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1 — Principal component analysis

1.1 Introduction
From a general point of view, the aim of statistics is to describe phenomena based on observa-
tions of variables related to these phenomena. Hereafter, we call variable anything that we
can observe. If we consider some variable x, we call data any set of observations of x. In
the sequel of this document, a data set of n observations of a variable x is usually denoted by
x1, . . . ,xn. We say that a variable x is real when its observations belong to R. Unless stated
otherwise, all the variables considered in this document are assumed to be real.

Let us consider a real variable x, we usually associate weights to a data set x1, . . . ,xn ∈ R,
namely positive real numbers w1, . . . ,wn > 0 such that w1+ · · ·+wn = 1. For i∈ {1, . . . ,n}, the
weight wi represents the importance given to the observation xi among the data. In the particular
case of indentical importance, we refer to normalized weights for w1 = · · ·= wn = 1/n.

Definition 1.1. Considering a data set x1, . . . ,xn ∈ R associated to a real variable x and some
weights w1, . . . ,wn, the mean x of x is given by

x =
n

∑
i=1

wixi

and the variance σ2(x) of x by

σ
2(x) =

n

∑
i=1

wi (xi− x)2 .

The variance is a nonnegative quantity and measures the dispersal of the observations around
the mean. Such dispersal measurements play a central role in this first chapter.

In order to get a more precise information about how the data are distributed, we can also
consider the quantiles associated to a data set:

Definition 1.2. Let p ∈ [0,1], the p-quantile qp(x) ∈ R of a data set x1, . . . ,xn ∈ R is

qp(x) = inf

{
t ∈ R such that

n

∑
i=1

wi1{xi6t} > p

}
.
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If p = 0.5, the p-quantile is called the median and if p = 0.25 or p = 0.75, the p-quantiles
are called the first and third quartile, respectively. The difference between the third and the
first quartiles is called the interquartile range IQR = q0.75(x)−q0.25(x).

The quantiles supply a convenient way, known as a box plot, for graphic representation of
the distribution of a data set. Basically, five informations are summarized in a box plot: the
smallest observation, the first quartile, the median, the third quartile and the largest observation.
Moreover, one adds two whiskers to the box to indicate some additional informations. The
lengths of these whiskers can vary from a representation to an other but an usual choice
is to use the lowest observation still within 1.5× IQR of the first quartile and the highest
observation still within 1.5× IQR of the third quartile (see Figure 1.1).

●

0 20 40 60 80 100 120

min xi 1st quartile median 3rd quartile max xi

IRQ

Figure 1.1: An example of box plot.

As mentioned previously, we focus on dispersal measurement in this chapter. A principal
component analysis (PCA) mainly amounts to compute the directions in which the amount
of dispersion is the largest. Let us consider a naive example to introduce the concepts beyond
such a procedure. We consider two real variables x1 and x2 observed n times. Thus, we
have at our disposal a data set of points x1 = (x1

1,x
2
1), . . . ,xn = (x1

n,x
2
n) ∈ R2 and weights

w1, . . . ,wn > 0. The variances σ2(x1) and σ2(x2) measure the dispersal of each coordinate
around their means x1 and x2, respectively (we assume here that these variances are positive).
In such a simple framework, looking for the direction in which the amount of dispersion is
maximal consists in finding a unit vector v = (v1,v2) ∈R2 (i.e. ‖v‖= 1) such that the variance
of the variable created as the linear combination v1x1 + v2x2 is maximal. In other words, we
want to maximize the following quantity,

σ
2 (v1x1 + v2x2)= n

∑
i=1

wi

(
v1

(
x1

i − x1
)
+ v2

(
x2

i − x2
))2

= v2
1σ

2(x1)+2v1v2σ(x1,x2)+ v2
2σ

2(x2) (1.1)
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where the covariance between the observations of x1 and x2 has been denoted by

σ(x1,x2) =
n

∑
i=1

wi

(
x1

i − x1
)(

x2
i − x2

)
.

Using matrix notations, we see that maximizing (1.1) boils down to maximize vᵀΣv with
respect to the unit vector v ∈ R2 where Σ is the covariance matrix,

Σ =

(
σ2(x1) σ(x1,x2)

σ(x1,x2) σ2(x2).

)
Because Σ is symmetric, we know that the maximum of vᵀΣv is the largest eigenvalue λ1 of
Σ and is reached by any associated normalized eigenvector v = v1. Taking any unit vector
v2 ∈ R2 which is orthogonal to v1, you obtain an orthonormal basis {v1,v2} of R2. This basis
is adapted to our data set in the sense that its axes are aligned with the "principal directions"
of the dispersion (see Figure 1.2).
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Figure 1.2: Principal directions of the dispersion of a data set in R2 (left) and its representation
in principal axes (right).

1.2 Basic PCA
1.2.1 Principle

A PCA procedure is not restricted to two real variables and we now consider the common case
of p real variables x1, . . . ,xp observed n times with weights w1, . . . ,wn > 0. Our data set is
then given by the vectors, for i ∈ {1, . . . ,n},

xi =

x1
i
...

xp
i

 ∈ Rp.
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The mean x is defined as in the real case by the weighted sum of the observations

x =
n

∑
i=1

wixi =

x1

...
xp

 ∈ Rp.

Handling vectorial data quickly induces some difficulties for the notations and we introduce
some convenient matrix. First, the weight matrix W is the diagonal n×n matrix given by

W =


w1 0 . . . 0

0 w2
. . . ...

... . . . . . . 0
0 . . . 0 wn

 .

The data matrix X is the n× p matrix containing the observations,

X =


x1

1 x2
1 . . . xp

1
x1

2 x2
2 . . . xp

2
...

...
...

...
x1

n x2
n . . . xp

n

 ,

and we denote by X̄ its centered version,

X̄ =


x1

1− x1 x2
1− x2 . . . xp

1 − xp

x1
2− x1 x2

2− x2 . . . xp
2 − xp

...
...

...
...

x1
n− x1 x2

n− x2 . . . xp
n − xp

 .

Note that the matrices X and X̄ can be read row by row to browse the observed individuals
x1, . . . ,xn ∈ Rp or column by column to browse the variables x1, . . . ,xp ∈ Rn. Finally, the
pairwise covariance computations lead to the p× p covariance matrix Σ,

Σ =


σ2(x1) σ(x1,x2) . . . σ(x1,xp)

σ(x1,x2) σ2(x2)
. . . ...

... . . . . . . σ(xp−1,xp)
σ(x1,xp) . . . σ(xp−1,xp) σ2(xp)

 .

Proposition 1.1. The covariance matrix is given by

Σ = X̄ᵀWX̄ .

Moreover, the matrix Σ is symmetric and nonnegative-definite.

Proof. Let j,k ∈ {1 . . . , p}, we compute

(X̄ᵀWX̄) jk =
n

∑
i=1

wiX̄i jX̄ik =
n

∑
i=1

wi

(
x j

i − x j
)(

xk
i − xk

)
= σ(x j,xk) = Σ jk.



1.2 Basic PCA 13

By symmetry of covariance operator, Σ is symmetric and the nonnegative-definite property
comes from, for any u = (u1, . . . ,up)

ᵀ ∈ Rp,

uᵀΣu = (X̄u)ᵀW (X̄u) =
n

∑
i=1

wi (X̄u)2
i > 0.

A simple measurement of the dispersion of the data in Rp is to sum the variances of the
coordinates. This approach gives us the standard inertia,

I(x) =
p

∑
j=1

σ
2(x j).

As we claimed in the previous section, we are interested in the directions that capture the
maximal amount of dispersion. In our framework, the standard inertia plays the role of
dispersal measurement. Let d 6 p be some positive integer, we want to find d orthonormal
vectors v1, . . . ,vd ∈ Rp such that the standard inertia of the orthogonal projection of the initial
data set onto the linear space Ed generated by {v1, . . . ,vd} is maximal. We introduce the usual
notation for the standard scalar product in Rp,

∀u = (u1, . . . ,up)
ᵀ,v = (v1, . . . ,vp)

ᵀ ∈ Rp, 〈u,v〉= uᵀv =
p

∑
j=1

u jv j

and its associated norm ‖ · ‖ given by

∀u = (u1, . . . ,up)
ᵀ ∈ Rp, ‖u‖2 = 〈u,u〉=

p

∑
j=1

u2
j .

Note that, with these notations, we can write the standard inertia as a weighted mean of
squared distance just like the variance in the real case,

I(x) =
n

∑
i=1

wi

p

∑
j=1

(
x j

i − x j
)2

=
n

∑
i=1

wi‖xi− x‖2. (1.2)

Considering d orthonormal vectors v1, . . . ,vd ∈Rp, we denote by πd the orthogonal projection
onto Ed and we have, for any i ∈ {1, . . . ,n},

πdxi =
d

∑
k=1
〈xi,vk〉vk.

Let us compute the standard inertia of these projected data with the formula (1.2),

I(πdx) =
n

∑
i=1

wi‖πdxi−πdx‖2 =
n

∑
i=1

wi‖πd(xi− x)‖2 =
n

∑
i=1

wi

d

∑
k=1
〈xi− x,vk〉2.

For any i ∈ {1, . . . ,n} and k ∈ {1, . . . ,d}, we have

〈xi− x,vk〉=
p

∑
j=1

(
x j

i − x j
)

vk
j =

p

∑
j=1

X̄i jvk
j =
(

X̄vk
)

i
.
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Then, with Proposition 1.1, we obtain the inertia

I(πdx) =
n

∑
i=1

wi

d

∑
k=1

(
X̄vk
)2

i

=
d

∑
k=1

(
X̄vk
)ᵀ

W
(

X̄vk
)

=
d

∑
k=1

vkᵀ
Σvk

=
d

∑
k=1
〈Σvk,vk〉. (1.3)

In other words, to get the d directions which contain the maximal amount of inertia, we need
to compute the orthonormal vectors v1, . . . ,vd ∈ Rp that make the last sum in (1.3) as large as
possible.

Because Σ is a symmetric nonnegative-definite matrix, we know that there exists an orthogonal
matrix V (i.e. V ᵀ =V−1) such that

V ᵀ
ΣV = Λ =


λ1 0 . . . 0

0 λ2
. . . ...

... . . . . . . 0
0 . . . 0 λp


with λ1 > λ2 > · · ·> λp > 0. For any j ∈ {1, . . . , p}, λ j is the eigenvalue of Σ associated to the
eigenvector v j given by the j-th column of V . Moreover, {v1, . . . ,vp} forms an orthonormal
basis of Rp. Because the λ j’s are ordered, the space Ed is generated by the d first eigenvectors
v1, . . . ,vd which make the sum (1.3) maximal. We also have that the inertia of projected data
onto Ed is

I(πdx) =
d

∑
k=1

λk.

Since I(x) = λ1 + · · ·+λp, we call exlained inertia of Ed the ratio

d

∑
k=1

λk

p

∑
k=1

λk

.

This quantity measures the global quality of the representation of the data set in Ed in the
sense that it quantifies the amount of dispersion captured by the d first principal directions.

1.2.2 Principal components
The eigenvectors v1, . . . ,vp provide an orthonormal basis adapted to represent the initial data
set. For each individual, we can compute its coordinates in this basis. Let i ∈ {1, . . . ,n} and
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j ∈ {1, . . . , p}, we denote by c j
i the coordinate of the i-th centered individual xi− x along the

vector v j,
c j

i = 〈xi− x,v j〉.

This leads us to consider p new centered vectors of observations c1, . . . ,cp ∈ Rn given by, for
any j ∈ {1, . . . , p},

c j =

c j
1
...

c j
n

= X̄v j.

These vectors c1, . . . ,cp are called principal components. Treating them as p variables gives
a n× p data matrix C, namely the principal components matrix,

C = X̄V.

Proposition 1.2. The principal components are centered and noncorrelated. Moreover, for
any j ∈ {1, . . . , p}, we have

σ
2(c j) = λ j.

Proof. As linear combinations of centered variables given by the columns of X̄ , the principal
components are obviously centered. Let us compute the covariance matrix associated to C,

CᵀWC =V ᵀX̄ᵀWX̄V =V ᵀ
ΣV = Λ.

So, for any j,k ∈ {1, . . . , p} with j 6= k, we have

σ
2(c j) = λ j and σ(c j,ck) = 0.

The columns of C contain the coordinates of the n individuals along the principal directions.
Thus, considering the d first columns, we can represent the individuals in the space Ed . In
particular, when d = 2, the space E2 is called the principal plane.

A question that naturally arises is about the quality of the representation of the individuals.
Although the explained inertia provides a global measurement, we are interested in measuring
the quality for each individual. Let i ∈ {1, . . . ,n}, this can be done for the i-th individual
through the angle θi between the initial point xi− x ∈ Rp and its representation in Ed . Indeed,
by orthonormality of the basis {v1, . . . ,vp}, we have

cos2
θi =

‖πd(xi− x)‖2

‖xi− x‖2 =
(c1

i )
2 + · · ·+(cd

i )
2

(c1
i )

2 + · · ·+(cp
i )

2 .

The closer this quantity is to 1, the better is the representation of the i-th individual in Ed .

If we have at our disposal a new individual y ∈ Rp which has not been taken into account in
the PCA, it is possible to represent it in Ed without running the procedure again. Indeed, if we
center y with x, we can compute the coordinate of y in along v j with

〈y− x,v j〉.
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1.2.3 Correlation circle
Now that we know how to represent the data set in Ed , we want to be able to interpret the
coordinates of each individual with respect to the initial variables. In other terms, we want to
discuss about the position of an individual in the space Ed .

The relation between the initial variables x1, . . . ,xp ∈ Rn and the principal components
c1, . . . ,cp ∈ Rn is linear. Thus, for any j,k ∈ {1, . . . , p}, it seems reasonable to consider
the Pearson correlation coefficient ρ(x j,ck) between x j and ck, namely

ρ(x j,ck) =
σ(x j,ck)√

σ2(x j)σ2(ck)
.

We know that X̄ =CV ᵀ, thus, for any i ∈ {1, . . . ,n},

x j
i − x j =

p

∑
`=1

v`jc
`
i (1.4)

and Proposition 1.2 leads to

ρ(x j,ck) =
vk

jλk√
σ2(x j)λk

=
vk

j

√
λk√

σ2(x j)
.

An interesting case is the principal plane E2. Indeed, for each initial variable x j, we can
consider the vector~τ j given by the correlation coefficients with c1 and c2,

~τ j =
(
ρ(x j,c1),ρ(x j,c2)

)
=

(
v1

j
√

λ1√
σ2(x j)

,
v2

j
√

λ2√
σ2(x j)

)
.

With the help of (1.4) and Proposition 1.2, we can expand σ2(x j) to get

σ
2(x j) =

p

∑
`=1

(
v`j
)2

λ` >
(

v1
j

√
λ1

)2
+
(

v2
j

√
λ2

)2
.

Thus, the vectors ~τ j are all in the unit circle. The representation of these vectors is known
as the correlation circle. For j ∈ {1, . . . , p}, the closer ~τ j is to the circle, the better x j is
represented in E2. Moreover, the proximity of~τ j to an axis reflects the correlation importance
and its direction represents the sign of this correlation (see Practicals below for examples).

A common representation in the principal plane consists in plotting simultaneously the indi-
viduals and the correlation circle. Such a representation is known as a biplot and permits an
easier reading of the results.

1.3 Normalizing the variances
1.3.1 Scale-dependency

An important point about variances has been ignored in the previous section. Indeed, the PCA
procedure is based on the dispersal measurement provided by the variance operator but this
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operator is scale-dependent, namely

σ
2(αx1) = α

2
σ

2(x1), α ∈ R.

As a consequence, if we change the unit of the variable x1, then we deeply change its role in the
PCA because its importance in the sense of the variance would be diminished if α is smaller
than 1 or arbitrariy increased if α tends towards infinity. However, changing the unit does not
give more or less information and our procedure should not suffer from scale-dependency.

To avoid such a drawback, a solution consists in normalizing the variables in order to set all the
variances to 1. Let j ∈ {1, . . . , p}, we introduce the reduced centred version x̃ j of x j where,
for any i ∈ {1, . . . ,n},

x̃ j
i =

x j
i − x j√
σ2(x j)

.

Indeed, if we modify the unit of x j, it does not change anything for x̃ j which remains such that
x̃ j = 0 and σ2(x̃ j) = 1. Moreover, this is straightforward to see that σ(x̃ j, x̃k) = ρ(x j,xk) and
I(x̃) = p.

1.3.2 Revisiting PCA

The data matrix associated to x̃1, . . . , x̃p is denoted by X̃ and its covariance matrix is known as
the correlation matrix,

X̃ᵀWX̃ =


1 ρ(x1,x2) . . . ρ(x1,xp)

ρ(x1,x2) 1 . . . ...
... . . . . . . ρ(xp−1,xp)

ρ(x1,xp) . . . ρ(xp−1,xp) 1

 .

From there, we could apply the same procedure as the one described in the previous section.
Such a PCA works well and will be experimented in the Practicals. However, we would like
to take this opportunity to introduce a more general outlook on PCA procedure.

The matrix relation between the data matrices X̄ and X̃ is given by

X̃ = X̄M1/2

where we have set the p× p diagonal matrix

M1/2 =



1√
σ2(x1)

0 . . . 0

0
1√

σ2(x2)

. . . ...

... . . . . . . 0

0 . . . 0
1√

σ2(xp)


.
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The diagonal elements of M1/2 can be seen as weights for the variables similarly as the wi on
the diagonal of W are weights for the individuals. The diagonal elements of M1/2 do not sum
to 1 but when a variable has a large variance, it receives a weight inversely related, so that its
importance is reduced with respect to other variables with smaller variances. Thus, measuring
the distance between observed individuals for the reduced centred versions of the variables
amounts to compute a sum weighted by the diagonal elements of M = M1/2×M1/2. Namely,
for any i, j ∈ {1, . . . ,n},

‖x̃i− x̃ j‖2 =
p

∑
k=1

(
x̃k

i − x̃k
j

)2

=
p

∑
k=1

(
xk

i − xk√
σ2(xk)

−
xk

j− xk√
σ2(xk)

)2

=
p

∑
k=1

(xk
i − xk

j)
2

σ2(xk)

=
p

∑
k=1

Mkk(xk
i − xk

j)
2

= (xi− x j)
ᵀM(xi− x j).

The last line of the previous computation induces the definitions of the bilinear form 〈·, ·〉M,
for any u = (u1, . . . ,up)

ᵀ,v = (v1, . . . ,vp)
ᵀ ∈ Rp,

〈u,v〉M = uᵀMv

and its derived quadratic form ‖ · ‖2
M,

‖u‖2
M = 〈u,u〉M = uᵀMu.

Assuming that the variances σ2(x1), . . . ,σ2(xp) are positive, the form 〈·, ·〉M is a proper scalar
product in Rp and ‖ · ‖M is its associated norm. The dispersal measurement given by the
standard inertia of x̃1, . . . , x̃p becomes the M-inertia IM(x) of the initial variables x1, . . . ,xp,

I(x̃) =
n

∑
i=1

wi‖x̃i‖2 =
n

∑
i=1

wi‖xi− x‖2
M = IM(x).

Instead of computing directions that preserve I(x̃) as linear combinations of x̃1, . . . , x̃p, we can
now consider directions that preserve IM(x) as linear combinations of x1, . . . ,xp. Seeing the
PCA procedure on reduced centred versions of the variables as a PCA procedure defined with
an unusual scalar product is a powerful point of view which gives a lot of flexibility for the
applications.

1.4 General outlook
Motivated by the previous section, we are now able to define a quite general PCA procedure.
Considering p real variables x1, . . . ,xp observed n times, we have at our disposal the n× p data
matrix X . This matrix induces a linear map between the space of individuals which is isomor-
phic to Rp and the space of variables which is isomorphic to Rn. Given weights w1 . . . ,wn > 0
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and the n×n symmetric positive definite matrix W = diag(w1, . . . ,wn), we endow the space of
variables with a scalar product 〈·, ·〉W defined by, for any u = (u1, . . . ,un)

ᵀ,v = (v1, . . . ,vn)
ᵀ ∈

Rn,

〈u,v〉W = uᵀWv =
n

∑
i=1

wiuivi.

Similarly, given a p× p symmetric positive definite matrix M, we endow the space of individ-
uals with a scalar product 〈·, ·〉M defined by, for any u = (u1, . . . ,up)

ᵀ,v = (v1, . . . ,vp)
ᵀ ∈ Rp,

〈u,v〉W = uᵀMv.

Note that the positivity of the matrices W and M is crucial to deal with proper scalar products.

This triplet (X ,W,M) allows us to define the M-inertia as a dispersal measurement,

IM(x) =
n

∑
i=1

wi‖xi− x‖2
M

and to consider the directions in which the amount of dispersion is maximal. To this end,
we proceed as we did in the basic PCA: for some positive integer d 6 p, we look for M-
orthonormal vectors v1, . . . ,vd ∈ Rp (i.e. 〈v j,vk〉M = 0 if j 6= k and 1 otherwise) such that the
inertia IM(πdx) is maximal where πd is the orthogonal projection onto the linear space Ed
generated by v1, . . . ,vd . As in (1.3), denoting Σ = X̄ᵀWX̄ , we obtain

IM(πdx) =
n

∑
i=1

wi

d

∑
k=1
〈xi− x,vk〉2M

=
n

∑
i=1

wi

d

∑
k=1

(
(xi− x)ᵀMvk

)2

=
d

∑
k=1

vkᵀMᵀ

(
n

∑
i=1

wi(xi− x)(xi− x)ᵀ
)

︸ ︷︷ ︸
Σ

Mvk

=
d

∑
k=1

(
ΣMvk

)ᵀ
Mvk

=
d

∑
k=1
〈ΣMvk,vk〉M. (1.5)

Proposition 1.3. The matrix ΣM is nonnegative-definite and self-adjoint for the scalar product
〈·, ·〉M.

Proof. Let u,v ∈ Rp, because M and Σ are symmetric, we have

〈ΣMu,v〉M = uᵀMᵀ
Σ
ᵀMv = uᵀM (ΣMv) = 〈u,ΣMv〉M.

Moreover, Σ is nonnegative-definite and, for any u ∈ Rp,

〈ΣMu,u〉M = uᵀMᵀ
Σ
ᵀMu = (Mu)ᵀΣ(Mu)> 0.
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Proposition 1.3 implies the existence of λ1 > · · ·> λp > 0 and a p× p matrix V whose columns
form a M-orthonormal basis v1, . . . ,vp of Rp such that

V ᵀMΣMV = Λ =


λ1 0 . . . 0

0 λ2
. . . ...

... . . . . . . 0
0 . . . 0 λp


The d first vectors v1, . . . ,vd lead to the maximal value of (1.5) which is λ1 + · · ·+λd .

The coordinates of the data in the M-orthonormal basis are given by the principal components
matrix, namely

C = X̄MV

For any i ∈ {1, . . . ,n} and j ∈ {1, . . . , p}, we have c j
i = 〈xi− x,v j〉M and the principal compo-

nents c1, . . . ,cp are noncorrelated and σ2(c j) = λ j. Then, we have at our disposal all the tools
and the quantities defined in the basic PCA to discuss and analyze these principal components.

1.5 Example: Multiple Discriminant Analysis

1.5.1 Introduction
The question that we want to address in this section is in relation with classification. In this
framework, we have at our disposal p real variables x1, . . . ,xp which we observe n times.
Moreover, for each individual, we also observe a categorical variable t, called label, which
can take m distinct values in T= {τ1, . . . ,τm}. Thus, our data set is given by the observations
of (x1, t1), . . . ,(xn, tn) ∈ Rp×T. As usual in classification, the goal is to provide a procedure
solely based on the data which takes a vector x ∈ Rp as input and predicts the associated value
of t as output.

Many methods to handle this kind of problem have been proposed and we will see some of
them in the sequel of this lecture. In practice, a PCA procedure is sometimes used to do it.
For example, the representation of the data in the principal plane E2 could be considered to
distinguish different groups of data. But how far such an approach is valid? Actually, we never
claim that PCA was a good tool to discrimate groups. Such an analysis is only adapted to get
a good representation and, a priori, there is no connection with label discrimination.

The idea consists in defining a dispersal measurement IM(x) based on a matrix M that takes
into account the labels t1, . . . , tn ∈ T and not only the values of x1, . . . ,xn ∈ Rp. This approach
aims to illustrate the flexibility of the general outlook introduced previously. Now, we have to
clarify what is our triplet (X ,W,M) to this end.

1.5.2 Framework
As mentioned above, the data set is formed by n observations (x1, t1), . . . ,(xn, tn) ∈ Rp×T.
As usual, the n× p matrix X designates the data matrix related to the observations of the real



1.5 Example: Multiple Discriminant Analysis 21

variables x1, . . . ,xp and we consider some weights w1, . . . ,wn > 0 with the associated diagonal
matrix W .

The observations of the categorical variable t induce a partition of {1, . . . ,n} into m separate
subsets Ω1, . . . ,Ωm defined by, for any j ∈ {1, . . . ,m},

Ω j =
{

i ∈ {1, . . . ,n} such that ti = τ j
}
.

This partition can be encoded in a n×m matrix T which has only one nonzero element in each
line. Namely, for any i ∈ {1, . . . ,n} and j ∈ {1, . . . ,m},

Ti j =

{
1 if i ∈Ω j,

0 otherwise.

This matrix T makes it easier to handle the groups induced by the labels. For instance, instead
of explicitly defining weights for each group by, for any j ∈ {1, . . . ,m},

w̄ j = ∑
i∈Ω j

wi,

we can directly introduce the m×m diagonal matrix W̄ with

W̄ = T ᵀWT =


w̄1 0 . . . 0

0 w̄2
. . . ...

... . . . . . . 0
0 . . . 0 w̄m

 .

Note that we implicitely assume in the sequel that all the labels are at least observed one time,
i.e. w̄1, . . . , w̄m > 0.

1.5.3 Procedure
To take into account the labels, the key idea is to consider the means of each group. Thus, for
any j ∈ {1, . . . ,m} and any k ∈ {1, . . . , p}, we introduce the mean x̄k

j of the observations of xk

in Ω j,

x̄k
j =

1
w̄ j

∑
i∈Ω j

wixk
i .

Then, treating these means by group as data, we consider the m× p data matrix of means G
given by

G =

 x̄1
1 . . . x̄p

1
...

...
...

x̄1
m . . . x̄p

m

 .

We can now insert the means of the groups in our procedure by using a proxy n× p data matrix
Xb where each observation has been replaced by the mean of the group to which it belongs,

Xb = T G.
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This proxy matrix allows us to decompose the centred data matrix X̄ ,

X̄ = X̄w + X̄b

where X̄w = X−Xb and X̄b is the centred version of Xb, i.e. for any j ∈ {1, . . . , p}, x j has been
subtracted to the j-th column of Xb.

Theorem 1.1. The covariance matrix Σ = X̄ᵀWX̄ is the sum of

• the covariance within matrix Σw = X̄ᵀ
wWX̄w,

• the covariance between matrix Σb = X̄ᵀ
b WX̄b.

Namely, we have the decomposition

Σ = Σw +Σb.

Proof. Let us expand the definition of Σ,

Σ = X̄ᵀWX̄ = (X̄ᵀ
w + X̄ᵀ

b )W (X̄w + X̄b) = Σw +Σb +A+Aᵀ

where we have set A = X̄ᵀ
wWX̄b. To get the announced result, we need to prove that the p× p

matrix A is zero. Let j,k ∈ {1, . . . , p}, we have

A jk =
n

∑
i=1

wiX̄w,i jX̄b,ik

=
n

∑
i=1

wi(x
j
i −Xb,i j)(Xb,ik− xk)

=
m

∑
`=1

∑
i∈Ω`

wi(x
j
i − x̄ j

`)(x̄
k
`− xk)

=
m

∑
`=1

(x̄k
`− xk)

[
w̄`x̄

j
`− w̄`x̄

j
`

]
= 0.

Theorem 1.1 contains an important statistical idea: Σb stands for what happens between the
groups and Σw is related to what happens inside the groups. The aim of a multiple discriminant
analysis (MDA) is to get the best linear discrimination between the groups. Thus, this is the
term with Σb that will lead us to our goal.

Let M be some p× p symmetric positive definite matrix and v1, . . . ,vd ∈Rp be M-orthonormal
vectors. From Theorem 1.1 and (1.5), we know that the M-inertia of πdx is given by

IM(πdx) =
d

∑
k=1
〈ΣMvk,vk〉M =

d

∑
k=1
〈ΣwMvk,vk〉M +

d

∑
k=1
〈ΣbMvk,vk〉M.
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We want to maximize what happens between the groups with respect to the global dispersal
according to v1, . . . ,vd ∈ Rp, namely

d

∑
k=1
〈ΣbMvk,vk〉M

d

∑
k=1
〈ΣMvk,vk〉M

.

Stated in such a way, this problem is not the same as the one we have in a PCA procedure.
Indeed, the presence of the vectors v1, . . . ,vd in the denominator prevents us from treating
it in the same way. However, we can take M = Σ−1 (or, at least, its right pseudoinverse if
Σ is not invertible) to obtain an easier problem to solve: finding Σ−1-orthonormal vectors
v1, . . . ,vd ∈ Rp which maximize the quantity

d

∑
k=1
〈ΣbΣ

−1vk,vk〉Σ−1. (1.6)

The choice of M = Σ−1 is known to endow the space of individuals with a distance called
Mahalanobis distance. Problem (1.6) is now the same as the one introduced in the general
outlook for PCA. Computing a MDA amounts then to do the PCA of the triplet (Xb,W,Σ−1).

Because the rank of the matrix ΣbΣ−1 can not be larger than κ = min{m− 1, p}, we know
that we just have to compute the κ first eigenvectors v1, . . . ,vκ ∈ Rp. These vectors give the
columns of the matrix V and we define the principal component matrix as usual,

C = X̄bΣ
−1V.

Because X̄b contains several times the same lines which correspond to the means of the groups,
it can be faster to simply compute ḠΣ−1V where Ḡ is the centred version of G. Moreover,
the coordinates of the initial individual can also be computed with the matrix X̄Σ−1V . Then,
we can simultaneously plot the data and the means of the groups in the principal plane, for
instance. Actually, we have at our disposal all the tools defined for a PCA: quality of the
representation, cosines, biplot, . . . (see Practicals for an example).
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Practicals 1 : R and basic PCA

Data are available from the website of the author:

https://www.math.univ-toulouse.fr/~xgendre

Refresh R
During all the practicals in this document, we use the R software. R is a free software
environment for statistical computing and graphics. There are various ways to work with
R and we do not want to impose any specific solution. At his or her own convenience, the
reader can follow the explanations with a raw R interpreter or use a graphics program like R
Commander, RStudio, . . . In the sequel, the R commands will be written in verbatim style
and R commands to be experimented are highlighted in the following way,

print("Hello World!")

For the data files, we have paid a particular attention to follow CSV standards. Thus, to read
these files, the function read.csv should always be sufficient:

my_data <- read.csv("grades.csv")

In the practicals, we will handle matrices and linear algebra operations. We feel that it is
appropriate to remind the most common commands to this end.

# Create a matrix
m <- matrix(rnorm(100), nrow=25, ncol=4)

# Transpose matrix

https://www.math.univ-toulouse.fr/~xgendre
https://www.r-project.org/
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mt <- t(m)

# Matrix multiplication operator is %*%
mm <- t(m) %*% m

# Inverse matrix
mminv <- solve(mm)

# Eigendecomposition
eg <- eigen(mm)
print(eg$values) # Ordered eigenvalues
print(eg$vectors) # Associated eigenvectors

The command apply and its related functions (sapply, lapply, . . . ) are one of the great
strengths of R. Common usage consists in giving a matrix, specifying a margin (1 for the lines
and 2 for the columns) and a function to apply to all the given vectors. If this function takes
more than one vector as argument, they can be specified after it).

# Compute the sum along each row
apply(m, 1, sum)
rowSums(m) # To verify ...

# Compute the means of the columns
apply(m, 2, mean)
colMeans(m) # To verify ...

# With your custom function (yes, you can return vectors)
apply(m, 2, function(v) { return(c(mean(v), var(v))) })

# More arguments (without return, the last value is returned)
apply(m, 2, function(v, a) { sum(v) + a }, 17)
colSums(m) + 17 # To verify ...

Basic PCA
To illustrate the basic PCA procedure, we propose to work with a toy example given by some
fictive grades obtained by n = 9 students for p = 4 academic subjects, namely ’Mathematics’,
’Physics’, ’French’ and ’English’.

grades_data <- read.csv("grades.csv")
X <- as.matrix(grades_data)

A first exploratory step consists in computing the usual statistical quantities for each variable.
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colMeans(X)
apply(X, 2, var)
apply(X, 2, function(x) { mean((x - mean(x))^2) })

• Explain the differences between the results of the two last lines.

The function summary can also be used to get a bit more details about the variables and the
function boxplot produces the box plots.

summary(X)
boxplot(X)

• Compare the ranges of each variable. In particular, note the fact that all the observations
are at the same scale. In other word, the dispersion of the data is similar for each
variable.

To compute the PCA, we begin by centring the data matrix and computing the weight and
covariance matrices.

Xbar <- scale(X, scale=FALSE)
W <- diag(rep(1 / nrow(X), nrow(X))) # Uniform weights
Sigma <- t(Xbar) %*% W %*% Xbar

• Explain the command based on the scale function.

• Print the box plots of the centred variables.

• Compare the matrix Sigma and what you obtain with cov(X).

We now compute the eigendecomposition of the covariance matrix Σ,

pca <- eigen(Sigma)

pca$values # Eigenvalues
pca$vectors # Eigenvectors

We first look at the eigenvalues:

cumsum(pca$values) / sum(pca$values)
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• Explain what is computed by the previous command.

• What is the ratio of inertia explained by the principal plane?

• How many principal directions should be kept to explain a sufficient amount of disper-
sion?

A common way to discuss about the number of principal directions to keep is to consider the
diagram plotting the decreasing eigenvalues.

plot(pca$values,
type='b',
las=1,
ylab="Eigenvalues",
xaxp=c(1, 4, 3))

• Understand the various graphical options used in this command.

• Compare this approach to the cumulated sums.

The matrix of eigenvectors gives us the coordinates of the individuals in the associated
orthonormal basis and the possibility to plot them in the principal plane,

# Principal component matrix
C <- Xbar %*% pca$vectors

# Representation in the principal plane
plot(C[,1:2], xlab="Component 1", ylab="Component 2")
abline(h=0, lty=2, col="gray")
abline(v=0, lty=2, col="gray")
text(C[,1:2], rownames(X), pos=3)

• Focus on Benny and Coby. What are their respective positions in the principal plane?
What are their grades? Comment.

To improve the readability of the results, we can compute the cosines to quantify the quality of
the representation of each individual.

cos2 <- apply(C, 1, function(v) { (v[1]^2 + v[2]^2) / sum(v^2) })

# A new plot
plot(C[,1:2],

xlab="Component 1",
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ylab="Component 2",
col="transparent")

abline(h=0, lty=2, col="gray")
abline(v=0, lty=2, col="gray")
text(C[,1:2], rownames(X), cex=cos2)

• Comment the values contained in cos2.

• In the new plot, what is the role of cex=cos2? Although it is not really visible here,
explain why it could be useful.

We now want to understand the relation between the principal components and the initial
variables. Thus, we begin by computing the correlation coefficients,

Lambda <- diag(pca$values)
SigmaInvDiag <- diag(1 / diag(Sigma))

Rho <- sqrt(SigmaInvDiag) %*% pca$vectors %*% sqrt(Lambda)
rownames(Rho) <- colnames(X)
colnames(Rho) <- paste('C', 1:ncol(X), sep="")

• Inspect the matrix Rho. What are the signs of the correlation coefficients with the first
principal component? And with the second?

To graphically interpret these correlations, we have at our disposal the correlation circle,

# Draw a circle
theta <- seq(0, 2*pi, length.out=256)
plot(cos(theta), sin(theta),

xlab="Component 1",
ylab="Component 2",
type='l', asp=1)

abline(h=0, lty=2, col="gray")
abline(v=0, lty=2, col="gray")

# Plot the arrows
for (i in seq_len(nrow(Rho))) {

arrows(0, 0, Rho[i,1], Rho[i,2], length=0.1, col="red")
text(1.1*Rho[i,1], 1.1*Rho[i,2], rownames(Rho)[i], col="red")

}

• Comment the quality of the representation of each variable.
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• Graphically retrieve the signs of the correlation coefficients with the first two compo-
nents.

• Interpret the axes with respect to this correlation circle.

To discuss about the positions of the individuals in the principal plane, we consider the biplot
diagram, i.e. the principal plane with the correlation circle in the same diagram,

# Some parameters to look pretty
xmax <- max(abs(C[,1]))
xrange <- c(-xmax, xmax)
ymax <- max(abs(C[,2]))
yrange <- c(-ymax, ymax)

# Principal plane
plot(C[,1:2], xlim=xrange, ylim=yrange,

xlab="Component 1",
ylab="Component 2",
col="transparent", asp=1)

abline(h=0, lty=2, col="gray")
abline(v=0, lty=2, col="gray")
text(C[,1:2], rownames(X), cex=cos2)

# Correlation circle (overprint)
old_par <- par(new=TRUE)
plot(cos(theta), sin(theta),

xlab="", ylab="", bty='n', xaxt='n', yaxt='n',
type='l', col="gray", lty=2, asp=1)

for (i in seq_len(nrow(Rho))) {
arrows(0, 0, Rho[i,1], Rho[i,2], length=0.1, col="red")
text(1.1*Rho[i,1], 1.1*Rho[i,2], rownames(Rho)[i], col="red")

}
par(old_par)

• Spend some time to understand the graphical commands.

• Interpret the positions of the individuals in the principal plane. For example, what does
it mean to be on the right side of the principal plane? At the bottom? At the top left?

Scale-dependency
Let us introduce the data set that we will handle in the next practicals about bows and crossbows
of the video game "The Elder Scrolls V: Skyrim". This set contains the statistics of n = 14
weapons given by the p = 4 variables ’Damage’, ’Speed’, ’Value’ and ’Weight’.
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skyrim_bows_data <- read.csv("skyrim_bows.csv")
X <- as.matrix(skyrim_bows_data)

As above, we get some details with summary and boxplot.

summary(X)
boxplot(X)

• Compare the ranges of each variable. Does it seem weel-balanced?

• In terms of dispersion, how many directions do you need to represent such a data set?

To give a more precise answer to the last question, we propose to quickly compute the PCA of
this data set.

Xbar <- scale(X, scale=FALSE)
Sigma <- t(Xbar) %*% Xbar / nrow(X) # Equivalent to unif. weights
pca <- eigen(Sigma)

cumsum(pca$values) / sum(pca$values)
plot(pca$values,

type='b',
las=1,
ylab="Eigenvalues",
xaxp=c(1, 4, 3))

• Comment these results with respect to the previous question.

• Draw the correlation circle and discuss about the arrow associated with the variable
’Value’.

To avoid such a drawback due to scale-dependency of the variance, a basic solution consists to
deal with the reduced centred version of the variables,

Xbar <- scale(X, scale=sqrt(diag(Sigma)))

• Apply the basic PCA procedure to this reduced variables. Plot the biplot diagram and
comment the results.

• In particular, which is the principal component that permits to distinguish the bows from
the crossbows? Discuss its correlation coefficients with the initial variables.
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Practicals 2 : Advanced PCA

Data are available from the website of the author:

https://www.math.univ-toulouse.fr/~xgendre

Reduced variables
In order to introduce the general outlook on PCA that we have studied previously, we handle
data about bows and crossbows from the video game "The Elder Scrolls V: Skyrim". This
set contains the statistics of n = 14 weapons given by the p = 4 variables ’Damage’, ’Speed’,
’Value’ and ’Weight’.

skyrim_bows_data <- read.csv("skyrim_bows.csv")
X <- as.matrix(skyrim_bows_data)

In the previous practicals, we have seen that the scales of the observations vary a lot from
one variable to the other. To avoid this problem, we have reduced the variables to force the
variances to be equal to one. We have seen in the lecture that such a procedure can be seen
through the triplet (X ,W,M) where the matrices W and M endow the space of variables and
the space of individuals with the scalar products 〈·, ·,〉W and 〈·, ·〉M, respectively.

# Weight matrix
W <- diag(1 / nrow(X), nrow(X))

# Matrix M
M <- diag(1 / apply(X, 2, function(x) { mean((x - mean(x))^2) }))

The idea beyond the general outlook is to avoid modifying the data. Instead, we want to
consider an appropriate scalar product and its associated distance given by the corresponding
norm. In such a way, we bring under control the meaning of closeness between data. Thus, we
define similar objects but based on the triplet (X ,W,M).

https://www.math.univ-toulouse.fr/~xgendre
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# Variable means with respect to W
Xmeans <- apply(X, 2, weighted.mean, diag(W))

# Centred data matrix
Xbar <- scale(X, center=Xmeans, scale=FALSE)

# Covariance matrix
Sigma <- t(Xbar) %*% W %*% Xbar

• Understand the usage of the function scale.

The quantity that we want to preserve is now the M-inertia which can be computed as a
weighted sum similarly to the variance.

# Square of the norm induced by M
normM2 <- function(v, M) { t(v) %*% M %*% v }

# M-inertia
weighted.mean(apply(Xbar, 1, normM2, M), diag(W))

• Understand how we compute the M-inertia.

• Explain why the value of the M-inertia is equal to p in this example.

Our goal is now to determine the eigendecomposition of the matrix ΣM with respect to the
scalar product 〈·, ·,〉M. There is not straightforward algorithm do get such a decomposition
but the problem can easily be rewritten. Indeed, for some positive integer d 6 p, we want to
maximize the following quantity according to the M-orthonormal vectors v1, . . . ,vd ∈ Rp,

d

∑
k=1
〈ΣMvk,vk〉M =

d

∑
k=1

vkᵀMΣMvk =
d

∑
k=1

(
M1/2vk

)ᵀ
M1/2

ΣM1/2
(

M1/2vk
)

where M1/2 is the square root matrix of M, i.e. the symmetric matrix such that M = M1/2×
M1/2. Note that such a matrix exists because M is symmetric and positive definite.

For any k ∈ {1, . . . ,d}, we set uk = M1/2vk. By M-orthonormality of the vectors v1, . . . ,vd ,
we know that the vectors u1, . . . ,ud are orthonormal with respect to the usual scalar product
〈·, ·〉 in Rp. Indeed, for any distinct j,k ∈ {1, . . . ,d},

〈u j,uk〉= 〈v j,vk〉M = 0 and ‖u j‖2 = ‖v j‖2
M = 1.

In other words, we are looking for d orthonormal vectors u1, . . . ,ud ∈ Rp which maximize the
quantity

d

∑
k=1
〈ΣMvk,vk〉M =

d

∑
k=1
〈M1/2

ΣM1/2uk,uk〉.
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Because the problem is now stated with respect to the usual scalar product, we know that
u1, . . . ,ud are the first d eigenvectors of M1/2ΣM1/2 associated with the eigenvalues λ1 > · · ·>
λd > 0. The vectors v1, . . . ,vk are simply obtained by, for any k ∈ {1, . . . ,d},

vk = M−1/2uk

where M−1/2 is well defined by definite positivity of M. Obviously, the eigenvalues remains
the same and the vectors v1, . . . ,vd are M-orthonormal, for any distinct j,k ∈ {1, . . . ,d},

〈ΣMv j,v j〉M = 〈M1/2
ΣM1/2u j,u j〉= λ j and 〈v j,vk〉M = 〈u j,uk〉= 0.

Let us apply this procedure to compute the PCA from the general point of view.

# Square root of M
eg <- eigen(M)
Msqrt <- eg$vectors %*% diag(sqrt(eg$values)) %*% t(eg$vectors)
max(abs(Msqrt %*% Msqrt - M)) # To verify ...

# Eigendecomposition with respect to the usual scalar product
pca <- eigen(Msqrt %*% Sigma %*% Msqrt)

# Adjust the eigenvectors to get the vectors v^k
pca$vectors <- solve(Msqrt) %*% pca$vectors

• Explain how we compute M1/2.

• Verify that the resulting vectors are M-orthonormal.

Now, we can proceed as usual with the values and vectors provided by the R object pca.

cumsum(pca$values) / sum(pca$values)
plot(pca$values,

type='b', las=1, ylab="Eigenvalues", xaxp=c(1, 4, 3))

• What is the ratio of inertia explained by the principal plane?

• How many principal directions should be kept to explain a sufficient amount of disper-
sion?

We compute the principal component matrix and we have at our disposal all the tools provided
by a PCA procedure.
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# Principal component matrix
C <- Xbar %*% M %*% pca$vectors

# Quality of the individuals in the principal plane
cos2 <- apply(C, 1, function(v) { (v[1]^2 + v[2]^2) / sum(v^2) })

# Correlation coefficients
Lambda <- diag(pca$values)
SigmaInvDiag <- diag(1 / diag(Sigma))
Rho <- sqrt(SigmaInvDiag) %*% pca$vectors %*% sqrt(Lambda)
rownames(Rho) <- colnames(X)
colnames(Rho) <- paste('C', 1:ncol(X), sep="")

• Plot the individual in the principal plane.

• Comment the values contained in cos2. What is the bow the least well represented?

• Represent the individuals in the principal plane with sizes proportional to their square
cosine.

• Plot the biplot diagram and retrieve the results obtained at the end of the previous
practicals.

Multiple discriminant analysis
To illustrate the advantages of the general outlook during the lecture, we have introduced
the MDA procedure. Considering a data set formed by p real variables and one categorical
variable, the MDA is given by the PCA of the triplet (Xb,W,Σ−1) where Xb is the n× p proxy
data matrix where each observation has been replaced by the mean of the group to which it
belongs.

We handle the Lubischew data set, namely p = 6 morphological measurements have been done
on n = 74 insects from three species denoted by ’A’, ’B’ and ’C’. We store the observations of
the real variables in a matrix X and the species categories in a vector S.

lubischew_data <- read.csv("lubischew.csv")
X <- as.matrix(lubischew_data[,1:6])
S <- lubischew_data[,7]

The initial motivation for MDA was the ability to discriminate some known groups in a data
set. Sometimes, the results of a PCA are used for such a purpose but there is no justification
for it. To realize it, we begin by quickly representing the Lubischew data set in the principal
plane obtained from reduced centred variables.
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# Compute PCA
Xbar <- scale(X, scale=FALSE)
Sigma <- t(Xbar) %*% Xbar / nrow(X)
Xbar <- scale(X, scale=sqrt(diag(Sigma)))
pca <- eigen(Sigma)
C <- Xbar %*% pca$vectors
cos2 <- apply(C, 1, function(v) (v[1]^2 + v[2]^2) / sum(v^2) )

# Plot without the group information
plot(C[,1:2],

xlab="Component 1", ylab="Component 2",
pch=2, las=1, cex=cos2)

# Plot with the group information
plot(C[,1:2],

xlab="Component 1", ylab="Component 2",
las=1, col="transparent")

text(C[,1:2], labels=S, col=as.integer(S), cex=cos2)

• Justify why we choose to deal with the reduced centred versions of the real variables.

• Without the group information, do you think that the frontiers between the groups are
clear?

• With the group information, do the frontiers correspond to what you expected? In
particular between species ’A’ and ’B’?

• According to the results of the PCA, does it seem clear how to build a rule to classify a
new individual?

We now consider the MDA approach. We compute the various values and matrices involved in
the procedure of a PCA of the triplet (Xb,W,Σ−1).

n <- nrow(X)
p <- ncol(X)
m <- nlevels(S)

# Weight matrix
W <- diag(1/n, n)

# Matrix M
Xmeans <- apply(X, 2, weighted.mean, diag(W))
Xbar <- scale(X, center=Xmeans, scale=FALSE)
Sigma <- t(Xbar) %*% W %*% Xbar
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M <- solve(Sigma)

# Group matrix
T <- matrix(0, nrow=n, ncol=m)
for (i in seq_len(n)) {

T[i, as.integer(S)[i]] <- 1
}

# Matrix of means
Wbar <- t(T) %*% W %*% T
G <- solve(Wbar) %*% t(T) %*% W %*% X
Gbar <- G - matrix(Xmeans, nrow=m, ncol=p, byrow=TRUE)

# Proxy matrix
XB <- T %*% G
XBbar <- scale(XB, scale=FALSE)

• Take some time to identify the objects introduced during the lecture in the previous
code.

• Understand how we compute the matrix of means G and its centred version Ḡ.

The PCA of triplet can then be computed as above,

SigmaB <- t(XBbar) %*% W %*% XBbar

eg <- eigen(M)
Msqrt <- eg$vectors %*% diag(sqrt(eg$values)) %*% t(eg$vectors)

pca <- eigen(Msqrt %*% SigmaB %*% Msqrt)
pca$vectors <- solve(Msqrt) %*% pca$vectors

• Again, spend some time to understand the role of each matrix of the triplet (Xb,W,Σ−1)
in the previous code.

Thus, we can handle the tools provided by any PCA. As noticed during the lecture, the
principal component matrix contains a lot of duplications and it is sufficient to compute the
coordinates of Ḡ rows only.

cumsum(pca$values) / sum(pca$values)
C <- Gbar %*% M %*% pca$vectors

• Explain why the explained inertia is equal to 1 with the first two principal directions.

We can also consider the coordinates of the individuals in the basis given by the PCA and
represent them together with the means of the groups in the principal plane.
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# Coordinates of the individuals
CInd <- Xbar %*% M %*% pca$vectors

# Principal plane
plot(CInd[,1:2],

xlab="Component 1", ylab="Component 2",
las=1, col=as.integer(S), pch=19)

points(C[,1:2], pch=15, cex=1.5)

• Compute the quality of the representation of each individual in the principal plane and
comment the result.

• Compare the graphical representation with the one obtained with the initial PCA. Which
one is better to discriminate the groups.

• Compute the correlation coefficients between the initial variables and the two first
principal components. Interpret the obtained values and use it to build a rule to classify
a new individual.
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2 — Model selection

2.1 Introduction
In mathematics, a model is a representation of a system based on mathematical concepts.
There exists a wide range of models and it would be beyond the scope of this document to
make an exhaustive review. When we handle several models to represent a system, the idea
behind is that each model is given by a distinct set of assumptions. Comparing these models
together is then a way to compare the sets of assumptions. Choosing one model among a
collection according to some criteria is the goal of model selection.

In this chapter, we consider a regression framework. Let n and p be some positive inte-
gers, we observe a vector y = (y1, . . . ,yn)

ᵀ ∈ Rn and p vectors x1 = (x1
1, . . . ,x

1
n)

ᵀ
, . . . ,xp =

(xp
1 , . . . ,x

p
n)

ᵀ ∈ Rn. The goal of a regression approach is to explain y with respect to x1, . . . ,xp.
To this end, we commonly consider a probabilistic point of view, seeing the observed vectors
y,x1, . . . ,xp ∈ Rn as the data set associated to n realizations of some random variables also de-
noted by y,x1, . . . ,xp for the purpose of notation. Thus, we can define the regression function
h : Rp→ R as the conditional expectation of y given x = (x1, . . . ,xp),

h(x) = h(x1, . . . ,xp) = E
[
y | x1, . . . ,xp] .

In other words, we can write the observations in the following way, for any i ∈ {1, . . . ,n},

yi = h(x1
i , . . . ,x

p
i )+ εi (2.1)

where we have set εi = yi−h(x1
i , . . . ,x

p
i ) ∈ R.

By definition, the vector ε = (ε1, . . . ,εn)
ᵀ ∈ Rn can also be seen as the n realizations of a

real random variable ε called noise and such that E[ε] = 0. For simplicity, we assume that
the variable ε is independent of the variables x1, . . . ,xp and that the realizations ε1, . . . ,εn are
independent and such that E[ε2

i ] = σ2 < ∞, for any i ∈ {1, . . . ,n}, where σ2 is supposed to be
known. These assumptions can be relaxed but at the cost of more mathematics.

The models considered in this chapter are linear, i.e. the function h is assumed to satisfy

h(x1, . . . ,xp) = β0 +β1x1 + · · ·+βpxp (2.2)
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for some β0, . . . ,βp ∈ R. While we restrict this chapter to such models, the questions raised
here are more general and can be applied in a lot of other frameworks.

2.2 Linear regression models
Let us start with the simple situation of p = 1. We have at our disposal two vectors x =
(x1, . . . ,xn)

ᵀ,y = (y1, . . . ,yn)
ᵀ ∈Rn and we look for β0,β1 ∈R to fit the model (2.2). We need

a criterion to estimate these values and a popular method is least squares in which we pick
the coefficients β = (β0,β1)

ᵀ ∈ R2 to minimize the residual sum Rn(β ),

Rn(β ) =
n

∑
i=1

(yi−β0−β1xi)
2 .

Theorem 2.1. The sum Rn(β ) is minimal for

β̂1 =
σ(x,y)
σ2(x)

and β̂0 = y− β̂1x

where the involved quantities are computed with the uniform weights.

We don’t prove this result because it is just a particular case of Theorem 2.2. The line given
by the graphical representation of the estimator function ĥ(x) = β̂0 + β̂1x is known as the
regression line. With such a linear model and a new observation of x, we can apply ĥ to predict
a value ĥ(x) for y. To quantify the quality of this predictor according to the observations, we
can consider the value Rn(β̂ ).

In the general case of p > 1, we have at our disposal the vectors y,x1, . . . ,xp ∈ Rn. Thus, we
want to pick the coefficients β = (β0, . . . ,βp)

ᵀ ∈ Rp+1 to minimize the following residual
sum,

Rn(β ) =
n

∑
i=1

(
yi−β0−β1x1

i + · · ·+βpxp
i
)2
.

To state the problem in terms of matrices, we introduce the n×(p+1) matrix X whose the first
column is the constant vector of ones and other columns are given by the vectors of x1, . . . ,xp,

X =


1 x1

1 . . . xp
1

1 x1
2 . . . xp

2
...

...
...

...
1 x1

n . . . xp
n

 .

Thus, the residual sum to minimize becomes

Rn(β ) = ‖y−Xβ‖2 =
n

∑
i=1

(
yi−

p

∑
j=0

β jXi j

)2

.

Theorem 2.2. Assuming that the matrix X has full column rank, the unique minimizer of
β 7→ Rn(β ) is

β̂ = (XᵀX)−1Xᵀy.
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Then, the predicted values are ĥ(x1), . . . , ĥ(xn) are given by the vector

X β̂ = X(XᵀX)−1Xᵀy.

The matrix H = X(XᵀX)−1Xᵀ is a projection (i.e. H2 = H) and is sometimes called the hat
matrix.

Proof. The function β 7→ Rn(β ) is quadratic in β0, . . . ,βp. Hence, we easily differentiate it
with respect to β to get

∂Rn

∂β
(β ) =−2Xᵀ(y−Xβ ) and

∂ 2Rn

∂β∂β
ᵀ (β ) = 2XᵀX .

Because X has full column rank, the matrix XᵀX is positive definite and we obtain the unique
minimizer of Rn by setting the first derivative to zero, Xᵀ(y−Xβ ) = 0, namely

β̂ = (XᵀX)−1Xᵀy.

The matrix H is obviously a projection,

H2 = X(XᵀX)−1XᵀX(XᵀX)−1Xᵀ = X(XᵀX)−1Xᵀ = H.

By symmetry, the projection H is the orthogonal projection onto the space generated by the
columns of X . To quantify the quality of the predicted value Hy, we consider

Rn(β̂ ) = ‖y−Hy‖2.

Taking the probabilistic point of view, the expectation of this quantity is worthwhile,

E
[
‖y−Hy‖2]= E

[
‖(y−E[Hy])− (Hy−E[Hy])‖2]

= E
[
‖y−E[Hy]‖2]+E

[
‖Hy−E[Hy]‖2]

by orthogonality of y−Hy and Hy. The first term E
[
‖y−E[Hy]‖2] is known as the bias

term and the second one E
[
‖Hy−E[Hy]‖2] as the variance term. This decomposition plays

a central role in this chapter. The bias term quantifies the capacity of the model to fit to the
observations of y and the variance term measures the complexity of the model. Indeed, because
yi = h(xi)+ εi for any i ∈ {1, . . . ,n} and by independence of ε1, . . . ,εn, we have

E
[
‖Hy−E[Hy]‖2]= n

∑
i=1

E
[
((Hy)i−E[(Hy)i])

2
]

=
n

∑
i=1

E

( n

∑
j=1

Hi j(y j−E[y j])

)2


=
n

∑
i=1

E

( n

∑
j=1

Hi jε j

)2


= σ
2

n

∑
i=1

n

∑
j=1

H2
i j

= σ
2

n

∑
i=1

(HHᵀ)ii.
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Because the projection H is symmetric, the variance term becomes σ2tr(H) = σ2(p+1) and
is proportional to the dimension of the image space of H.

2.3 Example: Polynomial regression
To illustrate the procedure, we introduce the particular case of the polynomial regression.
Let us consider some nonnegative integer p, the regression function h : R→ R is assumed to
be a polynomial of degree p, namely, for any x ∈ R,

h(x) = β0 +β1x+ · · ·+βpxp

where we have denoted the coefficients by β = (β0, . . .βp)
ᵀ ∈ Rp.

Given two vectors x = (x1, . . . ,xn)
ᵀ,y = (y1, . . . ,yn)

ᵀ ∈ Rn, this framework corresponds to the
regression framework with variables given by the consecutive powers of x, i.e. a matrix X of
the form

Xp =


1 x1 x2

1 . . . xp
1

1 x2 x2
2 . . . xp

2
...

...
...

...
...

1 xn x2
n . . . xp

n

 .

Thus, taking the observations (x1,y1), . . . ,(xn,yn) as points in R2, the curve of t ∈ R 7→ ĥ(t)
is the "best" polynomial of degree p, in the sense of least squares, to represent the relation
between x and y. On the observed points, this relation is then predicted by Hpy where
Hp = Xp(X

ᵀ
p Xp)

−1Xᵀ
p .

According to the results obtained in the previous section, the expected value of Rn(β̂ ) is equal
to

E
[
‖y−E[Hpy]‖2]+σ

2(p+1). (2.3)

The question that naturally arises is the choice of a "good" value of p. Indeed, for any value of
p > 0, the procedure gives a polynomial of degree p but, if we want to predict values for new
observations, we still have to choose a value of p in practice. A first idea could be to take p
as large as possible. Indeed, with a large value of p, common approximation results ensure
us that we will be able to approximate any reasonable function h to represent the relation
between x and y. This naive point of view only focuses on the bias term in (2.3) by making it
as small as possible but neglects the variance term which is large when p is large. On the other
hand, considering a polynomial with a small degree p only to keep the variance term small is
not smart either because it would lead to a poor approximation capacity and a potential large
bias term. The idea of model selection lies in finding a trade-off between these two opposite
situations with the help of the data.

The case of a too large value of p is known to lead to a phenomenon called overfitting. Without
the expectation, the quantity Rn(β̂ ) is simply equal to ‖y−Hpy‖2. Taking the large value
p = n−1, we obtain a polynomial that perfectly fits to the data, by construction. However,
if we want to predict the value h(x′) for some x′ ∈ R that does not belong to the design set
{x1, . . . ,xn}, the Runge’s phenomenon will lead to very poor predictions. The moral is that
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fitting to much to the data, namely overfitting them, gives an estimator ĥ that seems to be
perfect on the data but offers bad capacities of prediction out of the design points. This
explanation is summarized in Figure 2.1.
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Figure 2.1: Prediciton error Rn(β̂ ) (blue curve) and expected value E[Rn(β̂ )] (red line).

2.4 Model selection criteria
We now discuss how to perform the model selection in itself. We consider that we have at our
disposal the observed vector y ∈ Rn and a collection of orthogonal projections {Hm,m ∈M }
where M is some countable index space. These projections are built as above and the models
by themselves are the image spaces of these projections. In the sequel, for any m ∈M , we
denote by tr(Hm) = pm +1 the dimension of the model and by β̂m ∈ Rpm the minimizer of the
residual sum.

Before introducing any selection method, we have to draw the reader’s attention on a particular
point. The collections considered in this chapter are said to be nested in the sense that any
model in the collection with a dimension p is contained in all the models of the collection with
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an higher dimension p′ > p. For example, the model of polynomial with degree p is a linear
subspace of the model of polynomial with degree p′ > p. Such a property can be crucial in
certain situations and larger collections of models can raise special problems. Although we
do not consider such complications in the sequel, the interested reader has to keep in mind
that the selection methods described hereafter could need some adjustments for more general
frameworks.

A first popular criterion to select a model among a collection is known as Mallows’ Cp. Given
some m ∈M , let us pursue a little bit the computation of E[Rn(β̂m)]. According to (2.1), we
can write y ∈ Rn as y = h+ ε where h ∈ Rn is the unknown quantity of interest. Because ε is
assumed to be centred, we obtain

E[Rn(β̂m)] = E
[
‖y−Hmy‖2]= E

[
‖y−E[Hmy]‖2]+σ

2(pm +1)

= E
[
‖h+ ε−Hmh‖2]+σ

2(pm +1)

= E
[
‖h−Hmh‖2]+σ

2n+σ
2(pm +1)

=
{
E
[
‖h‖2]+σ

2n
}
+
{
−E
[
‖Hmh‖2]+σ

2(pm +1)
}
.

The first part of the sum does not depend on m, then choosing a "good" model amounts to
pick m ∈M to minimize −E

[
‖Hmh‖2]+σ2(pm +1). Of course, the term E

[
‖Hmh‖2] is not

available to the statistician (otherwise, there would be nothing to do) but can be estimated by
‖Hmy‖2−σ2(pm +1) because

E
[
‖Hmy‖2−σ

2(pm +1)
]
= E

[
‖Hmh‖2] .

The idea of Mallows’ Cp is then to select a model by minimizing the following criterion
according to m ∈M ,

γM(m) =−‖Hmy‖2 +2σ
2(pm +1). (2.4)

In such a way, we try to mimic the behavior of the "best" estimator among the collection
{Hmy,m ∈M }, i.e. the one which leads to the trade-off discussed above.

Criterion like (2.4) belongs to a larger group of criteria named penalized critera. We call
penalty any nonnegative function pen : M → R+ and we define the associated penalized
criterion by

γpen(m) =−‖Hmy‖2 +pen(m).

Mallows’ Cp corresponds to the case of pen(m) = 2σ2(pm +1) and it is common to consider
more general criteria given by penalties of the form penλ (m) = λσ2(pm +1) for some λ > 0.
The parameter λ allows to tune the procedure. When λ tends to zero, it leads to a situation
of overfitting and if we let λ grow towards infinity, the models with large dimensions are
overpenalized and so, never selected. Selecting a good value for λ is critical but we defer this
discussion to the last chapter in which we consider cross-validation.

There is a vast literature on penalized criteria and we cannot provide an exhaustive review.
Picking a penalty is related to with what you want to find a trade-off and such a decision
depends on the goal of the procedure. Moreover, penalized criteria are not restricted to
model selection and the penalty function can take into account more than just a model. For
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example, some popular methods are based on penalties on the coefficients β ∈ Rp+1 in order
to find a trade-off between adequacy of the data and the norm of the estimator. Such an
approach can make sense when we handle a large model but we are not looking for any
"good" subspace, just a representative with a reasonable norm. To illustrate it, let us introduce
the example of the ridge regression procedure. As above, we have at our disposal vectors
y,x1, . . . ,xp ∈ Rn and we want to pick some coefficients β = (β0, . . . ,βp)

ᵀ ∈ Rp+1 to fit a
model as (2.2). To shrink the coefficients β1, . . . ,βp ∈ R, we consider the ridge regression
coefficients β̂ R = (β̂ R

0 , . . . , β̂
R
p )

ᵀ ∈ Rp+1 which minimize the penalized criterion

γR(β ) =
n

∑
i=1

(
yi−β0−

p

∑
j=1

β jx
j
i

)2

+λ

p

∑
j=1

β
2
j

where λ > 0 is a tuning parameter. Note that the intercept β0 has been left out of the penalty
term to not make the procedure depend on the origin chosen for y.

2.5 Example: Principal components regression
To end this chapter, we propose to connect with what we have seen in the first chapter. Indeed,
the regression estimator is nothing else than the projection of y ∈ Rn onto the space Sp ⊂ Rn

generated by the constant vector and x1, . . . ,xp ∈ Rn. In other words, we can build the same
object by considering any orthonormal basis of Sp and dealing with it to get the projection of
y. In particular, we can do it with the orthonormal basis provided by the principal directions.

The idea behind such an approach is that often a small number of principal components suffice
to explain most of the variability in the data, as well as the relationship with the response. Care
must be taken to avoid generalizing the previous sentence, this is just the idea of principal
components regression but there is no claim for universality. However, in practice, it often
turns out to be a reasonable enough approximation to give good results.

Let us consider the model generated by the first principal direction only, then the model
generated by the two first principal directions and so on. We have at our disposal a nice nested
collection of models to run our model selection procedures. In such a way, we are able to
decide how much principal components should be kept to get a reasonable approximation of
the relationship with the response y. Of course, if you feel inspired, you can also consider
shrinkage penalties to go further.
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Refresh R

Contrarily to the others, this practicals session does not make a great use of real data sets.
Indeed, most of the following examples are based on simulated data. This decision is mainly
motivated by two reasons: the need for estimate some expectations and the opportunity to
present some R functions to generate random data. There exist some ways to address the first
point but they often need some explanation that will be only tackled in the last chapter. Hence,
manipulating simulated data sets is easier for now. The second point is the purpose of this
section.

The first thing to bear in mind when we work with random objects in R is the random
number generator (RNG) which is the algorithm used to generate a sequence of numbers
whose properties approximate the properties of sequences of random numbers. The default
algorithm in R is known as Mersenne-Twister but other RNG are available. We are not going
into details about RNG but we have to mention an important feature of such algorithms,
namely the fact that the sequence of numbers generated by the RNG is initiliazed with the
help of a seed. A seed can take various forms according to the RNG but when it is fixed, the
following sequence of numbers is then deterministic. In other words, with the same seed, you
can reproduce the "randomness" of a simulation.

# Set the seed to 12345
set.seed(12345)

# Generate a uniform real number between 0 and 1 (see further)
runif(1)

# Reset the seed to 12345
set.seed(12345)

# Generated number is the same as the previous one!

https://en.wikipedia.org/wiki/Mersenne_Twister
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runif(1)

Maybe the most basic ways to produce sequences of random numbers are the functions
sample and sample.int. The first function is useful to pick some elements at random in a
given set of values with or without replacement and according to some discrete probability
distribution. The function sample.int is the short version to pick at random in the set of
integers {1, . . . ,n}. The latter is ideal to take a subsample of an index set.

# Toss 10 coins
sample(c('Head', 'Tail'), 10, replace=TRUE)

# Sample multinomial distribution
sample(c(-1, 0, 1), 100, replace=TRUE, prob=c(0.25, 0.5, 0.25))

# Get a subsample of 1:100 with size 10
sample.int(100, 10)

Of course, R is not restricted to discrete probabilities and provides a lot of generators for
common distributions (more are also available with dedicated packages). Most of them are
simply called by rNAME(n) where n is the sample size and NAME is an abbreviation for a
distribution name (runif for uniform distribution, rnorm for normal distribution, . . . ). Some
additional parameters can be needed with specific distributions. Moreover, R generally also
supplies useful associated functions whose names follows the following patterns:

dNAME for density function,

pNAME for distribution function,

qNAME for quantile function.

# A list of available distributions
help(distribution)

# Sample of size 10 from uniform distribution between -1 and 1
runif(10, min=-1, max=1)

# Sample of size 42 from standard Gaussian distribution
rnorm(42)

curve(dnorm, from=-3, to=3) # Gaussian density function
curve(pnorm, from=-3, to=3) # Gaussian distribution function
curve(qnorm, from=0, to=1) # Gaussian quantile function
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• Generate a sample of size 100 from a Gaussian distribution with mean 3 and variance 2.
Notice that the third argument is the standard deviation, not the variance.

• Generate a sample of size 100 from an exponential distribution with parameter 3.14.

• Generate 100000 steps of an equilibrated random walk, i.e. ±1 at each step with same
probability. Plot the result.

Polynomial regression

As in the lecture, we start with the simple case of two vectors x,y ∈ Rn. In such a case, the
regression coefficients are given by

β̂1 =
σ(x,y)
σ2(x)

and β̂0 = y− β̂1x.

Let us consider some points in [0,1] and a simple relationship between x and y up to some
Gaussian noise.

# Generate some data
n <- 10
x <- seq(0, 1, length.out=n)
y <- x + rnorm(n, sd=0.1)

# Centred data
xbar <- x - mean(x)
ybar <- y - mean(y)

# Regression coefficients
beta1 <- mean(xbar * ybar) / mean(xbar^2)
beta0 <- mean(y) - beta1*mean(x)

# Plot the result
plot(x, y)
abline(a=beta0, b=beta1, col="red")

R supplies the very useful command lm to compute the regression coefficients. In our simple
case, it can only take one argument with a specific type called formula. To write a formula,
we need to specify the variable to explain followed by the symbol ~ and the variable on which
we base the regression, i.e. here, it gives y ~ x. The object returned by lm provides several
worthwhile informations and can be directly used in various R functions like abline, for
example.
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# About R formulas
help(formula)

# Regression with lm
model <- lm(y ~ x)
abline(model, col="blue", lty=3, lwd=2)

model$coefficients # Regression coefficients
sum(model$residuals^2) # Residual square sum
# Et cetera ...

• Compare the values beta0 and beta1 with the results obtained with the function lm.

• What is the component of model that gives the dimension of the model?

A very convenient feature of an object returned by lm is to easily allow prediction with the
associated linear model. To this end, we use the function predict with two arguments, namely
the model returned by lm and the values for which we want to predict an output. Bear in
mind that the function predict expects to receive the new data as a data frame with similar
component names as those we used in the call to lm. If the names differ, the new data are
ignored and the function returns the predictions for the initial data with a warning message.

# Predictions for initial data
initial_pred <- predict(model)

# Predictions for new data
new_data <- runif(2) # Two random new points in [0,1]
new_pred <- predict(model, data.frame(x=new_data)) # Name is x ...
predict(model, data.frame(new_data)) # ... otherwise, it fails.

# Plot the result
plot(x, y, col="grey")
abline(h=0, lty=2, col="grey")
abline(v=0, lty=2, col="grey")
abline(model, col="red")
segments(x, y, x, initial_pred, col="orange")
points(new_data, new_pred, pch=19)
segments(new_data, c(0, 0), new_data, new_pred)

• Pay attention to the use of function predict.

We are now considering the general case of p > 1 for polynomial regression. More specifically,
we suggest to estimate the previous simple relationship between x and y through a polynomial
with degree p = 9.
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# Generate some data
n <- 10
x <- seq(0, 1, length.out=n)
y <- x + rnorm(n, sd=0.1)

# Compute the regression coefficients
p <- 9
X <- matrix(1, nrow=n, ncol=1)
for (i in seq_len(p)) X <- cbind(X, x^i)
beta <- solve(t(X) %*% X) %*% t(X) %*% y

# Predict the relationship
nn <- 256
xx <- seq(0, 1, length.out=nn)
XX <- matrix(1, nrow=nn, ncol=1)
for (i in seq_len(p)) XX <- cbind(XX, xx^i)
yy <- XX %*% beta

# Plot the result
plot(x, y, ylim=range(yy))
points(xx, yy, type="l", col="red")

• Comment the final graphics. Does the estimated relationship seem reasonable?

As in the simple case, the function lm can provide the results of the regression procedure.
Note the use of the function I to inhibit the operators in the formula. Similarly, the function
predict applied to the object returned by lm can supply predictions for new data.

# Regression with lm
formula_str <- paste(

"y ~",
paste("I(x^", 1:9, ")", sep="", collapse=" + ")

)
model <- lm(formula(formula_str))

# Regression coefficients
model$coefficients

# Plot the predicted function between 0 and 1
yy_pred <- predict(model, data.frame(x=xx))
plot(x, y, col="grey", ylim=range(yy_pred))
points(xx, yy_pred, type="l", col="red")

• Inspect and understand the content of the variable formula_str.
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• Compare the components of beta and model$coefficients.

R supplies a useful function poly to produce orthogonal polynomials over a specified set
of points. This function provides a matrix whose columns are the values taken by these
orthogonal polynomials with degrees from 1 to p. In other words, it make easier the call to lm
function.

# Equivalent regression as above
model <- lm(y ~ poly(x, 9))

# Plot the predicted function between 0 and 1
yy_pred <- predict(model, data.frame(x=xx))
plot(x, y, col="grey", ylim=range(yy_pred))
points(xx, yy_pred, type="l", col="red")

Overfitting
Of course, the phenomenon observed in the previous section is overfitting. Indeed, with n = 10
and p = 9, polynomial regression provides a polynomial that perfectly fits to the data. During
the lecture, we have seen that such a phenomenon leads to a poor capacity to predict on new
data. The goal of this section is to illustrate that.

We begin by defining a data set similar to the previous one but with more design points and a
richer polynomial relation between x and y.

n <- 256
x <- seq(0, 1, length.out=n)
s <- 12*x^7 - 10*x^5 + x + 1
y <- s + rnorm(n)

Let us compute the residual sums for polynomials with degree varying from 1 to 25,

pmax <- 25
res <- rep(0, pmax)
for (i in seq_len(pmax)) {

model <- lm(y ~ poly(x, i))
res[i] <- sum(model$residuals^2)

}
plot(res, type="b")

• Observe how the residual square sum decreases when the degree increases.

We now focus on the expectation of this residual sum. To represent these quantities, we suggest
to evaluate simultaneously the value of the residual sum on data and the value of residual
sum on prediction for some newly generated data set. Repeating this procedure nrep times
provides us a way to illustrate the phenomenon described in Figure 2.1.



55

# Initialization
nrep <- 100
pmax <- 25
error_on_data <- matrix(0, nrow=nrep, ncol=pmax)
error_on_prediction <- matrix(0, nrow=nrep, ncol=pmax)

# Repeat the procedure nrep times
for (i in seq_len(nrep)) {

y <- s + rnorm(n)
for (j in seq_len(pmax)) {

# Compute the regression with degree j
model <- lm(y ~ poly(x, j))
error_on_data[i,j] <- sum(model$residuals^2)
# Predict values on new data
new_predict <- predict(model)
new_out <- s + rnorm(n)
error_on_prediction[i, j] <- sum((new_out - new_predict)^2)

}
}

# Plot the results
plot(1:pmax,

ylim=range(error_on_data, error_on_prediction),
ylab="Error", col="transparent")

for (i in seq_len(nrep)) {
points(error_on_data[i,], type="l", col="lightblue")
points(error_on_prediction[i,], type="l", col="pink")

}
points(colMeans(error_on_data), type="l", col="blue")
points(colMeans(error_on_prediction), type="l", col="red")

# Mark some degrees
abline(v=1, lty=2)
abline(v=5, lty=3)
abline(v=25, lty=4)

• Understand the different steps of this code.

• Explain what is represented by red and blue lines.

• The blue line and the read line diverge on the right of the graphic, to which phenomenon
is it due to?

Let us have a look to the situations with marked degrees.
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# Plot the data with the real s (usually unknown)
y <- s + rnorm(n)
plot(x, y, col="grey", pch=4)
points(x, s, type="l", col="red")
legend("bottomright", c("p=1", "p=5", "p=25"), lty=2:4)

# Degree 1
model <- lm(y ~ poly(x, 1))
points(x, predict(model), type="l", lty=2)

# Degree 5
model <- lm(y ~ poly(x, 5))
points(x, predict(model), type="l", lty=3)

# Degree 25
model <- lm(y ~ poly(x, 25))
points(x, predict(model), type="l", lty=4)

• Between the three models, which one seems to be the "best"?

• Spend some time to think about the trade-off discussed during the lecure.

Model selection criteria
We now want to apply the model selection procedure called Mallows’ Cp. To this end, for
each polynomial model, we compute the criterion and the penalty. Note that we use here the
fact that the variance factor σ2 = 1 is assumed to be known. The estimated trade-off is given
by the model that minimizes the sum of these two terms.

# Generate some data
n <- 256
x <- seq(0, 1, length.out=n)
s <- cos(2*pi*x) + sin(6*pi*x)
y <- s + rnorm(n)

# Initialization
pmax <- 25
crit <- rep(0, pmax)
pen <- rep(0, pmax)
lambda <- 2

# Model selection procedure
for (p in seq_len(pmax)) {

model <- lm(y ~ poly(x, p))
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crit[p] <- -sum(predict(model)^2)
pen[p] <- lambda * (p + 1)

}

# Select a model
phat <- which.min(crit + pen)

# Plot criterion and penalty
plot(crit+pen, type="l", col="red", ylab="Penalized criterion")
abline(v=phat, lty=2)

# Plot the estimator
plot(x, y, col="grey", pch=4)
points(x, s, type="l")
model_phat <- lm(y ~ poly(x, phat))
points(x, predict(model_phat), type="l", col="red")

• Comment the final result.

• Change the value of lambda to understand the key role of the tuning parameter in such
a procedure.
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3 — Classification and clustering

3.1 Introduction
In this chapter, we are interested in two statistical problems known as classification and
clustering. Although the statements of these problems are similar, they can definitively not be
tackled in the same way. There is a huge literature about procedures to solve such problems and
it would be impossible to give here a global overview. We introduce some popular approaches
but the interested reader is invited to refer to third-party books.

Let us first state the classification problem. Actually, we already did it in Section 1.5 when
we introduced the MDA procedure as an example. Indeed, we assume that we have at our
disposal p real variables x1, . . . ,xp which we observe n times with some associated weights
w1, . . . ,wn > 0. Moreover, for each individual, we also observe a label t which can take
m distinct values in the known set T = {τ1, . . . ,τm}. Thus, our data set is given by the
observations of (x1, t1), . . . ,(xn, tn) ∈ Rp×T. The goal is now to provide a classification rule
solely based on the data to decide what label among T should be given to an arbitrary element
x ∈ Rp.

The clustering problem statement is similar except that the label values are unknown. Actually,
we do not even assume that such a set exists. Based on the n observations of the p real variables
x1, . . . ,xp, we want to provide a rule to cluster the data in a consistent way. In particular, we
have to build an acceptable set for the hypothetical labels. Clustering is more difficult than
classification mainly because the problem is not well posed. Indeed, for classification, we will
be able to consider classification error as a criterion because we know that there exists some
underlying clustering. However, in clustering problem, such a criterion is no more available
and we do not have any straightforward way to quantify the quality of a procedure.

3.2 Classification
Let us first remind how we tackled the classification problem through MDA. We have computed
the PCA of the triplet (Xb,W,Σ−1) and obtained the coordinates of the means of each cluster
in some principal space Ed . The easy way to derive a classification rule is then, for any x ∈Rp,
to consider the projection of x onto Ed and to choose the cluster that has the closest mean
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to this projection. There exist more subtle methods but this approach was sufficient for our
purpose at the end of the practicals. An important drawback of MDA is due to the maximal
nontrivial dimension of the principal space, namely κ = min{m−1, p}. Indeed, if you handle
data with labels that can only take two distinct values, i.e. m = 2, this dimension is capped
by m−1 = 1. In other words, whatever the number p of variables you have, you can not get
more than one dimension for the classification rule.

The other popular approach that we introduce in this section does not suffer from this dimension
problem and is based on binary trees. Tree methods are often appreciated in practice because
tree structures lend themself well to algorithmic approaches. Our goal is here to deal with
classification, then we speak about classification tree but similar ways of proceeding can
be used to tackle regression problems for which we speak about regression tree. Actually,
these ways are so similar than we use the same object called CART for ’Classification And
Regression Tree’.

The CART method consists in successive conditions of the form x j 6 s for some j ∈ {1, . . . , p}
and some threshold s ∈ R. We split observations into two groups depending on whether the
condition is true or not. Then, we do it again with a new condition of the same form and so on.
Because each condition leads to two possibilities, such a procedure can be seen as a binary
tree. To properly define the method, we have to explain how each condition is provided, how
we give a label to a group of data and when we stop the process.

Let us start with the easiest stage, namely the choice of a label for a given group of data.
To this end, we first assume that we have already built some partition of Rp into M regions
R1, . . . ,RM. The question is then to give a label among T to each region, i.e. we look for a
function λ : {1, . . . ,M} → {1, . . . ,m} such that, for any x ∈ Rp, we predict the label τλ (k) if
x ∈ Rk. A basic way to construct such a function λ is to consider the frequencies of each label
in each region. Namely, for any j ∈ {1, . . . ,M} and k ∈ {1, . . . ,m}, the frequency of the label
τk in the region R j is given by

p j,k =
1

w̄ j
∑

i s.t. xi∈R j

wi1{ti=τk}

where w̄ j is the sum of the weigths of individuals which belong to R j. Then, we simply
attribute to the region R j the most represented label, i.e. for any j ∈ {1, . . . ,M},

λ ( j) = argmax
k∈{1,...,m}

p j,k.

Note that, for any j ∈ {1, . . . ,M}, the vector p j = (p j,1, . . . , p j,m)
ᵀ ∈ [0,1]m induces a discrete

probability distribution on the labels in region R j. This consideration allows us to quantify the
purity of such a distribution with the Gini index of p j,

G j =
m

∑
k=1

p j,k(1− p j,k).

This quantity is close to zero only if a region is pure in the sense that there mainly is only
one label in this region. From a probabilistic point of view, the Gini index G j is the error rate
obtained by choosing the label of R j at random with the probability distribution given by p j.
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Now that we know how to give a label to each region of an existing partition of Rp, we have
to see how to build such a partition. Because each region is the result of a condition of the
form x j 6 s as mentioned above, this question is related to the way to provide the successive
conditions. Actually, there exist "optimal" sequences of such conditions to fit the data but
computing one of this sequence is generally infeasible in practice (this problem is known to be
a NP-complete problem). Hence, the CART idea consists in a greedy algorithm, i.e. a step
by step algorithm which aims to provide a global solution to the problem by simply solving
it at each stage without considering the whole question. Let us describe the first step: for
any j ∈ {1, . . . , p} and s ∈ R, we define the pair of half-planes given by the condition x j 6 s,
namely

R1( j,s) =
{

x = (x1, . . . ,xp)ᵀ ∈ Rp such that x j 6 s
}

and
R2( j,s) =

{
x = (x1, . . . ,xp)ᵀ ∈ Rp such that x j > s

}
.

These two regions form a partition of Rp and we can compute the vectors of probability
p1( j,s) and p2( j,s) as above for R1( j,s) and R2( j,s), respectively. We also can compute the
associated weights w̄1( j,s) and w̄2( j,s). To quantify the purity of the split given by the pair
( j,s), we consider the mean Gini index, namely

Ḡ ( j,s) = w̄1( j,s)G1( j,s)+ w̄2( j,s)G2( j,s)

where G1( j,s) and G2( j,s) are the Gini indices for p1( j,s) and p2( j,s), respectively. Then,
we pick ( j∗,s∗) ∈ {1, . . . , p}×R to minimize ( j,s) 7→ Ḡ ( j,s). The sequel of the algorithm
then consists in repeating the same procedure in each region.

The last point to clarify is how to stop growing the tree. Indeed, we could pursue the procedure
till each region becomes perfectly pure. However, such a large tree that perfectly fit to the data
could be to specific and induce overfitting phenomenon. We retrieve here a problem seen in the
previous chapter: we need some trade-off between the ability to fit the data and the complexity
of the tree. During the eighties, Breiman proposed the pruning idea to this end. Let us
consider some too large tree T0 with a number of leaf MT0 . The goal is to provide a way to
prune this tree. Let T ⊂ T0 be a subtree with 16MT 6MT0 leaves, T gives regions R1, . . . ,RMT

and we can compute the associated weights w̄1, . . . , w̄MT and Gini indices G1(T ), . . . ,GMT (T ).
Then, to estimate the announced trade-off, we consider the subtree to minimize the penalized
criterion

γλ (T ) =
MT

∑
k=1

w̄kGk(T )+λMT

where λ > 0 is a tuning parameter. The first term in the criterion is related to the purity of the
regions and the second one is a penalty which punishes the subtrees with too much leaves.

3.3 Clustering
In contrast with the previous section, we now consider only data without label. Thus, any
procedure based on the label observations is unavailable and we have to provide clusters in
other way. Of course, fully exploring the set of the partitions of {1, . . . ,n} is not a solution
because of the size of such set, even for small value of n (such an approach is also known
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to be a NP-complete problem). In order to make emerge some meaningful clusters, the
basic idea consists in grouping close observations in a sense of some similarity measurement
d : Rp×Rp→ R+ which satisfies few properties, namely

• for any x,x′ ∈ Rp, d(x,x′) = d(x′,x),

• for any x ∈ Rp, d(x,x) = 0.

Note that a mathematical distance is a similarity but the converse is not.

The first popular method we present needs a number K of clusters, a priori, and is known as
K-means. Such an assumption could be considered as a drawback because we don’t even
know if cluster existence is justifiable. However, in practice, it is often acceptable to look for
the "best" partition of the data formed by K clusters C1, . . . ,CK . The procedure is iterative and
actually quite simple: we consider K special points called centroids c1, . . . ,ck ∈ Rp and each
observation is put in the cluster associated to its closest centroid. Some dispersal criterion
is then computed and we iterate while this criterion is decreasing. Let us properly state this
method:

1. pick K initial centroids c1, . . . ,ck at random among the observations,

2. get the K clusters by putting each observation in the cluster associated to the closest
centroid,

3. the means of each cluster become the new centroids,

4. compute the inertia within criterion

K

∑
k=1

1
w̄k

∑
i∈Ck

wid2(xi,ck),

5. if the criterion decreases, go to step 2, stop otherwise.

An important remark is to notice that such a procedure is not guaranteed to reach a global
minimum of the criterion. Indeed, according to the choice of the similarity d, there is no
reason to obtain a convex criterion and the procedure may converge only towards some local
minimum. There exist a lot of variants of K-means procedure which we do not list in this
document. The interested reader will easily get leads to follow in the literature.

An other famous way to tackle clustering problem is called Hierarchical Clustering Analysis
(HCA). This approach does not need to know the number of clusters in advance and is based
on successive aggregations of similar groups of individuals in the sense of the similarity d. At
each step, the idea is to merge the two current clusters which are the most similar. To measure
this similarity between two groups G1 and G2 of individuals, we have several options:

• single linkage:

d(G1,G2) = min
{

d(x,x′) with x ∈ G1 and x′ ∈ G2
}
,
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• complete linkage:

d(G1,G2) = max
{

d(x,x′) with x ∈ G1 and x′ ∈ G2
}
,

• average linkage: denoting by |G1| and |G2| the respective sizes of G1 and G2,

d(G1,G2) =
1

|G1|× |G2| ∑
(x,x′)∈G1×G2

d(x,x′),

• Ward distance: denoting by g1 and g2 the means of observations in G1 and G2 and by
w̄1 and w̄2 their associated weights, respectively,

d(G1,G2) =
w̄1× w̄2

w̄1 + w̄2
d(g1,g2).

In practice, the common choices are the average linkage and the Ward distance. Note, however,
that to use the Ward distance, we have to be able to explicitly compute the means g1 and g2.
Indeed, this is not always possible when we only have at our disposal the similarities between
individuals but not their coordinates. Thus, the HCA method proceeds as follows:

1. consider n trivial clusters of one individual,

2. merge the two closest clusters,

3. update the similarities with the new cluster,

4. if there is more than one cluster, go to step 2, stop otherwise.

When the procedure ends, we obtain a path of clusterings between the two extreme situations
of n clusters of one elements and one cluster of n elements. This path can be represented as
a tree called a dendrogram which we have to cut at some height in order to get a candidate
for our clustering problem. Cutting the dendrogram is again a trade-off problem between
adequacy of data and complexity of the solution, i.e. here, it is measured by the number of
clusters.

Pratically speaking, K-means and HCA have their strengths and weaknesses. For K-means,
the knowledge of K is debatable but the provided clustering is known to be stable in the sense
that a new observation will not be able to rush the clusters. With HAC, there is no need for
specific knowledge a priori but the computed solution needs some trade-off and suffer from
instability because a new observation can widely modify the clusters. To take advantage of
both methods, a popular way consists in starting with a HCA with some reasonable criterion
to cut the tree and obtain a number of clusters K. Then, we can use this clustering as the initial
clusters of a K-means procedure which will stabilize it.
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Practicals 4 : CART and clustering

Data are available from the website of the author:

https://www.math.univ-toulouse.fr/~xgendre

Wines classification
To illustrate the classification method based on CART, we consider a data set of p = 12 real
variables given by physicochemical properties and quality evaluation of n = 6497 red and
white wines. The label is the wine color and we aim to predict it from the real variables. Let
us start by loading this data set.

wines_data <- read.csv("wines.csv")

Though this is a good algorithmic exercise, we are not going to implement the CART algorithm
by ourselves. For the sake of simplicity, we use the package rpart provided by default with
R.

library(rpart)

The main function of rpart is wisely called rpart and works similarly as the function lm.
In particular, to say which column is the label to explain in the data set and with respect to
which variables this procedure should perform, we use a formula. Moreover, we specify that
we handle trees to classify with the option method.

f <- paste("category ~ ",
paste(colnames(wines_data)[1:12], collapse = " + ")

)

https://www.math.univ-toulouse.fr/~xgendre
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tree <- rpart(formula=f, data=wines_data, method="class")

• Print and understand the content of the variable f.

• Print the R object tree. Do you spot the tree structure based on successive conditions?

An advantage of tree models is the facility to display them. Indeed, the reading of a tree from
top to bottom, picking some branches according to the results of the conditions is quite natural
and easy to represent.

plot(tree, uniform = TRUE)
text(tree)

• Read the manual page for text.rpart. Plot again the tree and set argument fancy to
TRUE in the call to text. Is the representation easier to read?

• If some wine has a total sulfur dioxide measurement lower than 67.5 and a chlorides
measurement larger than 0.0465, what is its predicted color?

• Set the argument all to TRUE in the call to funtion text. What is the new information
which appears?

• Set the argument use.n to TRUE in the call to funtion text. For our previous measure-
ments example of total sulfur dioxide and chlorides, what is the number of misclassified
wines?

• Is there any pure leaf in this tree?

The implementation of CART algorithm in the package rpart provides a way to prune the
tree through some complexity parameter cp in a similar way as what we have seen in the
lecture. To use this parameter, let us rebuild the tree with the control argument.

tree <- rpart(formula=f, data=wines_data, method="class",
control=rpart.control(cp=0.1))

plot(tree, uniform = TRUE)
text(tree, use.n=TRUE)

• With the help of the manual page of rpart.control, explain what is the role of cp.

• Change the value of cp to 0.01, 0.001 and 0.0001. What do you observe?

• What is the value of cp that misclassifies the lowest amount of data? Do you think that
such a value for cp is a good choice? Why?
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Vietnamese cities clustering
We have seen two clustering procedures during the lecture and we propose here to apply them
to n = 60 Vietnamese cities for which we have at our disposal the road distances between
each pair of cities. This data set is loaded as follows, the GPS data are put aside for graphics
purposes and the distances are converted to some suitable R object.

vietnam_cities_data <- read.csv("vietnam_cities.csv")
gps_data <- vietnam_cities_data[,1:2]
X <- as.dist(vietnam_cities_data[,3:62])

The easiest method to apply is K-means because it only needs the distance matrix and the
number of desired clusters.

k4 <- kmeans(X, 4) # With 4 clusters

• Print the content of the R object k4 and locate the value obtained for the variance
criterion.

• Run again the procedure and look at the criterion value again. What do you note?
Explain this fact.

We now propose to display the obtained clustering on a Vietnam map. To this end, we need to
install and to load the package mapdata.

install.packages("mapdata") # In Vietnam, install from Thailand
library(mapdata)

To reveal the clusters on the map, we plot the cities with distinct colors according to GPS
coordinates.

map("worldHires", "Vietnam")
points(gps_data$longitude, gps_data$latitude,

pch=16, col=k4$cluster)

• Comment the result. Do the clusters seem reasonable with respect to the Vietnamese
road network?

• Run again the 4-means procedure and observe again the phenomenon mention earlier.

• Run the K-means procedure with other values for K such as 2, 5, 9, . . . Comment what
you obtain.

The second approach we studied for clustering was based on Hierarchical Clustering (HCA).
R supplies the function hclust to apply such a procedure.
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help(hclust)

hca <- hclust(X) # Compute HCA
plot(hca) # View the dendrogram

To see the sequence of values of the criterion at each split, the R object hca provides a vector
hca$height which we just have to reverse.

plot(rev(hca$height), type='b', ylab="Clustering height")

• Does this representation recall an other one previously seen? With respect to this
graphics similarity, say roughly how many indices we could keep.

The previous graphics representation obviously depends on the way we merge the clusters.
The default way to measure a similarity between two clusters is complete linkage. Let us
experiment the other ways.

# Two columned graphics and parameters backup
old_par <- par(mfrow=c(1,2))

# Single linkage
hca <- hclust(X, method="single")
plot(hca)
plot(rev(hca$height), type='b', ylab="Clustering height")

# Complete linkage (default)
hca <- hclust(X, method="complete")
plot(hca)
plot(rev(hca$height), type='b', ylab="Clustering height")

# Average linkage
hca <- hclust(X, method="average")
plot(hca)
plot(rev(hca$height), type='b', ylab="Clustering height")

# Ward distance
hca <- hclust(X, method="ward.D2")
plot(hca)
plot(rev(hca$height), type='b', ylab="Clustering height")

# Restore graphics parameters
par(old_par)
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• Compare the differents methods. In particular, understand what it means when the curve
of heights decreases more or less faster.

We have now to deduce a proper clustering from these dendrogram. The principle consists
in cutting the tree with cutree whether at some specified height or to get a fixed number of
clusters.

help(cutree)

# HCA with complete linkage
hca <- hclust(X)

# Cut to get 4 cluters
hca_cluster <- cutree(hca, k=4)
map("worldHires", "Vietnam")
points(gps_data$longitude, gps_data$latitude,

pch=16, col=hca_cluster)

# Choose some height ...
old_par <- par(mfrow=c(1,2))
plot(rev(hca$height), type='b', ylab="Clustering height")
abline(h=500, col="red")
plot(hca)
abline(h=500, col="red")
par(old_par)

# ... and get the clusters
hca_cluster <- cutree(hca, h=500)
map("worldHires", "Vietnam")
points(gps_data$longitude, gps_data$latitude,

pch=16, col=hca_cluster)

• When you fix the number of clusters, compare the result with you obtained with K-
means.

• From the graphics with a red horizontal line, how many clusters do you obtain with a
cut at height 500?

• Comment the clusters obtained by cutting the tree at a given height.

• Apply the same steps for clustering with HCA computed with other linkage methods.

Stabilizing clustering
As we discussed during the lecture, K-means and HCA have their own strengths and weak-
nesses. Combining both methods permits us to set a clustering procedure that take advantage
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from each method by providing an automated choice for K based on HCA and a stable
clustering with well initialized K-means.

First, let us consider the HCA of the Vietnamese cities GPS positions data set with complete
linkage.

hca <- hclust(dist(gps_data))

Heights of successive agglomerations corresponds to the gaps between two steps of the
procedure. Because the criterion of HCA is related to some decreasing "between dispersal"
measurements, we can see the agglomerations similarly to principal components in the sense
that the more agglomerations we keep, the more "between dispersal" we capture. In other
words, the decreasing values of the heights can be interpreted as the lack of fit according to
this "between criterion". We choose to handle its normalized value as criterion to fit here.

crit <- rev(hca$height) / sum(hca$height)
plot(crit, type="b",

xlab="Number of agglomerations",
ylab="Between dispersal criterion")

Of course, taking into account all the agglomerations leads to overfitting. Thus, we are
interested to find some trade-off between this capacity to fit the data and a reasonalbe number
of cluster. To this end, we introduce a penalty term proportional to this number as well
normalized. Then, we pick K to minimize the obtained penalized criterion.

lambda <- 2
pen <- lambda * 1:length(hca$height) / length(hca$height)
plot(crit + pen, type="b",

xlab="Number of agglomerations",
ylab="Penalized criterion")

# Minimize the penalized criterion
K <- which.min(crit + pen)
cat("We selected", K, "clusters.\n")

Note that such an approach is comparable to select a height to cut the dendrogram with respect
to some criterion penalized by the number of clusters such a cut gives. An important drawback
of the clustering into K clusters provided by previous HCA is its instability. The idea consists
in considering this proxy clustering to initialize a K-means procedure in order to stabilize it.
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# Proxy clustering
proxy_cluster <- cutree(hca, k=K)
centroids <- matrix(0, nrow=K, ncol=2)
for (i in 1:K) {

centroids[i,] <- colMeans(gps_data[proxy_cluster==i,])
}

# Run kmeans initialized with proxy clustering
final <- kmeans(gps_data, centroids)

# Print proxy and final clusterings
old_par <- par(mfrow=c(1,2))
map("worldHires", "Vietnam")
points(gps_data$longitude, gps_data$latitude,

pch=16, col=proxy_cluster)
map("worldHires", "Vietnam")
points(gps_data$longitude, gps_data$latitude,

pch=16, col=final$cluster)
par(old_par)

• Locate the cities that have been moved from a cluster to an other.
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4 — Cross-validation

4.1 Introduction
In Chapter 2, we used the quantity Rn(β̂ ) to quantify the empirical quality of a linear model
and discussed its expected version E[Rn(β̂ )]. This expected value raised the dilemma between
capacity of approximation and complexity of the model. This duality illustrated how to give
a sense to the expected error of the model if we apply it to predict on new data. The main
idea to find a trade-off was to mimic the behavior of the expectation E[Rn(β̂ )] through some
penalized criterion with a penalty similar to the variance term, up to a multiplicative tuning
parameter λ > 0. As we have seen during the practicals, the choice of λ is important to get
a competitive procedure. However, from a general point of view, there is no straightforward
justification to choose λ .

Tuning parameters are the topic of this last chapter and we propose several popular approaches
to choose them. Although we often refer to the multiplicative factor in penalties, the procedures
described hereafter can be used with a lot of common frameworks such as statistical testing,
for example. The main idea consists in putting aside a part of the initial observations, called
testing observations, and to only handle our models using the remaining observations, called
training observations. In such a way, we can apply our procedure that depends on some
parameter λ with various values for it and validate with the testing observations what is the
candidate that gives the better results. In this way, even if the expected value E[Rn(β̂ )] is
unavailable, we can evaluate the performances of the procedure on data outside of the training
observations. Such approaches are known as cross-validation procedures.

4.2 Validation set
To give sense to the concepts discussed above, a simple way consists in picking the training
observations at random among the initial observations. The proportion α ∈ (0,1) of retained
data can vary from one situation to an other but is often around 70% or 80% in practice. Based
on this training set, for any value λ > 0, we can compute an estimator ĥλ of the quantity of
interest and evaluate its quality on the remaining data in the validation set. We then keep the
cross-validated value λ ∗ which gives the better result.
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This approach is easy to use in practice but it suffers from two drawbacks:

1. repeating the procedure with other random picked values leads to high variability in the
measurements of the quality with the corresponding validation tests,

2. because we do not use all the data to fit the model, we perform theoretically less well
than with the whole data set.

4.3 Leave-One-Out
The leave-one-out approach is a refinement of the validation set which tries to tackle its main
drawbacks. As previously, we consider a training set and a validation set but we only put one
observation in the validation set. Let us assume that this validation observation is the first
one among n, we then train the procedure for various values for λ with the n−1 remaining
observations and we call ĥ1(λ ) the obtained estimators. Since only one observation has been
put aside, the estimation of the quality of ĥ1(λ ) is poorly done by comparing its prediction on
this singleton and this value is denoted by e1(λ ).

Even on a single point, the estimation of the quality of ĥ1(λ ) remains an unbiased estimator of
the expected value. Thus, we can proceed in the same way with only the second observation,
then only the third and so on . . . The consecutive estimations of the quality supply n values
e1(λ ), . . . ,en(λ ). The leave-one-out procedure consider the average of these estimates to
calibrate a value λ ∗ for the parameter,

LOOn(λ ) =
1
n

n

∑
i=1

ei(λ ).

The leave-one-out approach offers several advantages. First, it is less biased than the validation
test because it uses quite all the observations at each step when the validation set approach
is limited by the proportion α . Moreover, the leave-one-out approach does not need to be
repeated to stabilize the result. Avoiding the random repetitions we had to do with validation
set implies that the leave-one-out always leads to the same result.

However, the leave-one-out approach can be complicated to run when n is large. Indeed, too
get LOOn(λ ), we have to apply n times our statistical procedure. If a computation of this
procedure takes a bit of time, n times can be very expensive for large data set.

4.4 k-Fold
The last approach that we consider in this chapter is an alternative to leave-one-out in order
to address its computability drawback. The k-fold cross-validation procedure is based on a
random partition of the initial set of observations into k groups, called folds, of approximately
equal size. Then, we proceed in a manner similar to what we did for leave-one-out. First,
for some λ , we treat the first fold as a validation set on which we evaluate the quality of an
estimator ĥ1(λ ) built from the k−1 remaining folds. This quality estimation is denoted by
e1(λ ). The second fold gives a value e2(λ ) in the same way and so on. To calibrate a value
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λ ∗, we then average these k estimates e1(λ ), . . . ,ek(λ ) with

KFn(λ ) =
1
k

k

∑
i=1

ei(λ ).

Obviously, the leave-one-out approach is nothing else than a k-fold with k = n. In practice,
we consider k around 10 to cross-validate a tuning parameter. The main advantage of k = 10
rather than k = n is that we only have to run the statistical procedure ten times instead of n.
Thus, tuning a parameter with a k-fold approach is less expensive from a computability point
of view, mainly when the data set becomes large.
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Practicals 5 : Cross-validation

Introduction
As in Practicals 3, we consider here a regression framework and a model selection approach.
Then, no real data set are used and we only handle simulated data. Our goal is to illustrate the
cross-validation procedures introduced in the lecture to choose a value for the multiplicative
factor λ > 0 in the penalty.

The regression framework we manipulate in the next sections is based on n observations
(x1,y1), . . . ,(xn,yn) ∈ [0,1]×R where the design points x1, . . . ,xn are uniformly distributed in
[0,1].

n <- 256
x <- sort(runif(n))
s <- 2*cos(2*pi*x) + 3*sin(6*pi*x)
y <- s + rnorm(n)

plot(x, y, pch=4, col="grey")
points(x, s, type="l", lty=3)

Validation set
Let us start with the validation set approach for a proportion α = 70% of initial observation in
the training set.

alpha <- 0.7

# Training set
train <- sample.int(n, round(alpha * n))
x_train <- x[train]
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y_train <- y[train]

# Validation set
test <- (1:n)[-train]
x_test <- x[test]
y_test <- y[test]

To estimate the regression function, we use polynomial models with degree between 1 and
25 and a selection model procedure. Let p ∈ {1, . . . ,25}, we denote by Hp the projection
matrix and by β̂p the coefficients for polynomial model of degree p. For any λ > 0, we pick
p∗(λ ) ∈ {1, . . . ,25} to minimize the penalized criterion

p∗(λ ) = argmin
p∈{1,...,25}

{
−‖Hpytrain‖2 +λ (p+1)

}
.

Because our goal is to choose an appropriate value for λ , we consider several values between
0 and 10.

pmax <- 25
lambda <- seq(0, 10, length.out=100)

# Initialization
crit <- rep(0, pmax)
pen <- 2:(pmax+1)

# Model selection procedure on training set
for (p in seq_len(pmax)) {

model <- lm(y_train ~ poly(x_train, p))
crit[p] <- -sum(predict(model)^2)

}
p_star <- sapply(lambda, function(l) { which.min(crit + l*pen) })

• Explain what does the vector p_star contain.

We now evaluate the selected models with the validation set. To this end, for any λ > 0, we
consider the predicted values Xtestβ̂p∗(λ ) and we compare them to ytest,

e(λ ) = ‖Xtestβ̂p∗(λ )− ytest‖2.

Note that the predictor β̂p∗(λ ) is solely based on data in training set.
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# Compute validation errors
e <- sapply(p_star,

function(p) {
model <- lm(y_train ~ poly(x_train, p))
# Prediction command is misleading!
y_pred <- predict(model, data.frame(x_train=x_test))
return(sum((y_pred - y_test)^2))

}
)

# Get parameter of minimal error
lambda_star <- lambda[which.min(e)]
cat("Minimal error for lambda =", lambda_star, "\n")

# Plot the result
plot(lambda, e, type="l", col="red", lwd=2)
abline(v=lambda_star, lty=2)

# Cross-validated estimator
cat("Cross-validated dimension is", p_star[which.min(e)], "\n")
model_star <- lm(y ~ poly(x, p_star[which.min(e)]))
plot(x, y, pch=4, col="grey")
points(x, s, type="l", lty=3)
points(x, predict(model_star), type="l", col="red")

• Note that it does not remain any tuning parameter in the procedure.

• Comment the graphics of validation error with respect to λ .

To illustrate how the validation set is to the initial random choice, we compute the validation
error several times.

n_try <- 16
e <- matrix(0, nrow=length(lambda), ncol=n_try)

for (i_try in seq_len(n_try)) {
train <- sample.int(n, round(alpha * n))
crit <- rep(0, pmax)
for (p in seq_len(pmax)) {

model <- lm(y[train] ~ poly(x[train], p))
crit[p] <- -sum(predict(model)^2)
p_star <- sapply(lambda, function(l) which.min(crit + l*pen))

}
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e[,i_try] <- sapply(p_star,
function(p) {

design <- x[train]
model <- lm(y[train] ~ poly(design, p))
y_pred <- predict(model, data.frame(design=x[-train]))
return(sum((y_pred - y[-train])^2))

}
)

}

matplot(e, type="l", lwd=2, col=rainbow(n_try))

• Comment the variety of the results. Does it seem stable?

Leave-One-Out

To address the drawbacks of validation set, we have introduced the leave-one-out approach.
The concept is similar except that we consider validation sets with one observation only.

e <- matrix(0, nrow=length(lambda), ncol=n)

for (i in seq_len(n)) {
# Training set is no more random
train <- (1:n)[-i]

crit <- rep(0, pmax)
for (p in seq_len(pmax)) {

model <- lm(y[train] ~ poly(x[train], p))
crit[p] <- -sum(predict(model)^2)
p_star <- sapply(lambda, function(l) which.min(crit + l*pen))

}

e[,i] <- sapply(p_star,
function(p) {

design <- x[train]
model <- lm(y[train] ~ poly(design, p))

# Quality estimate is easier
y_pred <- predict(model, data.frame(design=x[i]))
return(sum((y_pred - y[i])^2))

}
)

}
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# Average the estimates to get cross-validates parameter
Loo <- rowMeans(e)
lambda_star <- lambda[which.min(Loo)]
cat("Minimal error for lambda =", lambda_star, "\n")

# Plot the result
plot(lambda, Loo, type="l", lwd=2, col="orange")
abline(v=lambda_star, lty=2)

• Take note of the long time spent to perform the procedure.

• Discuss the final plot with respect to the instability of the validation approach.

• Compute the cross-validated estimator.

k-Fold
Finally, we consider the leave-one-out alternative supplied by the k-fold approach. We divide
the initial data set into k = 8 folds to make division easier. Thus, we successively run validation
set procedure with each fold as validation set.

k <- 8
fold <- matrix(sample.int(n), nrow=k)
e <- matrix(0, nrow=length(lambda), ncol=k)

for (i in seq_len(k)) {
# Training set of k-1 folds
train <- as.vector(fold[-i,])

crit <- rep(0, pmax)
for (p in seq_len(pmax)) {

model <- lm(y[train] ~ poly(x[train], p))
crit[p] <- -sum(predict(model)^2)
p_star <- sapply(lambda, function(l) which.min(crit + l*pen))

}

e[,i] <- sapply(p_star,
function(p) {

design <- x[train]
model <- lm(y[train] ~ poly(design, p))

# Quality estimate with the fold
y_pred <- predict(model, data.frame(design=x[-train]))
return(sum((y_pred - y[i])^2))
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}
)

}

# Average the estimates to get cross-validates parameter
KF <- rowMeans(e)
lambda_star <- lambda[which.min(KF)]
cat("Minimal error for lambda =", lambda_star, "\n")

# Plot the result
plot(lambda, Loo, type="l", lwd=2, col="orange")
abline(v=lambda_star, lty=2)

• Compare the time spent to perform the procedure with the leave-one-out approach.

• Discuss the final plot with respect to the one obtained with leave-one-out method.

• Compute the cross-validated estimator.
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