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Abstract
The sizing of aircraft electrical generators mainly depends on the electrical loads installed in the aircraft. Currently, the 
generator capacity is estimated by summing the critical loads, but this method tends to overestimate the generator capacity. 
A new method to challenge this approach is to use the electrical consumption recorded during flights and study the distribu-
tion of operational ratios between the actual consumption and the theoretical maximum consumption then size the future 
aircraft generators by applying a ratio to the theoretical value. This paper focuses on the application of extreme value theory 
on these operational ratios to estimate the maximal capacity utilization of a generator. A real data example is provided to 
illustrate the approach and estimate extreme quantiles and the right endpoint of the distribution of the ratios together with 
their approximate confidence interval in the nominal configuration. In all situations the right endpoint is proven to be finite 
and does not depend on the use procedures. This approach shows that ELA overestimates the maximal permanent consump-
tion by 20% with error level of 10

−3 in the nominal configuration.

Keywords Electrical load analysis · Aeronautic electrical system · Generalized Pareto distribution · Quantile estimation · 
Endpoint estimation · Diagnostics for threshold selection

Abbreviations
AC  Alternating current
APU  Auxiliary power unit
CI  Confidence interval
ELA  Electrical load analysis
EVT  Extreme value theory
i.i.d.  Independent and identically distributed
GEV  Generalized extreme value
GPD  Generalized pareto distribution
KVA  Kilo–Volt–Ampere
min  minutes

PP-plot  Probability–probability plot
QQ-plot  Quantile–quantile plot
RAT   Ram air turbine
sec  Seconds
UCI  Upper confidence interval

1 Introduction

Driven by the demand to reduce emissions, the aviation 
industry pushes toward the concept of more electrical air-
craft and, ultimately, an all-electrical aircraft [11]. Thus, the 
electrical network will be more in demand. A new network 
should be designed, and a new electrical-intensive architec-
ture implemented.

The Electrical Load Analysis (ELA) is an airworthiness 
requirement. For a given aircraft, it describes the electrical 
network and shows the total theoretical electrical consump-
tion by generators for the different flight phases and different 
operational modes. In the ELA, the electrical consumption is 
computed by summing the component loads under the most 
unfavourable conditions to get the maximal consumption 
and under normal operating conditions to get the operational 
consumption.
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The ELA is provided to the airline at the time of aircraft 
delivery. The airline must use this report to evaluate the 
effects of equipment changes on the electrical network to 
avoid electrical overload.

To avoid oversizing the future electrical network, aircraft 
manufacturer has to assess the current network and re-eval-
uate the needs based on operational measurements. Accord-
ing to recent internal measurements of electrical networks 
recorded during the flight by aircraft manufacturers, the 
theoretical power consumption appears to be overestimated 
as illustrated in Fig. 1. This figure shows the proportion of 
electrical consumption with respect to electrical capacities 
over time for one generator during a given flight. A large 
difference is observed between the theoretical maximum 
consumption given by ELA and the real consumption.

Using operational measurements, we want to justify that 
the maximal observed consumption is smaller than the maxi-
mal consumption given by ELA. The main reason is that the 
electrical loads do not operate all at the same time whereas 
they are considered simultaneously in the ELA.

A preliminary work has been done by [10] using Monte 
Carlo algorithms to simulate the electrical load behavior. 
This approach is based on simulations and differs from ours 
as our objective is focused on the extreme behavior of the 
observed electrical consumption. The approach developed 
hereafter is based on the Extreme Value Theory (EVT). EVT 
provides statistical tools to estimate extreme quantiles and 
right endpoints under two hypotheses. First, the observations 
are considered as independent and identically distributed 
(i.i.d.) realizations of random variables. Second, the prob-
ability distribution belongs to the domain of attraction of 
some extreme value distribution. Under these hypotheses, 
we derive extreme quantiles and endpoints together with 
their confidence interval. Note that extreme quantiles (resp. 
endpoints) are values such that the probability of getting a 
larger value is extremely small (resp. equal to zero).

The distribution assumption is not restrictive and can 
be checked for many well known distributions including 
the uniform on interval and the normal ones (see [6]). The 
results are asymptotic in the sense that they are valid for 

large sample size. The parametric extreme value distribution 
is obtained by looking at the limit distribution of standard-
ized maxima. This result is comparable to the central limit 
theorem that considers the asymptotic behavior of the sum 
of random variables and leads to a normal distribution.

EVT has already been used to estimate very high quan-
tiles for electrical systems (see [13] and [7]). Among recent 
applications of the EVT in the aeronautical field, the authors 
of [9] estimate the probability of occurrence of the position, 
velocity or altitude errors for the navigation systems, while 
[12] designs the load spectrum for aircraft hydraulic pumps.

The present paper illustrates the application of EVT to 
aeronautic electrical systems consumption to challenge 
the ELA assumption approach in the nominal mode only. 
The approach presented below can also be applied to the 
degraded and emergency modes. Nevertheless, the few 
amount of data available in these modes implies a specific 
statistical pre-treatment and is beyond the scope of the pre-
sent paper.

We have a sample of 60,000 flight hours from 18 opera-
tional aircraft that we split into 8 groups based on conditions 
of use of the aircraft. One main goal of our study is to use a 
limited amount of aircraft records to compute probabilities 
beyond the observed measurements. The EVT answers this 
challenge by estimating extreme quantiles and right end-
points. Probabilities associated with extreme quantiles are 
then converted into probabilities by flight hours. Confidence 
intervals are built to encompass the non observed aircraft.

As each aircraft has its own configuration, the ELA value 
may vary. Thus we choose to estimate the maximum ratios 
between the electrical consumption and the theoretical maxi-
mum values given by the ELA rather than estimating the 
maximal electrical consumption. Applying EVT on these 
ratios will help us to evaluate a maximal ratio irrespective 
of the electrical aircraft configuration.

First, we apply EVT to each group separately. Then we 
compare the results between the different groups by using 
a statistical test. The null assumption is the equality of the 
endpoints between groups. Using our sample we do not 
reject the null assumption at usual error level of 5% . From 
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Fig. 1  Example of the consumption in percentage of the capacity of generators as a function of time for a given flight
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this result we can suggest a generalized maximal ratio to all 
operational aircraft and to the future aircraft model. Multi-
plying the ELA values by the maximal ratio leads to adjusted 
ELA value that could be used for sizing future generators or 
adding more loads to operational aircraft.

This paper is organized as follows. Section 2 presents 
the aircraft electrical network and details the dataset used 
to assess the electrical network. Section 3 recalls the EVT 
procedure and the model selection method used to estimate 
the extreme quantiles and endpoints. Section 4 illustrates 
this model selection procedure on a given group example. It 
also shows the results obtained using data from the 8 groups 
separately and globally after testing the endpoints equality 
of the ratios between groups. Finally, Sect. 5 concludes the 
study and proposes possible extensions.

2  Context and data presentation

We are interested in evaluating the extreme electrical con-
sumption with respect to the theoretical ELA value of the 
generators based on operational measurements.

An aircraft flight is segmented into several phases 
depending on the altitude and the electrical source used. In 
our study we consider the flight phase, i.e. where the land-
ing gear is no longer compressed and the altitude is greater 
than 1.500 feet, and the onground phase and we first analyse 
these phases separately.

2.1  Aircraft electrical network

Different electrical sources power the electrical network of 
an aircraft:

– AC (Alternating Current) generators are supplied by the 
engines. Depending on the aircraft family, the number of 
AC generators is two or four. Each generator has a capac-
ity of 90 Kilo-Volt-Ampere (KVA) for medium range and 
100 KVA for long range.

– APU Generator (Auxiliary Power Unit) is an additional 
generator that supplies energy. It is used during the 
onground phase and as a backup in the flight phase to 
replace one or more AC generators at any time.

– RAT (Ram Air Turbine) is a wind turbine and a power 
source in case of loss of all electrical sources.

– Batteries have a limited capacity of electric power and 
are used for temporary actions.

In this paper, we focus the analysis on one of the AC 
generators.

The generators can support an overload that depends on 
the load duration. For the AC generator, the percentages 

of acceptable overload are shown in Table 1. The loads 
are classified as intermittent or permanent: the loads with 
a duration less than 5 mins are called intermittent loads; 
otherwise, they are called permanent loads. In what follows 
we focus the analysis on the permanent loads only. Moreo-
ver, when there is no failure, the electrical network is in the 
nominal mode and we consider this mode only.

2.2  Data details

We have 8 groups for which we consider 18 operational low-
cost aircraft from the same family. Their characteristics are 
given in Table 2.

For each aircraft, we observe at every second the ratio 
defined by the electrical consumption divided by the maxi-
mal electrical load given by the ELA for the corresponding 
aircraft and phase. Let Y be a random variable which repre-
sents these ratios. The ratios are expressed in percentage but 
this has no impact on the EVT analysis.

We split the observations into the flight phase and 
onground phase and independently apply the EVT to each 
of the two phases.

To remove the intermittent loads, we average Y in a time 
window of length T by

where � = ⌊n∕T⌋ and ⌊⋅⌋ denotes the floor part function. The 
i.i.d. variables Xk distributed as a variable X are positive and 
can be greater than 1 if the consumption exceeds the ELA 

(1)Xk =
1

T

T∑
i=1

Y
(k−1)T+i, k ∈ {1,… , �}

Table 1  Percentage of acceptable overload for an AC generator

Under 5 sec Under5 min > 5 min

AC loads 160% to 183% 120% to 125% 100%

Table 2  Groups description

# stands for the quantity available

Group # of aircraft # of flight hours Continent destinations

1 2 10 263 Asia
2 1 1 675 America–Europe
3 4 10 694 Europe
4 2 5 589 Asia
5 5 22 480 Asia
6 2 5 726 America–Europe–Oceania
7 1 1 825 North America
8 1 1 793 Europe–North America
Total 18 60,045 –
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value. On top of that, a special load that generates high peaks 
for less than 200 milliseconds is removed.

We apply the EVT on these datasets to calculate Qp 
the (1 − p)-quantile associated to a small probability p, 
i.e. such that P(X > Qp) = p , and the right endpoint x∗ 
of the distribution support. The endpoint is defined by 
x∗ ∶= sup{x ∶ P(X ≤ x) < 1} and can be finite or not. If it is 
finite, this corresponds to the 1-quantile and P(X > x∗) = 0.

3  Extreme value theory reminder

EVT is widely used in applied fields such as hydrology, 
meteorology and insurance (see [1]). The objective is to 
estimate the probability distributions of the maxima and 
compute the probabilities associated with rare events.

In this paper, we want to estimate extreme quantiles and 
endpoint for the observed ratios x1,… , xn which are consid-
ered as realizations of i.i.d. random variables X1,… , Xn with 
distribution function F. Let Qp be the (1 − p)-quantile and x∗ 
the right endpoint of F. Since

max(X1,… , Xn) converges in probability to x∗ as n tends 
to infinity. To obtain a nondegenerate limit distribution we 
need to normalize max(X1,… , Xn) . To this end, we assume 
that there exist deterministic sequences an > 0 and bn ∈ ℝ , 
such that

has a nondegenerate limit distribution as n → ∞ given by

G is called extreme value cumulative distribution function 
and F is in the domain of attraction of G.

ℙ(max(X1,… , Xn) ≤ x) = ℙ(X1 ≤ x,… , Xn ≤ x)

= Fn
(x),

max(X1,… , Xn) − bn

an

(2)lim
n→∞

Fn
(anx + bn) = G(x).

The previous assumption is fulfilled under regularity 
assumption on right endpoint of F. It can be checked for 
many absolutely continuous distribution functions such as 
uniform on an interval, normal, log-normal, gamma, beta, 
etc. (see details in [6], p. 153–157).

EVT is a powerful statistical asymptotic theory that 
allows us to calculate extreme quantiles and endpoints with-
out parametric assumptions on the distribution F of the data. 
Thanks to EVT we get a parametrized extreme distribution 
G. The parameters of G can be estimated using statistical 
methods such as the maximum likelihood or the moment 
method as discussed in [5].

The EVT is usually divided into two main approaches. 
The first approach is the Generalized Extreme Value (GEV) 
based on the study of the asymptotic distribution of a series 
of maxima. Under some conditions, this distribution is 
known to converge to Gumbel, Fréchet, or Weibull distribu-
tions. The second approach is the Generalized Pareto distri-
bution (GPD) based on the study of the distribution of excess 
over a given high threshold.

The two approaches can be used to build an extreme value 
model for maxima and estimate the parameters. In the GEV 
approach the selection of the blocks size is a difficult task in 
practice. From our experience on the flight series data (see 
Fig. 2), the results strongly depend on the block size and 
flight length, which makes the fitting difficult. This approach 
is more adapted to an uninterrupted series of data but is not 
relevant for flight data. Therefore, we only focus on the GPD 
approach which better captures all the maxima but recall 
both approaches in what follows.

3.1  Generalized extreme value approach

The GEV approach consists in dividing the series into non 
overlapping blocks of identical lengths and taking the maxi-
mum of each block. Let X1,… , Xn,… be i.i.d. random vari-
ables with unknown cumulative distribution. We define a 
block maximum
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Fig. 2  Record of X for 1 day for a given aircraft; 7 flights were observed during this day
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as the observed maximum of the process over n time units. If 
n is the number of observations in 1 h, then Mn corresponds 
to the maximum over 1 h.

As stated in [2], the asymptotic cumulative distribution 
function of block maximum Mn is given by

where 1 + 𝜉
x − 𝜇

𝜎
> 0 . The parameters � ∈ ℝ and 𝜎 > 0 

correspond to location and scale, respectively. The third 
parameter � ∈ ℝ is a shape parameter, which corresponds to 
the thickness of the tail of the distribution:

– 𝜉 > 0 corresponds to the heavy-tailed case, and the cor-
responding distribution converges to Fréchet;

– � = 0 corresponds to the light-tailed case, and the cor-
responding distribution converges to Gumbel;

– 𝜉 < 0 corresponds to the short-tailed case, and the cor-
responding distribution converges to Weibull.

The asymptotic distribution of the maximum is always one 
of these three distributions regardless of the original distri-
bution. The asymptotic distribution of the maximum can be 
estimated assuming condition (2) but without any parametric 
assumptions on the distribution of the observations.

3.2  Generalized Pareto distribution approach

The GPD approach consists in selecting a given (sufficiently 
high) threshold and considering the observations that exceed 
this threshold. Let (X1,… , Xn) be a sequence of independ-
ent random variables with identical distribution as X that 
satisfies condition (2). The random variables Xi − u , for 
i ∈ {1,… , n} , are the exceedances over threshold u if this 
threshold has been exceeded.

For some � , 𝜎 > 0 and � , for u sufficiently large, the 
cumulative distribution function of X − u conditional on 
X > u can be approximated by the distribution:

where x > 0 , and 𝛽 = 𝜎 + 𝜉(u − 𝜇) > 0 is the reparametrized 
scale.

Note that multiplying the random variable by a posi-
tive constant c keeps the parameter � unchanged while � 
is multiplied by c. This means that EVT is equivariant by 
scale transformation. Estimation of parameters � , � and � for 

Mn = max
{

X1,… , Xn

}

H(x) = exp
{
−(1 + �

x − �

�
)

−1∕�
}

H(x) =

⎧
⎪⎪⎨⎪⎪⎩

1 −

�
1 + �

x

�

�
−1∕�

if � ≠ 0,

1 − exp

�
−

x

�

�
if � = 0,

extreme quantiles and endpoint of the distribution F, with 
their confidence intervals, are derived from an asymptotic 
framework where u is replaced by a sequence of upper order 
statistics depending on n (see [3] for technical details). In 
order to use these asymptotic results in practice, we have to 
ensure that the number of observations n is large but also 
that the ratio between the number nu of observations larger 
than u and n is small (see [4] for a detailed application).

The threshold selection involves balancing bias and vari-
ance. The threshold u must be sufficiently high to ensure that 
the asymptotic underlying the GPD approximation is reliable 
and thus reduce the bias. However, a reduced sample size 
for high thresholds increases the variance of the parameter 
estimators.

As discussed in [1], the common graphical diagnostics for 
threshold selection are the mean residual life, the threshold 
stability plots and the fitting diagnostic plots. These plots 
are described below with some guide-lines to use them for 
threshold selection:

– Mean residual life plot: the empirical mean of the exceed-
ances above threshold u is plotted against u. Above 
threshold u0 , where the generalized Pareto distribution 
provides a valid approximation to the excess distribution, 
the mean residual life plot should be approximately linear 
in u.

– Threshold stability plots: � and � are plotted against a 
range of thresholds u. For u0 selected using the mean 
residual life plot, we look at the stability of the param-
eter estimates for values of u > u0 and possibly refine the 
choice of the threshold.

– Fitting diagnostic plots: the Probability-Probability plot 
and Quantile-Quantile plots, which are named PP-plot 
and QQ-plot, respectively, are the usual diagnostics 
tools. If the model fits the data, the points pattern should 
exhibit a 45-degree straight line for both plots. Once the 
threshold is selected using the mean residual life and 
threshold stability plots, the PP and QQ-plots are used 
to validate our choice.

We propose to estimate the GPD parameters using the 
maximum likelihood method. The log-likelihood function 
is given by

l(�, �) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−n log(�) −
�

1

�
+ 1

� n∑
i=1

log

�
1 − �

xi

�

�
,

if � ≠ 0,

−n log(�) −
1

�

n∑
i=1

xi,

if � = 0.
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In practice, the values 𝜉 and 𝛽  that maximize l(�, �) are found 
by using a gradient descent method (see [5]).

Let X be a random variable that follows a GPD(�,� ), the 
quantile Qp is estimated by

It is possible to build a (1 − �) asymptotic confidence inter-
val (CI) for Q̂p (see page 150 of [3]). The upper confidence 
interval (UCI) limit is given by

where Z�∕2 is the (1 − �∕2) quantile of the standard nor-
mal distribution, an approximation of q� for large t (see [3] 
p. 135) is given by

and Var(𝜉) is the variance of 𝜉 defined by

Let x∗ be the right endpoint or the upper limit of the distri-
bution. If the endpoint is known to be finite then 𝜉 < 0 and 
an estimator of x∗ can be calculated by letting p → 0 in (3), 
which leads to

Replacing q� by 1∕�2 in (4), we get (1 − �) one sided asymp-
totic CI

where Z� is the (1 − �) quantile of the standard normal dis-
tribution. In the next section � is called the error level.

The upper confidence interval values for the quantiles of 
order p and the endpoint are based on approximations that 
are valid under certain conditions. These conditions involve 
that the total number of observations n together with the 
number of observations that exceed the threshold u are large 
while the proportion nu∕n is small. Moreover, concerning 

(3)Q̂p =

⎧
⎪⎪⎨⎪⎪⎩

u +

𝛽

𝜉

��
nu

np

�𝜉

− 1

�
, if 𝜉 ≠ 0,

u + 𝛽 log

�
nu

np

�
, if 𝜉 = 0.

(4)Qp < Q̂p + Z𝛼∕2 𝛽 q𝜉

(
nu

np

)√
Var(𝜉)

nu

,

q𝜉(t) ≈

⎧
⎪⎨⎪⎩

t𝜉 log t∕𝜉, if 𝜉 > 0,

(log t)2∕2, if 𝜉 = 0,

1∕𝜉2, if 𝜉 < 0,

{
(1 + 𝜉)2, if 𝜉 ≥ 0,

1 + 4𝜉 + 5𝜉2
+ 2𝜉3

+ 2𝜉4, if 𝜉 < 0.

(5)X̂∗

= u −

𝛽

𝜉
, for 𝜉 < 0.

(6)x∗ < X̂∗

+ Z𝛼

𝛽

𝜉2

√
Var(𝜉)

nu

,

the UCI of an extreme quantile, the probability p has to be 
small enough so that np∕nu is small but not too small in 
order to have a small value for �log(np)�∕√nu (see Remark 
4.3.4, p. 135 in [3]). Interested readers could find more 
details about the CI building in Chapter 4 of [3].

4  Extreme value application on electrical 
loads

4.1  Illustration of the GPD procedure for one group

In this section, we select one group, apply the GPD approach 
on the data and compute upper confidence interval values for 
extreme quantiles and endpoint.

The group under study was observed during more than 
10,000 flights between 2016 and 2018. To illustrate the 
results of the methodology, we select one generator in the 
permanent mode during the onground phase. For each 
flight, we apply a mean time window of T = 150 seconds as 
detailed in Eq. (1). We apply the GPD approach using the 
package extRemes [8] in the R software with the maximum 
likelihood estimation method.

In the first step, we set threshold u using the graphical 
diagnostics from Sect. 3.2. The mean residual life plot is 
represented by a solid line in Fig. 3. We look for a linear 
trend at the extreme right of this curve. For u between 50% 
and 63% , the data exhibit such a linear trend. This choice is 
refined using Fig. 4, where we focus on u between 50% and 
63% . According to these plots, 𝛽  and 𝜉 reach stability when 
u > 57.5% , which indicates that the assumption of GPD is 
reasonable for u ∈ [57.5%, 60%].

Table 3 gives the maximum likelihood estimates of 𝛽  and 
𝜉 and confirms the stability of the estimates for this range of 
values. Then, we set u = 59.5% and check whether the model 
fits the data by using the fitting diagnostic PP-plot and QQ-
plot in Figs. 5 and 6, respectively.

In both Figs.  5 and 6, the point pattern exhibits a 
45-degree linear trend. So the GPD assumption appears 
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Fig. 3  Mean residual life plot. We plot u against the mean excess for 
a range of threshold values. A linear trend is observed for u > 50% 
represented by the dashed line
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reasonable for u = 59.5% and we obtain nu = 150 from 
n = 18 319.

To align with the safety assumption study, we have to 
convert our probabilities into probabilities by flight hour. 
In our case, we recall that the data are preprocessed by tak-
ing the mean of the consumption during a time window of 

T = 150 seconds (see Sect. 2). Therefore, we have 24 obser-
vations per hour.

Let X1,… , X24 be the variables observed during a given 
hour, we want to compute the probability that their maxi-
mum is above the quantile Qp . For a given probability p to 
exceed Qp during a period of length T and assuming that 
X1,… , X24 are i.i.d. with the same distribution as X, we can 
write

Let Phour be the probability to exceed Qp in 1 h. Then Equa-
tion (7) becomes Phour = 1 − (1 − p)24 , and we can compute 
p for a target probability Phour . Table 4 shows the results 
obtained using Eqs. (3) and (7) to estimate quantiles associ-
ated to the target probabilities.

From Table  4, we select the result corresponding to 
Phour = 10−7 to respect the aeronautic safety procedure and 
not increase the probability of losing one generator.

At the probability 10−7 by flight hour, the maxi-
mum ratio for the selected generator is 70.3% . Using the 
results from Equation (4) we build UCI at error levels 
� = 5 × 10−2, 10−2, 10−3, 10−5, 10−7, 10−9, 10−12 and plot 
these UCI with respect to the error levels. Figure 7 shows a 
trend from 70.2 to 88.3%.

(7)

ℙ

(
max

i
Xi > Qp

)
= 1 − ℙ

(
max

i
Xi ≤ Qp

)

= 1 − ℙ
(
X ≤ Qp

)24

= 1 −

[
1 − ℙ

(
X > Qp

)]24
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Fig. 4  Threshold stability plots for a threshold between 50% and 63% 
(top plot for � and bottom plot for � ). For each value of u the vertical 
bar represents the confidence interval of the estimators. Stability of 
estimators is observed for u ∈ [57.5%, 60%]

Table 3  Maximum likelihood 
estimates of � and � for different 
thresholds u 

u(%) 𝛽 𝜉

57.5 3 −0.3

58 2.9 −0.2

58.5 2.7 −0.2

59 2.3 −0.2

59.5 2.3 −0.2

60 2.2 −0.2
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Fig. 5  PP-plot obtained from fitting the GPD using the maximum 
likelihood method for u = 59.5% . The point pattern falls along the 
45-degree line represented by the black line
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45-degree line. The dashed lines represent the 95% confidence bands 
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Table 4  Quantile estimation for 
different values of P

hour

P
hour

p Q
p

10
−3

10
−5 67.1

10
−5 10

−7 69.4
10

−7
10

−9 70.3
10

−9
10

−11 70.7
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−14 70.9
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From Table  3, we see that 𝜉  is always negative 
and so we can assume that the endpoint exists and, 
from Eq. (5), is estimated at 71% . Using Eq. (6) we 
can build a CI around the endpoint estimate. Figure  8 
gives the endpoint CI with respect to the error levels 
� = 5 × 10−2, 10−2, 10−3, 10−5, 10−7, 10−9, 10−12 . It shows a 
trend between 75 and 90%.

The results from the quantile at Phour = 10−7 and the end-
point are close. For the group under study, with a reasonable 
risk error ( � = 10−3 ) and to remain in accordance with the 

aeronautic safety procedures ( Phour = 10−7 ), we can consider 
a ratio of 80% which means that the ELA is overestimating 
the electrical network by 20% with an error level of 10−3 for 
this group.

Concerning the assumptions advocated at the end of 
Sect. 3.2, most are clearly fulfilled in our context, namely 
that n = 18 319 and nu = 150 are large while nu∕n = 8 × 10−3 
and np∕nu = 5 × 10−5 are small. It is not as clear when it 
comes to the assumption that � log(np)�∕√nu is small since 
it equals 0.77. It means that the extrapolation should not be 
pushed further and results concerning the UCI of extreme 
quantiles with smaller Phour than 10−7 may not be valid 
anymore.

4.2  Global results

Using the EVT on the sampled groups we want to demon-
strate that the ELA is overestimating maximal consumption 
for all groups. For that, we apply separately the same pro-
cedure to the 8 groups for the flight and onground phases 
to estimate extreme quantile, endpoint and their confidence 
intervals.

We use the same procedure as described in Sect. 4.1 to set 
the threshold and fit the GDP. Table 5 shows the parameter 
estimates for each group by phase. We see that the number 
of observations for the onground phase is smaller than for 
the flight phase which is coherent given the length of the two 
phases. All 𝜉 are negative which implies a finite endpoint for 
all groups in both phases.

To compare the maximal electrical consumption 
between groups we need to compute the extreme quantiles 
and endpoint ratios by groups. Let Q̂10−7 be the estimated 
extreme quantile associated to Phour = 10−7 and UCI10−3 its 
UCI at error level � = 10−3 . Let CI10−3 be the CI at error 
level � = 10−3 for the estimated endpoint X̂∗ . The quan-
tiles and endpoints estimates are given in Tables 6 and 
7. Concerning the assumptions advocated at the end of 
Sect. 3.2, we can see that not all of them are fulfilled for 
all groups. The size n is large and the ratios nu∕n and np∕nu 
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Fig. 7  UCI for the quantile associated to the probability 10
−7 by flight 

hour with respect to the error levels. The green dashed line (resp. blue 
dotted line) represent 100% (resp. 90% ) of the ELA value
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Fig. 8  CI for the endpoint with respect to the error levels. The green 
dashed line (resp. blue dotted line) represents 100% (resp. 90% ) of the 
ELA value

Table 5  Maximum likelihood 
estimates 𝛽  and 𝜉 by group for 
the flight and onground phases

Group Flight phase Onground phase

n n
u

n
u
∕n 𝛽 𝜉 n n

u
n

u
∕n 𝛽 𝜉

1 227,988 316 0.001 2.23 −0.18 18,319 150 0.008 2.47 −0.24

2 35,504 150 0.004 3.46 −0.41 4,701 150 0.032 1.96 −0.24

3 232,296 150 0.001 2.2 −0.33 24,349 13 0.001 2.75 −0.34

4 113,787 200 0.002 1.64 −0.16 20,355 637 0.031 2.19 −0.16

5 455,263 430 0.001 1.91 −0.23 84,267 26 0.000 3.64 −0.44

6 123,430 600 0.005 3.19 −0.24 13,987 500 0.036 2.05 −0.21

7 38,063 150 0.004 2.1 −0.3 5,728 80 0.014 1.76 −0.35

8 40,104 120 0.003 3.15 −0.28 2,935 50 0.017 1.19 −0.22
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are small in all situations. But the size nu is quite small and 
� log(np)�∕√nu is quite large for the groups 3, 5, 7 and 8 for 
the onground phase. It means that the results concerning 
the UCI of the quantiles and the endpoints for these three 
groups during the onground phase have to be interpreted 
with caution. It also justifies the interest of gathering the 
different groups and phases if the results are sufficiently 
similar.

We observe that Q̂10−7 and X̂∗ are close. This can be 
explained by the fact that we are computing quantiles asso-
ciated to p = 10−9 to get the target probability 10−7 by flight 
hours and this probability is so small that we almost reach 
the endpoint. We see that the CI of the endpoint ratios by 
groups are aligned in a range of 70–83% which confirms 
our assumptions that the ELA overestimates the electrical 
consumption for permanent loads in nominal mode for the 
observed groups.

The largest endpoint ratio observed is 78% and 83% 
respectively for flight and onground phases but the ratio 
varies from one group to another. The final aim of this work 
is to generalize the observed ratio to all operational aircraft 
and to size the future aircraft generator. For that, we need 

to test if the endpoints can be considered the same for the 
different groups.

To this end we use an asymptotic chi-square test devel-
oped in [4]. This test checks the equality of the endpoints for 
independent random samples. We apply this test to check the 
equality of the group endpoints. We can consider that the 
assumption of independence between groups is satisfied as 
the electrical consumption of one group does not depend on 
the consumption of another. Let x∗

j
 be the endpoint of the jth 

group with j = 1,… , 8 . We consider the following 
hypotheses:

The test statistic is

where X̃ =

8∑
j=1

rjX̂
∗

j
 , with rj =

dj

d
 , d =

8∑
j=1

dj , dj =
n

j
u

𝛽2
j
𝜏(𝜉2

j
)

 and 

𝜏(𝜉j)
2
= 2 + 2𝜉−1

j
+ 5𝜉−2

j
+ 4𝜉−3

j
+ 𝜉−4

j
 , where nj

u (resp. 𝜉j and 
𝛽j ) are the number of observations that exceed threshold u 
(resp. the shape and the scale estimators) for group j.

Under H0 , [4] demonstrates that the test statistic S follows 
a chi-square distribution with 7 degrees of freedom. We 
reject H0 at level � if S > q𝜒2

7
(1−𝛼) where q�2

7
(1−�) stand for the 

(1 − �)-quantile of the chi-square distribution with 7 degrees 
of freedom.

The result of this statistical test is given in Table 8. The 
p values for both phases are greater than 0.05 hence the 
hypothesis that the endpoints are equal is not rejected with 
a 5% risk error.

We do not reject that group endpoints are equal (for both 
phases) which means that the largest possible value of the 
maximum of electrical network consumption divided by the 
ELA value does not depend on the groups. This result can 
also be deduced from Figs. 9 and 10 where the endpoints 

{
H0 ∶ x∗

1
= … = x∗

8

H1 ∶ the x∗
j

are not all equal.

S = d

8∑
j=1

rj(X̂
∗

j
− X̃)2

Table 6  Quantiles associated to the probability 10
−7 by flight hour 

and its UCI at error level of 10
−3 by group for the flight and onground 

phases

Group Flight phase Onground phase

X̂
10−7

UCI
10−3 X̂

10−7
UCI

10−3

1 67.3 75.2 69.5 75.7
2 70.3 72.2 68.5 73.5
3 69.5 71.8 74.2 83.0
4 65.3 75.4 69.5 77.2
5 69.1 72.2 72.6 76.8
6 70.9 75.2 72.1 76.0
7 67.4 70.4 70.3 72.3
8 71.9 77.7 66.0 73.0

Table 7  Endpoints and its CI at error level 10
−3 by group for the flight 

and onground phases

Group Flight phase Onground phase

X̂
∗ CI

10−3 X̂
∗ CI

10−3

1 68.5 75.9 69.8 75.6
2 70.3 72.1 68.7 73.4
3 69.7 71.8 74.4 82.6
4 66.6 76.1 70.6 77.8
5 69.6 72.5 72.7 76.6
6 71.4 75.5 72.4 76.1
7 67.5 70.3 70.3 72.2
8 72.2 77.5 66.2 72.8

Table 8  Chi-square test for 
groups endpoint equality in 
flight and onground phases

Group X̂
∗ flight X̂

∗ onground

1 68.5 69.8
2 70.3 68.7
3 69.7 74.4
4 66.6 70.6
5 69.6 72.7
6 71.4 72.4
7 67.5 70.3
8 72.2 66.2
S 11.7 13.1
p value 0.11 0.07
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estimates are represented by dots and the corresponding CI 
by dashed bars. These figures are graphical representations 
in connection with the chi-square test results and help us to 
check the equality of endpoints. We confirm graphically the 
equality of endpoints for both phases since the CI intersect 
with each other on the two figures.

As the endpoints equality test suggests that there is no 
effect of the group on the estimated ratio, we gather all 
groups and estimate a global ratio taking into account all 
groups. We apply the EVT separately to the flight and the 
onground phases. The parameters, extreme quantiles, end-
points estimates and their CI are given in Table 9. It shows 
that we still have a negative 𝜉 and thus a finite endpoint. 
The ratio estimates of extreme quantile and endpoint are 
close and around 75% for the flight phase and around 80% 

for the onground phase. Comparing to the ratios found in 
Table 7 the results are aligned.

To go further in generalizing this ratio and since the 
endpoints for flight and onground phase are close we check 
if the endpoints are equal. Table 10 provides the results of 
the chi-square test of endpoint equality between the flight 
and the onground phases. The test illustrates that we can-
not reject the equality of endpoints at 5% error level and 
thus the estimated ratio can be considered as independent 
of the phase.

From this result, we gather also the two phases and 
apply the EVT on the gathered groups with no distinction 
between flight and onground phases. Table 11 shows the 
maximum likelihood estimates of the parameters � and � 
for the gathered groups and phases, we still have 𝜉 < 0 and 
thus consider a finite endpoint.

The extreme quantile is estimated at 72.9% and 
the endpoint at 74.3% . The UCI and CI are given 
in Figs.  11 and 12 where we vary the error levels 
� = 5 × 10−2, 10−2, 10−3, 10−5, 10−7, 10−9, 10−12 and plot 
the UCI of extreme quantile and CI of the endpoint 
with respect to the error level. As could be expected, we 
observe an increasing trend for extreme quantile and end-
point ratios. They both vary from 75 to 87%. We see that 
for the error level � = 10−3 we have a ratio of 80% which 
is in line with the previous results.

In all applications of the EVT, by groups and on gath-
ered data, we get a maximal ratio of 80% for an error level 
10−3 . From these results we can consider a ratio of 80% 
for the generator with permanent loads in nominal mode.
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Fig. 9  Endpoints and their CI by group for the flight phase repre-
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Table 9  Parameters, quantiles, 
endpoint estimates and their 
confidence interval for gathered 
group by phase

Phase n n
u

n
u
∕n 𝛽 𝜉 X̂

10−7
UCI

10−3 X̂
∗ CI

10−3

Flight 1 266 435 335 0.000 1.84 − 0.24 71.5 74.7 71.6 74.6
Onground 174 640 120 0.001 1.45 − 0.2 73.3 79.7 73.5 79.6

Table 10  Chi-square test for 
phases endpoint equality

Phase X̂
∗

Flight 71.6
Onground 73.5
S 0.8
p value 0.381

Table 11  Parameters estimates associated to the gathered groups and 
phases

n n
u

n
u
∕n 𝛽 𝜉

1441 076 500 0.000 1.5 −0.13
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5  Conclusion

In this paper, we use the extreme value theory to estimate 
extreme ratios associated to probability 10−7 by flight hour 
and endpoint ratios, we also build confidence intervals at 
error level 10−3 to check whether the ELA overestimates 
the maximal consumption. We detail the statistical pro-
cedure for permanent loads of a generator in the nominal 
mode for a specific group. Then, we apply the EVT to 8 
groups and demonstrate that the largest ratio is around 
83% for the permanent loads in the nominal mode.

To generalize this gap to all operational aircraft and to 
size the future aircraft generators, we do an asymptotic 
chi-square test to check that the group endpoints are equal. 
The endpoints equality is not rejected for both phases 
which means that there is no group effect on the ratio 
endpoint. Then we gather all groups to estimate extreme 
quantiles and endpoint ratios for each of the two phases 

and we end up with a ratio of 75% for flight phase and 80% 
for the onground phase. To obtain a global ratio, we check 
if there is a difference between the flight and onground 
phases using the endpoint equality test. Again the equal-
ity assumption is not rejected and after gathering the two 
phases, we obtain an endpoint ratio of 80%.

Using a statistical approach, we quantify how much the 
ELA overestimates the maximal electrical consumption of 
the generator. For instance, with an error level of 10−3 for 
permanent loads in the nominal mode, our study leads to an 
excess of 20% for the considered generator.

However, the study only relies on permanent loads in the 
nominal mode for low-cost aircraft. To complete the elec-
trical network assessment, we need to incorporate also non 
low-cost aircraft in our analysis and extend the study to the 
intermittent loads and failure modes. In particular, future 
work should focus on the degraded mode (loss of generators) 
to size the generators.

Supplementary Information The online version supplementary mate-
rial available at https:// doi. org/ 10. 1007/ s13272- 021- 00540-8.
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