(−r, r) = Fm(y)(−r, r)

for all integers 0 < m ≤ N+, we have x(r, 2r) = y(r, 2r).

Proof Let Bn be the subset of (x, y) ∈ X×X such that x(−∞,−r−1) = y(−∞,−r−1),

x(r, 2r) 6= y(r, 2r) and Fm(x)(−r, r) = Fm(y)(−r, r) for all m < n. Each Bn is closed

and Bn+1 ⊂ Bn. Positive expansiveness of F implies limn→∞ Bn = ∅ (see [1]). Since X

is a compact set, there is a positive integer N+ such that BN+ = ∅. 2

Proposition 2 For a positively expansive cellular automata acting on a bilateral

subshift X, there is a constant Λ > 0 such that for all x ∈ X, λ±(x) ≥ Λ.
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Proof We give the proof for λ−(x) only, the proof for λ+(x) being similar.

Let r be the radius of the automaton. According to Lemma 1, for any point

x ∈ X we obtain that if y ∈ W−
−1(x) is such that F i(y)(−r, r) = F i(x)(−r, r)

(∀ 1 ≤ i ≤ N+) then y must be in W−
r (x) ⊂ W−

0 (x). From the definition of I−N+(x) in

(1), this implies that I−N+(x) ≥ 2r. Lemma 1 applied N+ times implies that for each

0 ≤ i ≤ N+, F n (F i(x)) (−r, r) = F n (F i(y)) (−r, r) for all 0 ≤ n ≤ N+. It follows that

F i(x)(r, 2r) = F i(y)(r, 2r) (∀ 0 ≤ i ≤ N+). Using Lemma 1 once more and shifting r

coordinates of x and y yields σr(x)(r, 2r) = σr(y)(r, 2r) ⇒ x(2r, 3r) = y(2r, 3r) so that

I−2N+(x) ≥ 3r. Hence, for each integer t ≥ 1, using Lemma 1, N+(t−1)!+1 times yields

x (tr, (t + 1)r) = y (tr, (t + 1)r) and therefore ItN+(x) ≥ (t + 1)r. Hence for all n ≥ N+

and all x ∈ X, I−n (x) ≥ ( n
N+ + 1)r, so that

λ−(x) = lim
n→∞

inf
I−n (x)

n
≥ r

N+
.

2

4. Lyapunov Exponents and Entropy

Let F be a cellular automaton acting on a shift space AZ and let µ be a σ-ergodic and

F -invariant probability measure. According to the inequality

hµ(F ) ≤ hµ(σ)(I+
µ + I−µ )

proved in [9, Theorem 5.1], one has I+
µ + I−µ = 0 ⇒ hµ(F ) = 0. Here we extend this

result to the case of a σ and F -invariant measure on a sensitive cellular automaton.

Proposition 3 If F is a sensitive cellular automaton and µ a shift and F -invariant

measure, I+
µ + I−µ = 0 ⇒ hµ(F ) = 0.

Proof Let α be a finite partition of AZ and αm
n (x) be the element of the partition

α∨ σ−1α∨ . . . σ−n+1α∨ σ1α . . .∨ σmα which contains x. Using [9, Eq. (8)] we see that,

for all finite partitions α,

hµ(F, α) ≤
∫

AZ
lim inf
n→∞

− log µ(α
I+
n (x)

I−n (x)
(x))

I+
n (x) + I−n (x)

× I+
n (x) + I−n (x)

n
dµ(x). (3)

Suppose that I+
µ + I−µ = lim infn→∞

∫
X

n−1(I+
n (x) + I−n (x))dµ(x) = 0. ¿From Fatou’s

lemma we have
∫

X
lim infn→∞ n−1(I+

n (x) + I−n (x))dµ(x) = 0. Since n−1(I+
n (x) + I−n (x))

is always a positive or null rational, there exists a set S ⊂ AZ of full measure such that

∀x ∈ S we have lim infn→∞ n−1(I+
n (x) + I−n (x)) = 0. Since F is sensitive, for all points

x ∈ AZ, we have limn→∞ I+
n (x) + I−n (x) = +∞ (see [9]) and the Shannon-McMillan-

Breiman theorem (in the extended case of Z actions see [6]) tells us that

∫
AZ

lim inf
n→∞

−
log µ(α

I+
n (x)

I−n (x)
(x))

I+
n (x) + I−n (x)

dµ = hµ(σ, α).
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Since for all n and x, − log µ(α
I+
n (x)

I−n (x)
(x)) > 0, we deduce that for all ε > 0 there is an

integer Mε > 0 and a set Sε ⊂ S with µ(Sε) > 1− ε such that for all x ∈ Sε,

0 ≤ lim inf
n→∞

− log µ(α
I+
n (x)

I−n (x)
(x))

I+
n (x) + I−n (x)

≤ Mε.

For all x ∈ Sε we obtain

φ(x) := lim inf
n→∞

− log µ(α
I+
n (x)

I−n (x)
(x))

I+
n (x) + I−n (x)

× I+
n (x) + I−n (x)

n
= 0,

which implies
∫

Sε
φ(x)dµ(x) = 0. Using the monotone convergence theorem we deduce∫

AZ φ(x)dµ(x) = 0. It then follows from (3) that hµ(F ) = supα hµ(F, α) = 0. 2

5. The cellular automaton and its natural factor

We define a cellular automaton for which the dynamic on a set of full measure is similar

to the “counters dynamic” described in the introduction. The unbounded size counters

are “simulated” by the finite configurations in the interval between two special letters

“E”. We will refer to these special symbols as “emitters”. Between two E’s, the dynamic

of a counter is replaced by an odometer with overflow transmission to the right. We

add “2” and “3” to {0; 1} in the set of digits in order to have the sensitive dynamic of

counters with overflows transmission. The states 2 and 3 are to be interpreted as “0

+ an overflow to be sent”, and “1 + an overflow to be sent”. Using this trick, we let

overflow move only one site per time unit. Notice that 3 is necessary because it may

happen that a counter is increased by 2 units in one time unit.

5.1. The cellular automaton

We define a cellular automaton F from AZ to AZ with A = {0; 1; 2; 3; E}. This

automaton is the composition F = Fd ◦ Fp of two cellular automata Fd and Fp. The

main automaton Fd is defined by the local rule fd

fd(xi−2xi−1xi) = 1{E}(xi)xi + 1E(xi)
(
xi − 2× 1{2,3}(xi) + 1{2,3}(xi−1)

)
+ 1E(xi)1{E}(xi−1)

(
1 + 1{2}(xi−2)

)
, (4)

where E = A \ {E} and,

1S(xi) =

{
1 if xi ∈ S,

0 otherwise.

The automaton Fp is a “projection” on the subshift of finite type made of sequences

having at least three digits between two “E” which is left invariant by Fd. Its role is

simply to restrict the dynamics to this subshift. It can be defined by the local rule fp

fp(xi−3, . . . , xi, . . . xi+3) = 1E(xi)xi + 1{E}(xi)xi ×
3∏

j=−3
j 6=0

1E(xi+j). (5)
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x = . . . 0 E 1 1 0 E 0 2 2 2 E . . .

F (x) = . . . 0 E 2 1 0 E 1 0 1 1 E . . .

F 2(x) = . . . 0 E 1 2 0 E 2 0 1 1 E . . .

F 3(x) = . . . 0 E 2 0 1 E 1 1 1 1 E . . .

F 4(x) = . . . 0 E 1 1 1 E 2 1 1 1 E . . .

F 5(x) = . . . 0 E 2 1 1 E 1 2 1 1 E . . .

F 6(x) = . . . 0 E 1 2 1 E 2 0 2 1 E . . .

F 7(x) = . . . 0 E 2 0 2 E 1 1 0 2 E . . .

F 8(x) = . . . 0 E 1 1 0 E 3 1 0 0 E . . .

F 9(x) = . . . 0 E 2 1 0 E 2 2 0 0 E . . .

(6)

Figure 1. An illustration of the dynamic of F defined by 5–4 on the configuration x,
assuming that x is preceded by enough 0.

The dynamic of F is illustrated in Figure 1 for a particular configuration. The projection

fp prevents the dynamic of F to have equicontinuous points (points with “blocking

words” EE) and simplifies the relationship between the cellular automaton and the

model. The non-surjective cellular automaton acts surjectively on its ω-limit space X

which is a non finite type subshift with a minimal distance of 3 digits between two

“E”. By definition, we have X = limn→∞ ∩n
i=1F

i(AZ). The set X is rather complicated.

We do not want to give a complete description. Some basic remarks may be useful

for a better understanding of the results. Note that the Es do not change after

the first iteration and that xi = 3 implies xi−1 = E. We can show that the word

222 does not appear after the second iteration and that F i(x)(k, k + 1) = 22 only if

F i−1(x)(k − 2: k + 1) ∈ {2E21, 0E31, 1E31, 2E31}. According to the definition (4), the

evolution of finite configurations without emitter “E” leads to sequences which contains

only the digits “1” and “0”. This is the dynamic of the emitter “E” with the overflows

crossing the “Es” that maintain and move the letters “2” and “3”. There is at most

two letters “2” between two consecutive letters “E”. A typical word between two “E”

is of the form E3uE, E2uE, E3u12u2E or E2u12u2E, where u, u1 and u2 are finite

sequences of letters “0” and “1” (the words u1 and u2 can be empty). Notice that all

possible words u, u1, u2 do not appear in X. For example, the word E200E does not

belong to the language of X.

As we want to study the dynamic on finite (but unbounded) counters, we define

the set Ω ⊂ X of configurations with infinitely many E in both directions. This non

compact set is obviously invariant by the dynamics. We are going to define a semi

conjugacy between (Ω, F ) and the model in the next section.

5.2. The natural factor

In order to make more intuitive the study of the dynamic of F and to define (see Section

7) a natural measure, we introduce the projection of this cellular automaton which is a
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continuous dynamical system that commutes with an infinite state 1-dimensional shift.

The word between two consecutive Es can be seen as a “counter” that overflows

onto its right neighbour when it is full. At each time step E “emits” 1 on its right

except when the counter on its left overflows: in this case there is a carry of 1 so the E

“emits” 2 on its right.

x = . . . 0

emitter i︷︸︸︷
E 0 0 2

emitter i + 1︷︸︸︷
E 1 1 0 0

emitter i + 2︷︸︸︷
E . . .

F (x) = . . . 0 E 1 0 0︸ ︷︷ ︸
counter i

E 3 1 0 0︸ ︷︷ ︸
counter i + 1

E . . .

In what follows we call counter a triple (l, c, r), where l is the number of digits of the

counter, c is its state and r is the overflow position in the counter. In Figure 1, in the

first counter the countdown starts in F 5(x) when the “2” is followed by “11”. This “2”

can propagate at speed one to the next emitter “E”.

Recall that Ω ⊂ X is a set of configurations with infinitely many Es in both

directions and has at least three digits between two Es. Define the sequence (sj)j∈Z of

the positions of the Es in x ∈ Ω as follows:

s0(x) = sup {i ≤ 0 : xi = E},
sj+1(x) = inf {i > sj(x) : xi = E} for j ≥ 0,

sj(x) = sup {i < sj+1(x) : xi = E} for j < 0.

Denote by u = (ui)i∈Z = (li, ci, ri)i∈Z a bi-infinite sequence of counters. Let B = N3 and

σB be the shift on BZ. We are going to define a function ϕ from Ω → BZ. We set for

all i ∈ Z, li(x) = si+1(x) − si(x) − 1 and define di(x) =
∑si+1−1

j=si+1 xj2
j−si−1. We denote

by ci = 2li the period of the counter (li, ci, ri).

For each x ∈ Ω and i ∈ Z we set ci(x) = di(x) modulo ci(x) and we write

ri(x) =

{
li + 1−max {j ∈ {si + 1, . . . , si+1 − 1} : xj > 1}+ si if di(x) ≥ ci(x)

0 otherwise.

For each x ∈ Ω we can define ϕ(x) = (li(x), ci(x), ri(x))i∈Z. Remark that since

ri(x) ≤ li(x) and ci(x) ≤ 2li(x), the set ϕ(Ω) is a strict subset (N3)Z .

On ϕ(Ω), we define a dynamic on the counters through a local function. First we give

a rule for incrementation of the counters. For a = 1 or 2, we set
(li, ci, 0) + a = (li, ci + a, 0) if ci < ci − a (R1)

(li, ci, 0) + a = (li, ci + a− ci , li) if ci + a ≥ ci (R2)

(li, ci, ri) + a = (li, ci + a, ri − 1) if ri > 0 (R3).

We define the local map h on the subset of N3 × N3 where it makes sense by

h(ui−1ui) = ui + (1 + 1{ri−1=1}(ui−1)),

where the addition must be understood following the incrementation procedure above,

with a = 1 + 1{ri−1=1}(ui−1). Let H be the global function on ϕ(Ω) ⊂ (N3)Z. This is a

“cellular automaton on a countable alphabet”.
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u = . . . (3, 3, 0) (4, 0, 0) . . .

H(u) = . . . (3, 4, 0) (4, 1, 0) . . .

H2(u) = . . . (3, 5, 0) (4, 2, 0) . . .

H3(u) = . . . (3, 6, 0) (4, 3, 0) . . .

H4(u) = . . . (3, 7, 0) (4, 4, 0) . . .

H5(u) = . . . (3, 0, 3) (4, 5, 0) . . .

H6(u) = . . . (3, 1, 2) (4, 6, 0) . . .

H7(u) = . . . (3, 2, 1) (4, 7, 0) . . .

H8(u) = . . . (3, 3, 0) (4, 9, 0) . . .

H9(u) = . . . (3, 4, 0) (4, 10, 0) . . .

Figure 2. The dynamic in Figure 1 for the natural factor.

Note that, the (li)i∈Z do not move under iterations. At each step, the counter ci is

increased by a modulo ci (a = 1 in general, while a = 2 if counter i − 1 “emits” an

overflow). When ci has made a complete turn ri starts to count down li, li − 1 . . . 1, 0 ;

after li steps ri reaches 0, indicating that (in the automaton) the overflow has reached

its position.

Remark 2 Notice that if 2l < 2l, we cannot have ci = 2l−a and ri > 0 since ri is back

to 0 before ci−1 completes a new turn. This technical detail is the reason why we impose

a minimal distance 3 (more than the distance one required for the sensitivity condition)

between two successive E.

5.3. Semi conjugacy

Proposition 4 We have the following semi conjugacy,

F

Ω −→ Ω

↓ ϕ ↓ ϕ

H

ϕ(Ω) −→ ϕ(Ω)

with

ϕ ◦ F = H ◦ ϕ.

Proof Let x ∈ Ω. Denote ϕ(x) = (li, ci, ri)i∈Z, x′ = F (x) and ϕ(x′) = (l′i, c
′
i, r

′
i)i∈Z. We

have to prove that (li, ci, ri) + 1 + 1{ri−1=1} = (l′i, c
′
i, r

′
i) where the addition satisfies the

rules R1, R2, R3.

First, we recall that the Es do not move so that l′i = li.
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Consider the first digit after the ith emitter E :x′si+1 = xsi+1 − 2 × 1{2,3}(xsi+1) +

1 + 1{2}(xsi−1). Clearly we have ri−1 = 1 if and only if xsi−1 = 2 so x′si+1 =

xsi+1 + 1 + 1{ri−1=1} − 2 × 1{2,3}(xsi+1). For all si + 2 ≤ j ≤ si+1 − 1, x′j =

xj − 2 × 1{2}(xj) + 1{2,3}(xj−1). Since di(x) =
∑si+1−1

j=si+1 xj2
j−si−1, if xsi+1−1 6= 2 then

di(x
′) = di(x) + 1 + 1{ri−1=1} and if xsi+1−1 = 2 then di(x

′) = di(x) + 1 + 1{ri−1=1} −
2 × 2−li = di(x) + 1 + 1{ri−1=1} − ci. As c′i = di(x

′) mod ci then for all x ∈ Ω one has

c′i = ci + 1 + 1{ri−1=1} mod ci.

It remains to understand the evolution of the overflow ri. First, notice that if

di(x
′) = ci = 2li then x′(si, si+1) = E21(li−1)E and if di(x

′) = ci + 1 = 2li + 1

then x′(si, si+1) = E31(li−1)E. After li iteration of F , the configurations E21(li−1)E

and E31(li−1)E have the form Ew2E. The maximum value taken by di(x) is when

x(si, si+1) = Eu2E where di(z) < 2li if z(si, si+1) = Eu0E. As noted in Remark 2,

the counters, which have at least a size of 3, have not the time to make a complete

turn during the countdown (2li < ci) which implies that di(x) ≤ ci + 2li < 2ci. Since

each counters can not receive an overflow at each iteration then di(x) < 2ci − 2 (when

li ≥ 3, li−1 ≥ 3, θ × li < ci − 2 = 2li − 2 where θ < 2 ). Clearly ri = 0 if and only if

di = ci < ci (addition rule R1). As di < 2ci − 2, if ci = ci − 2 = di(x) and xsi−1 = 2 or

ci = ci − 1 = di(x) (ri = 0) then x′(si, si+1) = E21(li−1)E or x′(si, si+1) = E31(li−1)E

which implies that r′i = li (addition rule R2).

Now remark that if ri > 0 then x(si, si+1) = Eu21kE with 0 ≤ k ≤ li − 1 and u is

a finite sequence of letters “0”, “1”, “2” or “3”. Using the local rule of F , we obtain

that the letter “2” move to the right of one coordinate which implies that r′i = ri − 1

(addition rule R3). 2

Remark 3 We remark that ϕ is not injective. Consider the subset of X defined by

Ω∗ = Ω ∩ {x ∈ {0, 1, E}Z : x0 = E}.

It is clear that ϕ is one to one between Ω∗ and ϕ(Ω) since the origin is fixed and there is

only one way to write the counters with 0 and 1. We will use this set, keeping in mind

that it is not invariant for the cellular automaton F .

Remark 4 If x ∈ AZ, we use ci(x) to denote ci(ϕ(x)) and li(x) instead of li(ϕ(x)).

This should not yield any confusion. To take the dynamics into account, we write

ct
i(x) = ci(ϕ(F t(x))) = ci(H

t(ϕ(x))) and similarly for li(x) and ri(x). Note that

lti(x) = li(x) for all t.

5.4. Limit periods

The natural period of the counter i, is its number of states, say ci. We introduce the

notion of real period or asymptotic period of a counter which is, roughly speaking, the

time mean of the successive observed periods. It can be formally defined as the inverse

of the number of overflow emitted by the counter (to the right) per unit time. More
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precisely, we define the real period pi(x) for the counter number i as the inverse of

Ni(x) = lim
t→+∞

1

t

t∑
k=0

1{1}(r
t
i(x)).

Lemma 2 The limit exists and Ni(x) =
∞∑

k=−i

2−
Pi

j=−k lj(x).

Proof Let nt
i be the number of overflows emitted by the counter i in x before time t.

nt
i(x) =

t∑
k=0

1{1}(r
t
i(x)).

The number of turns per unit time is the limit when t → +∞ of nt
i/t if it exists. We

can always consider the limsup N+
i and the liminf N−

i of these sequences.

After t iterations, the counter indexed by i has been incremented by t (one at each

time step) plus the number of overflow “received” from the counter (i − 1). We are

looking for a recursive relationship between nt
i and nt

i−1. Some information is missing

about the delays in the “overflow transmission”, but we can give upper and lower bounds.

The number of overflows emitted by counter i at time t is essentially given by its

initial position + its “effective increase” - the number of overflows delayed, divided by

the size ci of the counter. The delay in the overflow transmission is at least li. The

initial state is at most ci. Hence, we have,

nt
i(x) <

ci(x) + t + nt
i−1(x)

ci(x)
and, nt

i(x) >
t + nt

i−1(x)− li(x)

ci(x)
.

So for the limsup N+
i and liminf N−

i , we obtain N±
i = 1

ci
(1 + N±

i−1). Remark that

for all m ∈ N we have N+
i − N−

i = 1
ci

(N+
i−1 − N−

i−1) = (
∏i

j=i−m+1
1
cj

)(N+
i−m − N−

i−m).

Since 1
ci
≤ N−

i ≤ N+
i ≤ 2

ci
, we see that N+

i = N−
i , so the limit, denoted Ni, exists.

Using the recursive formula Ni = 1
ci

(1 + Ni−1), we obtain

Ni(x) =
∞∑

k=−i

i∏
j=−k

c−1
j (x) =

∞∑
k=−i

2−
Pi

j=−k lj(x). (7)

2

Remark 5 The series above are smaller than the convergent geometric series (
∑n

k=1

2−3k)n∈N since li is always greater than 3. Note that in the constant case, li = L, the

limit confirm the intuition because the period is

p =
1

Ni

=
1∑+∞

k=1 2−kL
= 2L − 1.
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6. Sensitivity

For the special cellular automata F , we say that a measure µ satisfies conditions (*)

if for all l ∈ NZ one has µ(AZ \ Ω) = 0 and µ({x ∈ Ω : (li(x))i∈Z = l}) = 0. These

“natural” conditions are satisfied by the invariant measure µF we consider (see Section 7,

Remark 6).

Proposition 5 The automaton F is sensitive to initial conditions. Moreover, it is

µ-expansive if µ satisfies condition (*).

Proof Fix ε = 2−2 = 1
4

as the sensitive and µ-expansive constant. When x ∈ Ω, it is

possible to define l(x) which is the sequence of the size of the counters for x and to use

the model (H, ϕ(Ω)) to understand the dynamic.

We can use Lemma 2 to prove that for the model, if we modify the negative

coordinates of the sequence li we also modify the asymptotic behaviour of the counter

at 0. Such a change in the asymptotic behaviour implies that at one moment,

the configuration at 0 must be different. From the cellular automaton side, we

will show that a change of the real period of the “central counter” will affect the

sequences (F t(x)(−1, 1))t∈N which is enough to prove the sensitivity and µ-expansiveness

conditions.

For each x ∈ Ω with x0 6= E, consider the sequence l[0,−∞](x) = l0(x)l−1(x)

· · · l−k(x) · · ·. We claim that if l[0,−∞](x) 6= l[0,−∞](y) then N0(x) 6= N0(y). Let p

be the first negative or null integer such that lp(x) 6= lp(y) and assume for instance

lp(x) < lp(y). Using Lemma 2, we write

N0(x)−N0(y) = 2−
P0

j=p lj(x)
(
1 + Np−1(x)− 2lp(x)−lp(y)(1 + Np−1(y))

)
.

As Np−1 is uniformly bounded by
∑∞

k=0 2−3k = 1
7

we have N0(x) − N0(y) >

c2
(
1− 1

2
(1 + 1

7
)
)

> 0, which proves the claim.

If x0 = E, using the shift commutativity of F we obtain that if l[−1,−∞](x) 6=
l[−1,−∞](y) then N−1(x) 6= N−1(y).

Remark that for each x ∈ Ω and δ = 2−n > 0, there exists y ∈ Ω such that

yi = xi for i ≥ −n and l(x) 6= l(y) (sensitivity conditions). We are going to

show that if li(x) 6= li(y) (i < 0; x ∈ Ω) then there exist some t ∈ N such that

F t(x)(−1, 1) 6= F t(y)(−1, 1).

First, we consider the case where x0 = E. In this case, since N−1(x) 6= N−1(y),

there is t such that nt
−1(x) 6= nt

−1(y). At least for the first such t, rt
−1(x) 6= rt

−1(y) since

rt
−1(x) = 1 and rt

−1(y) 6= 1. But this exactly means that xt
−1 = 2 and yt

−1 6= 2. Hence

xt
−1 6= yt

−1.

Next assume that x0 6= E. We have N0(x) 6= N0(y), say for instance N0(x) > N0(y).

This implies that nt
0(x)−nt

0(y) goes to infinity. Hence the difference ct
0(x)−ct

0(y) (which

can move by 0, 1 or −1 at each step) must take (modulo c0) all values between 0 and

c0 − 1. In particular, at one time t, the difference must be equal to 2−T0−1. If x−1 = E,
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then T0 = −1 which implies that xt
0 6= yt

0. Otherwise, in view of the conjugacy, it means

that
T1−1∑

i=T0+1

xt
i2

i−T0−1 −
T1−1∑

i=T0+1

yt
i2

i−T0−1 = 2−T0−1(modulo c0),

that is, either xt
0 6= yt

0 or xt
0 = yt

0 and xt
−1 6= yt

−1. We have proved the sensitivity of F

for x ∈ Ω.

To show that x ∈ Ω satisfies the µ-expansiveness condition, we need to prove that

the set of points which have the same asymptotic period for the central counter is a

set a measure zero. For each point x the set of all points y such that F t(x)(−1, 1) =

F t(y)(−1, 1) or d(F t(x), F t(y)) ≤ 1
4

(t ∈ N), is denoted by D(x, 1
4
). Following the

arguments of the proof of the sensitivity condition above, we see that every change in

the sequence of letters “Es” in the left coordinates will affect the central coordinates after

a while, so we obtain that D(x, 1
4
) ⊂ {y : li(y) = li(x) : i < 0}. Since µ satisfies condition

(*), we have µ(D(x, 1
4
)) = 0 which is the condition required for the µ-expansiveness.

Now suppose that x ∈ {0, 1, 2, 3, E}Z \ Ω. First notice that if there is at least

one letter E in the left coordinates, the sequence F t(x)(−1, 1) does not depend on the

position or even the existence of a letter E in the right coordinates. Recall that after

one iteration, the word 22 appears only directly after a letter E. So when there is at

least one letter E in the negative coordinates of x, the arguments and the proof given

for x ∈ Ω still work.

If there is no letter E in the negative coordinates of x, for any δ = 2−n, we

can consider any y ∈ Ω such that yi = xi if −n ≤ i ≤ n. For x ∈ {0, 1, 2}Z, the

dynamic is only given by the letter 2 which move on sequences of 1 (see Figure 1).

The sequence F t(x)(−1, 1) can not behave like a counter because it is an ultimately

stationary sequence (after a letter “2” pass over a “1” it remains a “0” that can not

be changed) and the real period of the central counter of y is obviously strictly greater

than 1. Then in this case again, the sequences F t(x)(−1, 1) and F t(y)(−1, 1) will be

different after a while which satisfies the sensitivity condition. Since the only points z

such that F t(z)(−1, 1) = F t(x)(−1, 1) belong to the set of null measure {0, 1, 2, 3}Z (as

µ satisfies conditions (*)), we obtain the µ-expansiveness condition. 2

7. Invariant measures

7.1. Invariant measure for the model

We construct an invariant measure for the dynamics of the counters. Firstly, let ν∗
denote a measure on N \ {0, 1, 2} and secondly, let ν = ν⊗Z

∗ be the product measure. To

fix ideas, we take ν∗ to be the geometric law of parameter ν = 2
3

on N conditioned to

be larger than 3, i.e.,

ν∗(k) =

{
νk

P
j>2 νj if k ≥ 3

0 if k < 3.
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Notice that the expectation of l0 is finite :
∑

l0>2 ν∗(l0)×l0 < +∞. We denote by mL the

uniform measure on the finite set {0, . . . , L−1}. Given a two-sided sequence l = (li)i∈Z,

we define a measure on NZ supported on
∏

i∈Z{0, . . . , 2li − 1}, defining ml = ⊗i∈Zm2li ,

so that for all k0, . . . , km integers,

ml({ci = k0, . . . , ci+m = km}) =

{
2−
Pi+m

j=i lj if, ∀i ≤ j ≤ i + m, cj < 2lj

0 otherwise.

We want this property for the counters to be preserved by the dynamics. But, for the

overflow, we do not know a priori how the measure will behave. Next we construct an

initial measure and iterate the sliding block code on the counters H. For all l = (li)i∈Z,

we set νl = ⊗i∈Zδli , and, η = ⊗i∈Zδ0, where δk denotes the Dirac mass at integer k. We

consider the measures

µH
l = νl ⊗ml ⊗ η,

which give mass 1 to the event {∀i ∈ Z, ri = 0}. Then, we define,

µ̃H =

∫
NZ

µH
l ν(dl).

The sequence 1
n

∑n−1
k=0 µ̃H ◦ H−k has convergent subsequences. We choose one of these

subsequences, (ni), and write

µH = lim
i→∞

1

ni

ni−1∑
k=0

µ̃H ◦H−k.

7.2. Invariant measure for F

Now we construct a shift and F -invariant measure for the cellular automaton space.

Recall that Ω∗ = Ω ∩ {x ∈ {0, 1, E}Z : x0 = E} (see Remark 3). We write, for all

integers k, Ω∗
k = σkΩ∗. Let us define, for all measurable subsets I of AZ,

µF
l =

l0−1∑
k=0

µH
l (ϕ(I ∩ Ω∗

k)) .

This measure distributes the mass on the l0 points with the same image (in the model)

corresponding to the l0 possible shifts of origin. The total mass of this measure is l0.

Since the expectation of l is l̄ =
∑∞

i=3 ν∗(l) × l < ∞ is finite (if ν = 2
3
; l = 5), we can

define a probability measure

µ̃F =
1

l

∫
NZ

µF
l ν(dl).

The measure µ̃F is shift-invariant (see further) but it is supported on a non F -invariant

set. In order to have a F -invariant measure we take an adherence value of the Cesaro
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mean. We choose a convergent subsequence (nij) of the sequence (ni) defining µH and

write

µF = lim
j→∞

1

nij

nij
−1∑

k=0

µ̃F ◦ F−k.

Remark 6 Since for the measure µF , the length between two “Es” follows a geometric

law, the measure µF satisfies the conditions (*) defined in Section 6, and from

Proposition 5, the automaton F is µF -expansive.

Lemma 3 The measure µH is σB and H-invariant. The measure µF is σ and F -

invariant. For all measurable subsets U of ϕ(Ω) such that l0 is constant on U ,

µF (ϕ−1(U)) =
l0

l
µH(U).

Proof The shift invariance of µH follows from the fact that ν is a product measure and

that the dynamic commutes with the shift so the Cesaro mean does not arm. H and F

invariance of µH and µF follow from the standard argument on Cesaro means.

Shift invariance of µF comes from a classical argument of Kakutani towers because

µH is essentially the induced measure of µF for the shift on the set Ω∗. We give some

details. We choose a measurable set I such that l0 is constant on I. Choose l = (li)i∈Z.

Noticing that ϕ(σ−1(I) ∩ Ω∗
k) = ϕ(I ∩ Ω∗

k) as soon as k ≥ 1, a decomposition of I such

as I = ∪l0−1
k=0 I ∩ Ω∗

k yields

µF
l (σ−1I) = µF

l (I)− µF
l (I ∩ Ω∗) + µF

l (σ−1(I) ∩ Ω∗).

We remark that

ϕ(σ−1(I) ∩ Ω∗) = σ−1
B (ϕ(I ∩ Ω∗))

so that

µF
l (σ−1(I) ∩ Ω∗) = µH

l

(
σ−1

B (ϕ(I ∩ Ω∗))
)
.

Now we integrate with respect to l and use the σ−1
B -invariance of µ̃H to conclude that

µ̃F (σ−1I) = µ̃F (I).

For a measurable set I, we decompose I = ∪L∈N(I ∩ {x ∈ Ω : l0(x) = L}). Since F

commutes with σ, the Cesaro mean does not affect the shift invariance. Hence, µF is

shift invariant.

Now, we make explicit the relationship between µH and µF . Let V ⊂ Ω be an event

measurable with respect to the σ-algebra generated by (li, ci; i ∈ Z). There is an event

U ⊂ ϕ(Ω) such that V = ϕ−1(U). Write V = ∪L∈NVL, where VL = V ∩{x ∈ Ω : l0(x) =

L}. Since ϕ(VL ∩ Ω∗
k) = ϕ(VL) =: UL for all 0 ≤ k < L, we can write

µF
l (VL) =

L−1∑
k=0

µH
l (ϕ(VL ∩ Ω∗

k)) = LµH
l (ϕ(VL)).
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Integrating with respect to l gives

µ̃F (V ) =
1

l

∑
L∈N

Lµ̃H(UL)ν(L).

If l0 is constant on U then L = l0 and we get

µ̃F (ϕ−1(U)) =
L

l
µ̃H(U).

Since F−1(ϕ−1(U)) = ϕ−1(H−1(U)) and the Cesaro means are taken along the same

subsequences, we are done. 2

Lemma 4 Fix M ∈ Z, M < 0 and a sequence L = (LM , . . . , L0). Consider the cylinder

VL = {x ∈ Ω : (lM(x), . . . , l0(x)) = L}. For all M < i < 0, and all 0 ≤ k < 2Li,

µF ({x : ci(x) = k}|VL) = 2−Li .

Proof Let F be the σ-algebra generated by {(cj, rj)|j < 0} and {lj, j ∈ Z}. We claim

that, almost surely,

µH({c0 = k} | F) = ml({c0 = k}) = 2−l0 .

Let u, v ∈ ϕ(Ω). If ui = vi for all i < 0, and c0(v) = c0(u) + a, then c0(H
n(v)) =

c0(H
n(u)) + a. The function ∆n(u) = c0(H

n(u)) − c0(u) is F -measurable. We deduce

that

µ̃H(H−n({c0 = k}) |F) = (νl(u) ⊗ml(u) ⊗ η)({c0 = k −∆n(u)} | F)

= m2l0(u)(k −∆n(u))

= m2l0 (k)

= 2−l0 .

Remark that the last claim implies µH({ci = k}|ϕ(VL)) ≥ µH(H−n({c0 = k}) |F),

so µH({ci = k}|ϕ(VL)) = 2−l0 .

We prove the claim by taking the Cesaro mean and by going to the limit. We

extend the result to all integers i using the shift invariance and the independence of ci

with respect to lj when j > i. We conclude by applying Lemma 3:

µF ({x : ci(x) = k}|VL) =
µF ({x : ci(x) = k} ∩ VL)

µF (VL)

=
L0

l
µH(ϕ({x : ci(x) = k} ∩ VL))

L0

l
µH(ϕ(VL))

= µH({ci = k}|ϕ(VL))

= 2−Li .

2
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Remark 7 Using Lemma 4 we obtain

µH({ci = k0, . . . , ci+m = km}|li, . . . , li+m) =

{
2−
Pi+m

j=i lj if ∀i ≤ j ≤ i + m, cj < 2lj ,

0 otherwise.

Proposition 6 The shift measurable entropy of hµF
(σ) is positive.

Proof Let α be the partition of Ω by the coordinate 0 and denote by αn
−n(x) the element

of the partition α ∨ σ−1α... ∨ σ−n+1 ∨ σ1... ∨ σnα which contains x. It follows from the

definition of µF , that µF (αn
−n(x)) ≤ ν

(
l(y) ∈ NZ : y ∈ αn

−n(x)
)
. For all x ∈ Ω there

exist sequences of positive integers (−Q+
i )i∈N and (Q−

i )i∈N such that x−Q+
i

= xQ−
i

= E.

Let K = ν3

1−ν
=

∑
j>2 νj. If y ∈ Ω ∩ α

Q+
i

−Q−
i

(x) then

ν (l(y)) = ν∗(l0)π
i
k=1 (ν∗(l−k)ν∗(lk)) = νQ−

i +Q+
i +1/(K2i+1).

Since li ≥ 3 and
∑i

k=−i lk = Q−
i + Q+

i , we obtain

log (ν(l(y))) = (Q−
i + Q+

i + 1) log ν − (2i + 1) log K ≤ (Q−
i + Q+

i + 1) log
1

1− ν
.

Since µF (Ω) = 1 we get

lim
i→∞

∫
AZ

− log(µF (α
Q+

i

−Q−
i

(x)))

Q−
i + Q+

i + 1
dµF (x) ≥ (log

1

1− ν
) > 0.

By the probabilistic version of the Shannon-McMillan-Breiman theorem for a Z-action

[6], the left side of the previous inequality is equal to hF
µ (σ), so we can conclude. 2

8. Lyapunov exponents

Recall that no information can cross a counter before it reaches the top, that is, before

time 1
2
(ci − ci) since at each step the counter is incremented by 1 or 2. When the

information reaches the next counter, it has to wait more than 1
2
(ci+1− ci+1), where this

quantity is estimated at the arrival time of the information, and so on.

But each counter is uniformly distributed among its possible values. So expectation

of these times is bounded below by 1
4
E[ci] = E[2li−2]. A good choice of the measure ν

can make the expectation of the li finite so that we can define the invariant measure µF .

But E[2li ] is infinite so that expectation of time needed to cross a counter is infinite and

hence the sum of these times divided by the sum of the length of the binary counters

tends to infinity.

Instead of being so specific, we use a rougher argument. Taking ν∗ to be geometric,

we show that there exists a counter large enough to slow the speed of transmission

of information. That is, for given n, there is a counter of length larger than 2 ln n,

information needs a time of order nδ, with δ > 1 to cross. This is enough to conclude.

Proposition 7 We have

I+
µF + I−

µF = 0.
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Proof We just have to show that I+
µF = 0 since I−

µF is clearly zero. Recall that I+
n (x)

is the minimal number of coordinates that we have to fix to ensure that for all y such

that as soon as y(−I+
n (x),∞) = x(−I+

n (x),∞), we have F k(y)(0,∞) = F k(x)(0,∞) for

all 0 ≤ k ≤ n. Let

tF (n)(x) = min{s : ∃y, y(−n,∞) = x(−n,∞) and F s(x)(0,∞) 6= F s(y)(0,∞)}

be the time needed for a perturbation to cross n coordinates. Note that tF (n) and

I+
n are related by tF (s)(x) ≥ n ⇔ I+

n (x) ≤ s. We now define an analog of tF (n) for

the model. For all x ∈ ϕ(Ω), let Mn(x) be the smallest negative integer m such that∑0
i=m li(x) ≤ n. Define

tH(n)(x) = min

{
s ≥ 0 : ∃y ∈ Ω,

y(Mn(x),∞) = x(Mn(x),∞),

Hs(x)(0,∞) 6= Hs(y)(0,∞)

}
.

Define for all large enough positive integer, the subset of Ω

Un =

x :
l0(x) ≤ 2 ln(n),
∃i ∈ {Mn(x), . . . ,−1}, li(x) ≥ 2 ln(n),
ci(x) ≤ 2li(x) − 21.5 ln(n)

 .

We claim that
lim

n→∞
µF (Un) = 1.

Choose and fix an integer n large. Note that if ∀i ∈ {Mn(x), . . . , 0}, li ≤ 2 ln(n), we have
|Mn(x)| ≥ n

2 ln(n) . Write M = −b n
2 ln(n)c and define

Vn =
{

L ∈ N|M |+1 : L0 ≤ 2 ln n and ∀i ∈ {M, . . . ,−1}, Li ≤ 2 ln(n)
}

.

Note that on {l0 ≤ 2 ln n}, existence of i ≥ M with li ≥ 2 ln n yields existence of
i ≥ Mn(x) ≥ M with li ≥ 2 ln n (the same i).

Given a L = (LM , . . . , L0) in the complementary of Vn denoted by V c
n , we denote

V Ω
L = {x ∈ Ω : (lM (x), . . . , l0(x)) = L} and we denote i(L) the larger index M < i < 0 with

Li > 2 ln n. Let V c∗
n be the subset of V c

n with L0 ≤ 2 ln(n). The measure of Un is bounded
below by

µF (Un) =
∑

L∈NM

µF (Un ∩ V Ω
L )

≥
∑

L∈V c∗
n

µF (Un ∩ V Ω
L })

≥
∑

L∈V c∗
n

µF ({ci(L)(x) ≤ 2li(L) − 21.5 ln (n)} ∩ V Ω
L )

=
∑

L∈V c∗
n

µF
(
ci(L)(x) ≤ 2li(L) − 21.5 ln (n) |V Ω

L

)
µF

(
V Ω

L

)
.

According to Lemma 4, given the li’s, for M ≤ i ≤ 0, the random variable ci is uniformly

distributed. Hence for all L ∈ V c∗
n ,

µF ({x|ci(x) ≥ 2li − 21.5 ln(n)}|V Ω
L ) = 21.5 ln(n)2−Li(L) ≤ 21.5 ln(n)−2 ln(n) = n−0.5 ln(2),
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so that

µF (Un) ≥
∑

L∈V c∗
n

(1− n−0.5 ln(2))µF
(
V Ω

L

)
≥ (1− n−0.5 ln(2))ν(V c∗

n ).

Since ν∗(li ≥ 2 ln(n)) = cst.
∑

k≥2 ln(n) νk ≤ cst.n2 ln ν , and the li’s are independent, it is

straightforward to prove the existence of constants c1, c2 and c3 independent on n, such

that,

ν (Vn) ≤

1−
∑

k≥2 ln(n)

νk

|M |

≤ c1n
2 ln ν + c2 exp

(
−c3

n1−2 ln(ν)

2 ln(n)

)
,

and ν(V c∗
n ) ≥ (1− ν(Vn))ν∗(l0 ≤ 2 ln(n)).

We conclude that

µF (Un) ≥
(
1− n−0.5 ln(2)

)
(1− c4n

2 ln ν)

(
1− c1n

2 ln ν + c2 exp

(
−c3

n1−2 ln(ν)

2 ln(n)

))
.

Since ν = 2
3
, 2 ln(ν) < 1, this bound converges to 0 and the claim follows.

Now, we claim that there is a constant c > 0 and a constant δ > 1 such that on Un,

we have

tH(n)(x) ≥ cnδ.

Indeed, if x ∈ Un, and y is such that y(−n,∞) = x(−n,∞), then M(x, n) = M(y, n) =:

M and ϕ(y)(−M,∞) = ϕ(x)(−M,∞). Hence there is an index 0 < i ≤ M with

li(x) = li(y) = L and ci(x) = ci(y) = c satisfying

L ≥ 2 ln(n) and c ≤ 2L − 21.5 ln(n).

Notice that i < 0 because x ∈ Un. For all s ≤ 1
2
21.5 ln(n), we have rs

i (x) = rs
i (y) = 0,

since cs
i (x) < 2li(x). Hence, for all j > i (and in particular for j = 0), cs

j(x) = cs
j(y). For

j = 0, this implies that tH(n)(x) ≥ 1
2
n1.5 ln 2. As 1.5 ln(2) > 1 the claim holds.

There is no y with y(−n,∞) = x(−n,∞) and F s(x)(0,∞) 6= F (y)(0,∞) if s <

tH(n)(x) because y(−n,∞) = x(−n,∞) ⇒ ϕ(y)(−M(x, n),∞) = ϕ(x)(−M(x, n),∞).

This implies that tF (n)(x) ≥ tH(n)(x). It follows that tF (n)(x) ≥ cnδ on Un.

Setting s =
[
n

1
δ

]
, we see that tF (

[
n

1
δ

]
) ≥ n ⇔ I+

n ≤
[
n

1
δ

]
. We deduce that there is

a constant c such that, on Un,
I+
n (x)

n
≤ cn

1
δ
−1.

Since I+
n (x)
n

is bounded (by r = 2, radius of the automaton), the conclusion follows from

the inequality ∫
I+
n

n
dµF ≤

∫
Un

c n
1
δ
−1dµF + 2µF (U c

n).
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That is,

I+
µF = 0.

2

Using Proposition 3 we obtain

Corollary 1 The measurable entropy hµF (F ) is equal to zero.

9. Questions

We end this paper with a few open questions and conjectures.

Conjecture 1 The measure µF is shift-ergodic.

The measure µF is clearly not F -ergodic since the Es do not move. It is still not clear to

us whether or not it is possible to construct a sensitive automaton with null Lyapunov

exponents for a F -ergodic measure.

Conjecture 2 A sensitive cellular automaton acting surjectively on an irreducible

subshift of finite type has positive average Lyapunov exponents if the invariant measure

we consider is the Parry measure on this subshift.

Conjecture 3 If a cellular automaton has no equicontinuous points (i.e. it is sensitive),

then there exists a point x such that lim inf I+
n (x)
n

> 0 or lim inf I−n (x)
n

> 0.
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