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Notation

The vector space of n×n matrices on the field K ∈ {R,C} is denoted by Mn(K). The vector space

of hermitian matrices is denoted by Hn(K).

We denote by P and E the probability and the expectation of our underlying random variables.
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Lecture 1

Combinatorial proof of Wigner’s

semicircle law

1 Wigner’s semicircle Theorem

1.1 Empirical distribution of eigenvalues

Let X be an hermitian matrix in Mn(C). Counting multiplicities, its ordered eigenvalues are

denoted as

λ1(X) ≥ · · · ≥ λn(X).

The empirical spectral distribution (ESD) is

µX =
1

n

n∑
i=1

δλi(X).

This is a global function of the spectrum. From the spectral theorem, for any function f ,∫
f(λ)dµX(λ) =

1

n
Trf(X).

1.2 Wigner matrix

Consider an infinite array of complex random variables (Xij) where for 1 ≤ i < j

Xij = X̄ji

are iid with law P on C, independent of Xii, i ≥ 1 iid with common law Q on R.

The random matrix X = (Xij)1≤i,j≤n is hermitian. This matrix is called a Wigner matrix.

There are some important cases:
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- For i > j,
√

2<(Xij),
√

2=(Xij) and Xii are independent standard Gaussian variables: Gaussian

Unitary Ensemble (GUE).

- For i > j, Xij and Xii/
√

2 are independent standard Gaussian variables): Gaussian Orthogonal

Ensemble (GOE).

- For i > j, Xij and Xii are independent {0, 1}-Bernoulli distribution with parameters 0 ≤ p ≤ 1

and 0 ≤ q ≤ 1.

1.3 Weak Convergence

Let µn, µ ∈ P(R), we say that µn converges weakly to µ if for any bounded continuous function f ,∫
fdµn →

∫
fµ

This weak topology is metrizable with the Lévy distance dL and (P(R), dL) is a Polish space.

If µn is a random measure, we say that µn converges weakly in probability to µ if for any

bounded continuous function f , in probability.∫
fdµn →

∫
fµ

Similarly, we say that µn converges weakly to µ almost surely if almost surely, for any bounded

continuous function f , ∫
fdµn →

∫
fµ.

Exercise 1.1. If for any bounded continuous function f , almost surely,
∫
fdµn →

∫
fµ then µn

converges weakly to µ almost surely (Hint : Arzela-Ascoli’s Theorem).

1.4 Wigner’s semicircle Theorem

In our setting, a general form of Wigner’s semicircle law is the following result.

Theorem 1.1 (Semicircle Law). Let X be a Wigner matrix. Assume that E|X12 − EX12|2 = 1.

Set Y = X/
√
n. Then a.s. weakly

µY → µsc

where µsc(dx) = 1
2π

√
4− x21I|x|≤2dx
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2 Method of moments

Let Z real random variable with law µ and characteristic function F (t) =
∫
eitxdµ(x). Assume that

all moments are finite: for all integers k ≥ 0,
∫
xkdµ(x) = EZk = mk <∞.

Definition 1.1. The probability measure µ is uniquely characterized by its moments if it is the

unique measure on R with moments mk for all integers k ≥ 0.

From Carleman’s Theorem, µ is uniquely characterized by its moments if∑
k≥1

m
− 1

2k
2k =∞.

A simpler sufficient condition follows from the observation that if F is analytic in a neighborhood

of 0 then it is uniquely characterized by its moments. The next lemma is characterizes the latter

condition.

Lemma 1.1. The characteristic function F is analytic in a complex neighborhood of 0 (or in a

complex neighborhood of R) if and only if

lim sup
k

(
m2k

(2k)!

) 1
2k

<∞.

Proof. Hadamard’s formula: the radius of convergence of
∑

n anz
n associated to a sequence of

complex numbers (an) is 1/r with r = lim supn |an|1/n. It gives the equivalence. To show analiticity

on R, we may use Taylor expansion

F (t+ s) =

2k−1∑
`=0

(it)`F (`)(s)

`!
+O

(
m2k|t|2k

(2k)!

)
.

Recall Stirling’s formula, k! ∼
√

2πk(k/e)k. For example, if µ has bounded support we have

µk ≤ ck. If µ is a subGaussian law then µk ≤ (c
√
k)k. If µ is subexponential, µk ≤ (ck)k. In these

three cases, µ is uniquely characterized by its moments.

When a law is uniquely characterized by its moments, a commonly used method to prove that

a sequence of real random variables (Zn)n≥1 converges weakly to a random variable Z is to show

that for all integer k ≥ 1, limn E[Zkn] = E[Zk].

Lemma 1.2 (Method of moments). Assume that the law µ is uniquely determined by its moments.

If for all integers k ≥ 1, limn

∫
xkdµn(x) =

∫
xkdµ then µn → µ weakly.
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Proof. We have
∫
x2dµ(x) = m2+o(1), hence (µn) is relatively compact. Let ν be an accumulation

point, since µ is uniquely determined by its moments, it is sufficient to check that for any integer

k ≥ 1,
∫
xkdν(x) = mk. This amounts to prove that x 7→ xk is uniformly integrable for (µn)n≥1.

Let us check this by hand. Let Zn be a random variable with law µn and W with law ν.

Since EZ2k
n is uniformly bounded, we have P(|Zn| > t) ≤ ct−2k and from Portemanteau Theorem

P(|W | > t) ≤ Ct−2k. It follows that for any ε > 0, there is t ≥ 1, such that E|W |k1I|W |≥t < ε and

E|Zn|k1I|Zn|≥t < ε. Consider f continuous f(x) = xk on [−t, t] and f(x) = tk on R\[−t, t]. We get

EW k = Ef(W ) + EW k1I|W |≥t − Ef(W )1I|W |≥t = Ef(W ) + EW k1I|W |≥t − tkP(|W | ≥ t)

= EZkn + Ef(W )− Ef(Zn) + r,

With |r| ≤ 4ε. Then, since µn converges weakly to ν along a subsequence, along that subsequence

for n large enough, we have |Ef(Zn)− Ef(W )| ≤ ε.

There are many drawbacks to this method. First, the random variable Zn needs to have finite

moments of any order for all n large enough. Secondly, the computation of moments can more

tedious than analytic proofs when they are available (see exercise below).

Exercise 1.2. Let (Xi) be an iid sequence of real random variables. Assume that the Xi’s have

finite moment of any order, EXi = 0 and EX2
i = 1. Prove by the method of moments that

(X1 + · · ·Xn)/
√
n converges weakly to a Gaussian random variable (Hint: check first that the 2k-th

moment of a standard Gaussian variable is equal to the number of pairings of {1, . . . , 2k}).

3 Moments of Wigner’s semicircle law

dµsc(x) =
1I|x|≤2

2π

√
4− x2dx

For integer k ≥ 0,

m2k+1 =

∫
x2k+1dµsc(x) = 0 and m2k =

∫
x2kdµsc(x) = ck

where ck is the k-th Catalan number

ck =
1

k + 1

(
2k

k

)
=

(
2k

k

)
−
(

2k

k + 1

)
.

4 Graphs, Catalan’s number and Dyck paths

Let G = (V,E) be a finite graph: V is finite set and E is a set of multisets of size 2 of V (G may

have loops, edges of the type {x, x} are called loops). A tree is a graph without cycles.
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Lemma 1.3. If G = (V,E) is connected then |E| − |V |+ 1 ≥ 0 with equality if and only if G is a

tree.

Proof. A spanning tree of a connected graph G = (V,E) is a subgraph of G which is a tree and has

same vertices V . Let us consider the set of subgraphs of G which are trees. This set is not empty

and is partially ordered by the inclusion. Since this set is finite, it contains a maximal element

for the inclusion. Such a maximal element is a tree. Moreover it contains all the vertices of G,

otherwise we could add an extra edge by using the connectivity of G.

Now, if G is a tree then |E| = |V |−1 follows easily by induction on |V |. Moreover if T = (V,E′)

with E′ ⊂ E is the spanning tree of a finite connected graph G = (V,E) then |E| ≥ |E′| = |V | − 1

from what precedes. Finally if G is such that |E| = |V | − 1 then |E| = |E′| and thus G = T .

Fix an integer k ≥ 1. We set of Dyck paths of length 2k is the set of paths of length 2k from 0

to 0 with ±1 increments and which remain non-negative:

Dk = {(x0, . . . , x2k) ∈ Z2k+1 : xt ≥ 0, x0 = x2k+1, xt+1 − xt ∈ {−1, 1} for t = 1, . . . , 2k}.

Dk is an obvious bijection with sequence of proper sequence of 2k parenthesis: for t = 1, . . . , 2k,

if xt = xt−1 + 1 place a left parenthesis ’(’ and right parenthesis ’)’ otherwise. For example, for

k = 3, the path (0, 1, 0, 1, 2, 1, 0) gives ()(()).

Lemma 1.4. For any integer k ≥ 1,

|Dk| = ck.

Proof. Let Ws
k be set of walks of length 2k from 0 to even integer −2s with increments {−1,+1},

Ws
k = {(x0, . . . , x2k) ∈ Z2k+1 : x0 = 0, x2k+1 = −2s, xt+1 − xt ∈ {−1, 1} for t = 0, . . . , 2k}. We

have |Ws
k| =

(
2k
k+s

)
since such walks are made of k − s times t such that xt+1 − xt = 1 and k + s

times such that xt+1 − xt = −1. We check that |Dk| = |W0
k | − |W1

k |. This is a consequence of the

reflexion principle: paths in W1
k are in bijections with paths in Wk such that xt = −1 for some t

(simply reflects xt+s for s ≥ 0 on x-axis).

Exercise 1.3. Prove the recursive equation for the Catalan’s number c0 = 1 (convention) and for

k ≥ 1,

ck =

k−1∑
`=0

c`ck−`−1. (1.1)

Deduce that the generating function of Catalan’s number S(z) =
∑∞

k=0 ckz
k satisfies

S(z) = 1 + zS(z)2. (1.2)
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5 Trace method

Recall that, for a random probability measure µ ∈ P(X ), we may define its expectation Eµ ∈ P(X ),

as for all Borel sets B,

(Eµ)(B) = E[µ(B)].

Now, let X be Wigner matrix of size n and Y = X/
√
n. We will apply the method of moments

to the deterministic probabilty measure EµY .

We will prove the following statement

Theorem 1.2 (Semicircle law for averaged eigenvalues). Assume EX11 = EX12 = 0, E|X12|2 = 1

and for any integer k ≥ 1, E|X12|k + E|X11|k <∞. Then, if Y = X/
√
n, weakly

EµY → µsc.

From Fubini’s Theorem and the spectral theorem∫
λkdEµY (λ) = E

∫
λkdµY (λ) =

1

n
ETrY k.

Hence, if (mk) is the sequence moments of the semicircle law, in view of Lemma 1.2, it is

sufficient to prove that

Lemma 1.5. For each integer k ≥ 1,

1

n
ETrY k = mk +O

(
1√
n

)
.

Proof. Expanding the trace, we have

1

n
ETrY k =

1

nk/2+1
ETrXk

=
1

nk/2+1
E

∑
(i1,··· ,ik)

k∏
`=1

Xi`i`+1

=
1

n
k
2
+1

∑
(i1,··· ,ik)

P (i),

where ik+1 = i1 and

P (i) = E
k∏
`=1

Xi`i`+1
.

We call such element i a path from i1 to ik+1 = i1. Let us say two paths i = (i1, · · · , ik) are

j = (j1, · · · , jk) are equivalent and write i ∼ j if there exists a permutation σ of size n such that

σ(it) = jt for t = 1, . . . , k. This is relation of equivalence and from the invariance of the law of X
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by permutation of the entries, P (i) is constant on each equivalence class. Observe also that if we

set |i| = |{i1, · · · , ik}| there are

n(n− 1) . . . (n− |i|+ 1) ∼ n|i|

paths in the equivalence class of i. We may pick a canonical path in each class by setting i1 = 1

and it+1 ≤ maxs≤t is+1 (new elements are visited by increasing order). If Ik is the set of canonical

paths, we may thus write

1

n
ETrY k =

∑
i∈Ik

n(n− 1) . . . (n− |i|+ 1)

nk/2+1
P (i), (1.3)

Fix a path i. We first give a rough bound on P (i). We define G(i) = (V,E) as the graph (with

loops) obtained by setting V = {i1, · · · , ik} and E = {{i1, i2}, · · · , {ik, i1}} (we omit to write the

dependency in i for brevity). We note that G(i) is connected. For e = {i, j} ∈ E, with i < j, we

define the multiplicities of the edge e as

m+
e =

k∑
`=1

1I((i`, i`+1) = (i, j)) and m−e =
k∑
`=1

1I((i`, i`+1) = (j, i)).

If i = j, we set 2m+
e = 2m−e =

∑k
`=1 1I((i`, i`+1) = (i, i)). We have

k =
∑
e∈E

m+
e +m−e . (1.4)

From the idependence of the (Xij)i≥j and Hölder inequality, we get

P (i) =
∏
e∈E

(EXm+
e

e X̄m−e
e ) and |P (i)| ≤

∏
e∈E

(E|Xe|k)
m+
e +m−e
k ≤ max

e∈E
E|Xe|k ≤ βk,

where βk = max(E|X11|k,E|X12|k). Moreover, since EX12 = EX11 = 0, P (i) = 0 unless the path i

is such that for all e ∈ E, m+
e +m−e ≥ 2. Therefore, the identity (1.4) yields

|E| ≤
[
k

2

]
,

where [x] is the integer part of x. By Lemma 1.3, we find

|V | ≤ |E|+ 1 ≤
[
k

2

]
+ 1.

If αk is the number of canonical paths which visit each edge at least twice, we get from (1.3)∣∣∣∣ 1nETrY k

∣∣∣∣ ≤ αkβkn[ k2 ]+1

n
k
2
+1

.
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In particular, if k is odd the above expression is O(1/
√
n). If k is even then

1

n
ETrAk =

∑
i∈I2k

P (i) +O

(
1

n

)
,

where I2k is the set of of canonical paths i = (i1, · · · , ik) such that G(i) is a tree with ` edges

and the multiplicity of each edge e has multiplicity m+(e) + m−(e) = 2. If i ∈ I2k , observe that

m+(e) = m−(e) = 1. Indeed otherwise, if m+(e) = 2 and e = (is, is+1) = (it, it+1) with s < t, the

subpath of i, (is, is+1, . . . , it, it+1) must contain a cycle. The same argument implies also that for

any t = 1, . . . , k with ik+1 = 1: either it+1 = maxs≤t is + 1 or {it, it+1} is the last edge which has

been visited only once.

Set k = 2`. We claim that I2k is in bijection with the set of Dyck paths D`. Indeed, to any

canonical path i ∈ I2k associate the sequence (x0, · · · , xk) given by x0 = 0 and for t = 1, . . . , k

xt − xt−1 = 1 if it = maxs<t is + 1 and xt − xt−1 = −1 otherwise. This is a Dyck path from what

precedes. Conversely, to any Dyck path (x0, · · · , xk), we define i = (i1, · · · , ik) by i1 = 0 and the

following iterative rule: if xt − xt−1 = 1, it = maxs<t is + 1 and if xt − xt−1 = −1, it = ist where

st < t is the largest s such that xs = xt. Then i is a path in I2k .

We find finally
1

n
ETrY 2` = |D`|+O

(
1

n

)
.

It remains to use Lemma 1.4.

6 Second moment method

Theorem 1.3 (Semicircle law with finite moments). Assume EX11 = EX12 = 0, E|X12|2 = 1 and

for any integer k ≥ 1, E|X12|k + E|X11|k <∞. Then, if Y = X/
√
n, a.s. weakly

µY → µsc.

We prove the following lemma

Lemma 1.6. For each integer k ≥ 1,

Var

(
1

n
ETrY k

)
= O(n−2).

Assuming Lemma 1.2, Theorem 1.3 is proved as follows. From the monotone convergence

theorem

E
∑
n≥0

(∫
xkdµY − E

∫
xkdµY

)2

<∞.

Hence a.s.
∑

n≥0
(∫
xkµY − E

∫
xkµY

)2
<∞ and, a.s.

∫
xkµY −E

∫
xkµY → 0. Then the theorem

follows from Theorem 1.2.
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Proof of Lemma. We use the notation of Lemma 1.5. We start with

Var

(
1

n
TrY k

)
= E

 1

nk/2+1

∑
(i1,··· ,ik)

k∏
`=1

Xi`i`+1
− P (i)

2

=
1

nk+2

∑
(i1,··· ,ik),(j1,··· ,jk)

P (i, j)− P (i)P (j),

where

P (i, j) = E
k∏
`=1

Xi`i`+1
Xj`j`+1

.

As in the proof of Lemma 1.5, we define G(i, j) = (V,E) as the corresponding weighted graph.

Note that P (i, j)−P (i)P (j) = 0 if i and j do not have two successive indices in common. Hence we

may restrict to G = G(i, j) connected. We have
∑

e∈Em
+
e +m−e = 2k and m+

e +m−e ≥ 2. Hence

|E| ≤ k, |V | ≤ |E|+ 1 ≤ k + 1 and, arguing Lemma 1.5 we get that

Var

(
1

n
TrY k

)
= O

(
nk+1

nk+2

)
= O

(
1

n

)
.

It already implies that µY converges to µsc weakly in probability. To improve the bound on the

variance, we may restrict ourself to indices such that

|V | = |E|+ 1 = k + 1 and for all e in E m+
e +m−e = 2.

We may assume without loss of generality that (i1, i2) = (j1, j2). Consider the path π = (i1, · · · , ik, i1).
Since m+

e +m−e = 2, we have ik 6= i2. Hence π is a closed path in G which contains a cycle. This

contradicts the assumption that G is a tree. Therefore, since does not occur, we have |E| ≤ k − 1

and |V | ≤ k. It follows that

Var

(
1

n
TrY k

)
= O

(
nk

nk+2

)
= O

(
1

n2

)
.

It concludes the proof.
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Lecture 2

Random matrices: a playground for

concentration inequalities

It is possible to combine with a great effect classical pertubation inequalities and concentration

inequalities. In this chapter, we will use two perturbations inequalities for eigenvalues and we

review some classical concentration inequalities.

1 Two perturbation inequalities of eigenvalues

1.1 Courant-Fischer inequalities

Variational formula for the eigenvalues

We order the eigenvalues of A ∈ Hn(C) non-increasingly

λn(A) ≤ · · · ≤ λ1(A). (2.1)

Lemma 2.1 (Courant-Fischer min-max theorem). Let A ∈ Hn(C). Then

λk(A) = max
H:dim(H)=k

min
x∈H,‖x‖2=1

〈Ax, x〉.

Proof. Let (ui)i be an eigenvector basis ofA associated to λ1, · · · , λn. We chooseH = span(u1, · · · , uk).
We find

max
H:dim(H)=k

min
x∈H,‖x‖2=1

〈Ax, x〉 ≥ λk.

On the other hand, let H be a vector space such that dim(H) = k. Define S = span(un, · · · , uk)
so that dim(S) = n− k + 1. Since

n ≥ dim(H ∪ S) = dim(H) + dim(S)− dim(S ∩H)
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we find S ∩H 6= 0. In particular,

min
x∈H,‖x‖2=1

〈Ax, x〉 ≤ λk.

as requested.

As an immediate corollary, we obtain the subadditivity of the largest eigenvalue, for any A,B ∈
Hn(C),

λ1(A+B) ≤ λ1(A) + λ1(B). (2.2)

Interlacing of eigenvalues

An important corollary of the Courant-Fischer min-max theorem is the interlacing of eigenvalues.

The interlacing inequalities allow to derive deviation inequalities for eigenvalues where the deviation

is measured through its rank. By convention if A ∈ Hn(C), we set for integer i ≥ 1,

λn+i(A) = −∞ and λ1−i(A) = +∞ (2.3)

Lemma 2.2 (Weak interlacing). Let A, B in Hn(C) and assume that dim(A − B) = r Then, for

any 1 ≤ k ≤ n,

λk+r(A) ≤ λk(B) ≤ λk−r(A).

Proof. We prove λk+r(A) ≤ λk(B). We may assume that k+ r ≤ n. By definition, for some vector

space H of dimension k + r,

λk+r(A) = min
x∈H,‖x‖2=1

〈Ax, x〉.

Take H ′ = H ∩ ker(A−B). By construction

λk+r(A) ≤ min
x∈H′,‖x‖2=1

〈Ax, x〉 = min
x∈H′,‖x‖2=1

〈Bx, x〉 ≤ λk′(B)

where k′ = dim(H ′). Now, the inequality,

n− dim(H ′) ≤ (n− dim(H)) + dim(im(A−B))

yields k′ ≥ k. This concludes the proof of the inequality λk+r(A) ≤ λk(B). For the proof of

λk(B) ≤ λk−r(A), we may assume that k − r ≥ 1. Then, simply replace A and B in the above

argument.

There are variants of the above interlacing inequality. The above argument gives also the

following lemma.

Lemma 2.3 (Strong Interlacing). Let A, B in Hn and assume that A = B + C with C positive

semi-definite with rank r. Then

λk(B) ≤ λk(A) ≤ λk−r(B).
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Deviation in Kolmogorov-Smirnov distance

We now give a perturbation inequality which is a consequence of interlacing. For µ, µ′ two real

probability measure, we introduce the Kolmogorov-Smirnov distance

dKS(µ, µ′) = sup
t∈R
|µ(−∞, t]− µ′(−∞, t]| = ‖Fµ − Fµ′‖∞,

where Fµ is the cumulative partition function of µ. The Kolmogorov-Smirnov distance is closely

related to functions with bounded variations. More precisely, for f : R→ R the bounded variation

distance is defined as

‖f‖BV = sup
∑
k∈Z
|f(xk+1)− f(xk)|,

where the supremum is over all sequence (xk)k∈Z with xn ≤ xn+1. If the f = 1I((−∞, t)) then

‖f‖BV = 1 while if the derivative of f is in L1(R), we have

‖f‖BV =

∫
|f ′|dt.

Functions with bounded variations have left and right limits at any points and have a countable

number of discontinuity points. To avoid minor complications, we will denote by BV+ the set of

right continuous function with ‖f‖BV <∞.

We have a variational formula for the Kolomogorov-Smirnov distance.

Lemma 2.4. For any real probability measures µ, µ′,

dKS(µ, µ′) = sup

{∫
fdµ−

∫
fdµ′ : f ∈ BV+, ‖f‖BV ≤ 1

}
.

Proof. Choosing f = 1I(−∞,t] gives a first upper bound on dKS. The other way around, let f ∈ BV+.

Then, a classical theorem (see [Roy63]) asserts that f can be written as f(y) = f(x) +
∫ y
x dσ(t)

with σ signed measure on R and ‖f‖BV =
∫
d|σ|.

Let τ is a continuity point of Fµ(t) = µ(−∞, t] and f , we have the integration by part formula∫ τ

−∞
f(t)dµ(t) = −f(τ)Fµ(τ)−

∫ τ

−∞
Fµ(t)dσ(t).

This yields, letting τ tend to infinity,∫
f(t)dµ(t)−

∫
f(t)dµ′(t) = −

∫ (
Fµ(t)− Fµ′(t)

)
dσ(t).

In particular, ∣∣∣∣∫ fdµ−
∫
fdµ′

∣∣∣∣ ≤ ∫ ∣∣Fµ(t)− Fµ′(t)
∣∣d|σ|(t) ≤ ‖f‖BV‖Fµ − Fµ′‖∞. (2.4)

If gives the reverse inequality.

14



As a corollary from the interlacing inequality, we obtain the following deviation inequality for

empirical spectral distributions.

Lemma 2.5 (Rank inequality for ESD). Let A, B in Hn(C) and assume that dim(A − B) = r

Then,

dKS(µA, µB) ≤ r

n
.

and for any f ∈ BV+, ∣∣∣∣∫ f(λ)dµA(λ)−
∫
f(λ)dµB(λ)

∣∣∣∣ ≤ ( rn)‖f‖BV.

Proof. Fix t ∈ R. Let k and k′ be the smallest indices such that λk(A) ≤ t and λk′(B) < t (recall

our convention (2.3)). By lemma 2.2, we find

|k − k′| ≤ r.

This yields ∣∣Fµ(t)− Fµ′(t)
∣∣ =

∣∣∣∣(n+ 1− k)− (n+ 1− k′)
n

∣∣∣∣ ≤ r

n
.

This gives the first statement. The second statements follows from (2.4).

1.2 Hoffman-Wielandt inequality

We now present another matrix inequality which is particularly useful. It is an inequality in terms

of perturbations in Frobenius norm, for A ∈ Hn(C):

‖A‖F =
√

TrA2.

This norm is very natural: (Hn(C), ‖ ·‖F ) is isomorphic to the Euclidean space (Rn2
, ‖ ·‖2) through

the map A 7→ (Aii,
√

2<(Aij),
√

2=(Aij))j>i. Recall the convention (2.1) to order eigenvalues of an

hermitian matrix.

Lemma 2.6 (Hoffman-Wielandt inequality). Let A, B in Hn(C),

n∑
i=1

(λi(A)− λi(B))2 ≤ Tr(A−B)2 = ‖A−B‖2F .

Proof. From the septral theorem, we have A = UCU∗ and B = V DV ∗, where U, V are uni-

tary matrices and C,D are diagonal matrices with respective diagonals (λ1(A), . . . , λn(A)) and

(λ1(B), . . . , λn(B)). Set W = U∗V , since Tr(AB) = Tr(BA), we find

‖A−B‖2F = ‖CW −WD‖F .
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Setting Pij = |Wij |2 we get

‖A−B‖2F =
∑
i,j

Pij(λi(A)− λj(B))2.

Since W is unitary, P = (Pij) is an n× n doubly stochastic matrix. If Sn denotes the set of n× n
doubly stochastic matrices, we find

‖A−B‖2F ≥ inf
Q∈Sn

∑
i,j

Qij(λi(A)− λj(B))2.

The set Sn is convex and compact. Moreover, the above variational expression is linear in Q. It

follows that the infimum is reached at an extremal point of Sn. Now, a theorem due to Birkhoff and

von Neumann states that the extremal points of Sn are the permutation matrices: that is matrices

such that for some permutation σ ∈ Sn, Qij = 1I(σ(i) = j) for every 1 ≤, i, j ≤ n. It gives

‖A−B‖2F ≥ inf
σ∈Sn

∑
i

(λi(A)− λσ(i)(B))2.

To conclude, we claim that if x1 ≥ . . . ≥ xn and y1 ≥ . . . ≥ yn then

inf
σ∈Sn

n∑
i=1

(xi − yσ(i))2 =
n∑
i=1

(xi − yi)2. (2.5)

Indeed, if σ(j) < σ(i) for some i < j, we find that

(xi − yσ(i))2 + (xj − yσ(j))2 = (xi − yσ(j))2 + (xj − yσ(i))2 + 2(xi − xj)(xσ(j) − xσ(i))

≥ (xi − yσ(j))2 + (xj − yσ(i))2.

It implies easily (2.5).

For p ≥ 1, µ, µ′ two real probability measure such that
∫
|x|pdµ and

∫
|x|pdµ′ are finite. We

define the Lp-Wasserstein distance as

Wp(µ, µ
′) =

(
inf
π

∫
R×R
|x− y|pdπ

) 1
p

where the infimum is over all coupling π of µ and µ′ (i.e. π is probability measure on R×R whose

first marginal is equal to µ and second marginal is equal to µ′). Note that Hölder inequality gives

for 1 ≤ p ≤ p′,
Wp ≤Wp′ .

For any p ≥ 1, if Wp(µn, µ) converges to 0 then µn → µ weakly. This follows for example from

Kantorovich-Rubinstein duality

W1(µ, µ
′) = sup

{∫
fdµ−

∫
fdµ′ : ‖f‖L ≤ 1

}
.
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where we have used the Lipschitz (semi)-norm

‖f‖L = sup
x 6=y

|f(x)− f(y)|
|x− y|

.

We may then deduce a perturbation inequality for empirical spectral distribution in terms of

Frobenius norm.

Corollary 2.1 (Trace inequality inequality for ESD). Let A, B in Hn(C), then

W2(µA, µB) ≤
√

1

n
Tr(A−B)2 = ‖A−B‖F .

Proof. Consider the coupling π of (µA, µB) defined as

π =
1

n

n∑
i=1

δλi(A),λi(B).

We find ∫
R×R
|x− y|2dπ ≤ 1

n
Tr(A−B)2.

The left hand side is lower bounded W 2
2 (µA, µB) by construction (in fact it is even equal from

(2.5)).

We also get a Lipschitz bound for spectral statistics in terms of Frobenius norm.

Corollary 2.2 (Lipschitz continuity of spectral statistics). Let f : Rn → R be a Lipchitz function.

Then the map F : (Hn(C), ‖ · ‖F )→ R

F (X) = f(λ1(X), · · · , λn(X)).

is Lispchitz with constant ‖f‖L. In particular, if g : R→ R is Lipschitz,

G(X) =
1

n
Tr

{
g

(
X√
n

)}
=

∫
g(λ)dµ X√

n
(λ)

is Lipschitz with constant ‖g‖L/n.

Proof. From Hoffman-Wielandt inequality, we get

|F (X)− F (Y )|2 ≤ ‖f‖2L
n∑
k=1

|λk(X)− λk(Y )|2 ≤ ‖f‖2L‖X − Y ‖2F .

The second statement follows from the first statement, since the map

(x1, · · · , xn)→
n∑
i=1

xi

is Lipschitz with constant
√
n (thanks to Cauchy-Schwartz inequality).
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Remark 2.1 (Frobenius versus Euclid). It will sometimes be more convenient to see a matrix

X ∈ Hn(C) has a vector in Rn2
defined by (Xii,<(Xij),=(Xij))j>i. Then, using that ‖X‖F ≤√

2‖X‖2 the Lipschitz bounds in (Hn(C), ‖ · ‖F ) of Corollary 2.2 can be replaced by Lipschitz bound

in (Rn2
, ‖ · ‖2) with constants multiplied by a factor

√
2.

1.3 Deviation in bounded variation and Lipshitz norm

For real probability measures µ, µ′, we define the distance

d(µ, µ′) = sup

{∫
fdµ−

∫
fdµ′ : ‖f‖L ≤ 1, ‖f‖BV ≤ 1

}
,

so that we can apply both Corollary 2.1 and Lemma 2.5 to this distance :

d(µA, µB) ≤ min

(
rank(A−B)

n
,

√
1

n
Tr(A−B)2

)
. (2.6)

This distance is stronger that the Lévy distance.

dL(µ, µ′) = inf{ε > 0 : for all real t, Fµ(t) ≤ Fµ′(t+ ε) + ε, Fµ′(t) ≤ Fµ(t+ ε) + ε}.

where Fµ(t) = µ(−∞, t] is the cumulative partition function. It follows that if d(µn, µ) → 0 then

µn converges weakly to µ.

Exercise 2.1. Deduce Theorem 1.1 from Theorem 1.3 by a successive truncation argument relying

on Equation (2.6).

2 Bounds on the variance

2.1 Efron-Stein inequality

We follow Boucheron, Lugosi, Massart [BLM13]. Let X = X1×· · ·×Xn be a product of measurable

spaces and let X = (X1, . . . , Xn) ∈ X be a vector of independent random variables.

We denote by Ei the conditional expectation with respect to the σ-algebra generated by (Xj)j 6=i

and, if Z = f(X) is a measurable function of X, Vari(Z) = Ei(Z−EiZ)2 is the conditional variance.

Efron-Inequality asserts that the variance is subadditive.

Theorem 2.1 (Efron-Stein Inequality). Let X = (X1, · · · , Xn) be independent random variables

and f : X → R such that Ef(X)2 <∞ then, if Z = f(X),

Var(Z) ≤
n∑
i=1

EVari(Z) =
n∑
i=1

E(Z − EiZ)2.
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Moreover, if X ′ = (X ′1, · · · , X ′n) is an copy of X and Z ′i = f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

n∑
i=1

EVari(Z) =
1

2

n∑
i=1

E(Z − Z ′i)2.

Proof. The second claim is easy as Ei(Z − EiZ)(Z ′i − EiZ) = 0. We follow a beautiful argument

of Chatterjee. We may assume that Ef(X) = 0. Let X(i) = (X ′1, . . . , , X
′
i, Xi+1, . . . , Xn) and

X ′(i) = (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn). We have X(0) = X, X(n) = X ′ and Z ′i = f(X ′(i)). We

write, for any f, g : X → R

Eg(X)f(X) =
n∑
i=1

Eg(X)(f(X(i−1))− f(X(i)))

Switching X and X ′, we note that g(X)(f(X(i−1)) − f(X(i)) has the same distribution than

−g(X ′(i))(f(X(i−1))− f(X(i)). Hence,

Eg(X)f(X) =
1

2

n∑
i=1

E(g(X)− g(X ′(i)))(f(X(i−1))− f(X(i)))

It remains to set f = g and apply Cauchy-Schwartz inequality.

A simple consequence of Efron-Stein inequality when f has bounded differences, that is f is

Lipschitz for a weighted Hamming pseudo-distance, i.e. for every x, y ∈ X ,

|f(x)− f(y)| ≤
n∑
k=1

ck1Ixk 6=yk . (2.7)

for some c = (c1, · · · , cn) ∈ Rn+. We denote by ‖y‖2 =
√∑

i y
2
i , the usual Euclidean norm. Theorem

2.1 implies the following.

Corollary 2.3. Let X = (X1, · · · , Xn) be independent random variables and f : X → R such that

(2.7) holds then

Var(f(X)) ≤ ‖c‖
2
2

2
.

We will however see a much more powerful concentration inequality for functions with bounded

differences.

Random matrices with independent half-rows

We will obtain two applications for random matrices of Efron-Stein inequality, one for each per-

tubation inequality that we have seen (interlacing and Hoffman-Wielandt). The weakest bound

applies to a large class of random matrices and it is obtained thanks to the interlacing inequality.
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Theorem 2.2 (Variance of ESD with independent half-rows). Let X ∈ Hn(C) be an random

hermitian matrix and for 1 ≤ k ≤ n, define the variables Xk = (Xkj)1≤j≤k ∈ Ck. If the variables

(Xk)1≤k≤n are independent, then for every f ∈ BV+,

Var

(∫
f dµX

)
≤

2‖f‖2BV

n
.

There are examples of random matrices such that the conclusion of Theorem 2.2 is sharp.

Proof. For any x = (x1, . . . , xn) ∈ X =
{

(xi)1≤i≤n : xi ∈ Ci−1 × R
}

, let H(x) be the n×n hermitian

matrix given by H(x)ij = xij for 1 ≤ j ≤ i ≤ n. We thus have X = H(X1, . . . , Xn). For all x ∈ X
and x′i ∈ Ci−1 × R, the matrix

H(x1, . . . , xn)−H(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

has only the i-th row and column possibly different from 0, and thus

rank
(
H(x1, . . . , xn)−H(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)

)
≤ 2.

Therefore from Lemma 2.5, we obtain,∣∣∣∣∫ fdµH(x1,...,xn)
−
∫
fdµH(x1,...,xi−1,x

′
i
,xi+1,...,xn)

∣∣∣∣ ≤ 2‖f‖BV

n
.

The desired result follows now from Corollary 2.3.

Convex Poincaré inequality

In Efron-Stein inequality, when X is Rm or Cm, we may use differential calculus to estimate the

upper bound in the inequality. If f is

Theorem 2.3 (Convex Poincaré for bounded variables). Let B be the unit ball of Rk and X =

(X1, · · · , Xn) ∈ Bn ⊂ Rkn be a vector of independent random variables. If f : Rkn → R is convex

and such that Ef(X)2 <∞ then,

Var(f(X)) ≤ 2E‖∇f(X)‖22.

In particular, if f is Lipshitz with constant L, the variance is bounded by 2L2.

In the next subsection, we will introduce the probabilistic Poincaré inequality. Theorem 2.3

asserts that all vectors of independent bounded variables satisfy a Poincaré inequality restricted to

convex functions.
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Proof. Let X ′ be an independent copy of X and X ′(i) = (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn). By

symmetry and Theorem 2.1, we have

Var(f(X)) ≤ 1

2

n∑
i=1

E(f(X)− f(X ′i))
2 =

n∑
i=1

E(f(X)− f(X ′i))
2
+,

where (a)2+ = max(a, 0)2. The convexity assumption implies that f(x) − f(y) ≤ ∇f(x) · (x − y)

where · is the scalar product. Since a 7→ (a)2+ is non-decreasing, we get from Cauchy-Schwartz

inequality,

(f(X)− f(X ′i))
2
+ ≤ ‖∇if(X)‖22‖Xi −X ′i‖22,

where ∇if(X) ∈ Rk is the gradient of Xi 7→ f(X). By assumption ‖Xi −X ′i‖2 ≤ 2 and we find

n∑
i=1

(f(X)− f(X ′i))
2
+ ≤ 2

n∑
i=1

‖∇if(X)‖22 = 2‖∇f(X)‖22

as requested.

In some cases it is possible to remove the assumption that f is convex. If f is smooth, a

possibility is to write a Taylor expansion to higher order. Another favorable case is when f is a

finite weighted sum of convex functions (we will see these two examples appear in random matrices).

Variance of largest eigenvalue and linear statistics

A first easy consequence of the convex Poincaré inequality is the following.

Theorem 2.4 (Variance of largest eigenvalue with independent entries). Let X ∈ Hn(C) be an

random hermitian matrix such that the variables (Xij)i≤j are independent and bounded by D. Then

Var (λ1(X)) ≤ 4D2.

Proof. By Corollary 2.2, the real-valued function on Rn × Cn(n−1)/2, F : (Xii, Xij)i<j 7→ λ1(X) is

convex with Lipschitz constant
√

2 (see Remark 2.1). Moreover it is convex by inequality (2.2). It

remains to apply Theorem 2.3.

This result is interesting but fails to capture the proper order of the fluctuations in n, the

variance of λ1(X) is of order O
(

1
n1/3

)
.

Another consequence of Theorem 2.3 is the following.

Theorem 2.5 (Variance of ESD with independent entries). Let X ∈ Hn(C) be an random hermitian

matrix such that the variables (Xij)i≤j are independent and bounded by D. Then for every C1-

function f : R→ R with Lipschitz constant L and k inflection points,

Var

(∫
f dµ X√

n

)
≤ 4(k + 1)2D2L2

n2
.
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Note that if (Y1, . . . , Yn) are iid real random variables and f(Yi) is square-integrable then the

variance of

Var

(
1

n

∑
f(Yi)

)
= O

(
1

n

)
.

Hence, Theorem 2.5 implies that eigenvalues of random matrices are much more concentrated than

iid samples. The first step of proof is the following lemma.

Lemma 2.7 (Peierls). Suppose that the function f : R → R is convex. The function F : X 7→
Trf(X) on Hn(C) is convex.

Proof. Let ψ ∈ Cn such that ‖ψ‖2 = 1. Let X be in Hn(C), (u1, . . . , un) be an orthonormal basis

of eigenvectors of X with eigenvalues (λ1, · · · , λn). From the spectral theorem,

〈ψ, f(X)ψ〉 =
n∑
k=1

f(λk)|〈ψ, uk〉|2

≥ f

(
n∑
k=1

λk|〈ψ, uk〉|2
)
,

where the last step follows from Jensen inequality together with Pythagoras theorem:
∑

k |〈ψ, uk〉|
2 =

‖ψ‖22 = 1. Using again the spectral theorem, this proves the Peierls inequality

〈ψ, f(X)ψ〉 ≥ f(〈ψ,Xψ〉) when ‖ψ‖2 = 1. (2.8)

Now, let X,Y be in Hn(C), t ∈ [0, 1] and (v1, . . . , vn) an orthornormal basis of eigenvectors of

tX + (1− t)Y . For all k, using that vk is an eigenvector and the convexity of f , we have

〈vk, f(tX + (1− t)Y )vk〉 = f(〈vk, (tX + (1− t)Y )vk〉)

= f(t〈vk, Xvk〉+ (1− t)〈vk, Y vk〉)

≤ tf(〈vk, Xvk〉) + (1− t)f(〈vk, Y vk〉)

≤ t〈vk, f(X)vk〉+ (1− t)〈vk, f(Y )vk〉,

where at the last step, we have used (2.8). It remains to recall that for any matrix A in Mn(C),

Tr(A) =
∑

k〈vk, Avk〉.

Lemma 2.8 (Weighted sum of convex functions). Suppose that the C1-function f : R → R has k

inflection points. Then, there exist εi ∈ {−1, 1}, fi convex with ‖fi‖L ≤ ‖f‖L such that

f =

k+1∑
i=1

εifi.
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Proof. By induction on k. Let x1 < · · · < xk be the inflection points of f . Up to considering

±(f(·−xk)−f(xk)), we may assume without loss of generality that xk = 0, f(0) = 0 and f ′′(x) > 0

for x > 0. We decompose f as

f(x) = f(x)− f ′(0)x+ f ′(0)x

=
{

(f(x)− f ′(0)x)1I(x < 0) + f ′(0)x
}

+ (f(x)− f ′(0)x)1I(x ≥ 0)

= g1(x) + g2(x).

Notice that g1 and g2 are C1-functions. Moreover, g2 is convex and, for x ≥ 0, g′2(x) = f ′(x)−f ′(0) ∈
[0, f ′(x)] so that ‖g2‖L ≤ ‖f‖L. Similarly, g1 has k− 1 inflection points and, since g1(x) = f(x) on

(−∞, 0] and g1(x) = f ′(0)x on [0,∞) we find ‖g1‖L ≤ ‖f‖L.

Proof of Theorem 2.5. From Lemma 2.8, we have∫
f dµ X√

n
=

k+1∑
t=1

εt

∫
ft dµ X√

n
.

for some signs εi and convex functions fi. In particular, from Cauchy-Schwartz inequality,

Var

(∫
f dµ X√

n

)
≤ (k + 1)

k+1∑
t=1

Var

(∫
ft dµ X√

n

)
.

By Corollary 2.2 and Lemma 2.7, the real-valued function on Rn × Cn(n−1)/2, F : (Xii, Xij)i<j 7→∫
ft dµ X√

n
is convex with Lipschitz constant

√
2L/n (see Remark 2.1). It remains to apply Theorem

2.3 to each term on the right hand side.

2.2 Poincaré Inequality

Definition and first properties

Definition 2.1 (Poincaré inequality). A random variable X on Rn satisfies Poincaré inequality

with constant c > 0 if for any differentiable function with Ef(X)2 <∞,

Var(f(X)) ≤ cE‖∇f(X)‖22

where ‖∇f‖22 =
∑n

i=1(∂if)2.

We prove below that the standard Gaussian on R satisfies Poincaré with constant c = 1. More

generally, let V : Rn → R ∪ {∞} such that V (x) − c‖x‖22/2 is convex. Then the probability

P (dx) = Z−1e−V (x)dx satisfies Poincaré with constant c. We refer to Ledoux [Led01] for more

properties on Poincaré inequalities.

We will use the following elementary properties of the Poincaré inequality.
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Lemma 2.9 (Properties of Poincaré Inequality). Let X1, X2 be independent random variables in

Rn1 and Rn2 which satisfy Poincaré with constants c1, c2 > 0.

- Homogeneity : for a ∈ R, b ∈ Rni, aXi + b satisfies Poincaré with constant a2ci.

- Tensorization : (X1, X2) satisfies Poincaré in Rn1+n2 with constant max(c1, c2).

Proof. Homogeneity is obvious, the tensorization property is a direct consequence of Efron-Stein

inequality, Theorem 2.1: if X = (X1, X2),

Var(f(X)) ≤ E(Var1f(X)) + E(Var2f(X)) ≤ c1E‖∇1f(X)‖22 + c2E‖∇2f(X)‖22.

where ∇if(X) is the gradient of Xi 7→ f(X). It concludes the proof as ‖∇1f(X)‖22 +‖∇2f(X)‖22 =

‖∇f(X)‖22.

Gaussian vectors satisfy Poincaré inequality.

Lemma 2.10 (Gaussian Poincaré inequality). The standard Gaussian variable on Rn satisfies

Poincaré with constant c = 1.

Proof. From the tensorization property, it is sufficent to prove the claim for n = 1. There are many

possible proofs, here we use the celebrated Gaussian integration by parts formula: for any-real

valued function f with obvious integrability conditions

EXf(X) = Ef ′(X), (2.9)

where X is a standard Gaussian variable.

Let X ′ be an independent copy of X and f a C1-function such that Ef(X) = 0. For t ∈ [0, 1],

we define

Xt =
√
tX +

√
1− tX ′ and Yt =

√
1− tX −

√
tX ′.

Note that Xt and Yt are independent standard Gaussian variables, X1 = X, X0 = X ′ and X =
√
tXt +

√
1− tYt. Using Fubini’s Theorem, we may write

Ef(X)2 = Ef(X)(f(X)− f(X ′))

= E
∫ 1

0
f(X)∂tf(Xt)dt

= E
∫ 1

0
f(X)

(
X

2
√
t
− X ′

2
√
t

)
f ′(Xt)dt

=

∫ 1

0

1

2
√
t
√

1− t
Ef(
√
tXt +

√
1− tYt)Ytf ′(Xt)dt.
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Using the independence of Xt and Yt, we may use (2.9) for Yt. We get

Ef(X)2 =

∫ 1

0

1

2
√
t
Ef ′(
√
tXt +

√
1− tYt)f ′(Xt)dt.

It remains to apply Cauchy-Schwartz inequality.

Application to random matrices

An immediate consequence of Corollary 2.2 is the following.

Theorem 2.6 (Variance of ESD with Poincaré). Let X ∈ Hn(C) be an random hermitian matrix

such that the vector (Xij)i≤j (seen as a vector in Rn2
) satisfies Poincaré with constant c. Then for

every C1-function f : R→ R with Lipschitz constant L,

Var

(∫
f dµ X√

n

)
≤ 2cL2

n2
.

Compared to Theorem 2.5, Theorem has removed the convexity assumption. The variance

bound in Theorem 2.6 has the optimal order of magnitude.

Using the first part of Corollary 2.2, we can also derive a result for the concentration of a single

eigenvalue.

Theorem 2.7 (Variance of an eigenvalue with Poincaré). Let X ∈ Hn(C) be an hermitian random

matrix and assume that the vector (Xij)i≤j satisfies Poincaré with constant c > 0 in Rn2
. Then

for any 1 ≤ k ≤ n,

Var(λk(X)) ≤ 2c.

This result does not capture the actual variance. For GUE matrices and k = dpne with 0 <

p < 1, the variance is of order O
(
logn
n

)
. For k ∈ {1, n}, the variance is of order O

(
1

n1/3

)
.

3 Exponential Tail Bounds

3.1 Bounded Martingale difference inequality

We now improve the variance bound of Corollary 2.3 to sharper exponential tail bound. Recall the

setting of the previous section. Let X1 · · · Xn be metric spaces and set X = X1 × · · · × Xn.

Theorem 2.8 (Azuma-Hoeffding’s inequality). Let X = (X1, · · · , Xn) be independent random

variables and f : X → R such that (2.7) holds then for any t ≥ 0,

P (f(X)− Ef(X) ≥ t) ≤ exp

(
−t2

2‖c‖22

)
.
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This type of result is called a concentration inequality. It has found numerous applications in

mathematics over the last decades. For more on concentration inequalities, we refer to [Led01,

BLM13]. As a corollary, we deduce the Hoeffding’s inequality.

Corollary 2.4 (Hoeffding’s inequality). Let (Xk)1≤k≤n be an independent sequence of real random

variables such that for all integer k, Xk ∈ [ak, bk]. Then,

P

(
n∑
k=1

Xk − EXk ≥ t

)
≤ exp

(
−t2

2
∑n

k=1(bk − ak)2

)
. (2.10)

The proof of Theorem 2.8 will be based on a lemma due to Hoeffding.

Lemma 2.11. Let X be real random variable in [a, b] such that EX = 0. Then, for all λ ≥ 0,

EeλX ≤ e
λ2(b−a)2

8 .

Proof. By the convexity of the exponential,

eλX ≤ b−X
b− a

eλa +
X − a
b− a

eλb.

Taking expectation, we obtain, with p = −a/(b− a),

EeλX ≤ b

b− a
eλa − a

b− a
eλb

=
(

1− p+ peλ(b−a)
)
e−pλ(b−a)

= eϕ(λ(b−a)),

where ϕ(x) = −px+ ln(1− p+ pex). The derivatives of ϕ are

ϕ′(x) = −p+
pex

(1− p)e−x + p
and ϕ′′(x) =

p(1− p)
((1− p)e−x + p)2

≤ 1

4
.

Since ϕ(0) = ϕ′(0) = 0, we deduce from Taylor expansion that

ϕ(x) ≤ ϕ(0) + xϕ′(0) +
x2

2
‖ϕ′′‖∞ ≤

x2

8
.

Proof of Theorem 2.8. Let (X1, · · · , Xn) be a random variable on X with distribution P . We shall

prove that

P(f(X1, · · · , Xn)− Ef(X1, · · · , Xn) ≥ t) ≤ exp

(
−t2

2‖c‖22

)
.

For integer 1 ≤ k ≤ n, let Fk = σ(X1, · · · , Xk), Z0 = Ef(X1, · · · , Xn), Zk = E[F (X1, · · · , Xn)|Fk],
Zn = f(X1, · · · , Xn). We also define Yk = Zk − Zk−1, so that E[Yk|Fk−1] = 0. Finally, let
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(X ′1, · · · , X ′n) be an independent copy of (X1, · · · , Xn). If E′ denote the expectation over (X ′1, · · · , X ′n),

we have

Zk = E′f(X1, · · · , Xk, X
′
k+1, · · · , X ′n).

It follows by (2.7)

Yk = E′f(X1, · · · , Xk, X
′
k+1, · · · , X ′n)− E′f(X1, · · · , Xk−1, X

′
k, · · · , X ′n) ∈ [−ck, ck].

Since E[Yk|Fk−1] = 0, we may apply Lemma 2.11: for every λ ≥ 0,

E[eλYk |Fk−1] ≤ e
λ2c2k

2 .

This estimates does not depend on Fk−1, it follows that

Eeλ(Zn−Z0) = E[eλ
∑n
k=1 Yk ] ≤ e

λ2‖c‖22
2 .

From Chernov bound, for every λ ≥ 0,

P(f(X1, · · · , Xn)− Ef(X1, · · · , Xn) ≥ t) ≤ exp

(
−λt+

λ2‖c‖22
2

)
.

Optimizing over the choice of λ, we choose λ = t/‖c‖22.

Random matrices with independent half-rows

The proof of Theorem 2.2 and Theorem 2.8 imply the following statement.

Theorem 2.9 (Concentration of ESD with independent half-rows). Let X ∈ Hn(C) be an hermitian

random matrix and let for 1 ≤ k ≤ n, Xk = (Xkj)1≤j≤k ∈ Ck. If the variables (Xk)1≤k≤n are

independent, then for every f ∈ BV+ and t ≥ 0,

P
(∣∣∣∣∫ f dµX − E

∫
f dµX

∣∣∣∣ ≥ t) ≤ 2 exp

(
− nt2

8‖f‖2BV

)
.

3.2 Logarithmic Sobolev inequality

We are now going to derive optimal concentration inequalities. We follow Section 2.3.2 in [AGZ10].

Definition 2.2 (Logarithmic Sobolev inequality (LSI)). A random variable X on Rn satisfies LSI

with constant c if for any differentiable square integrable function f

EntX(f(X)2) = Ef(X)2 log

(
f(X)2

Ef(X)2

)
≤ 2cE‖∇f(X)‖22,

where ‖∇f‖22 =
∑n

i=1(∂if)2.
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Recall that the entropy bound which is naturally related to transport inequalities. For example,

the Pinsker’s inequality relates the entropy to the total variation distance between two probability

measures :

dTV(µ, µ′) = sup
A
|µ(A)− µ(A′)| ≤

√
2Entµ

(
∂µ′

∂µ

)
.

The definition of LSI is due to Léonard Gross 1975. It bounds the entropy by an energy. It

is closely related to hypercontractivity in semi-group theory. Refer to Ané et al. [ABC+00], to

Ledoux [Led01]. For techniques to prove LSI, see also Villani Chap. 21-22 ”optimal transport, old

and new” and Guionnet and Zegarlinski [GZ03]. It is not difficult to check that a variable which

satisfies LSI satisfies Poincaré with the same constant.

For us, it will be important that the standard Gaussian on R satisfies LSI(1). More generally, let

V : Rn → R∪{∞} such that V (x)−c‖x‖22/2 is convex. Then the probability P (dx) = Z−1e−V (x)dx

satisfies LSI(c), it is a consequence of Bakry-Émery criterion, see Bobkov-Ledoux 2000.

Lemma 2.12 (Properties of LSI). Let X1, X2 be independent random variables in Rn1 and Rn2

which satisfy LSI with constants c1, c2.

- Homogeneity: for a ∈ R, b ∈ Rni, aXi + b satisfies LSI(a2c).

- Tensorization: (X1, X2) in Rn1+n2 satisfies LSI(max(c1, c2)).

Proof. Only the tensorization property deserves a proof. It is due to Han’s inequality which implies

the subbadivity of the relative entropy. Set X = (X1, X2) and Z = f2(X) we denote by Ei the

conditional expectation given Xj , j 6= i and Enti(Z) = EiZ log(Z/EZi) the conditional entropy.

We decompose the entropy as

Ent(Z) = EZ log
Z

EZ

= E2

(
E1

(
Z log

Z

E1Z

))
+ E2

(
(E1Z) log

E1Z

EZ

)
= E2(Ent1(Z1)) + Ent2(E1Z).

Recall the variational formula for the entropy :

Ent(Z) = sup
{
E(Zh(X)) : E

(
eh(X)

)
= 1
}
,

(which follows from the inequality : xy ≤ x log x− x+ ey, for any x > 0, y ∈ R which is applied to

x = Z/EZ and y = h(X))). This yields to, for any function g : Rm2 → R with E2e
g(X2) = 1,

E2((E1Z)g(X2)) = E1(E2(Zg(X2))) ≤ E1(Ent2(Z)).
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Taking the supremum over all g, yields the tensorization inequality for the entropy:

Ent(Z) ≤ E2(Ent1(Z)) + E1(Ent2(Z)) = E(Ent1(Z)) + E(Ent2(Z)).

We may now apply the LSI(ci), for i ∈ {1, 2}, and the statement of the lemma is straightforward.

Lemma 2.13 (Herbst’s argument). Assume that X satisfies LSI(c). Let f : Rn → R be Lipschitz

with constant 1. Then for all λ ∈ R,

Eeλ(f(X)−Ef(X)) ≤ e2cλ2 .

and so for any t ≥ 0,

P (|f(X)− Ef(X)| ≥ t) ≤ 2e−
t2

8c .

Proof. We use Chernoff bound, for λ ∈ R,

P (f(X)− Ef(X) ≥ t) ≤ e−λtEeλ(f(X)−Ef(X)).

Applied λ = t/(4c), f and −f , we deduce that the second statement is a consequence of the first

statement. By a density, we may assume that f continuously differentiable (refer to [ABC+00,

lemma 7.3.3]). By homogeneity, we can assume Ef(X) = 0 and λ > 0. We set Z = f(X). Consider

the log-Laplace function

Λ(λ) = logEe2λZ .

Apply the definition of LSI to the function f = eλZ . We find

2λEf(X)e2λZ − Ee2λZ logEe2λZ ≤ 2cE
n∑
i=1

∣∣∣(∂iZ)λeλZ
∣∣∣2 ≤ 2cL2Ee2λZ ,

where L2 = maxx∈Rn ‖∇F (x)‖22 = maxx∈Rn
∑n

i=1 |∂iF (x)|2 ≤ 1. We observe that(
Λ(λ)

λ

)′
= 2

EZe2λZ

λEe2λZ
− logEe2λZ

λ2
.

It yields to (
Λ(λ)

λ

)′
≤ 2c.

Since EZ = 0, Λ(λ) = o(λ) as λ ↓ 0, we find for all λ > 0,

Λ(λ) ≤ 2cλ2.

This proves the first statement.

We can now derive powerful concentration inequalities for random matrices with independent

entries. From Lemma 2.13 and Corollary 2.2, we find the following.
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Theorem 2.10 (Concentration of ESD with LSI). Let X ∈ Hn(C) be an hermitian random matrix

and assume that the variable (Xij)i≤j satisfies LSI(c) in Rn2
. Then for any f : R → R such that

‖f‖L ≤ 1 and every t ≥ 0,

P
(∣∣∣∣∫ f dµX/√n − E

∫
f dµX/

√
n

∣∣∣∣ ≥ t) ≤ 2 exp

(
−n

2t2

16c

)
.

We can also derive a result for the concentration of single eigenvalues (the same comment below

Theorem 2.7 applies here also).

Theorem 2.11 (Concentration of single eigenvalue with LSI). Let X ∈ Hn(C) be an hermitian

random matrix and assume that the random variable (Xij)i≤j satisfies LSI(c) in Rn2
. Then for any

1 ≤ k ≤ n and every t ≥ 0,

P (|λk(X)− Eλk(X)| ≥ t) ≤ 2 exp

(
− t2

16c

)
.

3.3 With Talagrand’s concentration inequality

We start by recalling Talagrand’s concentration inequality.

Theorem 2.12 (Talagrand’s concentration inequality). Let B be the unit ball of C. Consider a

convex Lipshitz real-valued function f defined on Bn. Let X = (X1, . . . , Xn) ∈ Bn a vector of

independent variables and let m(f) be the median of f(X). Then for any t > 0,

P(|f(X)−m(f)| ≥ t) ≤ 4 exp

(
− t2

8‖f‖2L

)
.

For a proof in the real case see Ledoux [Led01] (with constant 4 instead of 8). As in the proof

of Theorem 2.3, we can use the subadditivity of relative entropy proved in Lemma 2.12 together

with Herbst’ argument Lemma 2.13 to obtain an analog bound for the upper tail (see [BLM13] for

details). Oddly, this argument does not seem to give the bound for the lower tail (the assumption

f convex is not symmetric).

With the assumption of the theorem, we find

|m(f)− E(f(X))| ≤
∫ ∞
0

P(|f(X)−m(f)| ≥ t)dt

≤ 2

∫ ∞
−∞

e
− t2

8‖f‖2
L dt

= 4
√

2π‖f‖L.

At the cost of changing the constants, in Talagrand’s Theorem 2.12, we may replace m(f) by

Ef(X).
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Application to random matrices

Talagrand inequality readily implies the following concentration inequalities.

Theorem 2.13. Let X ∈ Hn(C) be an random hermitian matrix such that the variables (Xij)i≤j

are independent and bounded by D. Then, for any t ≥ 0,

P (|λ1(X)−m| ≥ t) ≤ 4 exp

(
− t2

16D2

)
,

where m is the median of λ1(X).

As in the proof of Theorem 2.5, we get the following consequence on linear statistics of the

eigenvalues.

Theorem 2.14. Let X ∈ Hn(C) be an random hermitian matrix such that the variables (Xij)i≤j

are independent and bounded by D. Then for any C1-function f : R→ R with k inflection points,

for every t ≥ 0,

P
(∣∣∣∣∫ f dµX/√n − E

∫
f dµX/

√
n

∣∣∣∣ ≥ t) ≤ c(k + 1) exp

(
− n2t2

c2(k + 1)2D2‖f‖2L

)
,

where c > 0 is a universal constant.

Proof. First observe from Lemma 2.8 and the fact:

{x1 + · · ·+ x` ≥ t} ⊂
⋃

1≤i≤`

{
xi ≥

t

`

}
,

that it is sufficient to prove the statement for f convex. The latter is a consequence of Theorem

2.12, Corollary 2.2 and Lemma 2.7.
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Lecture 3

Resolvent of random matrices

In Lecture 1, we have seen that the even moments of Wigner’s semi-circular law are given by the

Catalan number. The generating function of the Catalan’s number satisfies a very simple fixed point

equation (1.2). This hints that the generating function of moments of ESD of random matrices

could be easier to compute than the actual moments. The resolvent method formalizes this ideas.

1 Cauchy-Stieltjes transform

1.1 Definition and properties

Let µ be a finite measure on R. Define its Cauchy-Stieltjes transform as for all z ∈ C+ = {z ∈ C :

=(z) > 0},
gµ(z) =

∫
1

λ− z
dµ(λ).

Note that if µ has bounded support we have

gµ(z) = −
∑
k≥0

1

zk+1

∫
λkdµ(λ).

The Cauchy-Stieltjes transform is thus essentially the generating function of the moments of the

measure µ.

Lemma 3.1 (Properties of Cauchy-Stieltjes transform). Let µ be a finite measure on R with mass

µ(R) ≤ 1.

(i) Analytic : the function gµ is an analytic function from C+ → C+.

(ii) Bounded : for any z ∈ C+, |gµ(z)| ≤ (=(z))−1.

The Cauchy-Stieltjes transform characterizes the measure. More precisely, the following holds.
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Lemma 3.2 (Inversion of Cauchy-Stieltjes transform). Let µ be a finite measure on R.

(i) For any bounded continous f ,∫
fdµ = lim

t↓0

1

π

∫
f(x)=gµ(x+ it)dx.

(ii) For any x ∈ R,

µ({x}) = lim
t↓0

t=gµ(x+ it).

(iii) For almost all x ∈ R, the density of µ at x is equal to

lim
t↓0

1

π
=gµ(x+ it).

Proof. By linearity, we can assume that µ is probability measure. We have the identity

=g(x+ it) =

∫
t

(λ− x)2 + t2
dµ(λ).

Hence 1
π=g(x+it) is the equal to density at x of the distribution (µ ∗ Pt), Pt is a Cauchy distribution

with density

Pt(x) =
t

π(x2 + t2)
.

In other words,
1

π

∫
f(x)=gµ(x+ it)dx = Ef(X + tY ),

where X has law µ and is independent of Y with distribution P1. The statements follow easily.

1.2 Cauchy-Stieltjes transform and weak convergence

The convergence of Cauchy-Stieltjes transform is equivalent to the weak convergence.

Corollary 3.1. Let µ and (µn)n≥1 be a sequence of real probability measures. The following are

equivalent

(i) As n→∞, weakly µn → µ.

(ii) For all z ∈ C+, as n→∞, gµn(z)→ gµ(z).

(iii) There exists a set D ⊂ C+ with an accumulation point in C+ such that for all z ∈ D, as

n→∞, gµn(z)→ gµ(z).
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Proof. Statement ”(i) implies (ii)” follows from the definition of weak convergence applied to the

real and imaginary part of f(λ) = (λ− z)−1. Statement ”(ii) implies (iii)” is trivial. For statement

”(iii) implies (i)”, from Helly selection theorem, the sequence (µn) is relatively compact for the vague

convergence. Let ν be such vague limit, it is a finite measure with mass at most 1. By assumption,

for any z ∈ D, gµ(z) = gν(z). Two analytic functions equal on a set with an accumulation point

are equal on their domain (principle of analytic extension). Hence, by lemma 3.1, for any z ∈ C+,

gµ(z) = gν(z). By lemma 3.2, we deduce that ν is a probability measure and ν = µ.

1.3 Cauchy-Stieltjes transform of the semicircle law

The Cauchy-Stieltjes semi-circular distribution µsc satisfies the fixed point for all z ∈ C+,

gµsc(z) = − 1

z + gµsc(z)
or gµsc(z)

2 + zgµsc(z) + 1 = 0. (3.1)

Let z 7→
√
z be the analytical continuation of x 7→

√
x on C\R− with a positive imaginary part.

We find

gµsc(z) =
−1 +

√
1− 4z

2
.

2 Resolvent

2.1 Spectral measure at a vector

Let A ∈ Hn(C) and ψ ∈ Cn be a vector with unit `2-norm, ‖ψ‖2 = 1.

The spectral theorem guarantees the existence of (v1, · · · , vn), an orthonormal basis of Cn of

eigenvectors of A, that is, for any 1 ≤ i ≤ n, Avi = λi(A)vi. The spectral measure with vector ψ is

the real probability measure defined by

µψA =

n∑
k=1

|〈vk, ψ〉|2δλk(A). (3.2)

It may also be defined as the unique probability measure µφA such that∫
λkdµφA(λ) = 〈ψ,Akψ〉 for all integers k ≥ 1. (3.3)

If (e1, · · · , en) is the canonical basis of Cn, summing (3.2), we find, with ψj = 〈ψ, ej〉,

µψA =

n∑
j=1

|ψj |2µ
ej
A and µA =

1

n

n∑
j=1

µ
ej
A . (3.4)
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2.2 Resolvent matrix

If A ∈ Hn(C) and z ∈ C+ = {z ∈ C : =(z) > 0}, then A− zI is invertible. We define the resolvent

of A as the function R : C+ 7→Mn(C),

R(z) = (A− zI)−1.

We have the identity

〈ψ,R(z)ψ〉 =

∫
dµψA(λ)

λ− z
= g

µψA
(z), (3.5)

where µψA is the spectral measure with vector ψ. Also,

gµA(z) =
1

n
Tr(R(z)).

Lemma 3.3 (Basic properties of the resolvent matrix). Let A ∈ Hn(C) and R(z) = (A− zI)−1 be

its resolvent. For any z ∈ C+, 1 ≤ i, j ≤ n,

(i) Analytic : z 7→ R(z)ij is an analytic function on C+ → C+.

(ii) Bounded : ‖R(z)‖ ≤ =(z)−1.

(iii) Normal : R(z)R(z)∗ = R(z)∗R(z).

Proof. All properties come from the decomposition

R(z) =

n∑
k=1

vkv
∗
k

λk(A)− z
,

where (v1, . . . , vn) is an orthogonal basis of eigenvectors of A.

2.3 Resolvent identity and perturbation inequalities

Let A, B in Hn(C). For z ∈ C+, we denote their resolvent by RA(z) = (A− zIn)−1 and RB(z) =

(B − zIn)−1. For invertible matrices M,N , the identity

M−1 = N−1 +M−1(N −M)N−1 = N−1 +N−1(N −M)M−1

implies the resolvent identity :

RA = RB +RA(B −A)RB = RB +RB(B −A)RA. (3.6)

The following lemma strengthens Equation (2.6).
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Lemma 3.4 (Pertubation of resolvent). Let A, B in Hn(C). Then, if z ∈ C+, RA(z) = (A−zIn)−1

and RB(z) = (B − zIn)−1,

n∑
k=1

|RA(z)kk −RB(z)kk| ≤ 2
rank(A−B)

=z

and

‖RA −RB‖ ≤
‖A−B‖
=(z)2

.

Proof. The second statement is an obvious consequence of the resolvent identity. For the first

statement, the resolvent identity asserts that

M = RA −RB = RA(B −A)RB.

It follows that r = rank(M) ≤ rank(A − B). We notice also that ‖M‖ ≤ 2=(z)−1. Hence, in the

singular value decomposition of M = UDV , at most r entries of D = diag(s1, · · · , sn) are non zero

and they are bounded by ‖M‖. We denote by u1, · · · , ur and v1, · · · , vr the associated orthonormal

vectors so that

M =
r∑
i=1

siuiv
∗
i ,

and

|RA(z)kk −RB(z)kk| = |Mkk| =

∣∣∣∣∣
r∑
i=1

si〈ui, ek〉〈vi, ek〉

∣∣∣∣∣ ≤ ‖M‖
r∑
i=1

|〈ui, ek〉||〈vi, ek〉|.

We obtain from Cauchy-Schwarz,

n∑
k=1

|RA(z)kk −RB(z)kk| ≤ ‖M‖
r∑
i=1

√√√√ n∑
k=1

|〈ui, ek〉|2

√√√√ n∑
k=1

|〈vi, ek〉|2

= r‖M‖.

Its proves the first claim.

As a corollary, we have a concentration inequality for the resolvent.

Corollary 3.2 (Concentration of diagonal resolvent entries). Let X ∈ Hn(C) be an hermitian

random matrix and let for 1 ≤ k ≤ n, Xk = (Xkj)1≤j≤k ∈ Ck. If the variables (Xk)1≤k≤n are

independent, then for every complex valued functions (f1, . . . , fk) with Lipschitz constants 1 and

t ≥ 0,

P

(∣∣∣∣∣ 1n
n∑
k=1

fk(Rkk)− E
1

n

n∑
k=1

fk(Rkk)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−n=(z)2t2

32

)
.

where R = (X − zI)−1 is the resolvent of X at z ∈ C+.
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Proof. By Lemma 3.4, if A and B differs only the i-th row and column, we have the inequality∣∣∣∣∣ 1n
n∑
k=1

fk((RA)kk)−
1

n

n∑
k=1

fk((RB)kk)

∣∣∣∣∣ ≤ 1

n

n∑
k=1

|(RA)kk − (RB)kk| ≤
4

n=z
.

It remains to argue as in the proof of Theorem 2.2 and use Theorem 2.8.

2.4 Resolvent complement formula

The Schur complement is simply a block inversion by part of an invertible matrix.

Lemma 3.5 (Schur’s complement formula). Let A ∈Mn(C) be an invertible matrix. Set

A =

(
A11 A12

A21 A22

)
and A−1 =

(
B11 B12

B21 B22

)
where A11, B11 ∈Mp(C). Then, if A22 and B11 are invertible, we have

B11 = (A11 −A12A
−1
22 A21)

−1.

An immediate consequence is the following formula:

Corollary 3.3 (Resolvent complement formula). Let n ≥ 2, A = (Aij)1≤i,j≤n ∈ Hn(C), z ∈ C+

and R = (A− zIn)−1. For any 1 ≤ i ≤ n,

Rii = −(z −Aii + 〈Ai, RiAi〉)−1,

where Ai = (Aij)j 6=i ∈ Cn−1, Ri = (Ai − zIn−1)−1 and Ai ∈ Hn−1(C) is the principal minor of A

where the i-th row and column have been removed.

3 Resolvent method for random matrices

In this section, we will present on an exemple the resolvent method for random matrix. This

method will be based on two components : a probabilistic component, the concentration of bilinear

forms and a linear algebra component, the Schur complement formula.

3.1 Concentration for bilinear forms

Lemma 3.6 (Variance of Bilinear form of independent vectors). Let A ∈ Mn(C) and X =

(X1, · · · , Xn) ∈ Cn be a vector of centered and independent variables with E|Xi|2 ≤ 1 and Var(|Xi|2) ≤
K for 1 ≤ i ≤ n. Then

E〈X,AX〉 =
n∑
i=1

E|Xi|2Aii and Var〈X,AX〉 ≤ 2TrAA∗ +K
n∑
i=1

|Aii|2.
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Proof. We have

〈X,AX〉 =
∑

1≤i,j≤n
X̄iAijXj .

This yields to

E〈X,AX〉 =

n∑
i=1

E|Xi|2Aii

and

Var〈X,AX〉 =
∑

i1,j1,i2,j2

Ai1j1Āi2j2EX̄i1Xj2Xi2X̄j2 −
∑
i,j

E|Xi|2E|Xj |2AiiĀjj .

The first sum is non zero only if (i1, i2) = (j1, j2), (i1, j1) = (i2, j2) or (i1, j1) = (j2, i2). We get

Var〈X,AX〉 =
∑
i

Var(|Xi|2)|Aii|2 +
∑
i 6=j
|Aij |2E|Xi|2E|Xj |2 +

∑
i 6=j

AijĀjiEX̄2
i EX2

j

≤ K
n∑
i=1

|Aii|2 +
∑

1≤i,j≤n
|Aij |2 +

∑
1≤i,j≤n

|Aij ||Aji|.

The second term is equal Tr(AA∗), while the third term is upper bounded by Tr(AA∗) from Cauchy-

Schwarz inequality.

With more moments assumption, it is of course possible to strengthen lemma 3.6. For example,

for entries with sub-Gaussian tail, this is topic of the Hanson-Wright theorem.

3.2 Random matrices with variance profile

We illustrate the resolvent method for random matrices with inhomogeneous variances. For each

integer n ≥ 1, we assume that (Yij)1≤i≤j are independent centered variables with variance

E|Yij |2 =
1

n

(∫
Qij

σ2(x, y)

|Qij |
dxdy + δij(n)

)
, (3.7)

where Qij = [(i − 1)/n, i/n] × [(j − 1)/n, j/n], σ : [0, 1]2 → [0, 1] is a measurable function such

that σ(x, y) = σ(y, x) and δij(n) is a vanishing sequence. The function σ is fixed but the law of Yij

depends n. We set Yji = Ȳij and we consider the hermitian matrix

Yn = (Yij)1≤i,j≤n.

If σ is continuous, Equation (3.7) asserts that the variance of
√
nYij is roughly σ2(i/n, j/n).

We assume that all these matrices are defined on a common probability space.
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Theorem 3.1 (ESD of matrices with variance profile). Assume that for all i, j, EYij = 0, E|Yij |2

as in (3.7) with |δij(n)| ≤ δ(n) and E|Yij |4 ≤ δ(n)/n for some sequence δ(n) going to 0. Then,

there exists a probability measure µσ depending on σ such that a.s. weakly

µY → µσ.

The Cauchy-Stieltjes transform gµσ of µσ is given by the formula

gµσ(z) =

∫ 1

0
g(x, z)dx,

where the [0, 1]×C+ → C+ map, g : (x, z) 7→ g(x, z) satisfies : for a.a. x ∈ [0, 1], z 7→ g(x, z) ana-

lytic on C+ and for each z ∈ C+ with =(z) > 1, x 7→ g(x, z) is the unique function in L1([0, 1];C+)

solution of the equation, for a.a. x ∈ [0, 1],

g(x, z) = −
(
z +

∫ 1

0
σ2(x, y)g(y, z)dy

)−1
. (3.8)

Note that by analyticity, for 0 < =(z) ≤ 1, x 7→ g(x, z) is also a solution of (3.8) (which

may however a priori not be unique in L1([0, 1];C+)). A typical application of Theorem 3.1 is the

following.

Corollary 3.4 (ESD of generalized Wigner matrices). Assume that for a.a. x ∈ [0, 1],
∫ 1
0 σ

2(x, y)dx =

1. Then, a.s. weakly

µY → µsc.

The above corollary follows from noticing that the semicircle law satisfies the fixed point equa-

tion (3.1) and the unicity statement in Theorem 3.1. The following exercise is an easy Corollary of

3.4.

Exercise 3.1 (Adjacency matrix of Erdős-Rényi graphs). Consider the adjacency matrix A of

G(n, d/n) with 0 ≤ d(n) ≤ n and d(n) → ∞. Namely (Aij)1≤i<j≤n are i.i.d. {0, 1}-Bernoulli

random variables with mean d/n. Prove that a.s. weakly µA/
√
d → µsc.

Let 1 ≤ p ≤ n and define the matrix in Mp,n(R),

X = (Xij)1≤i≤p,1≤j≤n.

where (Xij) are iid random variables.

Corollary 3.5 (Marcenko-Pastur law). Assume p(n)/n → c ∈ (0, 1], EX11 = 0 and E|X11|2 = 1,

then a.s weakly

µXX∗/n → µc.
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where, b− = (1−
√
c)2, b+ = (1 +

√
c)2 and

µc(dx) =
1

2πx

√
(x− b−)(b+ − x)1Ib−≤x≤b+dx

Note that from the above corollary, it is also possible to deal with case c > 1. It suffices to

reverse the role of p and n and notice that, for 1 ≤ p ≤ n

nµX∗X = pµXX∗ + (n− p)δ0.

Proof of Corollary 3.5. By a trunction argument, we may assume that the variables are uniformly

bounded. Consider the block matrix in Hn+p(C),

Z =

(
0n X∗

X 0p

)
. (3.9)

If 0 ≤ λ1 ≤ · · · ≤ λp are the eigenvalues of XX∗ with λ1 = · · · = λm = 0, λm+1 > 0, then the

non-zero eigenvalues of Z are

±
√
λm+1, · · · ,±

√
λp.

In particular, if µZ/
√
n+p converges weakly toward a limit measure ν with

ν =
1− c
1 + c

δ0 +
2c

1 + c
ν̂,

where ν̂ is a symmetric probability measure on R with density f , then µXX∗/n converges weakly

to µ with density on (0,∞) given by

dµ(x) =
f(
√
x)√
x

dx.

Now, coming back to (3.9), we introduce the [0, 1]2 → [0, 1] function

σ(x, y) = 1I

(
0 < x <

1

1 + c

)
1I

(
1

1 + c
< y < 1

)
+ 1I

(
1

1 + c
< x < 1

)
1I

(
0 < y <

1

1 + c

)
.

Note that σ(x, y) = σ(y, x) and Y = Z/
√
n+ p satisfies the assumptions of Theorem 3.1 with σ

and δ = O(1/n). It is an exercise to compute explicitly µσ in this case.

3.3 Proof of Theorem 3.1

The proof of Theorem 3.1 is a typical instance of the resolvent method. In the first step of the

proof, we check tightness of µY and that for each z ∈ C+, a.s.

1

n

n∑
i=1

Rii(z)→
∫ 1

0
g(x, z)dx, (3.10)
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where, R is the resolvent of Y and for each z ∈ C+, g : x 7→ g(x, z) is a fixed point of the

L1([0, 1];C+)→ L1([0, 1];C+) map

Fz,σ(g)(x) = −
(
z +

∫
σ2(x, y)g(y)dy

)−1
.

Observe that (3.10) implies that, if D is countable dense set in C+, a.s. for all z ∈ D, (3.10)

holds. Then, in a second step, we prove the uniqueness of the solution of Fz,σ(g) = g for =(z) large

enough. Now, consider a converging subsequence of (µY )n≥1 to µ. Invoking (3.5) and Corollary

3.1, we conclude that a.s. for z ∈ C+, gµ(z) =
∫ 1
0 g(x, z)dx . By the unicity of the limit and a new

application of Corollary 3.1, it will conclude the proof of Theorem 3.1. In the sequel, the parameter

z ∈ C+ is fixed and, for ease of notation, we will often omit it.

Tightness and concentration

We write

E
∫
λ2dµY = E

1

n
TrY 2 ≤ 1

n2

∑
i,j

(∫
Qij

σ2(x, y)

|Qij |
dxdy + δij(n)

)
= O(1).

Hence the sequence of probability measures (EµY )n≥1 is tight. By Theorem 2.9 and Borel-Cantelli

Lemma, it implies that a.s., the sequence of probability measures (µY )n≥1 is tight.

Moreover, Theorem 2.9 implies that it is sufficient to prove that

E
1

n

n∑
i=1

Rii →
∫ 1

0
g(x, z)dx, (3.11)

and (3.10) will follow.

Approximation of the variance profile

Let L be a integer and let (Pk`)1≤k,`≤L be the usual partition of [0, 1]2 into squares of size 1/L2.

Define

ρ =
∑

1≤k,`≤L
ρk`1IPk` ,

where ρk` = L2
∫
Pk`

σ(x, y)dxdy. We define the hermitian matrix Z whose entries are, if Var(Yij) 6=
0,

Zij =
Yij√

nVar(Yij)
ρ

(
i

n
,
j

n

)
, (3.12)
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and if Var(Yij) = 0, we set Zij = 0. We write

E
1

n
Tr(Z − Y )2 =

1

n
E
∑
i,j

|Zij − Yij |2

=
1

n2

∑
i,j

|ρ
(
i

n
,
j

n

)
−
√
nVar(Yij)|2

≤ 2

n2

∑
i,j

|ρ2
(
i

n
,
j

n

)
− nVar(Yij)|

≤ 2

∫
[0,1]2

|σ2(x, y)− ρ2(x, y)|dxdy +O

(
δ(n) +

1

L2

)
,

From Lebesgue’ Theorem, for a.a (x, y) as L → ∞, σ(x, y) − ρ(x, y) → 0. Hence, by dominated

convergence we deduce that

‖σ2 − ρ2‖1 →L→∞ 0

In particular,

lim sup
n→∞

1

n
ETr(Z − Y )2 ≤ ε(L), (3.13)

for some function ε going to 0 as L goes to infinity.

Approximate fixed point equation

Consider the matrix Z given by (3.12) and denote by R its resolvent. The objective is to prove that

the resolvent of Z satisfies nearly a fixed point equation. To this end, we use Schur complement

formula, corollary 3.3,

Rii = −
(
z − Zii + 〈Zi, R(i)Zi〉

)−1
,

where Zi = (Zij)j 6=i and R(i) = (Z(i) − zI)−1 is the resolvent of the minor matrix Z(i) obtained

from Z where the i-th row and column have been removed.

Notice that if z, w,w′ ∈ C+, then∣∣∣∣ 1

z + w
− 1

z + w′

∣∣∣∣ ≤ |w − w′|=(z)2
. (3.14)

Since 〈Zi, R(i)Zi〉 ∈ C+, R
(i)
jj ∈ C+ and nE|Zij |2 = ρ

(
i
n ,

j
n

)2
, we find∣∣∣∣∣∣Rii +

z +
1

n

∑
j 6=i

ρ

(
i

n
,
j

n

)2

R
(i)
jj

−1∣∣∣∣∣∣ ≤ 1

=(z)2

|Zii|+
∣∣∣∣∣∣〈Zi, R(i)Zi〉 −

∑
j 6=i

(E|Zij |2)R(i)
jj

∣∣∣∣∣∣
.

Now, by construction, the vector (Zij)j is independent of R(i). We condition on R(i) and use Lemma

3.6, we deduce that in L2(P),

Rii +

z +
1

n

∑
j 6=i

ρ

(
i

n
,
j

n

)2

R
(i)
jj

−1 → 0.
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We define Nk = {1 ≤ i ≤ n : (k − 1)/L < i/n ≤ k/L} and N
(i)
k = Nk\{i}. So that |Nk|/n→ 1/L.

If i ∈ Nk, it yields to, in L2(P),

Rii +

(
z +

1

L

L∑
`=1

ρ2k`G
(i)
`

)−1
→ 0,

where we have defined

G
(i)
k =

1

|Nk|
∑
j∈N(i)

k

R
(i)
jj and Gk =

1

|Nk|
∑
j∈Nk

Rjj

Now, by Lemma 3.4,

|Gk −G
(i)
k | ≤

2

=(z)|Nk|
,

and Corollary 3.2 gives that

E|Gk − EGk|2 = O

(
n

=(z)2|Nk|2

)
= O

(
L2

=(z)2n

)
.

It conclusion, using again (3.14), for any 1 ≤ k ≤ L,

EGk +

(
z +

1

L

L∑
`=1

ρ2k`EG`

)−1
→ 0, (3.15)

and

E
1

L

L∑
k=1

Gk = E
1

n

n∑
i=1

Rii.

Unicity of fixed point equation

Consider the function Ḡ : [0, 1]→ C+ given

Ḡ(x) =
1

L

L∑
k=1

1I k−1
L
<x≤ k

L
EGk.

Consider an accumulation point of the vector (EG1, · · · ,EGL), say (g1, · · · , gL). Then Ḡ converges

in L∞-norm to

gρ(x) =
1

L

L∑
k=1

1I k−1
L
<x≤ k

L
gk.

By (3.15), gρ satisfies the fixed point equation, for all x ∈ [0, 1],

g = Fz,ρ(g),

with

Fz,ρ(g)(x) = −
(
z +

∫
ρ(x, y)2g(y)dy

)−1
.
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If g, h ∈ L1([0, 1];C+), we find,

|Fz,ρ(g)(x)− Fz,ρ(h)(x)| ≤
∫
ρ2(x, y)|g(y)− h(y)|dy

=(z)2
≤ ‖g − h‖1
=(z)2

,

where we have used again (3.14) and ρ(x, y) ≤ 1. In particular

‖Fz,ρ(g)− Fz,ρ(h)‖1 ≤
‖g − h‖1
=(z)2

.

Hence for =(z) > 1, Fz,ρ is a contraction on the Banach space L1([0, 1];C+). Hence there is a

unique solution of the fixed point

g = Fz,ρ(g).

The same argument works for the functions σ and its associated map Fz,ρ. Now similarly, we have,

if g ∈ L∞([0, 1];C+),

‖Fz,σ(g)− Fz,ρ(g)‖1 ≤
∫
|ρ2(x, y)− σ2(x, y)||g(y)|dy

=(z)2
≤ ‖g‖∞‖σ

2 − ρ2‖1
=(z)2

,

In particular, if gσ is the unique fixed point g = Fz,σ(g), since ‖gρ‖∞ ≤ 1/=(z), we deduce

‖gσ − gρ‖1 = ‖Fz,σ(gσ)− Fz,ρ(gρ)‖1 ≤ ‖Fz,σ(gσ)− Fz,σ(gρ)‖1 + ‖Fz,σ(gρ)− Fz,ρgρ‖1

≤ ‖gσ − gρ‖1
=(z)2

+
‖σ2 − ρ2‖1
=(z)3

,

This gives

‖gσ − gρ‖1 ≤
‖σ2 − ρ2‖1

=(z)2(=(z)− 1)
, (3.16)

As already pointed, ‖ρ2 − σ2‖1 → 0 as L→∞.

End of proof

In summary, we have proved the following, fix ε > 0, z ∈ C+ with =(z) > 1. From Theorem 2.9,

we have, a.s., for all n large enough,

|gµY (z)− EgµY (z)| ≤ ε.

By (3.16), we may fix L large enough so that

|gρ(z)− gσ(z)| ≤ ε.

Then, by(3.13), for all n large enough,

|EgµZ (z)− EgµY (z)| ≤ ε,
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and by (3.15)

|EgµZ (z)− gρ(z)| ≤ ε.

This concludes the proof of Theorem 3.1 (since EµZ and EµY are tight, gρ and gσ are necessarily

Cauchy-Stieltjes transforms of probability measures).
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Lecture 4

Gaussian Wigner matrices

1 Matrix differentiation formulas and Gaussian integration by

parts

1.1 Derivative of resolvent

We identify Hn(C) with Rn2
. Then, if Φ : Hn(C) 7→ C is a continuously differentiable function, we

define ∂<(jk)Φ(X) as the derivative with respect to <(Xjk), and for 1 ≤ j 6= k ≤ n, ∂=(jk)Φ(X) as

the derivative with respect to =(Xjk).

Define the resolvent RA = (A − z)−1, z ∈ C+. From the resolvent identity (3.6), a simple

computation shows that for any integers 1 ≤ j, k ≤ n, and 1 ≤ a 6= b ≤ n,

∂<(ab)Rjk = −(RjaRbk +RjbRak) and ∂=(ab)Rjk = −i(RjaRbk −RjbRak),

while if 1 ≤ a ≤ n, then

∂<(aa)Rjk = −RjaRak.

1.2 Gaussian differentiation formulas

We consider a Wigner matrix X = (Xij)1≤i,j≤n. We assume that

(A1) (<(X12),=(X12)) is a centered Gaussian vector in R2 with covariance K ∈ H2(R), Tr(K) = 1.

(A2) X11 is a centered Gaussian in R with variance σ2.

We recall the Gaussian integration by part formula which we have already use in (2.9).

Lemma 4.1. Let X be a centered Gaussian vector in Rn with covariance matrix K = EXX∗. For

any continuously differentiable function f : Rn 7→ R, with E‖∇f(X)‖2 <∞,

Ef(X)X = KE∇f(X). (4.1)

46



The use of Gaussian integration by part in random matrix theory was initiated by Khorunzhy,

Khoruzhenko and Pastur [KKP96]. Introduce the resolvent of X/
√
n at z ∈ C+,

R = (X/
√
n− z)−1.

(For ease of notation, we do not write explicitly the dependency in z). Using (4.1) we get, for

0 ≤ a 6= b ≤ n, and all j, k:

ERjkXab =
1√
n
E
[
K11∂<(ab)Rjk +K12∂=(ab)Rjk + iK21∂<(ab)Rjk + iK22∂=(ab)Rjk

]
= − 1√

n
E [(K11 −K22 + iK12 + iK21)RjaRbk + (K11 +K22 − iK12 + iK21)RjbRak]

= − 1√
n
E(γRjaRbk +RjbRak), (4.2)

where at the last line, we have used the symmetry of K and Tr(K) = 1, together with the notation

γ = K11 −K22 + 2iK12 = EX2
12.

Notice that |γ| ≤ 1. Similarly, for a = b one has

ERjkXaa = − σ2√
n
ERjaRak. (4.3)

For further use, we also set

κ = σ2 − 1− γ.

In the GUE and GOE case κ = 0 while γ is equal respectively to 0 and 1.

2 Semicircle law for Gaussian random matrices

The resolvent identity gives

−zR = R ·
(
X√
n
− zI − X√

n

)
= I − 1√

n
RX.

Hence, for 1 ≤ j, k ≤ n, using (4.2)-(4.3),

−zERjk = 1Ij=k −
1√
n

∑
1≤a≤n

E[RjaXak]

= 1Ij=k +
1

n

∑
1≤a≤n

E[RjkRaa] +
γ

n

∑
1≤a6=k≤n

E[RjaRka] +
(σ2 − 1)

n
E[RjkRkk].

We set

g = gµX/√n(z) =
1

n
Tr(R), g = Eg, g = g − Eg,

47



and consider the diagonal matrix D with Djk = 1Ij=kRjk. We find

−zER = I + E[gR] +
1

n
E[R(κD + γR>)].

Subtracting gR one has

−gER− zER = I + EgR+
1

n
ER(κD + γR>).

Finally, multiplying by − 1
n and taking the trace,

g2 + zg + 1 = −Egg − 1

n2
ETr[R(κD + γR>)] = −Eg2 − 1

n2
ETr[R(κD + γR>)]. (4.4)

As a function of the entries of X, g has Lipschitz constant O(n−1=(z)−2). This fact follows from

Corollary 2.2 applied to f(x) = 1/(x− z) . Since the entries of X satisfy a Poincaré inequality, by

Theorem 2.6

E|g|2 = O(n−2=(z)−4). (4.5)

Also, since |Tr(AB)| ≤ n‖A‖‖B‖, we find∣∣∣TrR(κD + γR>)
∣∣∣ = O(n=(z)−2).

We deduce

Eg2 = O(n−2=(z)−4) and
1

n2
ETr[R(κD + γR>)] = O(n−1=(z)−2).

We thus have proved that

g2 + zg + 1 = Oz(n
−1). (4.6)

Lemma 4.2. Let δ ∈ C and z ∈ C+. If x ∈ C+ satisfies x2 + zx+ 1 = δ, then,

|x− gsc(z)| ≤
|δ|
=(z)

.

Proof. Recall that g2sc(z) + zgsc(z) + 1 = 0. It follows that(
gsc(z) +

z

2

)2
= −1 +

z2

4
and

(
x+

z

2

)2
= −1 +

z2

4
+ δ.

Hence

δ =

((
x+

z

2

)2
−
(
gsc(z) +

z

2

)2)
= (x− gsc(z))(x+ gsc(z) + z).

It yields,

|x− gsc(z)| =
|δ|

|x+ gsc(z) + z|
.

Since x, gsc(z) ∈ C+, |x+ gsc(z) + z| ≥ =(x+ gsc(z) + z) ≥ =(z).

From (4.6) and lemma 4.2, we deduce a new proof of the semicircle law for Gaussian Wigner

matrices.
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3 Convergence of edge eigenvalues for Gaussian matrices

We pursue the analysis of Gaussian Wigner matrices to the study of extremal eigenvalues of X/
√
n.

Our aim is to prove

Theorem 4.1. Let X be a Gaussian Wigner matrix satisfying assumptions (A). We have a.s.

lim
n→∞

λ1

(
X√
n

)
= − lim

n→∞
λn

(
X√
n

)
= 2.

For simplicity, we set λk = λk(X/
√
n). Note that X and −X have the same law. Hence, by

symmetry, we may restrict to λ1. Note also that Wigner semicircle law implies that a.s.

lim inf
n→∞

λ1 ≥ 2.

We first observe that the method of moments used in the proof of Theorem 1.2 implies that

X ∈ Hn(C) is an hermitian random matrix such that (Xij)i≥j are independent centered variables

with k-th moment bounded by c > 0, then there exists a constant K (depending on k) such that

E
1

n
Tr

(
X√
n

)k
≤ cK.

Since, for even k, λk1 ≤ Tr(X/
√
n)k, we deduce that

Eλ1 ≤ (Eλk1)1/k ≤ n1/k(cK)k.

This rough bound can be improved by a net argument. A centered complex variable Y is

subgaussian with constant c if for any complex λ,

E exp
(
<(λ̄Y )

)
≤ exp

(
c2|λ|2

)
.

(the Laplace transform of a centered subgaussian variable is dominated by the Laplace transform

a Gaussian variable).

Lemma 4.3. Let X = (Xij)1≤i,j≤n ∈ Hn(C) be an hermitian random matrix such (Xij)i≥j are

independent centered and subgaussian random variables with common constant c > 0.

E‖X‖ ≤ cK
√
n,

where K is a universal constant.

The lemma is a consequence of the following classical statement. In a metric space X, for ε > 0,

an ε-net is a subset Y of X such that for any x ∈ X there exists a y ∈ Y at distance at most ε.
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Lemma 4.4 (Net of the sphere). For any integer n ≥ 1, there exists an ε-net of the sphere Sn−1

of cardinality at most (1 + 2/ε)n (for the Euclidean distance in Rn).

Proof. There is a simple volumetric argument. Let N be a maximal ε-separated set (that is all

pairs x 6= y in N are at distance larger than ε and it is not possible to increase N without

breaking this property). Then N is also an ε-net by the maximality assumption. We will prove

that |N | ≤ (1 + ε/2)n. Observe that the set ∪x∈NB(x, ε/2) where B(x, r) is the open ball of radius

r and center x is a disjoint union and it is contained in B(0, 1 + ε/2). Its volume is thus N(ε/2)nvn

where vn is the volume of the unit ball in Rn. Since the volume of B(0, 1 + ε/2) is (1 + ε/2)nvn, it

follows that |N |(ε/2)n ≤ (1 + ε/2)n as required.

Proof of Lemma 4.3. We may assume c = 1. Let N be an 1/4-net of Sn−1 of cardinality at most

5n (guaranteed by Lemma 4.4). Let ‖X‖N = maxu∈N |〈u,Xu〉|. We claim that

‖X‖ ≤ 4‖X‖N . (4.7)

Indeed, Let v ∈ Sn−1 be such that |〈v,Xv〉| = ‖X‖ (recall that ‖X‖ = max(λ1(X),−λn(X)) =

maxv∈Sn−1 |〈v,Xv〉|). There exists u ∈ N , such that ‖u − v‖2 ≤ 1/4. In particular, from the

triangle inequality

‖X‖ = |〈v,Xv〉| = |〈u+ v − u,X(u+ v − u)〉|

≤ |〈u,Xu〉|+ 2|〈u,X(v − u)〉|+ |〈(v − u), X(v − u)〉|

≤ ‖X‖N +
1

2
‖X‖+

1

16
‖X‖.

It proves (4.7). It follows from the union bound that for any t > 0,

P(‖X‖ ≥ 4t) ≤ P(‖X‖N ≥ t) ≤ |N |max
u∈N

P(|〈u,Xu〉| ≥ t).

Now, for u ∈ Sn−1 and real λ, we claim that

Eeλ〈u,Xu〉 ≤ e2λ2 .

Indeed, since 〈u,Xu〉 =
∑

i |ui|2Xii +
∑

i>j 2<(uiXijuj), by independence and the subgaussian

assumption,

Eeλ〈u,Xu〉 =
∏
i

Eeλ|ui|
2Xii

∏
i>j

Ee2λ<(uiXijuj) ≤ Eeλ
2
∑
i |ui|2+4λ2

∑
i>j |ui|2|uj |2

as claimed. It follows from Chernov’ bound, with λ = t
√
n/4,

P(|〈u,Xu〉| ≥ t
√
n) ≤ 2e−λt

√
ne2λ

2 ≤ 2e−
nt2

8 .

We write E‖X‖/
√
n ≤ a+

∫∞
a P(‖X‖ ≥ t

√
n)dt and use |N | ≤ 5n, the conclusion follows easily by

choosing a large enough.
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We now prove Theorem 4.1. A proof of this result can be proved by using the moment method,

see Fűredi and Komlós [FK81]. Here, we will instead use the resolvent differentiation formulas. In

the GUE case, this approach was initiated by Haagerup and Thorbjørnsen [HT05].

By Lemma 2.11 and Borel-Cantelli Lemma, a.s.

lim
n→∞

|λ1 − Eλ1| = 0.

Hence, in view of Lemma 4.3, it is thus sufficient to prove that, for any ε > 0, a.s. for all n� 1,

1I(λ1 ∈ [2 + 2ε,K]) = 0.

where K is a large constant. To this end, we fix ε > 0 and set

∆ = [2 + 2ε,K]. (4.8)

Consider a smooth function ϕ : R 7→ [0, 1] with support [2+ε, 2K] such that ϕ(x) = 1 on [2+2ε,K].

By Lemma 2.11 and Borel-Cantelli Lemma, a.s.

lim
n→∞

|ϕ(λ1)− Eϕ(λ1)| = 0.

Assume that we manage to prove that

E
1

n

n∑
k=1

ϕ(λk) = E
∫
ϕdµX/

√
n ≤

1

2n
. (4.9)

Then, using 1I(λ ∈ ∆) ≤ ϕ(λ), we would deduce, that

P(λ1 ∈ ∆) ≤ Eϕ(λ1) ≤ nE
∫
ϕdµX/

√
n ≤

1

2
. (4.10)

And it would yields to a.s. for n� 1,

1I(λ1 ∈ ∆) ≤ 1/3.

Hence, the indicator function is equal to 0 and λ1 ∈ ∆. It follows that if (4.9) holds for any ε > 0,

our Theorem 4.1 is proved.

The first step of proof is to relate
∫
ϕdµ to an integral over gµ(z). For C1 functions f : C 7→ C,

we set ∂̄f(z) = ∂xf(z) + i∂yf(z), where z = x+ iy. In the next lemma χ : R → R is a compactly

supported smooth function such that χ(y) = 1 in a neighbourhood of 0.

Lemma 4.5 (Helfer and Sjöstrand). Let k ≥ 1 be an integer and ϕ : R 7→ R a compactly supported

Ck+1-function, then for any µ ∈ P(R),∫
ϕdµ =

1

π
<
∫
C+

∂̄Φ(x+ iy)gµ(x+ iy)dxdy,

where Φ(x+ iy) =
∑k

`=0
(iy)`

`! ϕ
(`)(x)χ(y).
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Proof. Observe that in a neighbourhood of R,

∂̄Φ(x+ iy) = ϕ(k+1)(x)(iy)k/k!. (4.11)

It follows that for any λ ∈ R, ∂̄Φ(z)/(z − λ) is integrable. Now, from Fubini’s Theorem, it suffices

to check this for µ = δ0:

ϕ(0) = Φ(0) = − 1

π
<
∫
C+

∂̄Φ(x+ iy)

x+ iy
dxdy,

If z = x+ iy, we have

<
(
∂̄Φ(z)

z

)
=
x∂xΦ(z)

x2 + y2
+
y∂yΦ(z)

x2 + y2
=

1

r
∂rΦ(z),

where r = |z| and ∂r is the radial derivative in polar coordinates. We thus find

<
∫
C+

∂̄Φ(x+ iy)

x+ iy
dxdy =

∫ ∞
0

∫ π

0
∂rΦ(reiθ)drdθ = −πΦ(0).

as requested.

Proof of Theorem 4.1: GUE case. we can now prove Theorem 4.1 for GUE matrices. Indeed,

in this case, γ = 0 and κ = 0. In particular, from Equations (4.4) and (4.5), we find

g2 + zg + 1 = O(n−2=(z)−4).

From Lemma 4.2 we find

g − gsc = δ(z) = O(n−2=(z)−5). (4.12)

We may apply Lemma 4.5 with k = 6 to our smooth function ϕ with support [2 + ε, 2K]. We find

E
∫
ϕdµX/

√
n =

1

π
<E
∫ ∞
2+ε

∫ ∞
0

∂̄Φ(x+ iy)g(x+ iy)dydx

=
1

π
<E
∫ ∞
2+ε

∫ ∞
0

∂̄Φ(x+ iy)(gsc(x+ iy) + δ(x, y))dydx

=

∫
ϕdµsc +

1

π
<E
∫ 2K

2+ε

∫ ∞
0

∂̄Φ(x+ iy)δ(x, y)dydx

Now, the support of µsc is [−2, 2]. Hence
∫
ϕdµsc = 0. Also, from (4.11)

∂̄Φ(x+ iy)δ(x, y) = O(n−2).

and is compactly supported from (4.8) and the definition of ϕ. We thus have proved that

E
∫
ϕdµX/

√
n = O(n−2).

It concludes the proof of (4.9) in the GUE case.
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Proof of Theorem 4.1: general case. The above argument cannot work directly if γ 6= 0 or

κ 6= 0. Indeed, Equation (4.4) gives only

g2 + zg + 1 = O(n−1=(z)−2 + n−2=(z)−4).

and from Lemma 4.2,

g = gsc +O(n−1(=(z)−5 ∧ 1)). (4.13)

We thus have to study more precisely

1

n2
Tr(R(κD + γR>)).

We first need a lemma

Lemma 4.6. For any ε > 0, we have

inf {|gsc(z)| : z ∈ C, d(z, [−2, 2]) ≥ ε} < 1,

where d(z,A) = inf{|w − z| : w ∈ A}.

Proof. Let r(z) = |gsc(z)| and t = ε/
√

2. If d(z, [−2, 2]) ≥ ε then either |=(z)| ≥ t or |<(z)| ≥ 2 + t.

We first assume that =(z) ≥ t. Note that if z = E + iη and ξ has distribution µsc, then r(z) =

E|(ξ − E)− iη|−1. By symmetry and monotony, r(z) ≥ r(iη) ≥ r(it). We find

r(it) =
1

2π

∫ 2

−2

t
√

4− x2
t2 + x2

dx =
1

2π

∫ 2/t

−2/t

√
4− (tx)2

1 + x2
dx <

1

2π

∫ ∞
∞

2

1 + x2
dx = 1.

It remains to deal with z = E + iη and |E| ≥ 2 + t. We have r(z) ≥ r(E) = r(|E|) ≥ r(2 + t) and

r(2 + t) =
1

2π

∫ 2

−2

√
4− x2

2 + t− x
dx <

1

2π

∫ 2

−2

√
4− x2
2− x

dx = 1.

Lemma 4.7. Let f(z) = γg2sc(z)/(γg
2
sc(z) + 1) + κg2sc(z), we have

E
1

n
Tr(R(κD + γR>)) = f(z) +O(n−1(1− |gsc(z)|2)−1(1 ∧ =(z)−5)).

Proof. We may again use the Gaussian integration by part formula. Using (4.1)-(4.2)-(4.3), we get,

for 0 ≤ a 6= b ≤ n, and all j, k, `,m:

ERjkR`mXab = − 1√
n

(E(γRjaRbk +RjbRak)R`m + ERjk(γR`aRbm +R`bRam)), (4.14)

and

ERjkR`mXaa = − σ2√
n

(ERjaRakR`m + ERjkR`aRam), (4.15)

53



We use again the identity −zR = I − 1√
n
RX. Taking conjugate and composing by R yields to

−zRR> = R− 1√
n
RX>R>, we find

−z(RR>)kk = Rkk −
1√
n

∑
a,b

RkbRkaXab.

We now take expectation and use (4.14)-(4.15),

E(RRT )kk =ERkk +
γ

n

∑
a6=b

ER2
kaRbb +

1

n

∑
a6=b

ERkbRabRka +
γ

n

∑
a6=b

ERkbRkaRba

+
1

n

∑
a6=b

ER2
kbRaa +

2σ2

n

∑
a

ER2
kaRaa

We set

m =
1

n
Tr(RR>), m = Em and m = m− Em.

Recall that Dkk = Rkk. Taking Tr and dividing by n, in the above expression we obtain

−zm = g + (γ + 1)Egm+
1

n2
Tr(R(RT )2 + γR2RT + 2κRRTD).

We deduce that

− (z + (γ + 1)g)m = g + Egm+
1

n2
Tr(RRT ((1 + γ)RT + 2κD)). (4.16)

Using (4.5), |m| ≤ =(z)−2 and |Tr(A)| ≤ n‖A‖, we find

−(z + (γ + 1)g)m = g +O(n−1(=(z)−4 ∧ 1)).

We deduce from (4.13)

−(z + (γ + 1)gsc)m = gsc +O(n−1(=(z)−5 ∧ 1)).

We multiply by gsc = O(1) and use that g2sc + zgsc + 1 = 0. From Lemma 4.6 and |γ| ≤ 1,

|γg2sc + 1| ≥ 1− |gsc|2 > 0. We find

m =
g2sc

γg2sc + 1
+O(n−1(1− |gsc(z)|2)−1(=(z)−5 ∧ 1)).

we have (z + (γ + 1)gsc).

We set similarly

m′ =
1

n

n∑
k=1

(Rkk)
2, m′ = Em′ and m′ = m′ − Em′,
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so that 1
nTr(RD) = m′. From −zR = I − 1√

n
RX, multiplying by Rkk, we obtain

−z(Rkk)2 = Rkk −
1√
n

∑
a

RkaRkkXak.

We find analogously

− (z + g)m′ = g +O(n−1=(z)−3). (4.17)

and, from (4.13), g2sc + zgsc + 1 = 0 and |gsc| = O(1).

m′ = g2sc +O(n−1(=(z)−5 ∧ 1)).

This concludes the proof.

We may now conclude the proof of Theorem (4.9). Let S = {z ∈ C : <(z) ≥ 2 + ε} and

S+ = S ∩ C+. We also set

L =
1

zn2
ETr[R(κD + γR>)].

On S+, we have L = O(n−1=(z)−2). From Equations (4.4) and (4.5), we find

(g + L)2 + z(g + L) + 1 = O(n−2=(z)−4).

For n large enough, g + L ∈ C+. Hence, from Lemma 4.2, we find

g + L− gsc = δ(z) = O(n−2=(z)−5).

So finally, from (4.13) and Lemma 4.7, for all z ∈ K+,

g = gsc −
f(z)

n
+O(n−2(=(z)−5 ∧ 1)), (4.18)

where the O(·) depends on ε.

As above, for our smooth function ϕ with support [2 + ε, 2K) we may apply Lemma 4.5 with

k = 5. We find

E
∫
ϕdµX/

√
n =

1

π
<
∫
S+

∂̄Φ(x+ iy)g(x+ iy)dxdy

=
1

π
<
∫
S+

∂̄Φ(x+ iy)(gsc(x+ iy)− f(x+ iy)

n
+ δ(x, y))dxdy

=
1

π
<
∫
S+

∂̄Φ(x+ iy)(gsc(x+ iy)− f(x+ iy)

n
)dxdy

1

π
<
∫
S+

∂̄Φ(x+ iy)δ(x, y)dxdy
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Now, notice that gsc(z) − f(z)/n is analytic on an open neighbourhood of S+. In particular,

∂̄(gsc − f/n) = 0 on this neighbourhood. Hence, by integration by part, the first integral of the

above expression is 0. Also, from (4.11)

∂̄Φ(x+ iy)δ(x, y) = O(n−2).

and is compactly supported. We thus have proved that

E
∫
ϕdµX/

√
n = O(n−2).

It concludes the proof of Theorem 4.1.

4 Variance of linear statistics

Our goal is to prove the following theorem.

Theorem 4.2. Let be real-valued function f ∈ C1 and X be a GUE matrix. We have

lim
n→∞

Var

(
n∑
k=1

f

(
λk

(
X√
n

)))
=

1

4π2

∫
[−2,2]2

(
f(λ1)− f(λ2)

λ1 − λ2

)2 4− λ1λ2√
4− λ21

√
4− λ22

dλ1dλ2.

such that

We essentially follow Pastur and Scherbina [PS11, Chapter 3]. Using Lemma 4.5, the proof is

a consequence of the following lemma (we use the notation of the previous section)

Lemma 4.8. For GUE matrices, for any z1, z2 ∈ C,

n2Cov(g(z1), g(z2)) = n2Eg(z1)g(z2) =
1

2(z1 − z2)2

(
z1z2 − 1√

z21 − 4
√
z22 − 4

− 1

)
+O

(
1

ny8

)
,

where y = min(|=(z1)|, |=(z2)|).

Proof. Since g(z̄) = ḡ(z), we may assume without loss of generality that =(z1),=(z2) are positive.

We have

Cov(g(z1), g(z2)) = Eg(z1)g(z2) = Eg(z1)g(z2).

Using as always the resolvent identity, we write

−z1g(z1) = 1− 1

n3/2

∑
j,k

Rjk(z1)Xkj .

Hence,

−z1Eg(z1)g(z2) = −z1Eg(z1)g(z2) = − 1

n5/2

∑
j,k,`

ERjk(z1)R``(z2)Xkj .

56



Using (4)From (4.14)-(4.15), we get

−z1Eg(z1)g(z2) = E
1

n3

∑
j,k,`

γRjk(z1)Rkj(z1)R``(z2) +Rjj(z1)Rkk(z1)R``(z2)

+ E
1

n3

∑
j,k,`

γRjk(z1)R`k(z2)Rj`(z2) +Rjk(z1)R`j(z2)Rk`(z2)

+ E
κ

n3

∑
j,`

(Rjj(z1))
2R``(z2) +Rjj(z1)R`j(z2)Rj`(z2)

=
γ

n2
ETrR2(z1)g(z2) + Eg(z1)

2g(z2) +
γ

n3
ETrR(z1)

>R2(z2)

+
1

n3
ETrR(z1)R

2(z2) +
κ

n2
ETrD2(z1)g(z2) +

κ

n3
ETrD(z1)R

2(z2).

We write that

Eg(z1)
2g(z2) = 2ḡ(z1)Eg(z1)g(z2) + Eg(z1)

2g(z2).

Besides, from Theorem 2.10 and Cauchy-Schwartz inequality,

Eg(z1)
2g(z2) ≤

√
E|g(z1)|4E|g(z2)|2 = O

(
1

n3y6

)
In the GUE case, κ = γ = 0, we deduce that

n2Cov(g(z1), g(z2)) = − 1

z1 + 2ḡ(z1)

(
1

n
ETrR(z1)R

2(z2) +O

(
1

ny6

))
.

We may linearize the expression R(z1)R
(z2) as follows. We use that,

R(z1)R(z2) =
R(z1)−R(z2)

z1 − z2

and

R2 = ∂zR.

We find

n2Cov(g(z1), g(z2)) = − 1

z1 + 2ḡ(z1)

(
∂z2

ḡ(z1)− ḡ(z2)

z1 − z2
+O

(
1

ny6

))
.

Now, in order to use (4.12), we will benefit from the analyticity of g. We write

∂z2
ḡ(z1)− ḡ(z2)

z1 − z2
=

∫ 1

0
ḡ′′(z2 + t(z1 − z2))tdt

and, if z0 = z2 + t(z1 − z2) from the residue theorem

ḡ′′(z0) =
1

iπ

∮
ḡ(z)

(z − z0)3
dz,
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where we take a contour on a disc around z0 with radius y/2 (which stays at distance at least y/2

from the real axis since =(z1),=(z2) ≥ y). We get from (4.12)

∂z2
ḡ(z1)− ḡ(z2)

z1 − z2
= ∂z2

ḡsc(z1)− ḡsc(z2)
z1 − z2

+O

(
1

n2y8

)
.

Similarly, since =(z1 + 2ḡ(z1)) ≥ y,

1

z1 + 2ḡ(z1)
=

1

z1 + 2gsc(z1)
+O

(
1

n2y6

)
.

It remains to use the explicit formula of the Cauchy-Stieltjes transform of the semicircle law.

Proof of Theorem 4.2. By a Theorem 2.6, we already know that the variance of
∑n

k=1 f(λk) is of

order ‖f‖2L. By concentration and Theorem 4.1, with exponentially large probability, all eigenvalues

are in a neighborhood of [−2, 2]. By a density argument, we may thus assume that f is analytic In

this case, the residue theorem implies that

f(x) =
1

2πi

∮
f(z)

x− z
dz

where the direct contour is around x. It follows that if all eigenvalues are in [−2− ε, 2 + ε] that

n∑
k=1

f(λk) =
n

2πi

∮
f(z)g(z)dz,

where the contour is around [−2− ε, 2 + ε]. We get

Var

(
n∑
k=1

f

(
λk

(
X√
n

)))
= − n2

4π2

∮ ∮
f(z1)f(z2)Cov(g(z1), g(z2))dz1dz2,

It remains to use Lemma 4.8 and let the contour go to [−2, 2] . . .

5 Beyond Gaussian Wigner matrices

It is possible to extend the Gaussian methods developped in the previous section to more general

distributions. By a truncation step, it is often possible to reduce ourselves to bounded variables.

Then Talagrand’s concentration inequality for bounded variables is available in place of Gaussian

concentration inequalities. The Gaussian integration by part is no longer exactly available. This

issue can be addressed with the following lemma due to Khorunzhy, Khoruzhenko and Pastur

[KKP96].
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Lemma 4.9. Let ξ be a real-valued random variable such that E|ξ|k+2 < ∞. Let f : R → C be a

Ck+1 function such that the (k + 1)-th derivative is uniformly bounded. Then,

Eξf(ξ) =
k∑
`=0

κ`+1

`!
Ef (`)(ξ) +O(‖f (k+1)‖∞E|ξ|k+2),

where κ` is the `-th cumulant of ξ and O(·) depends only on k.

Hence, at the cost of taking more derivatives, we may also use differential calculus to compute

the expectation of expressions with resolvent entries. For example, to prove the analog of Theorem

4.1 for a random real symmetric matrix with bounded entries above the diagonal, we need to take

k = 3 in the above lemma. We will however not pursue this method any further here.
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