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Abstract Within an industrial manufacturing process,

tolerancing is a key player. The dimensions uncertain-

ties management starts during the design phase, with

an assessment on variability of parts not yet produced.

For one assembly step, knowledge can be gained from

the tolerance range required for the parts involved. In

order to assess output uncertainty of this assembly in

a reliable way, this paper presents an approach based

on the deviation of the sum of uniform distributions.

As traditional approaches based on Hoeffding inequal-

ities do not give accurate results when the deviation

considered is small, an improved upper bound is pro-

posed. Then, the impact of the stack chain geometry

on the bound definition is discussed. Finally, an appli-

cation of the proposed approach in tolerance design of

an aircraft sub-assembly is detailed. The main interest
of the technique compared to existing methodologies is

the management of the confidence level and the empha-

sis of the explicit role of the balance within the stack

chain.
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1 Introduction

The management of dimensions uncertainties is a key

player in the manufacturing process of various indus-

trial sectors such as transportation (automotive, aero-

nautics, . . . ) or household appliances industry.

Dimensions may have some deviation from the de-

signed value without significant impact on the quality

and functional requirements of the final product. Tol-

erance intervals are defined according to engineering

knowledge and scientific analysis in order to determine

these acceptable variations. A deviation out of the de-

termined tolerance bounds is considered non-compliant

and imply an action such as an investigation or a mod-

ification in the process or the design.

The perfect balance between functional requirements
and process capability has to be found so that the spec-

ified tolerance interval is the most accurate possible. If

the tolerance is too tight, the process might not have

the capability to manufacture it and either there will

be many rejected items or some costly improvement

will be needed to produce compliant items. Otherwise,

a too wide tolerance will lead to non-conformity with

functional requirements of the final product and may

lower the product performance. As there are often sev-

eral steps in a manufacturing process, the propagation

of uncertainty has also to be taken into account to spec-

ify the tolerance interval of following assembly steps.

In this paper, the focus is on the tolerances alloca-

tion during the design phase in which tolerancing activ-

ity does not only aim at anticipating the margins of un-

certainty but also help in predicting their effects on the

various assembly steps. These involve different physical

characteristics of parts, such as part length, hole posi-

tion, pin, . . . , called features. All tolerancing issues and

notations are detailed in the engineering drawing and
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related documentation pratices [1] and [2].

In our case, there are no available dimensions mea-

surements because the focus is on tolerance allocation

in the design phase of a product prior production. Con-

sidering one specific assembly stage, one of the main

concern is to assess the variability of an output feature

of the assembly knowing the tolerance range of the in-

put features. In Figure 1 which is a simple example in

two dimensions, input features are the lengths of differ-

ent parts and the output feature is the total length of

interest in this assembly.

Fig. 1 An assembly example : inputs and output features
identification.

In the design phase, both inputs and output toler-

ance intervals are assumed to be centered around the

nominal dimension. To determine the variation around

this nominal dimension, there are two main methods

detailed in [3] : Worst Case and statistical approaches.

These methods propose different ways to define an out-

put tolerance range based on inputs tolerances. Some

other approaches based on sampling, fuzzy arithmetic

or analytical procedures are reviewed in [4].

Worst Case approach is to consider all assembly

parts delivered at their worst acceptable value (assem-

bly output tolerance equals the sum of the input toler-

ances). Statistical approach, also called RSS approach

(square Root of the Sum of Squares), gives a result as-

suming all input features are normally distributed (as-

sembly output tolerance equals the square root of the

sum of squares of input features tolerances). Statisti-

cal result gives a much tighter tolerance range result

than the worst case approach, but it does not hedge

against the case where input are not reasonably close

to their nominal value. To find a balance between this

two approaches, Bender [5] proposed to multiply the

statistical result by an empiric coefficient of 1.5 to ob-

tain an inflated statistical result which is supposed to

give a result tighter than the worst case but more con-

servative than RSS. However, this technique does not

apply if number of assembly inputs is low as it gives

a wider result than the worst case approach. Several

other statistical methodologies have been studied to ob-

tain the best trade-off between worst case and statis-

tical approaches. For instance, Skowronski and Turner

[9] proposed a method relying on Monte Carlo tech-

niques. Choi et al. [10] studied an approach based on

Taguchi’s method requiring the definition a quadratic

loss function. The tolerance allocation problem is for-

mulated as a minimization of the sum of machining cost

and quality loss. Manufacturing cost considerations for

tolerance allocation is beyond the scope of this article.

Pillet et al. [11] proposed to consider weighted iner-

tial tolerancing. Inertial tolerancing works with mean

square deviation (inertia) of the output feature as limit

instead of considering a tolerance interval. Then, they

applied a weighting system based on the number of as-

sembly inputs to obtain a reasonable tolerance result.

An other approach has been studied in [12] by taking

an interest in the meaning of the conformity. Instead of

limiting the assembly output variability, they propose a

formal definition of statistical conformity that does not

apply individually to a part but to a part population.

Note that tolerance intervals are highly related to

the assemblies processes capabilities. Even if suppliers

process capability indicators should be monitored as

detailed in [13], the normality of features distributions

can not always be verified.

One of the objective of the tolerancing is to assess

the same confidence in a tolerance interval whatever the

distribution of inputs are, as long as these inputs are

delivered within the claimed tolerance range. Indeed,

suppliers of parts receive a nominal value and two di-

mension limits. They are also required to follow a target

distribution, however checking this compliance is diffi-

cult in practice. At the design stage, it is impossible to

characterize the features distributions from measure-

ment data. Uniform distribution is a better option to

hedge against less favorable distributions of suppliers

values.

Knowing lower and upper limits, the less informa-

tive distribution is the uniform distribution. It means

results obtained with this assumption still stands for

alternative distribution provided that distribution sup-

port is finite. If the support is not finite, as is the case

for Gaussian distribution, uniform assumption is still a

good candidate because this is a conservative approach.

A mathematical tool is proposed to define an accu-

rate assembly output tolerance range considering uni-

form input features and taking into account the stack

chain inputs structure. Indeed, result on output toler-

ance is highly dependant on how balanced is a stack
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chain. A balanced stack chain means that all contribu-

tors have the same impact on the output. Conversely,

the predominance of one contributor in the assembly

leads to an unbalanced stack chain. The aim is to present

an analytical result that links stack chain inputs struc-

ture and output tolerance range. This kind of outcomes

could be obtained from Monte Carlo simulation but

such a procedure is not analytical and does not pro-

vide information on the link between inputs and output

tolerances.

The paper is organized as follows: statistical frame-

work is introduced in Section 2, main results are pre-

sented in Section 3: First part is devoted to traditional

approach on deviations and following parts detail im-

provement on the upper bound accuracy and balance

term introduction. In Section 4, a simulation study is

carried out in order to represent and compare our re-

sults. Finally, an example on airframe assembly with

real inputs data is performed.

2 Statistical framework

Consider a set of input features X1, . . . , Xn ∈ R and an

output feature Y ∈ R. All input features are assumed

to be independent random variables for the reason that

assembly parts are supposed to be separately produced.

The main interest here is in the variability of the output

Y and especially in a way to define a tolerance range

for this feature.

From an engineering perspective, input features

X1, . . . , Xn ∈ R shall correspond to the stack chain

contributors of an assembly such as parts dimensions,

while the output feature Y relates to the top level re-

quirement.

Each input feature is assumed to be centered around

a nominal dimension and has its own variability charac-

terized by its tolerance range [−vi, vi],∀i ∈ {1, . . . , n}
where v1, . . . , vn > 0 are the tolerance bounds. This

variability reflects the uncertainty linked to the pro-

cess (temperature, control plan, ground motion, deliv-

ery types, . . . ).

In order to discuss about the feature Y , assembly

step must be modeled to represent the link between

inputs and output of the assembly. for isoconstrained

mechanisms, a common approach in tolerancing is the

linear coefficient model (see [6]). If the variations are

supposed to be small around the nominal dimension,

the linear approach is appropriate. More elaborated

models than linear one could be considered, such as

studied in [7] where assembly geometry is taken into

account. In this paper, the framework is to work with

a linear model on centered tolerances.

Based on the knowledge of inputs tolerances and in-

fluence coefficients on the output, output result is seen

as a linear combination of all inputs weighted by known

influence coefficients (previously determined with a 3D

CAD tool and only linked to the assembly geometry).

Let denote α1, . . . , αn the coefficients for a linear tol-

erance model and input dimension features Z1, . . . , Zn,

then

Y =

n∑
i=1

αiZi.

For ease of notations, the weighted features denoted

by α1Z1, . . . , αnZn are directly treated. These input

features are denoted already multiplied by their respec-

tive influence coefficients by X1, . . . , Xn. In this formal-

ism,

Y =

n∑
i=1

Xi.

For a given confidence level ρ, the aim is to deter-

mine the associated tolerance interval [−t, t] for the out-

put feature Y , verifying

P(|Y | > t) 6 ρ.

The tolerance interval is determined based on the

distribution of the output feature which depends on in-

put features distributions.

A popular practice is to consider all features as
Gaussian which leads to a Gaussian output feature. By

applying the commonly used 6σ methodology, the con-

fidence level is ρ = 0.0027. In Gaussian framework, the

result is t = 3σY with σY the standard deviation of the

feature Y .

Within the Gaussian framework, the 6σ methodol-

ogy gives the standard deviation of each input feature

: vi/3,∀i ∈ 1, . . . , n. As input features are assumed in-

dependent, the standard deviation of the output fea-

ture in the Gaussian case is 1
3

√∑n
i=1 v

2
i . Again, the

6σ methodology leads to the interval [−TRSS , TRSS ] for

the output feature tolerance, where TRSS =
√∑n

i=1 v
2
i .

This tolerance interval is commonly called the statis-

tical result or RSS (Root Sum of Squared) result by

the tolerancing community. However, as tolerance allo-

cation is considered in the design phase, Gaussian as-

sumption can not be verified from measurement data

on features. Only tolerances bounds of input features

v1, . . . , vn are available.
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Input features are considered as uniform random

variables, since it is the least informative available dis-

tribution given our knowledge about inputs. The pur-

pose is to characterize the deviation of the sum of uni-

form independent random variables. Killmann and Von

Collani [14] studied the distribution of the sum of uni-

form features. Their idea was to explicitly calculate den-

sity of the sum but such a closed form is numerically

intractable and therefore not suited to our context.

Note that our objective is to focus on the quantile

of the distribution of Y ensuring a given probability ρ

to be out of tolerance. This probability value is fixed in

our framework and the tolerancing problem uniformly

according to ρ is not planned to be addressed here. This

is the point of view of the field of optimal transport as

developed in [15] but controlling distribution tails leads

to poor results in practice for reasonable values of ρ.

In the uniform case, input features standard devi-

ations are now vi/
√

3,∀i ∈ 1, . . . , n, and the standard

deviation of the output feature is 1√
3

√∑n
i=1 v

2
i . In this

case, the 6σ methodology is applied with standard de-

viations of uniform distributions and the output feature

tolerance interval would be [−
√

3× TRSS ,
√

3× TRSS ].

The coefficient
√

3 is an accurate coverage factor on

the statistical result if the v1, . . . , vn are all equal but it

does not address the case where they are unbalanced.

Yet, if one of the feature predominates over others, for

a same confidence level the output tolerance interval

should be tighter, as shown in the Figure 2.

Fig. 2 Output feature distribution for several balance ratio
of inputs.

The aim of our approach is to introduce a shape

coefficient in order to correct the RSS interval result

assuming the input distributions are uniforms. This bal-

ance indicator aims to determine how inputs contribu-

tion to the output variation is distributed. Indeed, this

coefficient will depend on how unbalanced input fea-

tures are. It also depends on the selected confidence

level ρ. The value
√

3 for this shape coefficient means

that v1 = v2 = · · · = vn. The more input features are

unbalanced, the lower the form coefficient value is.

Next, the focus will be on the role of this coefficient

and its impact on the probability ρ.

3 Main results

If Gaussian independent input features are considered

with a tolerance interval [−vi, vi], ∀i ∈ {1, . . . , n}, the

associated standard deviation from the 6σ methodology

is vi/3, ∀i ∈ {1, . . . , n}. If the features are denoted Ni
and Ni ∼ N (0, vi/3), then ∀i ∈ 1, . . . , n, the standard

Gaussian deviation inequality gives

P

(∣∣∣∣∣
n∑
i=1

Ni

∣∣∣∣∣ > t

)
6 2 exp

(
− t2

2
∑n
i=1

(
vi
3

)2
)

and then

P

∣∣∣∣∣
n∑
i=1

Ni

∣∣∣∣∣ > 1

3

√√√√2log

(
2

ρ

) n∑
i=1

v2
i

 6 ρ

that is equivalent to

P

(∣∣∣∣∣
n∑
i=1

Ni

∣∣∣∣∣ > lρ × TRSS

)
6 ρ

with

lρ =
1

3

√
2log

(
2

ρ

)
.

For fixed ρ and independent uniform input features

Ui ∼ U([−vi, vi]), ∀i ∈ 1, . . . , n, our aim is to determine

f such that

P

(∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣ > f × lρ × TRSS

)
6 ρ. (1)

This f coefficient aims to correct the RSS value ob-

tained in the 6σ Gaussian case, together with the fixed

value lρ which manages the confidence level ρ.

3.1 Hoeffding approach for the deviation of a sum of

bounded random variables

Traditional approaches based on deviations are related

to the Hoeffding inequality which provides an upper

bound on the probability that the sum of bounded inde-

pendent random variables deviates more than a certain

amount.

As detailed in [16] and [17], this inequality applied

to the sum of uniform independent random variables

Y =
∑n
i=1Xi gives a non asymptotic upper bound for

the probability of deviation. This result is summarized

in the Proposition 1.
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Proposition 1. Let v1, . . . , vn > 0, if X1, . . . , Xn are

independent random variables such that

∀i ∈ {1, . . . , n}, |Xi| 6 vi, a.s.

then,

∀t > 0,P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
6 2 exp

(
− t2

2
∑n
i=1 v

2
i

)
.

Proof. See Section 2.6 in [17].

Setting t =

√
2 log

(
2
ρ

)∑n
i=1 v

2
i leads to

P

 n∑
i=1

Xi >

√√√√2 log

(
2

ρ

) n∑
i=1

v2
i

 6 ρ,

and with f = 3 in order to match the expression (1).

Now, it becomes

P

(
n∑
i=1

Xi > 3× lρ × TRSS

)
6 ρ.

Hoeffding approach only takes into account the fact

that random variables are bounded. However, here the

information that features are uniform random variables

is also available. This information will be used to find

a tighter upper bound for the deviation of a sum of

uniform random variables. As a result, a lower value

for the coefficient f is obtained.

3.2 Chernov approach to improve the bound for a sum

of uniform random variables

As it has just been mentioned, the Hoeffding approach

is solely based on the support of the distribution in-

volved in the deviation inequality. To improve such an

upper bound, this distribution has to be considered

more carefully. To this end, the well-known Cramér-

Chernov bounding method is available. Such an ap-

proach is based on the following inequality derived from

Markov’s inequality and valid for any real random vari-

able W and any real λ > 0,

∀t > 0, P (W − E[W ] > t) 6 e−λtE
[
eλ(W−E[W ])

]
.

Thus, the method consists in optimizing this upper

bound with respect to λ > 0 in order to exhibit a

sharper deviation inequality.

The following proposition is stated and proved:

Proposition 2. Let v1, . . . , vn > 0, if X1, . . . , Xn are

independent random variables such that

∀i ∈ {1, . . . , n}, Xi ∼ U([−vi, vi]),

then,

∀t > 0,P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
6 2 inf

λ>0
{exp (φ(λ, t))}

where the function φ is defined for any λ, t > 0 by

φ(λ, t) =

n∑
i=1

log

(
eλvi − e−λvi

2λvi

)
− λt. (2)

Proof. Let λ > 0, applying Markov inequality to the

positive random variable exp (λ
∑n
i=1Xi) gives the fol-

lowing upper bound on the probability that the sum of

uniform independent random variables deviates more

than t > 0

P

(
n∑
i=1

Xi > t

)
6

E[eλ
∑n

i=1Xi ]

eλt
.

Thus, using the symmetry of the uniform distribu-

tion, for any t > 0,

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
6 2 exp (φ(λ, t)) .

The upper bound is valid for any value of λ > 0

and the announced result follows by taking the infimum

according to λ.

The optimization of φ function with respect to λ

is highly related to the input features balance. Next, a

way to characterize this dependency is detailed.

3.3 Dependency on the features balance

The aim of this section is to provide details on how

to determine the value of λ which is obtained from a

function minimization in the upper bound previously

presented.

A concept of balance between input features is intro-

duced. This balance represents the discrepancy between

the uniform distributions parameters : if all uniform

random variables have the same parameters, it means

a perfect balance between tolerance bounds. Otherwise,

one of the random variables within the sum may have

a much larger support set than others and it leads to

imbalance between tolerance bounds.
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The upper bound result from Proposition (2) is taken.

The idea is to bound from above this result by intro-

ducing a specific term that identifies the influence of

the balance within v1, . . . , vn.

The focus is on the sum of logarithms in the function

φ given in (2) that can be rewritten as

n∑
i=1

log

(
eλvi − e−λvi

2λvi

)
(3)

= λ

n∑
i=1

vi +

n∑
i=1

log

(
1− e−2λvi

2λvi

)
= n log

(
1− e−2λv̄

2λv̄

)
+ Sλ (4)

with Sλ defined as follows

Sλ =

n∑
i=1

(
log

(
1− e−2λvi

2λvi

)
− log

(
1− e−2λv̄

2λv̄

))
.

The term Sλ quantifies the imbalance between uni-

form distributions parameters. In the next two propo-

sitions, results are proposed about the upper bound on

the probability that the sum of uniform independent

random variables deviates from its expected value.

Proposition 3. Let v1, . . . , vn > 0 and the mean v̄ be

defined as

v̄ =
1

n

n∑
i=1

vi.

If X1, . . . , Xn are independent random variables such

that ∀i ∈ {1, . . . , n}, Xi ∼ U([−vi, vi]) then,

∀t > 0, P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
6 2 exp (ψ(λ0, t)) .

where for any λ, t > 0

ψ(λ, t) = −λt+λnv̄+n log

(
1− e−2λv̄

2λv̄

)
+λ

n∑
i=1

|vi − v̄|

and λ0 is such that

∂ψ(λ0, t)

∂λ
= 0

For a set of tolerance bounds v1, . . . , vn > 0 and a

fixed probability ρ, t verifies ψ(λ0, t) = ρ . The value

of interest t is obtained by inversion with respect to

t of the function ψ. With this expression, the balance

within v1, . . . , vn appears via
∑n
i=1 |vi − v̄|. Indeed, this

term is large for unbalanced values v1, . . . , vn and small

otherwise. Next, Propostion 3 is proven.

Proof. Let function h be defined as

∀x > 0, h(x) = log

(
1− e−x

x

)
.

This function is 1
2 -Lipschitz continuous (proof is post-

poned in the appendix A) and therefore

∀x, y > 0, |h(x)− h(y)| 6 1

2
|x− y| . (5)

This inequality is applied for x = 2λvi ∀i ∈ {1, . . . , n}
and for y = 2λv̄ and sum the terms to obtain

Sλ 6 λ

n∑
i=1

|vi − v̄| .

The announced result follows from this upper bound on

Sλ in the equation (4).

In the previous proposition, the balance ratio of the

vi was quantified through the absolute values |vi − v̄|.
It is natural to consider also the variance to this end

and this is the purpose of the next proposition.

Proposition 4. Let v1, . . . , vn > 0 and the mean v̄ and

the variance Var(v) be defined as

v̄ =
1

n

n∑
i=1

vi and Var(v) =
1

n

n∑
i=1

(vi − v̄)
2
.

If X1, . . . , Xn are independent random variables such

that ∀i ∈ {1, . . . , n}, Xi ∼ U([−vi, vi]) then,

∀t > 0, P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
6 2 exp

(
ψ̃(λ0, t)

)
.

where for any λ, t > 0

ψ̃(λ, t) = −λt+λnv̄+n log

(
1− e−2λv̄

2λv̄

)
+
nλ2 Var(v)

2

and λ0 is such that

∂ψ̃(λ0, t)

∂λ
= 0

As in Proposition 3, tolerance bounds v1, . . . , vn > 0

and a fixed probability ρ lead to a value t obtained by

inversion with respect to t of the function ψ̃. The proof

of Proposition 4 is as follows.
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Proof. The Lipschitz continuity of h ensures the follow-

ing inequality (see for example Lemma 1.2.3 in [18] for

a proof of this result):

∀x, y > 0, |h(x)− h(y)| 6 L

2
‖x− y‖2 .

This result applied to x = 2λvi ∀i ∈ {1, . . . , n} and for

y = 2λv̄ gives

∀λ, v1, . . . , vn > 0, |h(2λvi)− h(2λv̄)| 6 λ2

2
‖vi − v̄‖2

and finally, since Sλ =
∑n
i=1 (h(2λvi)− h(2λv̄)),

Sλ 6
nλ2 Var(v)

2
.

The announced result follows from this upper bound on

Sλ in the equation (4).

4 Applications

The first part of this section will describe how our upper

bound behaves on different stack chains obtained from

simulations. The second part will focus on a practical

study on an industrial example of tolerance definition

within an aircraft assembly.

4.1 Simulations

4.1.1 Tolerance design on an assembly example

First step is to simulate stack chains. Stack chains rep-

resented by features X1, X2, X3, X4, X5 are randomly

generated with a number of inputs n = 5. Their toler-

ance intervals values v1, v2, v3, v4, v5 are also randomly

generated between 1 and 5. The aim is to assess on the

output tolerance variability via tolerance intervals to

be defined, and accepting an out-of-tolerance rate ρ. A

stack chain is generated with tolerance inputs intervals

bounds and traditional output results as following:

Table 1 Example of a stack chain characterization.

X1 X2 X3 X4 X5 RSS WC

v1 = 5 v2 = 4 v3 = 3 v4 = 2 v5 = 1 7.4 15

The first approach is based on Monte Carlo meth-

ods. N = 105 observations are generated from n = 5

uniform distributions and are summed. The probabil-

ity to be out of a given tolerance interval can therefore

be asymptotically estimated and considered as a near

theoretical result. The two following methods give an

output interval bound according to the two approaches

proposed in this paper. The provided upper bound de-

pends on the selected confidence level ρ. This level is

the probability for the output feature to be out of the

designed output tolerance interval. The higher the con-

fidence level, the wider the tolerance interval is. Indeed,

if more values to be out of tolerance are allowed, the

output tolerance interval should be broader. Figure 3 il-

lustrates the results obtained from Monte Carlo draws

and from the methods detailed in this paper. Among

the three methods, Figure 3 shows that the Lipschitz

and Quadratic approaches give a looser upper bound

than the Chernov method.

Fig. 3 Example of the behavior of the probability to be out
of tolerance with respect to the value of the output tolerance
bound for the discussed approaches.

The benefits of the methods proposed in this arti-

cle is that they do not require Monte Carlo draws, nor

asymptotic estimation of the probability to be out of

tolerance. Indeed, the provided bounds offer theoreti-

cal non asymptotic guarantees and eliminate any risk

of rare events that Monte Carlo methods would not

generate. Moreover, for large assemblies, the number of

Monte Carlo draws needed to obtain a sufficiently sharp

result would grow with the number of input features in

the assembly. The discussed formula are closed and di-

rectly usable in practice and cheaper to compute than

Monte Carlo simulations.

4.1.2 Influence of the assembly geometry

In order to represent the balance within a stack chain,

previous sections introduced the following term

Sλ =

n∑
i=1

(
log

(
1− e−2λvi

2λvi

)
− log

(
1− e−2λv̄

2λv̄

))
.
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In particular, taking arbitrarily parameter λ = 1 leads

to

S1 =

n∑
i=1

(
log

(
1− e−2vi

2vi

)
− log

(
1− e−2v̄

2v̄

))
.

This quantity can be used as an indicator of the balance

of the stack chain. Indeed, the more balanced the stack

chain is, the lower the value is and vice versa.

As mentioned in the previous part, one of our main

issue is to take into account the traditional RSS result

and the balance of the stack chain. This explains why

hereafter the choice is to display the coefficient f with

respect to some balance indicator such as S1 or other

dispersal measures within input features.

First, in Figure 4, the results are showed for the co-

efficient f obtained from a Monte Carlo simulation of

uniform distributions with 2× 105 drawn observations.

Next, the coefficient f is displayed according to the

Chernov methodology as detailed in Proposition 2. Fi-

nally, it shows that boundings by Lipschitz and Quadratic

approaches directly depend on some balance factor.

Fig. 4 Link between the coefficient f and the balance factor
S1 with parameter ρ = 0.05.

An almost linear behavior of the result with respect

to the balance factor S1 is observed for the Monte Carlo

approach and for the Chernov methodology. This fac-

tor S1 seems to be a relevant indicator to characterize

f coefficient. As expected and due to the upper bounds

defined in these methods, both Lipschitz and Quadratic

approaches give results much more conservative. Still

the Quadratic approach is more accurate for small val-

ues of S1. This is explained by the fact that the result

with Quadratic approach in Proposition 4 takes into ac-

count the variance of input feature bounds. For a small

S1, input features are balanced and variance is a more

regular control quantity for the structure of the stack

chain than the sum of absolute deviations around the

mean v̄ introduced in Proposition 3.

4.2 Case study

In this part, the focus is on industrial practices at Air-

bus. First, the example of an assembly from an aircraft

is taken and results from the methodology proposed in

this article are showed. Then, the common process of

tolerance definition at Airbus is detailed and explana-

tion about how it is related to the approaches presented

in the paper are provided. Finally, all stack chains are

represented in a real aeronautical product perimeter ac-

cording to the balance factor.

4.2.1 An assembly example

The assembly in Figure 5 is related to a genreic frame

misalignment for an Airbus aircraft.

Fig. 5 Example of vertical frame misalignment with respect
to the last rigid point.

Table 2 gives the stack chain data of this require-

ment. Tolerance bounds value have been modified.

Table 2 Stack chain of the top level requirement: frame mis-
alignment - last rigid point.

Name of the contributor
Tolerance
interval

Frame 1 ±1
Frame 2 ±0.5
Process tolerance ±0.25
Process tolerance ±0.23
Process tolerance ±0.2
Process tolerance ±0.2
Process tolerance ±0.15
Process tolerance ±0.13
Process tolerance ±0.1
Process tolerance ±0.09

It involves 10 input features in the assembly and

tolerance data are scaled and unit free. Table 3 provides



A Chernov bound for robust tolerance design and application 9

traditional tolerancing worst case and RSS results. The

application of the different methods proposed in this

paper gives the results depicted in Figure 6.

Table 3 Result for the top level requirement: frame mis-
alignement - last rigid point.

Worst Case result RSS result
±2.85 ±1.23

Fig. 6 Real case study of a bound value according to the
confidence level.

Results for the real case study are very similar to

simulated data conclusion. Indeed, Lipschitz and Quadratic

analytical approaches still do not give a sharp bound

result compared to the Monte Carlo and Chernov ap-

proaches. In practice, the more accurate method in or-

der to design an output tolerance should be the Cher-

nov one. Note that the values for the probability of Out

Of Tolerance probability considered are generally the

lower percentages on the y-axis as the aim in practice

is to limit the scrap rate and in Airbus practices, the

reference value is often 0.27%. This reference value is

displayed in the Figure 7 which focuses on the percent-

age below 1% for Out Of Tolerance probability. The

limits defined by RSS and WC methods applied to the

assembly example are also displayed.

Fig. 7 Real case study of a bound value according to the
confidence level zoomed on relevant values for Airbus.

4.2.2 Industrial practices : Airbus

Among the methods used by Airbus to define a toler-

ance in the design phase, one of them is an approxi-

mation of Monte Carlo simulation data under uniform

assumption for contributors distribution and a dispro-

portion parameter. As for the Gaussian case, quantile

at 0.27% are observed on Monte Carlo simulations and

a linear regression with respect to the factor parameter

is carried out to obtain the result. For a set of tolerance

bound v1, . . . , vn > 0 for an input features balance ratio

D, this rule gives an output feature tolerance interval

[−TAirbus, TAirbus] defined as :

TAirbus = β × (−0.56D + 1.04)× TRSS (6)

with TRSS as defined in previous parts,

∀v1, . . . , vn > 0, D =
maxi(vi)− v̄∑n

i=1 vi

and β > 0 a coefficient. In practice and without claim of

universality, Airbus industrial approach takes β = 1.6

as a relevant value for business and in order to ensure

continuity with former practices.

This D factor measures how far from the mean is

the main contributor of the stack chain and has the

advantage of being understandable. This quantity is

highly correlated to the term S1 previously introduced

as shown on the Figure 8 :
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Fig. 8 Correlation between the term S1 and the balance
factor D.

With this definition, a high D still implies an un-

balanced stack chain. Conversely, a small value of B

means a balanced between stack chain inputs. Figure 9

shows a few examples of this factor with the respect to

the stack chain structure.

Fig. 9 Stack chain structure and balance factor D.

In practice, 70% of the stack chains have a D value

between 0.10 and 0.36. The Figure 10 details the repar-

tition of the coefficient value for Airbus stack chains.

Fig. 10 Repartion of D values for Airbus assemblies.

In the industrial example of the frame misalign-

ment. The probability to be out of tolerance for the

output feature is set at ρ = 0.0027, which corresponds

to the acceptable 0.27% out of the interval from the 6σ

methodology. Table 4 summarizes the tolerance inter-

val obtained for the frame misalignment. Three results

are displayed : the Monte Carlo approach with 200000

drawn observations for each input feature, the Chernov

approach proposed in this article with ρ = 0.0027 and

the industrial practice presented in (6).

Table 4 Tolerance interval results according to the different
approaches.

Method
Monte Carlo
ρ = 0.27%

Chernov
ρ = 0.27%

Industrial
practice

Tolerance
interval

±3.56mm ±4.01mm ±3.53mm

For a level ρ = 0.27%, the result from the industrial

rule is very close to the value observed on Monte Carlo

simulations. The Chernov method gives a more conser-

vative result but ensures a precise probability ρ to be

out of the interval for the output feature.

4.2.3 Performance of the different approaches on

industrial cases

Focusing on a real sample of aeronautical assemblies, all

stack chains have been analyzed in order to obtain the

value of the f coefficient times lρ for ρ = 0.27%, accord-

ing to the different methodologies. The Airbus rule that

can be used for decision helping is also displayed. This

is an approximation for the selected confidence level.
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Fig. 11 Link between the term introduced and the balance
factor D.

The same trend that for simulated data is retrieved:

Better result for Chernov approach and linearity in D.

For Monte Carlo simulations, a similar linear behaviour

is observed with respect to the balance factor D. The

airbus rule seems to be a good approximation for eval-

uate the coeficient f times lρ with a confidence level

ρ = 0.27%.

5 Conclusion

Robust approaches are proposed for tolerance definition

in the design phase allowing the management of confi-

dence level. From known input tolerance intervals of an

assembly and for a selected confidence level, the output

tolerance interval can be determined. The result will be

robust against poor or unknown industrial capabilities

because uniform distributions on tolerance intervals are

assumed for input features.

The Chernov method is particularly accurate and

gives an output tolerance interval result close to the re-

ality, tight enough to be industrially relevant, and en-

sures also the selected probability as confidence level. A

balance factor is also provided. This factor is strongly

related to how tight an interval should be according

to the disproportion of the stack chain. An almost lin-

ear behavior of the result is obtained from the Chernov

methodology with respect to this balance factor.

Future directions of this work would be to consider

more adversarial distributions for input features. For

instance, bimodal distributions or truncated distribu-

tions could be studied in order to hedge against in-

dustrial practices with the induced bias of machine or

thrust effect. Additionally, extension to this work in

more general nonlinear settings for the model output

Y as a function of the input features could be thought

of. Indeed, if the model is nonlinear but the variance of

each input component is finite, [19] suggests that one

could also control the model output as proposed in our

study.

A Proof of Lipschitz continuity of function h

The definition of Lipschitz continuity of a function f : R→ R
is recalled. Let L > 0, if the function is such that

∀x, y ∈ R, |f(x)− f(y)| 6 L |x− y|

then, f is said to be Lipschitz continuous with constant L. In
this appendix, the previously claimed Lipschitz continuity of
function h defined by

∀x > 0, h(x) = log

(
1− e−x

x

)
is proven with constant L = 1/2.

The first and second derivative functions of h are easily
obtained as

∀x > 0, h′(x) =
e−x

1− e−x
−

1

x

and

∀x > 0, h′′(x) =
1 + (1 + x2)e−x

x2(1− e−x)2
.

Since h′′(x) > 0 for any x > 0, then h′ is an non decreasing
function. Moreover, h′(x) tends to −1/2 when x → 0+ and
to 0 when x→ +∞. Thus, the conclusion is that |h′(x)| 6 1

2
and finally that h is Lipschitz continuous with L = 1/2 by a
straightforward integration argument.
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