
Introduction to
Stochastic Optimization

for Statistics

Ho Chi Minh City - March 2018

Xavier Gendre

Introduction to
Stochastic Optimization

for Statistics

Ho Chi Minh City - March 2018

Xavier Gendre

This work is licensed under a Creative Commons Attribution - NonCommercial - Share-
Alike 4.0 International License. To obtain a copy of this license, please visit

https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

Foreword . 9

1 Motivations . 11

1.1 Statistical framework 11

1.2 Examples 12

1.3 Big data 13

1.4 Optimization 14

2 Mathematical background . 17

2.1 Preliminaries 17

2.2 Convexity 18

2.3 Strong convexity 23

3 Stochastic Algorithm . 27

3.1 Simple examples 27

3.2 A general definition 29

3.3 Limiting differential equation 29

3.4 Theoretical guarantees 30

4 Non-asymptotic properties . 35

4.1 Framework 35

4.2 Rate of projected stochastic gradient descent 35

4.3 Rates of stochastic gradient descent 39

6

Practicals 1 : Introduction to Python . 43

What is Python? 43

About Python version 43

Where to find help? 44

First steps 44

Of Variables and Types 44

Containers 46

Control flows 49

Functions 51

Modules, packages and import 52

Standard library 54

Exceptions 56

A glance at object-oriented programming 57

A recapitulative exercise 58

Practicals 2 : Python for scientists . 61

NumPy 61

Matplotlib 66

Pandas 70

A recapitulative exercise 74

Practicals 3 : Adaline . 77

Introduction 77

Generate data 78

Batch approach 79

Gradient Descent 80

Stochastic Gradient Descent 81

Practicals 4 : Applications in Statistics . 83

Mean estimation 83

Regression model 84

Ridge regression model 85

Logistic regression model 86

7

Practicals 5 : Going further . 87

Mini-batch approach 87
An example of non-convex optimization 88

8

Foreword

These lecture notes are related to the course “Introduction to Stochastic Optimization for
Statistics” taught at the Ho Chi Minh City University of Science from March 12, 2018 to
March 21, 2018. I warmly thank Professor Ðă.ng Ðú,c Tro.ng and Jade Thi. Mô.ng Ngo. c
Nguyễn for their help and their sympathy. I would also like to thank Sébastien Gadat for the
conversations about stochastic algorithms and for his lecture notes which greatly helped me to
prepare this course.

The main references used to write this document are:

• Francis Bach and Éric Moulines, Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. Advances in Neural Information Processing Systems
(NIPS), 2011.

• Vivek S. Borkar, Stochastic approximation: A dynamical systems viewpoint. Cambridge
University Press, 2008.

• Sébastien Gadat, Stochastic optimization algorithms. Lecture notes, 2017.

• Sébastien Gadat and Fabien Panloup, Optimal non-asymptotic bound of the Ruppert-
Polyak averaging without strong convexity. ArXiv:1709.03342, 2017.

• Yurii Nesterov, Introductory lectures on convex optimization: A basic course. Springer
Science & Business Media, 2013.

The present document and the data sets for the practical sessions are available on the my web
page. For any request or comment, please contact me at xavier.gendre@math.univ-toulouse.fr.

https://www.hcmus.edu.vn/
https://perso.math.univ-toulouse.fr/gadat/
https://www.math.univ-toulouse.fr/~xgendre/
https://www.math.univ-toulouse.fr/~xgendre/
mailto:xavier.gendre@math.univ-toulouse.fr

10

1 — Motivations

1.1 Statistical framework
From a global perspective, machine learning aims to provide efficient algorithms to estimate
an unknown relationship between an observed variable X ∈X and a variable Y ∈ Y to be
predicted from a data set {(X1,Y1), . . . ,(Xn,Yn)}. To this end, a common approach consists
in considering the joint distribution P of (X ,Y) to deal with the conditional distribution
of Y with respect to X through the unknown function Φ : X → Y defined by the following
conditional expectation,

∀x ∈X , Φ(x) = E [Y | X = x] =
∫
Y

y dP(x,y).

From a statistical point of view, such a general problem is too difficult and we need to restrict
the relationship model to give a satisfactory answer. In practice, this means that we only
consider a parameterized collection of joint distributions Pθ for (X ,Y) where θ belongs to
some parameter set Θ. For each θ ∈ Θ, we have at our disposal a function Φθ : X → Y
defined as above. Thus, the object of interest is now an unknown parameter θ ∗ ∈ Θ that
minimizes the risk measurement

θ
∗ ∈ argmin

θ∈Θ

E [`(Y,Φθ (X))]

where ` : Y ×Y → R+ is a loss function, which intuitively measures the similarity between
its arguments. Of course, θ ∗ is not available to the statistician and we have to estimate it from
the data set. A way for that consists in considering a minimizer θ̂ ∈Θ of the empirical risk

θ̂ ∈ argmin
θ∈Θ

1
n

n

∑
k=1

`(Yk,Φθ (Xk)).

Note that, as soon as the collection {Φθ}θ∈Θ is well defined, such an estimation procedure
can always be considered without any assumption on the initial probability space or whatever
other theoretical consideration.

12 CHAPTER 1 : Motivations

1.2 Examples
Linear regression Let us consider the case of X =Rd and Y =R. The simplest model for
the relationship between the vector X and the real Y is a linear combination of the components
of X , namely

∀θ ∈ Rd, ∀x ∈ Rd, Φθ (x) = θ
>x.

The quadratic loss function is defined by

∀y,y′ ∈ R, `(y,y′) = (y− y′)2.

Thus, we can consider the ordinary least squares estimator θ̂ ∈ Rd given by

θ̂ ∈ argmin
θ∈Rd

1
n

n

∑
k=1

(
Yk−θ

>Xk

)2
.

The function to minimize here is smooth and convex with respect to θ and this ensures the
existence of θ̂ (such considerations will be at the heart of the following chapters). Denoting by
Y = (Y1, . . . ,Yn)

> ∈ Rn and by X the matrix of size n×d whose lines are given by the vectors
X1, . . . ,Xn ∈ Rd , if X>X is invertible, then we know that

θ̂ = (X>X)−1X>Y.

Ridge regression To provide an explicit expression for the ordinary least squares estimator,
we assumed that the matrix X>X was invertible. Such an assumption is not always satisfied in
practice and X>X can admit zero as an eigenvalue. In such a case, the function to minimize
is not strongly convex and θ̂ can no longer be written in the previous form, although its
definition as an empirical risk minimizer remains valid. The idea of the ridge regression
model is then to consider the Tikhonov regularization of the problem by adding a positive
part on the diagonal of X>X to force it to be invertible. Thus, for λ > 0, we define

θ̂ridge(λ) = (X>X+λ Idp)
−1X>Y.

This is straightforward to see that θ̂ridge(λ) is a minimizer of the regularized empirical risk,

θ̂ridge(λ) ∈ argmin
θ∈Rd

1
n

n

∑
k=1

(
Yk−θ

>Xk

)2
+λθ

>
θ .

The regularizer term λθ>θ acts here like a Lagrange multiplier and this problem is equiva-
lent to minimize the empirical risk given by the quadratic loss function with the constraint
θ>θ 6 r2

λ
, i.e. for θ in a centered ball B(rλ)⊂ Rd of radius rλ > 0,

θ̂ridge(λ) ∈ argmin
θ∈B(rλ)

1
n

n

∑
k=1

(
Yk−θ

>Xk

)2
.

Thus, we get back to the same problem of minimization as in the case of the linear regression
but we now seek the solution only in a convex subset B(rλ) of Rd .

1.3 Big data 13

Logistic regression If X =Rd and Y = {0,1}, the statistical problem stated in Section 1.1
is referred as a supervised classification problem. We observe a vector X and we want to
predict the expected value of Y among {0,1}. The conditional distribution of Y with respect
to X is nothing else than a Bernoulli distribution that we can parameterize by some θ ∈Θ,

∀θ ∈Θ, ∀x ∈ Rd, Φθ (x) = Pθ (Y = 1 | X = x) = p(x,θ).

The logistic regression model consists in considering that the logarithm of the ratio between
p(x,θ) and 1− p(x,θ) can be represented by a linear combination of the components of X ,
namely

log
(

p(x,θ)
1− p(x,θ)

)
= θ

>x.

In other words, Θ = Rd and it leads us to

∀θ ∈ Rd, ∀x ∈ Rd, Φθ (x) =
exp
(
θ>x

)
1+ exp

(
θ>x

) .
The predicted value of Y for a given X ∈Rd is then provided by 1Φθ (X)>1/2. Ideally, we should
use the “true” loss function given by

∀y,y′ ∈ {0,1}, `(y,y′) = |y− y′|

but such a choice leads to a non-convex function to minimize with respect to θ ∈ Rd . To
obtain an efficient algorithm to solve logistic regression problem, we will tend to consider
the loss function given by the opposite of the log-likelihood function, i.e. for any θ ∈ Rd ,
x ∈ Rd and y ∈ {0,1},

`(y,Φθ (x)) =−y log(p(x,θ))− (1− y) log(1− p(x,θ))

= log
(

1+ exp
(
−(2y−1)θ>x

))
which is smooth and convex with respect to θ . Thus, we define the estimator θ̂ as any
minimizer of the empirical risk,

θ̂ ∈ argmin
θ∈Rd

1
n

n

∑
k=1

log
(

1+ exp
(
−(2Yk−1)θ>Xk

))
.

Unfortunately, there is no explicit solution for logistic regression but the goal of the following
chapters is to introduce algorithms aimed to solve such a problem in practice.

1.3 Big data
Nowadays, many domains (computer vision, bioinformatics, . . .) see the amount and the
complexity of the data to be processed greatly increase in various ways (volume, speed, . . .).
Such a phenomenon is known as big data and, in the above examples, it means that we have
to deal with potentially (very) large n and p. From a practical point of view, handling such
a huge amount or flow of data raises new challenges in statistics. Indeed, defining θ̂ as the
minimizer of an empirical risk is always possible in theory but computing it in practice can be

14 CHAPTER 1 : Motivations

more difficult if the size of the data set exceeds the whole memory of the computer or if the
flow of data is faster than the speed of the processing unit.

Statistical procedures that need to handle the whole data set to provide an estimator are
referred as batch methods. Under the practical constraints evoked above, such approaches
often become infeasible even if we can properly write the function to be minimized in order to
define the estimator. Alternative strategies consist in handling the data one by one, updating
an estimator through a recursion rule to approach a solution of the minimization problem.
Such approaches are known as online strategies and are the main topic of this course. The
key tools for studying these methods are provided by convex analysis and will be the subject
of the next chapter.

1.4 Optimization
As illustrated by the examples developed in Section 1.2, machine learning problems can often
be stated as the search of a point θ ∗ ∈ Rd defined as a minimizer of a function f : Rd → R,

θ
∗ ∈ argmin

θ∈Θ

f (θ).

Such minimization (or maximization, equivalently) problem is referred as an optimization
problem. There are various variants of this kind of problem:

• unconstrained problem: Θ = Rp,

• constrained problem: Θ Rp,

• smooth problem: f satisfies some regularity conditions,

• quadratic problem: f is quadratic with respect to θ ,

• . . .

In general, such problems arise when there is no explicit formula for the minimizer θ ∗

of f . Thus, to approximate a true solution θ ∗, it is natural to allow a certain degree ε > 0 of
accuracy and to look for a ε-solution θ ∗ε that satisfies

| f (θ ∗)− f (θ ∗ε)|6 ε.

The efficiency of a method to compute a ε-solution θ ∗ε is quantified by its numerical cost
that obviously depends on ε . The algorithms that we have in mind here to obtain a ε-solution
for an optimization problem are iterative, i.e. they compute the ε-solution recursively by
updating the previous state with a new data at each step. Then, the numerical cost of a method
is closely related to the number of iterations needed to obtain the ε-solution.

To illustrate these considerations about the accuracy and the number of iterations, let us
consider L > 0 and a function f : [0,1]d → R that satisfies the quite weak assumption,

∀θ ,θ ′ ∈ [0,1]d, | f (θ)− f (θ ′)|6 L‖θ −θ
′‖∞ (1.1)

where we have set

∀θ = (θ1, . . . ,θd)
> ∈ Rd, ‖θ‖∞ = max

k∈{1,...,d}
|θk|.

1.4 Optimization 15

In particular, such an assumption implies that f is a continous function on the compact set
[0,1]d . Then, the following result gives a very pessimistic bound on the numerical cost to find
a ε-solution for the minimization of f .

Theorem 1.1. Let 0 < ε 6 L/2, if f : [0,1]d → R satisfies (1.1), then a ε-solution for
the minimization of f can be found in(

2+
⌊

L
2ε

⌋)d

operations where, for any x ∈ R, bxc is the greatest integer less than or equal to x.

Proof. Let 0 < δ 6 1, we consider a δ -grid of [0,1]d defined by

Gd =

{
(k1δ , . . . ,kdδ)> with k1, . . . ,kd ∈

{
0, . . . ,bδ−1c

}
∪
{

δ
−1− 1

2

}}
.

By construction, the grid Gd contains (2+ bδ−1c)d distinct points. Let us denote by θ ∗ a
minimizer of f in [0,1]d and by θ̃ ∗ ∈ Gd the closest point to θ ∗ in the grid. By definition, we
know that

‖θ̃ ∗−θ
∗‖∞ 6

δ

2
.

We can compute f (θg) for all θg ∈ Gd and thus find the minimizer θ ∗g ∈ Gd of f on the grid,

0 6 f (θ ∗g)− f (θ ∗)6 f (θ̃ ∗)− f (θ ∗).

Assumption (1.1) leads to

f (θ̃ ∗)− f (θ ∗)6 L‖θ̃ ∗−θ
∗‖∞ 6

Lδ

2
.

Hence, if we take δ = 2ε/L, then θ ∗g is a ε-solution that has been found in (2+ bL/(2ε)c)d

computations of f .

We can reasonably think that an exhaustive search in a grid as we did in the proof is not an
optimal method to obtain a ε-solution. Nevertheless, with no more assumption on f , it can
be proved that a method to find a ε-solution has to do at least⌊

L
2ε

⌋d

(1.2)

operations. Such a result is beyond the scope of this lecture but it shows that our naive
approach almost reaches the optimal numerical cost to get a ε-solution for our minimization
problem.

Let us conclude with a small calculation. If we want to obtain a minimizer of f in the
hypercube of dimension d = 10 with L = 2 and an accuracy ε = 10−2, then we need at least
1020 operations. Even if each operation is done in 10−9 second (i.e. a frequency of 1 GHz), it
will take 3171 years to complete! Of course, such a procedure is unrealistic and we will have
to consider other assumptions about the function f to obtain efficient algorithms.

16 CHAPTER 1 : Motivations

2 — Mathematical background

2.1 Preliminaries
The results presented in this course can be (almost) all extended to real-valued functions
defined on Hilbert spaces. However, for the sake of simplicity, we will restrict ourselves to the
case of Rd in the following. In order to maintain a Hilbert terminology, we will still use the
following standard notations. Let d be some positive integer, for any θ ,θ ′ ∈ Rd , we define the
scalar product of θ and θ ′ by

〈θ ,θ ′〉= θ
>

θ
′

and the associated norm as
‖θ‖=

√
〈θ ,θ〉.

We now introduce the first important notion that was briefly considered in the first chapter.

Definition 2.1. Let L > 0, a function f : Rd1 → Rd2 is L-Lipschitz if

∀θ1,θ2 ∈ Rd1, ‖ f (θ1)− f (θ2)‖6 L‖θ1−θ2‖.

An immediate consequence of the definition is the continuity of f on Rd1 .

Being Lipschitz will be a useful property of the functions in the sequel, but we will often need
more regularity.

Definition 2.2. A function f :Rd→R is differentiable if, for any θ ∈Rd , there exists
a vector ∇ f (θ) ∈ Rd such that

lim
ε→0

| f (θ + ε)− f (θ)−〈∇ f (θ),ε〉|
‖ε‖

= 0.

The vector ∇ f (θ) is called the gradient of f at point θ .

Combining the above definitions leads us to the common smoothness definition considered in
this lecture.

18 CHAPTER 2 : Mathematical background

Definition 2.3. Let L > 0, a differentiable function f : Rd → R is L-smooth if the
gradient ∇ f is L-Lipschitz,

∀θ1,θ2 ∈ Rd, ‖∇ f (θ1)−∇ f (θ2)‖6 L‖θ1−θ2‖.

This definition implies the continuity of ∇ f on Rd . Such a function is said to be
continuously differentiable.

The smooth functions have nice properties like the variations mainly controlled by the
squared norm.

Proposition 2.1. Let f : Rd → R be a L-smooth function, then

∀θ1,θ2 ∈ Rd, | f (θ1)− f (θ2)−〈∇ f (θ2),θ1−θ2〉|6
L
2
‖θ1−θ2‖2.

Proof. A first-order Taylor expansion leads to

f (θ1) = f (θ2)+
∫ 1

0
〈∇ f (θ2 + t(θ1−θ2)),θ1−θ2〉dt

= f (θ2)+ 〈∇ f (θ2),θ1−θ2〉+
∫ 1

0
〈∇ f (θ2 + t(θ1−θ2))−∇ f (θ2),θ1−θ2〉dt.

Cauchy–Schwarz inequality and L-smoothness give

| f (θ1)− f (θ2)−〈∇ f (θ2),θ1−θ2〉|6
∫ 1

0
‖∇ f (θ2 + t(θ1−θ2))−∇ f (θ2)‖×‖θ1−θ2‖dt

6 L‖θ1−θ2‖2
∫ 1

0
tdt

=
L
2
‖θ1−θ2‖2.

Finally, we introduce the main object of interest of the current chapter. How to construct
such sequences and what are their properties will be the topic of the next sections.

Definition 2.4. Let f :Rd→R be a differentiable function. For θ0 ∈Rd and a sequence
of positive step sizes {γn}n>0, the gradient descent is the sequence {θn}n>0 defined
by

∀n > 1, θn = θn−1− γn∇ f (θn−1).

2.2 Convexity
As it was quickly mentioned in the first chapter, the only regularity of a function is not
sufficient to provide efficient algorithms for optimization problems. The notion of convexity
will be the key to propose better approaches.

2.2 Convexity 19

Definition 2.5. A function f : Rd → R is convex if

∀θ1,θ2 ∈ Rd, ∀λ ∈ [0,1], f (λθ1 +(1−λ)θ2)6 λ f (θ1)+(1−λ) f (θ2).

We will not often use this definition in the following. Indeed, the functions we will handle
will usually be regular enough and the following proposition offers an alternative definition of
convexity in this case.

Proposition 2.2. Let f : Rd → R be a differentiable function, then f is convex if and
only if

∀θ1,θ2 ∈ Rd, f (θ1)> f (θ2)+ 〈∇ f (θ2),θ1−θ2〉. (2.1)

Proof. Let θ1,θ2 ∈ Rd , we define the function h by

∀λ ∈ [0,1], h(λ) = f (λθ1 +(1−λ)θ2)−λ f (θ1)− (1−λ) f (θ2).

Because f is differentiable, the same goes for h and we get

h′(λ) = 〈∇ f (λθ1 +(1−λ)θ2),θ1−θ2〉− f (θ1)+ f (θ2).

(⇒) If f is convex, then h(λ)6 0 for any λ ∈ [0,1]. Since h(0) = 0, we deduce

h′(0) = lim
λ→0

h(λ)
λ

6 0

which corresponds to (2.1).
(⇐) If (2.1) holds, then we have

f (θ1)> f (λθ1 +(1−λ)θ2)+(1−λ)〈∇ f (λθ1 +(1−λ)θ2),θ1−θ2〉

and
f (θ2)> f (λθ1 +(1−λ)θ2)−λ 〈∇ f (λθ1 +(1−λ)θ2),θ1−θ2〉.

From these two inequalities, we deduce

λ f (θ1)+(1−λ) f (θ2)> (λ +(1−λ)) f (λθ1 +(1−λ)θ2)

+λ (1−λ)〈∇ f (λθ1 +(1−λ)θ2),θ1−θ2〉
−λ (1−λ)〈∇ f (λθ1 +(1−λ)θ2),θ1−θ2〉

= f (λθ1 +(1−λ)θ2).

Finally, f is convex.

Proposition 2.2 allows us to establish two important facts that will be particularly useful in
the future. First, a critical point of a convex function is a global minimum.

Proposition 2.3. Let f : Rd → R be a differentiable and convex function. If a point
θ ∗ ∈ Rd is such that ∇ f (θ ∗) = 0, then f (θ ∗) is the global minimum of f on Rd .

20 CHAPTER 2 : Mathematical background

Proof. This is a direct consequence of (2.1). Indeed, for any θ ∈ Rd , we obtain

f (θ)> f (θ ∗)+ 〈∇ f (θ ∗),θ −θ
∗〉= f (θ ∗).

In other words, f reaches its global minimum at point θ ∗.

The second useful consequence of Proposition 2.2 is the following lemma which we will
invoke several times in the following.

Lemma 2.1. Let f : Rd → R be a L-smooth and convex function. Then, for any
θ1,θ2 ∈ Rd , we have

f (θ2)− f (θ1)6 〈∇ f (θ2),θ2−θ1〉−
1

2L
‖∇ f (θ2)−∇ f (θ1)‖2 .

Proof. Let θ ,θ ′ ∈ Rd , Propositions 2.1 and 2.2 together imply that f satisfies the following
inequalities

0 6 f (θ)− f (θ ′)−〈∇ f (θ ′),θ −θ
′〉6 L

2
‖θ −θ

′‖2.

Let θ1,θ2 ∈ Rd , we apply the lower bound to θ = θ1 +L−1(∇ f (θ2)−∇ f (θ1)) and θ ′ = θ2
to get

f (θ2)− f (θ)6 〈∇ f (θ2),θ2−θ〉.

Moreover, we apply the upper bound to the same θ and θ ′ = θ1 to obtain

f (θ)− f (θ1)6 〈∇ f (θ1),θ −θ1〉+
L
2
‖θ −θ1‖2.

Adding these inequalities leads to the announced result,

f (θ2)− f (θ1) = (f (θ2)− f (θ))+(f (θ)− f (θ1))

6 〈∇ f (θ2),θ2−θ〉+ 〈∇ f (θ1),θ −θ1〉+
L
2
‖θ −θ1‖2

= 〈∇ f (θ2),θ2−θ1〉+ 〈∇ f (θ1)−∇ f (θ2),θ −θ1〉+
L
2
‖θ −θ1‖2

= 〈∇ f (θ2),θ2−θ1〉−
1
L
‖∇ f (θ2)−∇ f (θ1)‖2 +

1
2L
‖∇ f (θ2)−∇ f (θ1)‖2

= 〈∇ f (θ2),θ2−θ1〉−
1

2L
‖∇ f (θ2)−∇ f (θ1)‖2.

A wide variety of convex functions appear more or less naturally in machine learning
problems. Here are some examples we have already encountered (proofs are left as exercises):

• the scalar product with a constant vector x ∈ Rd is convex,

∀θ ∈ Rd, f (θ) = 〈x,θ〉,

2.2 Convexity 21

• the squared Euclidean distance from a vector y ∈ Rd is convex,

∀θ ∈ Rd, f (θ) = ‖y−θ‖2,

• the empirical risk given in the context of linear regression with the quadratic loss
function is convex, i.e. for any matrix X of size n×d and any vector y ∈ Rn,

∀θ ∈ Rd, f (θ) = ‖y−Xθ‖2,

• the loss function given by the opposite of the log-likelihood function defined in the
example of logistic regression is convex, i.e. for any x ∈ Rd and y ∈ {0,1},

∀θ ∈ Rd, f (θ) = log(1+ exp(−(2y−1)〈x,θ〉)) .

Hint: this last example is not as straightforward as the others. First, prove that, for any
a ∈ R, the function t ∈ R 7→ log(1+ exp(at)) is convex. Then, deduce the result by
composition with affine function.

When a convex function is also smooth, then a gradient descent with constant step size is
an efficient algorithm to solve a minimization problem as shown by the following result.

Theorem 2.1. Let f : Rd → R be a L-smooth and convex function that reaches its
global minimum at point θ ∗ ∈ Rd . Then, the gradient descent defined with a constant
step size γn = L−1 satisfies

∀n > 1, f (θn)− f (θ ∗)6
2L‖θ0−θ ∗‖2

n

Proof. Let n > 1, by definition of the gradient descent, we get

‖θn−θ
∗‖2 = ‖(θn−1−θ

∗)−L−1
∇ f (θn−1)‖2

= ‖θn−1−θ
∗‖2− 2

L
〈∇ f (θn−1),θn−1−θ

∗〉+ 1
L2‖∇ f (θn−1)‖2.

Applying two times Lemma 2.1, we obtain

−〈∇ f (θn−1),θn−1−θ
∗〉6 f (θ ∗)− f (θn−1)−

1
2L
‖∇ f (θn−1)−∇ f (θ ∗)‖2

6 〈∇ f (θ ∗),θ ∗−θn−1〉−
2

2L
‖∇ f (θn−1)−∇ f (θ ∗)‖2

=−1
L
‖∇ f (θn−1)‖2 .

Thus,

‖θn−θ
∗‖2 6 ‖θn−1−θ

∗‖2− 1
L2‖∇ f (θn−1)‖2.

In particular, this inequality implies that ‖θn−θ ∗‖2 is decreasing with respect to n and

∀k > 0, ‖θk−θ
∗‖2 6 ‖θ0−θ

∗‖2.

22 CHAPTER 2 : Mathematical background

For any k > 0, we set ∆k = f (θk)− f (θ ∗). Proposition 2.2, Cauchy–Schwarz inequality and
above result give

∆k 6 〈∇ f (θk),θk−θ
∗〉6 ‖∇ f (θk)‖×‖θ0−θ

∗‖. (2.2)

Moreover, Proposition 2.1 leads to

f (θn)6 f (θn−1)+ 〈∇ f (θn−1),θn−θn−1〉+
L
2
‖θn−θn−1‖2

= f (θn−1)−
1

2L
‖∇ f (θn−1)‖2.

Then, with (2.2), we deduce

∆n 6 ∆n−1−
1

2L
‖∇ f (θn−1)‖2 6 ∆n−1−

∆2
n−1

2L‖θ0−θ ∗‖2 .

Let us denote ω = 2L‖θ0−θ ∗‖2. Dividing by ∆n∆n−1, the above recursion can be rearranged
as follows

1
∆n
− 1

∆n−1
>

∆n−1

ω∆n
>

1
ω
.

Summing this inequality between 1 and n gives

1
∆n
− 1

∆0
=

n

∑
k=1

1
∆k
− 1

∆k−1
>

n
ω
.

Finally, we obtain the announced result since

∆n 6
∆0ω

ω +n∆0
6

ω

n
.

This result gives a polynomial convergence rate of the gradient descent for the minimization
problem. In particular, for any ε > 0, the quantity θn is a ε-solution as soon as

n >
2L‖θ0−θ ∗‖2

ε
.

This lower bound has to be compared to (1.2). Up to the multiplicative factor ‖θ0−θ ∗‖2,
which can be seen as a constant price to pay in the numerical cost of the method, the minimum
number of operations no longer depends on the dimension d. Of course, the dimension factor
is hidden in the initial error term but this is definitely weaker than a power of the accuracy ε .
With the help of the convexity assumption, for L = 2 and ε = 10−2, the order of magnitude of
the lower bound is now only 400 operations. Strengthening the convexity hypothesis, we will
see that this result can be further improved.

2.3 Strong convexity 23

2.3 Strong convexity
We have seen in the previous section that convexity is the key to obtain efficient algorithms for
optimization problems. We now propose to consider a reinforced version of this notion to get
better properties.

Definition 2.6. Let µ > 0, a function f : Rd → R is µ-strongly convex if the function
φ defined by

∀θ ∈ Rd, φ(θ) = f (θ)− µ

2
‖θ‖2 (2.3)

is convex.

As for simple convexity, we have an alternative definition of strong convexity for regular
functions.

Proposition 2.4. Let f : Rd → R be a differentiable function. Then, f is µ-strongly
convex if and only if

∀θ1,θ2 ∈ Rd, f (θ1)> f (θ2)+ 〈∇ f (θ2),θ1−θ2〉+
µ

2
‖θ1−θ2‖2.

Proof. Let φ be defined as in (2.3). Because f is differentiable, the same goes for φ and we
have ∇φ(θ) = ∇ f (θ)−µθ . According to Proposition 2.2, we know

φ is convex ⇐⇒ ∀θ1,θ2 ∈ Rd, φ(θ1)> φ(θ2)+ 〈∇φ(θ2),θ1−θ2〉

⇐⇒ ∀θ1,θ2 ∈ Rd, f (θ1)> f (θ2)+ 〈∇ f (θ2),θ1−θ2〉+
µ

2
‖θ1−θ2‖2.

Regularity and strong convexity together lead to important properties like a gradient lower
bounded by the squared norm.

Proposition 2.5. Let f : Rd → R be a differentiable and µ-strongly convex function.
Then,

∀θ1,θ2 ∈ Rd, 〈∇ f (θ1)−∇ f (θ2),θ1−θ2〉> µ‖θ1−θ2‖2.

Proof. This statement is a direct consequence of the Proposition 2.4. Indeed, for any θ1,θ2 ∈
Rd , we get

f (θ1)− f (θ2)−〈∇ f (θ2),θ1−θ2〉>
µ

2
‖θ1−θ2‖2

and
f (θ2)− f (θ1)+ 〈∇ f (θ1),θ1−θ2〉>

µ

2
‖θ1−θ2‖2.

Summing these two inequalities leads to the annouced result.

24 CHAPTER 2 : Mathematical background

The inequality given by Proposition 2.5 can be strengthened under additional regularity
assumption as in the next useful lemma.

Lemma 2.2. Let f : Rd → R be a L-smooth and µ-strongly convex function. Then, for
any θ1,θ2 ∈ Rd ,

〈∇ f (θ1)−∇ f (θ2),θ1−θ2〉>
µL

L+µ
‖θ1−θ2‖2 +

1
L+µ

‖∇ f (θ1)−∇ f (θ2)‖2.

Proof. First, we notice that we necessarily have µ 6 L. Indeed, for any θ1,θ2 ∈ Rd , Proposi-
tion 2.5 and Cauchy–Schwarz inequality imply

µ‖θ1−θ2‖2 6 〈∇ f (θ1)−∇ f (θ2),θ1−θ2〉
6 ‖∇ f (θ1)−∇ f (θ2)‖×‖θ1−θ2‖
6 L‖θ1−θ2‖2.

If µ = L, the announced result is a consequence of Proposition 2.5,

µ

2
‖θ1−θ2‖2 +

1
2µ
‖∇ f (θ1)−∇ f (θ2)‖2 6

µ

2
‖θ1−θ2‖2 +

µ

2
‖θ1−θ2‖2

6 〈∇ f (θ1)−∇ f (θ2),θ1−θ2〉.

We can now assume that µ < L and we consider the function φ as defined in (2.3). This
function is differentiable with, for any θ ∈ Rd , ∇φ(θ) = ∇ f (θ)−µθ . Thus, Proposition 2.1
leads to

φ(θ)−φ(θ1)−〈∇φ(θ1),θ −θ1〉= f (θ)− f (θ1)−〈∇ f (θ1),θ −θ1〉−
µ

2
‖θ1−θ‖2

6
L−µ

2
‖θ1−θ‖2

(2.4)

which can also be written

φ(θ)−φ(θ1)6 〈∇φ(θ1),θ −θ1〉+
L−µ

2
‖θ1−θ‖2.

Moreover, by definition, φ is convex and Proposition 2.2 gives

φ(θ2)−φ(θ)6 〈∇φ(θ2),θ2−θ〉.

Let us take θ = θ1 +(L−µ)−1(∇φ(θ2)−∇φ(θ1)), we sum the above inequalities to get

φ(θ2)−φ(θ1) = (φ(θ2)−φ(θ))+(φ(θ)−φ(θ1))

6 〈∇φ(θ2),θ2−θ〉+ 〈∇φ(θ1),θ −θ1〉+
L−µ

2
‖θ1−θ‖2

= 〈∇φ(θ2),θ2−θ1〉−
1

2(L−µ)
‖∇φ(θ2)−∇φ(θ1)‖2

Reorganizing the terms and arguing as for (2.4), we obtain

1
2(L−µ)

‖∇φ(θ2)−∇φ(θ1)‖2 6 φ(θ1)−φ(θ2)+ 〈∇φ(θ2),θ2−θ1〉6
L−µ

2
‖θ1−θ2‖2.

2.3 Strong convexity 25

In other words, φ is (L−µ)-smooth. Then, we can apply Lemma 2.1,

1
2(L−µ)

‖∇φ(θ2)−∇φ(θ1)‖2 6 φ(θ1)−φ(θ2)+ 〈∇φ(θ2),θ2−θ1〉.

Symmetrizing this inequality with respect to θ1 and θ2 and summing up lead to

1
L−µ

‖∇φ(θ2)−∇φ(θ1)‖2 6 〈∇φ(θ1)−∇φ(θ2),θ1−θ2〉.

Using ∇φ(θ) = ∇ f (θ)−µθ , we get

〈∇ f (θ1)−∇ f (θ2),θ1−θ2〉> µ‖θ1−θ2‖2 +
1

L−µ
‖(∇ f (θ1)−∇ f (θ2))−µ(θ1−θ2)‖2

=
µL

L−µ
‖θ1−θ2‖2 +

1
L−µ

‖∇ f (θ1)−∇ f (θ2)‖2

− 2µ

L−µ
〈∇ f (θ1)−∇ f (θ2),θ1−θ2〉.

This last inequality corresponds to the announced result since

1+
2µ

L−µ
=

L+µ

L−µ
.

Finally, we can state the convergence of the gradient descent for the minimization of a
smooth and strongly convex function.

Theorem 2.2. Let f : Rd → R be a L-smooth and µ-strongly convex function that
reaches its global minimum at point θ ∗ ∈ Rd . Then, the gradient descent defined with a
constant step size γn = 2/(L+µ) satisfies

∀n > 1, f (θn)− f (θ ∗)6
L‖θ0−θ ∗‖2

2
× exp

(
− 4n

κ +1

)
where we have set κ = L/µ .

Proof. Let n > 1, since ∇ f (θ ∗) = 0, Proposition 2.1 implies

f (θn)− f (θ ∗)6
L
2
‖θn−θ

∗‖2.

26 CHAPTER 2 : Mathematical background

Moreover, by definition of the gradient descent and Lemma 2.2,

‖θn−θ
∗‖2 =

∥∥∥∥(θn−1−θ
∗)− 2

L+µ
∇ f (θn−1)

∥∥∥∥2

= ‖θn−1−θ
∗‖2 +

4
(L+µ)2 ‖∇ f (θn−1)‖2− 4

L+µ
〈∇ f (θn−1),θn−1−θ

∗〉

6 ‖θn−1−θ
∗‖2 +

4
(L+µ)2 ‖∇ f (θn−1)‖2

− 4
L+µ

{
µL

L+µ
‖θn−1−θ

∗‖2 +
1

L+µ
‖∇ f (θn−1)‖2

}
=

(
1− 4µL

(L+µ)2

)
‖θn−1−θ

∗‖2

=

(
1− 2

κ +1

)2

‖θn−1−θ
∗‖2.

Iterating this bound leads to

‖θn−θ
∗‖2 6

(
1− 2

κ +1

)2n

‖θ0−θ
∗‖2 6 exp

(
− 4n

κ +1

)
‖θ0−θ

∗‖2

since 1− x 6 e−x for any x.

The exponential convergence rate obtained in this theorem greatly improves the con-
vergence rate we got with simple convexity. The initial error is still present through the
multiplicative factor ‖θ0−θ ∗‖2 but the accuracy is now driven by an exponential decay with
respect to the number of iterations n. That is the main consequence of strong convexity. Let
ε > 0, the minimum number of iterations needed to get a ε-solution is now lower bounded by

n >
κ +1

4
log
(

L‖θ0−θ ∗‖2

2ε

)
.

For L = 2, µ = 2/3 and ε = 10−2, the order of magnitude of this minimum number of
operations to obtain a ε-solution to the minimization problem is now only 5 operations.

There exist lower bound results for the problem of minimization of a (strongly) convex
function. Actually, the convergence rates we obtained in Theorems 2.1 and 2.2 are not
optimal in the sense that some better algorithms exist under the same set of hypotheses.
In particular, the algorithm called Nesterov accelerated gradient descent outperforms the
standard gradient descent. The convergence rates for this algorithm are given by:

• for L-smooth and convex function,

f (θn)− f (θ ∗)6
2L‖θ0−θ ∗‖2

n2 ,

• for L-smooth and µ-strongly convex function,

f (θn)− f (θ ∗)6
(L+µ)‖θ0−θ ∗‖2

2
× exp

(
− n√

κ

)
.

Introducing this algorithm is beyond the scope of these lecture notes, but it can be proved that
these convergence rates are optimal for these two classes of functions.

3 — Stochastic Algorithm

3.1 Simple examples
Let {Xn}n>1 be a sequence of independent and identically distributed variables assumed to
be integrable with m = E[X1]. For any n > 1, we can estimate m with the n first observations
X1, . . . ,Xn through the empirical mean

X̄n =
1
n

n

∑
k=1

Xk.

This common estimation procedure can be seen as a stochastic algorithm as follows. Let us
set X̄0 = 0 and, for any n > 1, rewrite X̄n with respect to X̄n−1,

X̄n =
n−1

n
X̄n−1 +

1
n

Xn

= X̄n−1 +
1
n
(Xn− X̄n−1)

= X̄n−1−
1
n
(X̄n−1−m)+

1
n
(Xn−m)

Denoting the step size by γn = n−1, if we consider the function f defined by

∀x ∈ R, f (x) =
(x−m)2

2
,

then the recursion may be simply written as

X̄n = X̄n−1− γn f ′(X̄n−1)+ γnMn

where we have set Mn = Xn−m. Thus, X̄n can be seen as X̄n−1 with the addition of a gradient
descent term related to the function f and a centered term which will be considered as a
martingale increment in the sequel, i.e. the sequence {Mn}n>1 satisfy

∀n > 1, E[Mn | X1, . . . ,Xn−1] = 0.

28 CHAPTER 3 : Stochastic Algorithm

To go further, assuming that E[X2
1]<+∞, we can consider the simultaneous estimation of

the mean m and the variance σ2 of X1. To this end, we introduce the usual estimator of the
variance based on the n first observations,

∀n > 1, Sn =
1
n

n

∑
k=1

(Xk− X̄n)
2
.

As above, setting S0 = 0, we can deduce a recursion between Sn and Sn−1, for any n > 1,

Sn =
1
n

n

∑
k=1

(
Xk−

n−1
n

X̄n−1−
1
n

Xn

)2

=
1
n

n

∑
k=1

(
(Xk− X̄n−1)−

1
n
(Xn− X̄n−1)

)2

=
1
n

n

∑
k=1

(Xk− X̄n−1)
2
+

1
n2 (Xn− X̄n−1)

2− 2
n
(Xn− X̄n−1)(X̄n− X̄n−1)

=
n−1

n
Sn−1 +

n−1
n2 (Xn− X̄n−1)

2

= Sn−1−
1
n

(
Sn−1−σ

2)+ 1
n

{
n−1

n
(Xn− X̄n−1)

2−σ
2
}

= Sn−1− γn
(
Sn−1−σ

2)+ γnM′n + γnRn

where we have set the martingale increments

M′n =
n−1

n

(
(Xn−m)2−σ

2−2(Xn−m)(X̄n−1−m)
)

and the remainder terms

Rn =
n−1

n
(X̄n−1−m)2− σ2

n
.

Thus, we now consider the function f defined on R×R∗+ by

f (x,s) =
1
2
(
(x−m)2 +(s−σ

2)2) .
This function admits the following gradient

∇ f (x,s) =
(

x−m
s−σ2

)
and we get the two-dimensional recursion, for any n > 1,(

X̄n
Sn

)
=

(
X̄n−1
Sn−1

)
− γn∇ f (X̄n−1,Sn−1)+ γn

(
Mn
M′n

)
+ γn

(
0

Rn

)
.

Again, we can verify that this step is nothing else than the addition of a gradient descent
term related to f , a two-dimensional martingale increment and a remainder term.

According to the strong law of large numbers, we know that

X̄n
a.s.−−−→

n→∞
m and Sn

a.s.−−−→
n→∞

σ
2.

In other words, the sequence {(X̄n,Sn)}n>0 converges almost surely towards a zero of ∇ f
which is also the global minimizer of f . The two algorithms above are classic examples of
stochastic algorithms aimed to the minimization of a differentiable function f through the
search for a zero of ∇ f .

3.2 A general definition 29

3.2 A general definition
To discuss algorithms such as those introduced in the first section, we define a general
framework through the following definition.

Definition 3.1. Let h : Rd → Rd , {Fn}n>0 be an increasing filtration and {γn}n>1 be
a sequence of positive step sizes. A stochastic algorithm is a sequence of random
vectors {θn}n>0 starting from a F0-measurable vector θ0 ∈ Rd and such that

∀n > 1, θn = θn−1− γnh(θn−1)+ γnMn + γnRn

where

• {Mn}n>1 is a sequence of square-integrable martingale increments with respect
to the filtration {Fn}n>0,

• {Rn}n>1 is a predictable sequence of square-integrable remainder terms with
respect to the filtration {Fn}n>0.

An immediate consequence of this definition of a stochastic algorithm {θn}n>0 is that, for
any n > 0, θn is Fn–measurable. As we will see in the sequel, the step sizes have to be large
enough to allow the gradient descent to explore the function but not too much to keep the
algorithm under control. In practice, these step sizes are commonly assumed to satisfy

∑
n>1

γn =+∞ and ∑
n>1

γ
2
n <+∞. (3.1)

The remainder terms Rn that appear in the definition should be considered as negligible
perturbations and will often be omitted in the following for the sake of simplicity. For
example, in the variance estimation example above, we had

E[Rn] = 0 and E[R2
n]6

2E[(X1−m)4]

n2 .

3.3 Limiting differential equation
Let us consider a stochastic algorithm {θn}n>0 as given by Definition 3.1 with a zero remainder
term, i.e. satisfying the following recursion,

∀n > 1, θn = θn−1− γnh(θn−1)+ γnMn.

We can easily associate this algorithm to a continuous interpolated trajectory {θ(t)}t∈R+

as follows. We define time instants t0 = 0 and

∀n > 1, tn =
n

∑
k=1

γk.

Let n > 1, if t ∈ [tn−1, tn], then θ(t) is given by the linear interpolation between θn−1 and θn,
namely

∀t ∈ [tn−1, tn], θ(t) = θn−1 +(θn−θn−1)×
t− tn−1

tn− tn−1
. (3.2)

30 CHAPTER 3 : Stochastic Algorithm

We see that, in order to properly define θ(t) for any t ∈R+, we need to ensure tn→+∞ which
corresponds to the divergence assumption in (3.1),

∑
n>1

γn =+∞.

For a small enough step size γn, we can roughly write

θn = θ(tn) = θ(tn−1 + γn)' θ(tn−1)+ γnθ
′(tn−1)' θn−1− γnh(θn−1)

where the first approximation comes from a first-order Taylor expansion and the second
from the omission of the martingale increment which is centered. In other words, with (3.2),
we recognize an explicit Euler method for which we expect to asymptotically track the
differential equation

dθ(t)
dt

= h(θ(t)).

In the above approximations, we have neglected the martingale increments but, after n > 1
steps, they correspond to the quantity

ζn =
n

∑
k=1

γkMk.

By hypothesis, this is straightforward to see that {ζn}n>0 with ζ0 = 0 is a square-integrable
martingale. Furthermore, the martingale increments {ζn−ζn−1}n>1 are such that

∀n > 1,
n

∑
k=1
E
[
‖ζn−ζn−1‖2 |Fn−1

]
=

n

∑
k=1

γ
2
kE
[
‖Mn‖2 |Fn−1

]
.

From classical martingale theory (see Appendix C of the book of Borkar cited in Foreword), we
know that the almost sure convergence of such series would imply the almost sure convergence
of ζn as n→ ∞. Of course, such a result will be needed in the analysis of the stochastic
algorithm {θn}n>0. Under suitable bounding assumptions on the conditional expectation of
‖Mn‖2, we see that the step sizes should at least satisfy the second part of (3.1),

∑
n>1

γ
2
k <+∞.

3.4 Theoretical guarantees
Providing an exhaustive theoretical analysis of stochastic algorithms is beyond the scope of
this lecture. In order to introduce important properties in this section, we omit the proofs
and we silently avoid developing results that come from martingales theory. For instance, the
following result is a consequence of Robbins-Siegmund’s Theorem that we do not explicitly
state.

3.4 Theoretical guarantees 31

Theorem 3.1. Let {θn}n>0 be a stochastic algorithm with step sizes satisfying (3.1).
We assume that there exist C > 0 and a twice continuously differentiable and L-smooth
function V : Rd → R such that:

• “Drift” assumptions:

1. min
θ∈Rd

V (θ)> 0,

2. lim
‖θ‖→∞

V (θ) = +∞,

3. ∀θ ∈ Rd, 〈∇V (θ),h(θ)〉> 0,

4. ∀θ ∈ Rd, ‖h(θ)‖2 +‖∇V (θ)‖2 6C(1+V (θ)),

• “Perturbation” assumtions:

1. the martingale increments {Mn}n>1 satisfy

∀n > 1, E
[
‖Mn‖2 |Fn−1

]
6C(1+V (θn−1)),

2. the remainder terms {Rn}n>1 satisfy

∀n > 1, E
[
‖Rn‖2 |Fn−1

]
6Cγ

2
n (1+V (θn−1)).

Then, the following properties hold

• sup
n>0
E [V (θn)]<+∞,

• ∑
n>1

γn〈∇V (θn−1),h(θn−1)〉<+∞, a.s.,

• V (θn)
a.s.−−−→

n→∞
V∞ ∈ L1,

• θn−θn−1
a.s. and L2
−−−−−−→

n→∞
0.

A function V satisfying the hypotheses of the above theorem is called a Lyapunov func-
tion. Such a function plays a central role in obtaining this kind of result and it is often
challenging to find a “good” Lyapunov function. Because the sum γ1 + · · ·+ γn tends towards
infinity when n grows and, for any θ ∈ Rd , we assume 〈∇V (θ),h(θ)〉> 0, the consequence
of

∑
n>1

γn〈∇V (θn−1),h(θn−1)〉<+∞, a.s.,

is only
liminf

n→∞
〈∇V (θn),h(θn)〉= 0, a.s.

Thus, something more is needed to get the almost sure convergence of ∇V (θn) to 0.
The next result is due to Robbins and Monro and allow to state the convergence of a

stochastic algorithm aimed to the minimization of a given function.

32 CHAPTER 3 : Stochastic Algorithm

Theorem 3.2. Under the same assumptions as in Theorem 3.1, we also assume that the
function h is continuous over Rd and{

θ ∈ Rd such that 〈∇V (θ),h(θ)〉= 0
}
= {θ ∗} .

Then,

• θ ∗ is the unique minimizer of V ,

• 〈∇V (θn),h(θn)〉
a.s.−−−→

n→∞
0,

• θn
a.s.−−−→

n→∞
θ ∗.

The Robbins and Monro theorem implies the convergence of the stochastic algorithm to the
zero of the function h but does not state any convergence rate. Such results will be developed
in the next chapter. Before concluding this general presentation of theoretical properties
of stochastic algorithms, we propose to discuss a central limit theorem due to Polyak and
Juditsky. This result is specific to stochastic algorithms aimed to minimize a strongly convex
and smooth enough function f through the search of a zero of h = ∇ f .

Theorem 3.3. Let f : Rd → R be a µ-strongly convex and twice continuously differ-
entiable function that reaches its global minimum at point θ ∗ ∈ Rd . We consider the
stochastic algorithm given by Definition 3.1 with h = ∇ f and no remainder terms. We
assume that:

• f admits a bounded Hessian operator H f ,

• the step sizes are such that

γn −−−→
n→∞

0 and
γn− γn+1

γ2
n

−−−→
n→∞

0, (3.3)

• the conditional covariance matrices converge in probability,

E
[
MnM>n |Fn−1

]
P−−−→

n→∞
Σ.

Then, √
n
(
θ̄n−θ

∗) L−−−→
n→∞

N (0,Σ∗)

where we have set

∀n > 1, θ̄n =
1
n

n

∑
k=1

θk−1

and the covariance matrix is given by

Σ
∗ = H f (θ ∗)−1

ΣH f (θ ∗)−1.

3.4 Theoretical guarantees 33

This results illustrate the importance of averaging when working with stochastic al-
gorithms. Indeed, averaging leads to an asymptotically optimal algorithm whose rate of
convergence is 1/n, which is minimax optimal in the class of strongly convex stochastic
minimization problems. Moreover, the asymptotic variance is also optimal because it attains
the Cramer-Rao lower bound. In practice, usual choices for the step sizes are γn = γn−α

with γ > 0 and α ∈ (0,1) to satisfy (3.3) because

γn− γn+1

γ2
n

=
nα

γ

(
1−
(

1+
1
n

)−α
)
∼

n→∞

αnα−1

γ
.

Finally, note that as soon as the step sizes do not depend on H f (θ ∗), {θ̄n}n>1 is an adaptive
sequence.

34 CHAPTER 3 : Stochastic Algorithm

4 — Non-asymptotic properties

4.1 Framework
Let {Fn}n>0 be an increasing filtration and {γn}n>1 be a sequence of positive step sizes. Given
a differentiable function f :Rd→R to be minimized, we consider a sequence of differentiable
random functions { fn}n>1 from Rd to R that satisfy that, for any n > 1 and any θ ∈ Rd , the
random variable ∇ fn(θ) if Fn-measurable, square-integrable and such that,

E [∇ fn(θ) |Fn−1] = ∇ f (θ), a.s.

Then, we define a sequence {θn}n>0 with a F0-measurable variable θ0 ∈Rd and the recursion

∀n > 1, θn = θn−1− γn∇ fn(θn−1). (4.1)

This is therefore a stochastic algorithm as given by Definition 3.1 with h = ∇ f and no
remainder terms. Indeed, an alternative way to write the above recursion is

∀n > 1, θn = θn−1− γn∇ f (θn−1)+ γnMn

where Mn = ∇ f (θn−1)−∇ fn(θn−1) is a martingale increment by definition. Such a stochastic
algorithm is known as stochastic gradient descent.

4.2 Rate of projected stochastic gradient descent
Let us assume that f : Rd → R is a differentiable and convex function to minimize. In this
section, we assume that the minimization problem can be restricted to a ball of radius r, namely

Br =
{

θ ∈ Rd such that ‖θ‖6 r
}
.

In practice, such an assumption is not necessarily strong because we often have the idea of a
(possibly large) radius r > 0 such that the minimizer of f is located inside Br. To constrain the
stochastic gradient descent to remain in Br, we consider the projected stochastic gradient
descent {θn}n>0 given by a F0-measurable variable θ0 ∈Br and the recursion

∀n > 1, θn = Πr (θn−1− γn∇ fn(θn−1)) (4.2)

36 CHAPTER 4 : Non-asymptotic properties

where Πr is the orthogonal projection onto Br.

Theorem 4.1. Let r > 0 and f : Rd → R be a differentiable and convex function that
reaches its global minimum at point θ ∗ ∈Br. If the random gradient functions satisfy

∃B > 0,∀n > 1, sup
θ∈Br

‖∇ fn(θ)‖6 B, a.s.,

then, the projected stochastic gradient descent {θn}n>0 defined by (4.2) with

γn =
r
√

2
B
√

n

is such that

∀n > 1, E
[

f (θ̄n)− f (θ ∗)
]
6

2
√

2Br√
n

where

∀n > 1, θ̄n =
1
n

n

∑
k=1

θk−1.

Proof. Let n > 1, by definition of the projected stochastic gradient descent, we get

‖θn−θ
∗‖2 = ‖Πr (θn−1− γn∇ fn(θn−1))−θ

∗‖2

6 ‖(θn−1−θ
∗)− γn∇ fn(θn−1)‖2

= ‖θn−1−θ
∗‖2 + γ

2
n‖∇ fn(θn−1)‖2−2γn〈∇ fn(θn−1),θn−1−θ

∗〉
6 ‖θn−1−θ

∗‖2 + γ
2
n B2−2γn〈∇ fn(θn−1),θn−1−θ

∗〉.

Taking the expecation with respect to Fn−1 and using Proposition 2.2 lead to

E
[
‖θn−θ

∗‖2 |Fn−1
]
6 ‖θn−1−θ

∗‖2 + γ
2
n B2−2γn〈∇ f (θn−1),θn−1−θ

∗〉
6 ‖θn−1−θ

∗‖2 + γ
2
n B2−2γn(f (θn−1)− f (θ ∗)).

We now consider the whole expectation to obtain

E
[
‖θn−θ

∗‖2]6 E[‖θn−1−θ
∗‖2]+ γ

2
n B2−2γnE [f (θn−1)− f (θ ∗)]

which is equivalent to

E [f (θn−1)− f (θ ∗)]6
γnB2

2
+

1
2γn

(
E
[
‖θn−1−θ

∗‖2]−E[‖θn−θ
∗‖2]) .

4.2 Rate of projected stochastic gradient descent 37

Summing this inequality from 1 to n and the decrease of {γn}n>1 give

n

∑
k=1
E [f (θk−1)− f (θ ∗)]6

B2

2

n

∑
k=1

γk +
1
2

n

∑
k=1

1
γk

(
E
[
‖θk−1−θ

∗‖2]−E[‖θk−θ
∗‖2])

=
B2

2

n

∑
k=1

γk +
E
[
‖θ0−θ ∗‖2]

2γ1
−
E
[
‖θn−θ ∗‖2]

2γn

+
1
2

n−1

∑
k=1
E
[
‖θk−θ

∗‖2](1
γk+1
− 1

γk

)
6

B2

2

n

∑
k=1

γk +
2r2

γ1
+

2r2

γn
− 2r2

γ1

6
B2

2

n

∑
k=1

γk +
2r2

γn

where we used the bound ‖θk−1−θ ∗‖2 6 4r2. Since γn =
r
√

2
B
√

n , we deduce from the convexity
of f and Jensen’s inequality that

E
[

f (θ̄n)− f (θ ∗)
]
6

1
n

n

∑
k=1
E [f (θk−1)− f (θ ∗)]

6
Br

n
√

2

n

∑
k=1

1√
k
+

√
2Br√

n

which gives the announced result through the simple upper bound

n

∑
k=1

1√
k
6
∫ n

0

dx√
x
= 2
√

n.

Note that step sizes here depend on B, which can be problematic in practice since this
quantity is generally unknown. This dependency can be avoided but at the cost of more
technicality. The convergence rate we obtain is slower than that of the gradient descent for
which we get a rate 1/n. Nevertheless, Nemirovski and Yudin proved that the rate 1/

√
n of

the stochastic gradient descent is minimax optimal under the assumptions of the theorem. As
in the gradient descent case, the following result shows that this rate can be improved with
strong convexity.

38 CHAPTER 4 : Non-asymptotic properties

Theorem 4.2. Let r > 0 and f : Rd → R be a differentiable and µ-strongly convex
function that reaches its global minimum at point θ ∗ ∈Br. We assume that the random
gradient functions satisfy

∃B > 0,∀n > 1, sup
θ∈Br

‖∇ fn(θ)‖6 B, a.s.

The projected stochastic gradient descent {θn}n>0 defined by (4.2) is such that

1. if γn =
1

µn
, then

∀n > 1, E
[

f (θ̄n)− f (θ ∗)
]
6

B2 (1+ log(n))
2µn

where

∀n > 1, θ̄n =
1
n

n

∑
k=1

θk−1.

2. if γn =
2

µ(n+1)
, then

∀n > 1, E
[

f (θ̃n)− f (θ ∗)
]
6

2B2

µ(n+1)

where

∀n > 1, θ̃n =
2

n(n+1)

n

∑
k=1

kθk−1.

Proof. Let n > 1, we argue as in the convex case to get

‖θn−θ
∗‖2 6 ‖θn−1−θ

∗‖2 + γ
2
n B2−2γn〈∇ fn(θn−1),θn−1−θ

∗〉.
Taking the expecation with respect to Fn−1 and using Proposition 2.4 lead to

E
[
‖θn−θ

∗‖2 |Fn−1
]
6 ‖θn−1−θ

∗‖2 + γ
2
n B2−2γn〈∇ f (θn−1),θn−1−θ

∗〉
6 (1−µγn)‖θn−1−θ

∗‖2 + γ
2
n B2−2γn (f (θn−1)− f (θ ∗)) .

We now consider the whole expectation to obtain

E
[
‖θn−θ

∗‖2]6 (1−µγn)E
[
‖θn−1−θ

∗‖2]+ γ
2
n B2−2γnE [f (θn−1)− f (θ ∗)]

which is equivalent to

E [f (θn−1)− f (θ ∗)]6
γnB2

2
+

1−µγn

2γn
E
[
‖θn−1−θ

∗‖2]− 1
2γn
E
[
‖θn−θ

∗‖2] (4.3)

Let us consider the first statement of the theorem. Since γn = 1/(µn), Inequality (4.3)
becomes

E [f (θn−1)− f (θ ∗)]6
B2

2µn
+

µ(n−1)
2

E
[
‖θn−1−θ

∗‖2]− µn
2
E
[
‖θn−θ

∗‖2] .

4.3 Rates of stochastic gradient descent 39

Summing this inequality from 1 to n gives

n

∑
k=1
E [f (θk−1)− f (θ ∗)]6

B2

2µ

n

∑
k=1

1
k
− µn

2
E
[
‖θn−θ

∗‖2]6 B2

2µ

n

∑
k=1

1
k
.

Thus, the convexity of f and Jensen’s inequality imply

E
[

f (θ̄n)− f (θ ∗)
]
6

1
n

n

∑
k=1
E [f (θk−1)− f (θ ∗)]6

B2

2µn

n

∑
k=1

1
k

which gives the announced result since
n

∑
k=1

1
k
6 1+

∫ n

1

dx
x

6 1+ log(n).

We now focus on the second statement of the theorem. Since γn = 2/(µ(n+ 1)), (4.3)
leads to

E [f (θn−1)− f (θ ∗)]6
B2

µ(n+1)
+

µ(n−1)
4

E
[
‖θn−1−θ

∗‖2]− µ(n+1)
4

E
[
‖θn−θ

∗‖2] .
Thus, we deduce that

n

∑
k=1

kE [f (θk−1)− f (θ ∗)]6
B2

µ

n

∑
k=1

k
k+1

− µn(n+1)
4

E
[
‖θn−θ

∗‖2]6 B2n
µ

.

Again, the convexity of f and Jensen’s inequality imply

E
[

f (θ̃n)− f (θ ∗)
]
6

2
n(n+1)

n

∑
k=1

kE [f (θk−1)− f (θ ∗)]6
2B2

µ(n+1)
.

Although the rate of convergence of θ̃n is asymptotically better than that of θ̄n, the upper
bound obtained for θ̄n is better for small values of n. In both case, the convergence rate 1/n
we obtain with strong convexity is better than that we got in the simply convex case.

4.3 Rates of stochastic gradient descent
We now consider the general framework introduced in Section 4.1. The proofs are omitted due
to their complexity but the interested reader will find them in the provided references.

The next results are adapted from the work of Bach and Moulines (2011) cited in Foreword.
In this paper, the authors provide important results in the non-asymptotic framework under
various sets of hypotheses on the function f . We only focus on the strongly convex case but
the interested reader will also find convergence rates obtained under other hypotheses.

In order to state the results of this section, we need to introduce a useful collection of
functions ϕβ : R∗+→ R given by, for any β ∈ R and t > 0,

ϕβ (t) =

{
tβ−1

β
if β 6= 0,

log(t) if β = 0.

40 CHAPTER 4 : Non-asymptotic properties

Note that the function β 7→ ϕβ (t) is continuous for any t > 0. Moreover, for β > 0, we have
ϕβ (t)6 tβ/β and, for β < 0, ϕβ (t)6−1/β .

Theorem 4.3. Let γ > 0 and step sizes γn = γn−α for some α ∈ [0,1]. We consider the
stochastic gradient descent {θn}n>0 given by (4.1) where we assume that

• the function f : Rd → R is µ-strongly convex,

• there exists L > 0 such that, for any n > 1, the random function fn : Rd → R is
almost surely convex and

∀θ ,θ ′ ∈ Rd, E
[∥∥∇ fn(θ)−∇ fn(θ

′)
∥∥2 |Fn−1

]
6 L2‖θ −θ

′‖2, a.s.

• let θ ∗ ∈ Rd be the global minimizer of f , there exists σ2 > 0 such that

∀n > 1, E
[
‖∇ fn(θ

∗)‖2 |Fn−1
]
6 σ

2, a.s.

For any n > 0, we denote by δn = E[‖θn−θ ∗‖2]. If 0 6 α < 1, then

δn 6 2exp
(

4L2
γ

2
ϕ1−2α(n)−

µγ

4
n1−α

)(
δ0 +

σ2

L2

)
+

4γσ2

µnα

and, if α = 1, then

δn 6
e2L2γ2

nµγ

(
δ0 +

σ2

L2

)
+2σ

2
γ

2 ϕµγ/2−1(n)

nµγ/2 .

To make the link with the previous results, note that we freely get bounds for the values of
the function f . Indeed, as in Proposition 2.1, the second hypothesis allows us to write

E [f (θn)− f (θ ∗)]6
L
2
E
[
‖θn−θ

∗‖2] .
The above theorem illustrates the importance of the step size sequence {γn}n>1. First, to

keep the quantities that appear in the upper bounds as small as possible, we see that small values
of γ are good choices. Moreover, the behavior of the stochastic gradient descent estimator
varies depending on the value of α . If 0 < α 6 1/2, then the presence of quantity ϕ1−2α(n)
implies an increasing error for small values of n followed by the expected convergence
phenomenom. This change in behavior can be catastrophic if γ is too large, which increases
the duration of the increasing error period. Whatever the value of α ∈ (0,1), the initial
conditions are forgotten sub-exponentially quickly through the term involving δ0 and we
obtain a convergence rate n−α . This rate is suboptimal compared to 1/n but averaging can
improve it at the cost of some additional assumptions.

The case α = 1 is particular since the choice of γ becomes critical. If γ < 2/µ , the
convergence rate n−µγ/2 is arbitrarily small and we get log(n)/n for γ = 2/µ . For γ > 2/µ ,
we obtain the optimal rate 1/n but we have to be careful because a too large value of γ leads
to an explosion of the term involving initial conditions.

4.3 Rates of stochastic gradient descent 41

Theorem 4.4. Let γ > 0 and step sizes γn = γn−2/3. We consider the stochastic gradient
descent {θn}n>0 given by (4.1) where we assume that

• the function f : Rd → R is µ-strongly convex and twice differentiable,

• for any n > 1, the random function fn : Rd → R is almost surely convex and
L-smooth,

• for any n > 1, the random function fn : Rd → R is almost surely twice differen-
tiable with M-Lipschitz Hessian operator H fn, namely

∀θ ,θ ′ ∈ Rd, ‖H fn(θ)−H fn(θ
′)‖op 6 M‖θ −θ

′‖, a.s.

where ‖ · ‖op is the operator norm,

• let θ ∗ ∈ Rd be the global minimizer of f , there exists σ2 > 0 such that

∀n > 1, E
[
‖∇ fn(θ

∗)‖2 |Fn−1
]
6 σ

2, a.s.

• there exist τ > 0 and a non-negative self-adjoint operator Σ such that

∀n > 1, E
[
‖∇ fn(θ

∗)‖4 |Fn−1
]
6 τ, a.s.

and Σ−E
[
∇ fn(θ

∗)∇ fn(θ
∗)> |Fn−1

]
is almost surely non-negative.

Then,

E
[
‖θ̄n−θ

∗‖2]1/2
6

tr
(
H f (θ ∗)−1ΣH f (θ ∗)−1)1/2

√
n

+
C1

n2/3 +
C2

n
E
[(
‖θ0−θ

∗‖2 +1
)2
]1/2

where

∀n > 1, θ̄n =
1
n

n

∑
k=1

θk−1

and C1,C2 > 0 are constants that depend only on γ , µ , L, M, σ2 and τ .

As above, using the L-smoothness of the function allows us to deduce a bound for the
values of f ,

E
[

f (θ̄n)− f (θ ∗)
]
6

L
2
E
[
‖θ̄n−θ

∗‖2] .
Note that the result is established for the square root of the expectation. We only focus here on
the case α = 2/3 but general case of step sizes γn = γn−α for α ∈ (0,1) is discussed in the
paper of Bach and Moulines. Note that 0 and 1 are excluded since no convergence occurs
for α = 0 and the convergence rate is already 1/n for α = 1 with γ > 2/µ . The choice of
α = 2/3 makes the statement easier and the result can be slightly improved if M = 0 (i.e. if f
is a quadratic function).

The hypotheses are much stronger than in Theorem 4.3. In particular, the almost sure

42 CHAPTER 4 : Non-asymptotic properties

smoothness of the random functions fn is not easy to satisfy in practice. Note also that the
existence of τ ensures that of Σ and this is indeed only one hypothesis.

The important conclusions of this result is that the convergence rate 1/
√

n of the main
term does not depend on the step sizes γn and that the constant is optimal since it coincides
with the Cramer-Rao lower bound. The initial conditions are now forgotten with a rate 1/n
only and no longer a sub-exponential one.

By squaring the result of the theorem and expanding the upper bound, we obtain that
the second-order term converges with a rate n−7/6. In a recent work, Gadat and Panloup
proved that this negligible term can be slightly improved for step sizes γn = γn−3/4 and similar
hypotheses. They thus obtained a second-order term converging with a rate n−5/4, which is
better than the above statement but definitely harder to obtain.

Practicals 1 : Introduction to Python

What is Python?
Python is a widely used programming language, initially released in 1991 by Guido van
Rossum. Its reference implementation, called CPython, is managed by the Python Software
Fundation and distributed according to the Python Software Foundation License. This licence
is compatible with the GNU General Public License and approved by the Open Source
Initiative. Thus, CPython is a free and open-source software.

Python is an interpreted programming language, which means that to execute Python
code, you have to use a third-party program called interpreter. Such softwares are available
for many operating systems, allowing Python code to run on a wide variety of systems.

The philosophy of Python is summarized in a sequence of aphorisms known as PEP 20. It
gives a great importance to code readability and to the capacity to express concepts in few
lines of code. This introduction to Python does not claim to be exhaustive and all the good
practices induced by the philosophy of the language can not be treated here. However, the
reader interested in the pythonic programming style is warmly invited to read the PEP 8.

Python supports multiple programming paradigms, including object-oriented, imperative
and functional programming. It features a dynamic type system and automatic memory
management. We also have at our disposal a large and comprehensive standard library.

About Python version
Nowadays, two distinct versions of Python coexist, version 2 and version 3. These versions
are not compatible. This is an important point to keep in mind, especially when you seek
documentation or code examples on the Web. A list of the main incompatibilities (and
problems to solve when porting code from Python 2.x to Python 3.x) can be found in an article
of Guido van Rossum called What’s New In Python 3.0.

The last release of version 2 is Python 2.7 and it was announced in November 2014 that
this is the last one, no 2.8 will be released in the future. This version is supported until 2020
but the users are deeply encouraged to move to version 3.

The current stable release is Python 3.6.4. Some attention should be paid to that when
documentation pages are browsed. In the sequel of this document, the stable release of
Python 3 is silently assumed in all the examples.

https://www.python.org/
https://www.python.org/psf-landing/
https://www.python.org/psf-landing/
https://docs.python.org/3/license.html
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0008/
https://docs.python.org/3/whatsnew/3.0.html

44 PRACTICALS 1 : Introduction to Python

Where to find help?
An undeniable force of Python language is its large community. A lot of tutorials, forum
threads and articles can easily be found on the Web. The official documentation is an endless
source of information about the language and its ecosystem. Pay attention to the selector at
the top left of the page, it allows to pick the Python version.

First steps
Whatever software you have installed to work with Python, you will have at your disposal a
command shell. This is a window where you can enter line-by-line code to be executed by
the interpreter. It is a practical solution to make your first tests but you will quickly realize
the limits of this solution that will require you to type the same piece of code every time you
want to re-run it. A better solution to avoid this inconvenience and especially to keep track of
your work is to write your code in a text file that you will then run. Such a file is referred as a
script. Solutions to make this process as easy as possible are numerous and are provided by
any decent integrated development environment.

It is now time to run your first Python command and display the traditional message “Hello,
World!” on the screen with the following code.� �

print('Hello, World!')� �
Congratulations and welcome in a pythonic world!

Of Variables and Types
A variable is a symbolic name associated with a value. In Python, the name of a variable has
to satisfy two rules:

• it must start with a letter or an underscore,

• remainder characters may consist of letters, numbers and underscores.

Valid variable name examples are my_var, _var, _MyVar01, x42_, . . . Moreover, like every-
thing else in Python, variable names are case sensitive, i.e. myVar, MyVar and mYvaR are three
distinct variable names. It should also be noted that variables whose names begin with an
underscore play a special role in Python and are therefore to be avoided in the general case.

To assign a value to a variable, we use the operator = with the variable name on the left
and the value to assign on the right. If the variable does not yet exist, it is created. Otherwise,
its value is simply replaced.� �
my_var = 17
print(my_var)
my_var = 8
print(my_var)� �

print('Hello, World!')

my_var = 17
print(my_var)
my_var = 8
print(my_var)

https://docs.python.org/3/

4.3 Of Variables and Types 45

The content of a variable has a type, i.e. a category that determines the possible values for
the variable. Usual types are boolean, integer, floating number, string, . . . To know the type of
a variable, use the function type:� �
x = True
print(type(x))
x = 42
print(type(x))
x = 42.0
print(type(x))
x = 'Am I a string?'
print(type(x))� �

The example above illustrates an important feature of Python, namely dynamic typing. This
means that the type of a variable is that of its content at the time of its use. Since this content
is allowed to change from one line to another, the type of the variable changes as it is assigned.

Below, we give some examples of manipulations of the most common numeric types in
Python. Note in particular the syntax of comments that allow us to give details inside the code.

• Booleans:� �
Result of a condition
test = (3 > 4)
print(test)

Logical operations
not True
True and False
True or False

Bitwise operators
True & False # AND
True | False # OR� �

• Integers:� �
Usual arithmetic operations
3 + 7
5 - 8
-3 * 4
5**2 # Power
3 / 2 # Floating division

Euclidean division
3 // 2
3 % 2

x = True
print(type(x))
x = 42
print(type(x))
x = 42.0
print(type(x))
x = 'Am I a string?'
print(type(x))

Result of a condition
test = (3 > 4)
print(test)

Logical operations
not True
True and False
True or False

Bitwise operators
True & False # AND
True | False # OR

Usual arithmetic operations
3 + 7
5 - 8
-3 * 4
5**2 # Power
3 / 2 # Floating division

Euclidean division
3 // 2
3 % 2

Cast boolean
int(True)

46 PRACTICALS 1 : Introduction to Python

Cast boolean
int(True)� �

• Floating numbers:

� �
Usual operations
3.14 + 1.23
1.8 - 7
6.6 * 3.3
3.0 / 2.0
3.14**2.4 # Power

Cast integer
float(42)� �

Containers
Python offers container types for storing multiple objects. We first present lists that can
receive a set of objects that can be of different types.� �
L1 = ['red', 'pink', 'orange', 'blue', 'black']
L2 = [42, 3.14, 'A string', ['An', 'other', 'list']]
print(type(L1))

Indexation starts at zero
print(L1[0], L1[1])

From the end with negative indices
print(L1[-1], L1[-2])

Slicing a list (start included, end excluded)
L1[1:3]
L1[:3]
L1[3:]
L1[-2]
L1[::2]

A list is mutable
L1[1] = 'brown'
L1[2:4] = ['purple', 'yellow', 'gray', 'white']
print(L1)� �

To manipulate a vector data, i.e. a set of numeric data of the same type, it is more efficient to
use an array. This is a container type from the scientific module NumPy that we will discuss
in the next practical session. Python also offers a wide range of tools for manipulating lists.

Usual operations
3.14 + 1.23
1.8 - 7
6.6 * 3.3
3.0 / 2.0
3.14**2.4 # Power

Cast integer
float(42)

L1 = ['red', 'pink', 'orange', 'blue', 'black']
L2 = [42, 3.14, 'A string', ['An', 'other', 'list']]
print(type(L1))

Indexation starts at zero
print(L1[0], L1[1])

From the end with negative indices
print(L1[-1], L1[-2])

Slicing a list (start included, end excluded)
L1[1:3]
L1[:3]
L1[3:]
L1[-2]
L1[::2]

A list is mutable
L1[1] = 'brown'
L1[2:4] = ['purple', 'yellow', 'gray', 'white']
print(L1)

4.3 Containers 47� �
Concatenation and repetition
L1 + L2
L2 * 2

Add items
L1.append('tan')
print(L1)
L1.extend(['cyan', 'orange'])
print(L1)

Remove and return the last item
item = L1.pop()
print(item)
print(L1)

Reverse
L1.reverse()
print(L1)

Sort
sorted(L1) # New object
print(L1)
L1.sort() # In place
print(L1)� �

In the examples above, we use a particular syntax with a dot “.” to designate certain functions
that belong to the list object (append, extend, . . .). Such internal functions to an object are
called methods. This is an object-oriented programming concept that we will see later. For
the moment, it is enough to consider that these are functions made available by an object and
which act on this object (e.g. note the difference between the function sorted and the method
sort).

The container type tuple is an imutable variant of list. The syntax is similar except that
we use (optional) parentheses to create a tuple.� �
Different types are allowed
t1 = (3, 'Hello', 42.0)
print(type(t1))

Parentheses are optional
t2 = 'Other', 'tuple'
print(t2)

But imutable
t2[0] = 'New' # Error...� �

A useful feature of tuples is to allow multiple assignments in one line. Such an operation is
quite common with Python and can often be used.

Concatenation and repetition
L1 + L2
L2 * 2

Add items
L1.append('tan')
print(L1)
L1.extend(['cyan', 'orange'])
print(L1)

Remove and return the last item
item = L1.pop()
print(item)
print(L1)

Reverse
L1.reverse()
print(L1)

Sort
sorted(L1) # New object
print(L1)
L1.sort() # In place
print(L1)

Different types are allowed
t1 = (3, 'Hello', 42.0)
print(type(t1))

Parentheses are optional
t2 = 'Other', 'tuple'
print(t2)

But imutable
t2[0] = 'New' # Error...

48 PRACTICALS 1 : Introduction to Python� �
Multiple assignments
a, b, c = 4, 2, 1
Swap variable contents
a, b = b, a� �

Let us now consider the container type string. Such a container stores characters and can
be defined with simple quotes '' or double quotes "", tripling them to allow multiline strings.� �
s1 = 'Hello my friend!'
s2 = "Do you like Python?"
s3 = '''Such a language

allows amazing things.'''
s4 = """Isn't it?
Really?"""
print(type(s1))
print(s3)
print(s4)

Indexation works like with the lists
s1[0]
s1[1]
s1[-1]
s1[3:6] # From index 3 (included) to 6 (excluded)
s1[2:10:2] # Syntax start:stop:step

Strings are imutable
s1[0] = 'Z' # Error...

But there are useful methods
s1.replace('l', 'z', 1)
s1.replace('l', 'z')
print(s1)� �

A very common operation with strings is formatting. This allows you to include the contents
of other variables in a string.� �
a = 3.14
b = 42
s = 'a is %f and b is %i.' % (a, b) # It is OK
s = 'a is {} and b is {}.'.format(a, b) # It is better
s = 'a is {p1} and b is {p2}.'.format(p1=a, p2=b) # It is best
print(s)� �

The last container type we introduce here is dictionary. It is an associative array that
connects keys to values together. It is an unordered container.� �
phone_prefix = {'France': 33, 'Vietnam': 84}
print(type(phone_prefix))

Multiple assignments
a, b, c = 4, 2, 1
Swap variable contents
a, b = b, a

s1 = 'Hello my friend!'
s2 = "Do you like Python?"
s3 = '''Such a language
 allows amazing things.'''
s4 = """Isn't it?
Really?"""
print(type(s1))
print(s3)
print(s4)

Indexation works like with the lists
s1[0]
s1[1]
s1[-1]
s1[3:6] # From index 3 (included) to 6 (excluded)
s1[2:10:2] # Syntax start:stop:step

Strings are imutable
s1[0] = 'Z' # Error...

But there are useful methods
s1.replace('l', 'z', 1)
s1.replace('l', 'z')
print(s1)

a = 3.14
b = 42
s = 'a is %f and b is %i.' % (a, b) # It is OK
s = 'a is {} and b is {}.'.format(a, b) # It is better
s = 'a is {p1} and b is {p2}.'.format(p1=a, p2=b) # It is best
print(s)

phone_prefix = {'France': 33, 'Vietnam': 84}
print(type(phone_prefix))

Add item on the fly
phone_prefix['Cuba'] = 53
print(phone_prefix)

Access with the key
phone_prefix['France']

All keys and values
phone_prefix.keys()
phone_prefix.values()
phone_prefix.items()

4.3 Control flows 49

Add item on the fly
phone_prefix['Cuba'] = 53
print(phone_prefix)

Access with the key
phone_prefix['France']

All keys and values
phone_prefix.keys()
phone_prefix.values()
phone_prefix.items()� �

Control flows
As any programming language, Python has mechanisms to control the order in which the
code is executed. Such statements are followed by a colon “:” and a block of instructions.
It is now time to warn you about the importance of indentation with Python. The number
of spaces (or tabs) at the beginning of a line indicates the block of instructions to which it
belongs. If this number of spaces is incorrect, the interpreter will report an error about the
indentation level.

The conditional statements are classically done with if/elif/else. The elif statement
stands for “else if” and is useful to chain the conditions. The statements elif and else are
not mandatory.� �
A simple conditional statement
if 3 < 4:

print('Yes, this is true!')

Chaining the conditions
if 3 > 4:

print('Are you sure?')
elif 3 == 4:

print('Let me doubt...')
elif 3 < 4:

print('This is the right one!')

If/else statement
if 3 > 4:

print('Ouch!')
else:

print('That is better!')

A complete conditional statement
if 3 > 4:

print('Are you sure?')
elif 3 == 4:

A simple conditional statement
if 3 < 4:
 print('Yes, this is true!')

Chaining the conditions
if 3 > 4:
 print('Are you sure?')
elif 3 == 4:
 print('Let me doubt...')
elif 3 < 4:
 print('This is the right one!')

If/else statement
if 3 > 4:
 print('Ouch!')
else:
 print('That is better!')

A complete conditional statement
if 3 > 4:
 print('Are you sure?')
elif 3 == 4:
 print('Let me doubt...')
else:
 print('This is the right one!')

50 PRACTICALS 1 : Introduction to Python

print('Let me doubt...')
else:

print('This is the right one!')� �
To make a loop across elements of a container, we use the statements for and in. The

instruction range is useful to browse integers.� �
Loops on integers
for i in range(7):

print(i)
for i in range(2, 7, 2): # Syntax start (included), stop (excluded), step

print(i)

Loops with containers
L = ['red', 'orange', 'pink']
for color in L:

print(color)
for letter in L[1]:

print(letter)
for i, color in enumerate(L):

s = '{index} - {color}'.format(index=i, color=color)
print(s)

Case of dictionaries
D = {'Gandalf': 'wizard', 'Frodo': 'hobbit'}
for item in D:

print(item)
for key, value in D.items():

s = '{key} is a {value}.'.format(key=key, value=value)
print(s)� �

The loop statement for can also be used to create lists according to some pattern.� �
L = [i**2 for i in range(5)]
print(L)� �

To repeat a block of instructions until a condition becomes false, use the while statement.
This is useful in situations where the number of iterations is not known in advance.� �
Request a value from the user
value = input('Enter an integer: ')
i = int(value) # Convert to integer

Search for the first multiple of 7 greater than i
mul7 = i
while mul7 % 7 != 0:

mul7 = mul7 + 1
print(mul7)� �

Loops on integers
for i in range(7):
 print(i)
for i in range(2, 7, 2): # Syntax start (included), stop (excluded), step
 print(i)

Loops with containers
L = ['red', 'orange', 'pink']
for color in L:
 print(color)
for letter in L[1]:
 print(letter)
for i, color in enumerate(L):
 s = '{index} - {color}'.format(index=i, color=color)
 print(s)

Case of dictionaries
D = {'Gandalf': 'wizard', 'Frodo': 'hobbit'}
for item in D:
 print(item)
for key, value in D.items():
 s = '{key} is a {value}.'.format(key=key, value=value)
 print(s)

L = [i**2 for i in range(5)]
print(L)

Request a value from the user
value = input('Enter an integer: ')
i = int(value) # Convert to integer

Search for the first multiple of 7 greater than i
mul7 = i
while mul7 % 7 != 0:
 mul7 = mul7 + 1
print(mul7)

4.3 Functions 51

Functions
To declare a function, we use the def statement and we list the arguments in parentheses. If
no arguments are needed, there must be empty parentheses. An argument can have a default
value which will be used if the argument is omitted when the function is called. Once again,
a colon character “:” introduces the body of the function that has to respect indentation
constraints. A function can return values with the return statement.� �
No argument, no return
def say_hello():

print('Hello!')
say_hello()

With an argument
def say_hello_to(name):

greeting = 'Hello, {name}!'.format(name=name)
print(greeting)

say_hello_to('Bobby')

Use default values
def universal_answer(x=42):

print('The answer is {}.'.format(x))
universal_answer(3.14)
universal_answer() # Argument is omitted

Return a value
def disk_area(radius):

return 3.14159 * radius**2
area = disk_area(2)
print(area)

Return multiple values with a tuple
def euclidean_division(a, b=2):

return a // b, a % b
q, r = euclidean_division(7, 3)
q, r = euclidean_division(7) # Argument b is omitted, default is 2

Order of named arguments does not matter
q, r = euclidean_division(b=3, a=7)� �

With Python, a function can modify the content of a mutable container passed as an
argument. This has to be kept in mind to avoid side effects.� �
def modify_it(container):

container[0] = 42

L = ['Have', 'fun'] # Lists are mutable
modify_it(L)
print(L)� �

No argument, no return
def say_hello():
 print('Hello!')
say_hello()

With an argument
def say_hello_to(name):
 greeting = 'Hello, {name}!'.format(name=name)
 print(greeting)
say_hello_to('Bobby')

Use default values
def universal_answer(x=42):
 print('The answer is {}.'.format(x))
universal_answer(3.14)
universal_answer() # Argument is omitted

Return a value
def disk_area(radius):
 return 3.14159 * radius**2
area = disk_area(2)
print(area)

Return multiple values with a tuple
def euclidean_division(a, b=2):
 return a // b, a % b
q, r = euclidean_division(7, 3)
q, r = euclidean_division(7) # Argument b is omitted, default is 2

Order of named arguments does not matter
q, r = euclidean_division(b=3, a=7)

def modify_it(container):
 container[0] = 42

L = ['Have', 'fun'] # Lists are mutable
modify_it(L)
print(L)

52 PRACTICALS 1 : Introduction to Python

A function is an object like any other in Python. In particular, a function can be passed as
an argument to another function.� �
def double_it(x):

return 2*x

def do_something(x, f):
print(f(x))

do_something(3, double_it)� �

Modules, packages and import
So far, we have typed all the code in the command shell or in a text editor. As the size of a
project grows, it becomes more comfortable to divide the code into smaller text files called
scripts or modules. A package is a collection of modules organized in a specific directory
hierarchy. This is aimed to make the code easier to read, understand and manage. Python
projects like those we will use in the following (NumPy, Pandas, Matplotlib, . . .) are structured
in this way. We explain here how to use the objects defined in a given module or package for
our purpose. We will not explain how to write our own packages but the interested reader will
find a lot of useful informations to this end in the official documentation and on the Web.

To load the code of a module, we use the import command. The simplest way is import
followed by the name of the module. As an example, we import the module os from the
standard library (see details in next section) that provides tools to access operating system
features.� �
import os

List all the module definitions
dir(os)

Call some functions from the module
os.getcwd() # Get the current directory
os.mkdir('test_directory') # Create a directory
os.listdir() # List the content of the current directory
os.rmdir('test_directory') # Remove a directory� �

It is important to notice how the objects defined in a module are called after the import. Indeed,
it is necessary to prefix the name of these objects by the name of the module and a point “.”
(e.g. os.getcwd, os.mkdir, . . .). In this way, imported objects do not replace already defined
objects that have the same name. We say that these objects belong to a namespace.

A package is composed of modules but can also contain subpackages with their own
modules. This nested hierarchy corresponds to those of files placed in a folder structure. To
import a module from a subpackage, we use the same syntax by detailing the path of the
module. To shorten the namespace prefix, we can use the as statement.

def double_it(x):
 return 2*x

def do_something(x, f):
 print(f(x))

do_something(3, double_it)

import os

List all the module definitions
dir(os)

Call some functions from the module
os.getcwd() # Get the current directory
os.mkdir('test_directory') # Create a directory
os.listdir() # List the content of the current directory
os.rmdir('test_directory') # Remove a directory

https://docs.python.org/3/tutorial/modules.html

4.3 Modules, packages and import 53� �
Import module path from package os
import os.path

Use objects from os.path as usual
os.path.exists('undefined_file') # Does the file exist?

Shorten the namespace
import os.path as op

Same as above with short prefix
op.exists('undefined_file')� �

There is another way to import Python objects with the “from ... import” statement.
The main difference with the previous method is that the objects are now imported into the
global namespace (i.e. without any prefixes). If it may seem simpler at first glance, it is better
to avoid such a way. Indeed, importing objects into the global namespace can cause several
problems:

• this makes the code harder to read because the origin of the instructions is not clear,

• this can replace objects that already exist in the global namespace (e.g. os.open and
the Python function open),

• the order in which the modules are imported becomes important because conflicts
between the names defined in the modules can occur,

• this makes the code really more difficult to debug.

All of these disadvantages should be kept in mind if you use such a way to import objects
from a module. Especially if you use the star import (i.e. “from ... import *” statement)
which imports all the definitions from a module into the global namespace (it is definitely
better to avoid this way).� �
Importing objects into the global namespace
Use with caution...
from os import getcwd, listdir

getcwd() # No need to prefix now

Importing all the definitions into the global namespace
*** Do not do that! ***
from os import *

mkdir('test_directory')
rmdir('test_directory')� �

Import module path from package os
import os.path

Use objects from os.path as usual
os.path.exists('undefined_file') # Does the file exist?

Shorten the namespace
import os.path as op

Same as above with short prefix
op.exists('undefined_file')

Importing objects into the global namespace
Use with caution...
from os import getcwd, listdir

getcwd() # No need to prefix now

Importing all the definitions into the global namespace
*** Do not do that! ***
from os import *

mkdir('test_directory')
rmdir('test_directory')

54 PRACTICALS 1 : Introduction to Python

Standard library
Python comes with a lot of modules that make up the Python standard library. It would beyond
the scope of this document to give an exhaustive review of all these modules. However, it is a
good habit to have a look in the documentation before you start coding new features. There is
a good chance that useful and well-made tools are already available. Hereafter, we mention
several useful standard modules and some of their features.

Module os We have already mention this module in the previous section. It is aimed to
provide a portable way of using operating system dependent functionalities.� �
import os

Handle directories
os.getcwd() # Get the current directory
os.mkdir('test_directory') # Create a directory
os.listdir() # List the content of the current directory
os.rmdir('test_directory') # Remove a directory

Deal with file paths
path = os.path.join('path', 'to', 'my', 'file')
print(path) # Output depends on your operating system

Does a file exist?
os.path.exists('some_file')� �

Module sys This module provides access to some variables used or maintained by the
interpreter.� �
import sys

Get a platform identifier
print(sys.platform)

What is the Python version?
print(sys.version)� �

Module math We find in this module some mathematical functions commonly defined in
standard libraries. We will not use this module very much because the scientific packages
presented in the following section also provide this kind of definition and many other things.� �
import math

Some useful constants
math.pi
math.e

Common functions
x = 4.2

import os

Handle directories
os.getcwd() # Get the current directory
os.mkdir('test_directory') # Create a directory
os.listdir() # List the content of the current directory
os.rmdir('test_directory') # Remove a directory

Deal with file paths
path = os.path.join('path', 'to', 'my', 'file')
print(path) # Output depends on your operating system

Does a file exist?
os.path.exists('some_file')

import sys

Get a platform identifier
print(sys.platform)

What is the Python version?
print(sys.version)

import math

Some useful constants
math.pi
math.e

Common functions
x = 4.2
math.fabs(x) # Absolute value
math.exp(x) # Exponential
math.log(x) # Logarithm
math.sqrt(x) # Square root
math.cos(x), math.sin(x), math.tan(x) # Trigonometry

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/math.html

4.3 Standard library 55

math.fabs(x) # Absolute value
math.exp(x) # Exponential
math.log(x) # Logarithm
math.sqrt(x) # Square root
math.cos(x), math.sin(x), math.tan(x) # Trigonometry� �

Module random This module implements pseudo-random number generators for various
distributions. As for the module math, we prefer to use the objects defined by the scientific
package NumPy that we will consider in the next session.� �
import random

Random integer between 4 and 9
random.randint(4, 9)
Uniform distribution in [0,1]
random.random()
Uniform distribution in [1.7, 4.2]
random.uniform(1.7, 4.2)
Gaussian distribution with mean -8.1 and standard deviation 4.2
random.gauss(-8.1, 4.2)

Useful tools for set
x = [i for i in range(10)]
random.sample(x, 4)
random.shuffle(x)
print(x)� �

Module datetime The datetime module supplies tools for manipulating dates and times
as well as the associated arithmetic.� �
import datetime

now = datetime.datetime.now()
str(now) # Date and time as a string
now.weekday() # 0 is Monday, 1 is Tuesday, ...

Direct access to the attributes
now.year
now.month
now.day
now.hour
now.minute
now.second
now.microsecond

Arithmetic
delta = datetime.timedelta(days=17, hours=15)
str(now - 2*delta)� �

import random

Random integer between 4 and 9
random.randint(4, 9)
Uniform distribution in [0,1]
random.random()
Uniform distribution in [1.7, 4.2]
random.uniform(1.7, 4.2)
Gaussian distribution with mean -8.1 and standard deviation 4.2
random.gauss(-8.1, 4.2)

Useful tools for set
x = [i for i in range(10)]
random.sample(x, 4)
random.shuffle(x)
print(x)

import datetime

now = datetime.datetime.now()
str(now) # Date and time as a string
now.weekday() # 0 is Monday, 1 is Tuesday, ...

Direct access to the attributes
now.year
now.month
now.day
now.hour
now.minute
now.second
now.microsecond

Arithmetic
delta = datetime.timedelta(days=17, hours=15)
str(now - 2*delta)

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/datetime.html

56 PRACTICALS 1 : Introduction to Python

Exceptions
When the interpreter encounters an error, it interrupts the running script and raise an excep-
tion. We have already met examples of this phenomenon without discussing it. If an exception
is not handled, we observe a raw error message with a name and some details about what
happened.� �
x = 1 / 0 # ZeroDivisionError: division by zero
print(undefined) # NameError: name 'undefined' is not defined
x = 1 + '1' # TypeError: unsupported operand type(s) for +: 'int' and 'str'� �

In these examples, the names of the exceptions are ZeroDivisionError, NameError and
TypeError. These exception names are quite self-explanatory and you can get the whole list
of built-in exceptions in the official documentation.

To handle (or catch) an exception, use statements try and except. First, the block of
instructions between try and except is executed. If an exception is raised, the remainder of
the block is skipped and the exception is catched if its name matches the except statement
which is then run. Such a mechanism allows multiple except clauses to catch various
exception types.� �
try:

x = 1 / 0
except ZeroDivisionError:

print('Division by zero!')

try:
function_that_can_raise_exceptions()

except ZeroDivisionError:
print('Stop, division by zero!')

except IndexError:
print('Ouch, out of range!')

except KeyboardInterrupt:
print('Why did you stop me?')� �

An exception is an object and can be manipulated as any other one. To this end, we can use
the statement as to handle it as a variable.� �
try:

x = 1 / 0
except ZeroDivisionError as e:

print('Type: {}'.format(type(e)))
print('Message: {}'.format(e))� �

To raise an exception from a function, we use the raise statement. This is the pythonic
way to handle and report an error.� �
def i_want_integer(n):

Check the type of n

x = 1 / 0 # ZeroDivisionError: division by zero
print(undefined) # NameError: name 'undefined' is not defined
x = 1 + '1' # TypeError: unsupported operand type(s) for +: 'int' and 'str'

try:
 x = 1 / 0
except ZeroDivisionError:
 print('Division by zero!')

try:
 function_that_can_raise_exceptions()
except ZeroDivisionError:
 print('Stop, division by zero!')
except IndexError:
 print('Ouch, out of range!')
except KeyboardInterrupt:
 print('Why did you stop me?')

try:
 x = 1 / 0
except ZeroDivisionError as e:
 print('Type: {}'.format(type(e)))
 print('Message: {}'.format(e))

def i_want_integer(n):
 # Check the type of n
 if not isinstance(n, int):
 raise TypeError('n has to be an integer')
 print('I got an integer! This is {}'.format(n))

i_want_integer('Hi!')
i_want_integer(42)

https://docs.python.org/3/library/exceptions.html

4.3 A glance at object-oriented programming 57

if not isinstance(n, int):
raise TypeError('n has to be an integer')

print('I got an integer! This is {}'.format(n))

i_want_integer('Hi!')
i_want_integer(42)� �

A glance at object-oriented programming
Python supports the object-oriented programming (OOP) paradigm. Such a paradigm is
aimed to:

• help with code organization,

• make it easier to reuse certain portions of code.

The central concept of OOP is the class. This is a model for building objects and providing
them with internal variables called attributes and internal functions called methods. To
define a class in Python, we use the class statement and the object to be built according to
the model is referred as self.� �
class Character(object):

def __init__(self, name):
self.name = name
self.skills = []

def add_skill(self, skill):
self.skills.append(skill)

def set_race(self, race):
self.race = race

samwise = Character('Samwise Gamgee')
samwise.set_race('hobbit')
samwise.add_skill('drinking')
samwise.add_skill('eating')
print('{name} is a {race}.'.format(name=samwise.name, race=samwise.race))� �

In the above example, we defined a class Character with three attributes (name, race and
skills) and two methods (add_skill and set_race). The word object in the parentheses
is not mandatory but this is a good practice. We also define a third method called __init__
which is known as the constructor and is used to create an object from the class. Note that all
the methods take here self as first argument. Moreover, we access the attributes and methods
of object samwise through the dot syntax that we have already seen before.

Let us now assume that we want to create some special characters Wizard who are able to
cast some spells. The only difference with a Character will be the method cast_spell and
we want to avoid typing again the same code. To this end, we create a new class Wizard as a
derived class of Character. We say that Wizard inherits from Character.

class Character(object):
 def __init__(self, name):
 self.name = name
 self.skills = []

 def add_skill(self, skill):
 self.skills.append(skill)

 def set_race(self, race):
 self.race = race

samwise = Character('Samwise Gamgee')
samwise.set_race('hobbit')
samwise.add_skill('drinking')
samwise.add_skill('eating')
print('{name} is a {race}.'.format(name=samwise.name, race=samwise.race))

58 PRACTICALS 1 : Introduction to Python� �
class Wizard(Character):

def __init__(self, name, spell):
Character.__init__(self, name)
self.skills.append('casting spells')
self.spell = spell

def cast_spell(self):
print('*** ' + self.spell + ' ***')

gandalf = Wizard('Gandalf', 'Pedo mellon a minno!')
print('{name} knows {s}.'.format(name=gandalf.name, s=gandalf.skills[0]))
gandalf.cast_spell()� �

The syntax for declaring a derived class is the same as above except that the parent class
name is passed in parentheses instead of object. Note that in the constructor we explicitly
call the __init__ function of the parent class. All methods and attributes of the parent class
are available without any other form of declaration.

Using OOP, we can organize the code into separate classes that correspond to different
parts of the project (a class for "Spell", a class for "Ring", ...) with specific attributes and
methods. Then we use inheritance to create variations of these classes by reusing their code.
Deriving a class defined in a module is a common operation in Python to produce objects
suitable for a particular purpose.

A recapitulative exercise
To conclude this first meeting with Python, we propose to code three algorithms to approximate
the number π . The first two are based on deterministic principles and the third uses randomly
scattered points. Finally, we group these features into a class to manage them in a unified way.

1. Let us introduce the Leibniz series,

∀n > 0, Sn = 4
n

∑
k=0

(−1)k

2k+1
.

It is easy to prove that this series converges to π when n grows to infinity. Write a
Python function called leibniz that takes an argument n and returns the value of Sn.

2. Run leibniz(0), leibniz(10), leibniz(100), . . . and compare the results with the
value math.pi.

3. How do you handle bad arguments like leibniz(-1) or leibniz('Ouch')? If needed,
do it with built-in exceptions.

4. We now consider the Borwein’s algorithm to approximate π . Let {yn}n>0 and {an}n>0
be two sequences of real number given by y0 =

√
2− 1, a0 = 6− 4

√
2 and, for any

n > 1, yn =
1− (1− y4

n−1)
1/4

1+(1− y4
n−1)

1/4

an = an−1(1+ yn)
4−22n+1yn(1+ yn + y2

n).

class Wizard(Character):
 def __init__(self, name, spell):
 Character.__init__(self, name)
 self.skills.append('casting spells')
 self.spell = spell

 def cast_spell(self):
 print('*** ' + self.spell + ' ***')

gandalf = Wizard('Gandalf', 'Pedo mellon a minno!')
print('{name} knows {s}.'.format(name=gandalf.name, s=gandalf.skills[0]))
gandalf.cast_spell()

4.3 A recapitulative exercise 59

Then, the sequence {1/an}n>0 converges to π . Write a Python function borwein_items
that takes an argument n and returns the pair (yn,an) as a tuple.

5. Use borwein_items to write a function borwein that takes an argument n and returns
the approximation of π given by 1/an. Correctly treat a bad value passed as an argument.

6. Run borwein(0), borwein(10), borwein(100), . . . and compare the results with the
value math.pi. What do you notice?

7. The third method for approximating π is base on n points picked uniformly at random
in the square [0,1]× [0,1]. We denote by Nn the number of points falling at a distance
less than 1 from the origin. Explain why we know that

Fn =
4Nn

n
a.s.−−−→

n→∞
π.

8. Write a Python function called circle that takes an argument n and returns the value
of Fn.

9. Run circle(0), circle(10), circle(100), . . . and compare the results with the
value math.pi. What happens when you run these commands again?

10. Create a class Pi whose the constructor takes two arguments:

• method: a string to designate the algorithm to use ('leibniz', 'borwein' or
'circle'),

• timer: a boolean value to indicate whether the elapsed time should be measured
or not (default is False).

The class will also provide a method approx that takes a single argument n and returns
the approximation of π calculated with the algorithm method. If the argument timer is
set to True, the time elapsed in microseconds during the last call must be available in
an attribute called elapsed_time.� �
P0 = Pi('borwein')
P0.approx(10)

P1 = Pi('circle', True)
P1.approx(1000000)
print('Elapsed time: {}'.format(P1.elapsed_time))� �

P0 = Pi('borwein')
P0.approx(10)

P1 = Pi('circle', True)
P1.approx(1000000)
print('Elapsed time: {}'.format(P1.elapsed_time))

60 PRACTICALS 1 : Introduction to Python

Practicals 2 : Python for scientists

NumPy
NumPy is a Python package that provides tools to work with multi-dimensional arrays
(vectors, matrices, . . .), along with a large library of high-level mathematical functions to
operate on these arrays. NumPy is distributed under the terms of a revised BSD license and is
thus a free software. In the sequel, to shorten the namespace prefix, we use the common alias
np for numpy.� �
import numpy as np

NumPy supplies usual constants
np.pi
np.e� �

The class array plays a central role in NumPy. Such an object can be instantiated with
the function array from a list for a vector or from a list of lists for a matrix. To access the
elements of an array, we use the usual syntax based on square brackets [] and slicing.� �
Create a vector from a list
v = np.array([17.0, 42.0, 8.1, 19.0])
print(v, type(v))

Create a matrix from a list of rows
m = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
print(m, type(m))

Print behaves nicely with large arrays
np.array(range(10000))
np.array([range(500) for i in range(500)])

Access the elements as usual
v[0]
v[1:3]

import numpy as np

NumPy supplies usual constants
np.pi
np.e

Create a vector from a list
v = np.array([17.0, 42.0, 8.1, 19.0])
print(v, type(v))

Create a matrix from a list of rows
m = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
print(m, type(m))

Print behaves nicely with large arrays
np.array(range(10000))
np.array([range(500) for i in range(500)])

Access the elements as usual
v[0]
v[1:3]

Arrays are mutable (be careful with side effects)
v[2] = 15.0
v[1:3] = 0.0

Similar syntax for matrices
m[0,1]
m[:,2]

http://www.numpy.org/

62 PRACTICALS 2 : Python for scientists

Arrays are mutable (be careful with side effects)
v[2] = 15.0
v[1:3] = 0.0

Similar syntax for matrices
m[0,1]
m[:,2]� �

To get informations about array dimensions (rows, columns, . . .) the class array supplies
a tuple attribute shape. Moreover, the method reshape allows to modify the dimensions of
an array.� �
v.shape
m.shape

m1 = v.reshape(2, 2)
m2 = m.reshape(3, 2)
v1 = m.reshape(6)� �

The class array offers numerous useful functions to do basic computations with arrays.
There are a lot of tools defined for arrays as you can see in the index of the documentation.
All these tools can be called as methods or as functions from the NumPy namespace.� �
Sum of the elements
v.sum() # As method
np.sum(v) # From NumPy namespace

Cumulative sum of the elements
v.cumsum()
np.cumsum(v)

Maximum and minimum
m.min(), m.max() # Or np.min(m), np.max(m)
m.argmin(), m.argmax() # Indices of min and max

Mean and variance
v.mean() # Or np.mean(v)
m.var() # Or np.var(m)� �

A nice feature offered by NumPy arrays and functions is the ability to apply a function to
all elements of an array without loop. Such a syntax definitely makes the code easier to read
and is often used in the following.� �
n = 6
x = np.array([np.pi * i / (n - 1) for i in range(n)])
np.cos(x)

v.shape
m.shape

m1 = v.reshape(2, 2)
m2 = m.reshape(3, 2)
v1 = m.reshape(6)

Sum of the elements
v.sum() # As method
np.sum(v) # From NumPy namespace

Cumulative sum of the elements
v.cumsum()
np.cumsum(v)

Maximum and minimum
m.min(), m.max() # Or np.min(m), np.max(m)
m.argmin(), m.argmax() # Indices of min and max

Mean and variance
v.mean() # Or np.mean(v)
m.var() # Or np.var(m)

n = 6
x = np.array([np.pi * i / (n - 1) for i in range(n)])
np.cos(x)

This also works with common operations ...
x + 1
2 * x
x / 5

... but not with math functions!
import math
math.cos(x) # Error!

https://docs.scipy.org/doc/numpy/genindex.html

4.3 NumPy 63

This also works with common operations ...
x + 1
2 * x
x / 5

... but not with math functions!
import math
math.cos(x) # Error!� �

Fortunately, we do not need to explicitly create all arrays and NumPy provides useful
functions for the most common situations. These functions are available for vectors and
matrices.� �
Create arrays full of zeros
np.zeros(10)
np.zeros((3, 4)) # Tuple argument

Create arrays full of ones
np.ones(10)
np.ones((3, 4)) # Tuple argument

Create arrays with uninitialized entries
np.empty(10)
np.empty((3, 4)) # Tuple argument

Identity matrix
np.identity(5)

Diagonal matrix from a vector
v = np.array([1.0, 2.0, 3.0])
np.diag(v)

Vector from the matrix diagonal
m = np.array([[1.0, 2.0], [3.0, 4.0]])
m.diagonal() # Or np.diag(m)� �

To avoid poorly readable commands based on range when creating arrays, NumPy provides
two useful functions. Function arange is similar to range but the returned object is an array.
Function linspace returns an array of evenly spaced numbers over a specified interval. This
second function will be very useful to plot a function (see the section about Matplotlib).� �
Create arrays in range style
np.arange(10)
np.arange(8, 17) # Start included, end excluded
np.arange(8, 17, 2) # With a step

Useful for matrices too!
np.arange(8, 17).reshape(3, 3)

Create arrays full of zeros
np.zeros(10)
np.zeros((3, 4)) # Tuple argument

Create arrays full of ones
np.ones(10)
np.ones((3, 4)) # Tuple argument

Create arrays with uninitialized entries
np.empty(10)
np.empty((3, 4)) # Tuple argument

Identity matrix
np.identity(5)

Diagonal matrix from a vector
v = np.array([1.0, 2.0, 3.0])
np.diag(v)

Vector from the matrix diagonal
m = np.array([[1.0, 2.0], [3.0, 4.0]])
m.diagonal() # Or np.diag(m)

Create arrays in range style
np.arange(10)
np.arange(8, 17) # Start included, end excluded
np.arange(8, 17, 2) # With a step

Useful for matrices too!
np.arange(8, 17).reshape(3, 3)

Evenly spaced numbers
np.linspace(2, 3, 10) # Syntax: start, end, number

64 PRACTICALS 2 : Python for scientists

Evenly spaced numbers
np.linspace(2, 3, 10) # Syntax: start, end, number� �

NumPy offers a syntax based on boolean arrays to access some elements in an array. This
way can be very useful when we handle data sets and it is available to get values but also to
modify them.� �
Notice the concatenation operation and the negative step
a = np.append(np.arange(5), np.arange(4, -1, -1))

With an explicit boolean array
b = [i % 3 != 0 for i in range(a.shape[0])]
a[b]

With a condition vector
b = (a >= 2)
a[b]

Useful to modify some values
a[b] = 42
print(a)

Also works with matrices
a = np.arange(12).reshape(3,4)
b1 = np.array([False, True, True])
b2 = np.array([True, False, True, False])

a[b1, :] # Selecting rows
a[:, b2] # Selecting columns
a[b1, b2] # Selecting both but ...� �

Specific operations and tools are needed when handling matrices. There are common
operations like addition, multiplication, . . . But NumPy also supplies tools to deal with matrices
as common Python containers.� �
m1 = np.array([[1,1], [0,1]])
m2 = np.array([[2,0], [3,4]])

Addition works as usual
m1 + m2

Be careful with multiplication!
m1 * m2 # Element by element
m1.dot(m2) # True matrix multiplication
np.dot(m1, m2) # Idem from NumPy namespace

Various functions can be applied on axis

Notice the concatenation operation and the negative step
a = np.append(np.arange(5), np.arange(4, -1, -1))

With an explicit boolean array
b = [i % 3 != 0 for i in range(a.shape[0])]
a[b]

With a condition vector
b = (a >= 2)
a[b]

Useful to modify some values
a[b] = 42
print(a)

Also works with matrices
a = np.arange(12).reshape(3,4)
b1 = np.array([False, True, True])
b2 = np.array([True, False, True, False])

a[b1, :] # Selecting rows
a[:, b2] # Selecting columns
a[b1, b2] # Selecting both but ...

m1 = np.array([[1,1], [0,1]])
m2 = np.array([[2,0], [3,4]])

Addition works as usual
m1 + m2

Be careful with multiplication!
m1 * m2 # Element by element
m1.dot(m2) # True matrix multiplication
np.dot(m1, m2) # Idem from NumPy namespace

Various functions can be applied on axis
m1.sum() # Sum of all items
m1.sum(axis=0) # Sum of each column
m1.sum(axis=1) # Sum of each row

Stacking rows and columns
v1 = np.array([1, 2, 3])
v2 = np.array([4, 5, 6])
np.vstack((v1, v2)) # Tuple argument
np.hstack((v1, v2)) # One line matrix

v1 = np.array([[1], [2], [3]])
v2 = np.array([[4], [5], [6]])
m = np.hstack((v1, v2)) # Three lines matrix

Iterate on matrix rows
for row in m:
 print('--->', row)

Iterate on matrix elements with flat operator
for item in m.flat:
 print('--->', item)

4.3 NumPy 65

m1.sum() # Sum of all items
m1.sum(axis=0) # Sum of each column
m1.sum(axis=1) # Sum of each row

Stacking rows and columns
v1 = np.array([1, 2, 3])
v2 = np.array([4, 5, 6])
np.vstack((v1, v2)) # Tuple argument
np.hstack((v1, v2)) # One line matrix

v1 = np.array([[1], [2], [3]])
v2 = np.array([[4], [5], [6]])
m = np.hstack((v1, v2)) # Three lines matrix

Iterate on matrix rows
for row in m:

print('--->', row)

Iterate on matrix elements with flat operator
for item in m.flat:

print('--->', item)� �
Matrix calculation with NumPy is not restricted to these elementary operations and a large

set of linear algebra tools are supplied. Note that some functions come from the submodule
numpy.linalg (see module documentation for details).� �
m1 = np.arange(12).reshape(3, 4)
m2 = np.array([[3, 1, 2], [2, 0, 5], [1, 2, 3]])

Transpose operator
m1.T
m1.transpose() # Or np.transpose(m1)

Determinant and trace operators
np.linalg.det(m2)
np.trace(m2) # Or m2.trace()

Inverse matrix
np.linalg.inv(m1) # Raise a LinAlgError exception
m2_inv = np.linalg.inv(m2)
np.dot(m2, m2_inv)

Eigenvalues and eigenvectors
np.linalg.eigh(np.dot(m1, m1.T)) # For Hermitian matrix only
np.linalg.eig(m2) # Otherwise, right eigenvectors are returned� �

More advanced procedures are at your disposal and we encourage you to browse the
documentation to discover all the possibilities. As an example, we give below the commands

m1 = np.arange(12).reshape(3, 4)
m2 = np.array([[3, 1, 2], [2, 0, 5], [1, 2, 3]])

Transpose operator
m1.T
m1.transpose() # Or np.transpose(m1)

Determinant and trace operators
np.linalg.det(m2)
np.trace(m2) # Or m2.trace()

Inverse matrix
np.linalg.inv(m1) # Raise a LinAlgError exception
m2_inv = np.linalg.inv(m2)
np.dot(m2, m2_inv)

Eigenvalues and eigenvectors
np.linalg.eigh(np.dot(m1, m1.T)) # For Hermitian matrix only
np.linalg.eig(m2) # Otherwise, right eigenvectors are returned

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.scipy.org/doc/

66 PRACTICALS 2 : Python for scientists

to perform a least squares polynomial fit.� �
x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
z = np.polyfit(x, y, 3) # Coefficients of polynomial of degree 3

Get a function for polynomial given by z
pol_z = np.poly1d(z)
pol_z(2.5)� �

To conclude this introduction to NumPy, we mention that it also supplies a large set of
random generators in the submodule numpy.random. Some distributions are already available
in the standard library but, with numpy.random functions, you are able to directly get array
objects.� �
Random arrays
np.random.rand(3) # Uniform distribution in [0,1]
np.random.randn(2, 3) # Standard normal distribution

Random sample
np.random.choice(np.array([17, 8, 19, 1, 3, 15]), 4) # With replace
np.random.choice(np.array([17, 8, 19, 1, 3, 15]), 4, False) # No replace

Distributions
np.random.standard_exponential(5) # Standard exponential
np.random.exponential(2, 5) # Exponential with parameter 2
np.random.poisson(np.pi, 10) # Poisson with parameter pi� �

Matplotlib
Matplotlib is a plotting library that was originally written by John D. Hunter and that is
distributed under a BSD compatible licence, thus Matplotlib is a free software. Matplotlib is
divided into several parts that are in charge of:

• creating plots with code similar to other scientific softwares,

• managing figures, text, lines, plots, . . .

• handling display devices (or backends) such as PostScript, SVG, PNG, . . . ,

• interfacing with widget toolkits (Gtk+, Qt, Cocoa, . . .).

For this introduction, we will only focus on the creation and the management of graphics. The
submodule of Matplotlib that handles this is called pyplot and we will use the common alias
plt.� �
import matplotlib.pyplot as plt� �

x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
z = np.polyfit(x, y, 3) # Coefficients of polynomial of degree 3

Get a function for polynomial given by z
pol_z = np.poly1d(z)
pol_z(2.5)

Random arrays
np.random.rand(3) # Uniform distribution in [0,1]
np.random.randn(2, 3) # Standard normal distribution

Random sample
np.random.choice(np.array([17, 8, 19, 1, 3, 15]), 4) # With replace
np.random.choice(np.array([17, 8, 19, 1, 3, 15]), 4, False) # No replace

Distributions
np.random.standard_exponential(5) # Standard exponential
np.random.exponential(2, 5) # Exponential with parameter 2
np.random.poisson(np.pi, 10) # Poisson with parameter pi

import matplotlib.pyplot as plt

https://docs.scipy.org/doc/numpy/reference/routines.random.html
https://docs.scipy.org/doc/numpy/reference/routines.random.html
https://matplotlib.org/

4.3 Matplotlib 67

The simplest graph consists to display points in the plane from their coordinates passed as
lists to the command plot. Consecutive plot calls add more points to the current graph. To
create a new graph, use the command figure. Depending on how you interact with Python
(raw command shell in console, development environment, . . .), the graph window may not
appear by default. If necessary, the show command will pops this window (such a command
will be omitted in the other examples). The function axis allows to adjust the axes of the
current plot.

� �
plt.plot([1, 2, 1, 2]) # As a sequence
plt.plot([15, 3, 1, 5], [42, 17, 8, 5]) # With X and Y coordinates

Pop the window (not always needed)
plt.show()

Create a new graph
plt.figure()
plt.plot([15, 3, 1, 5], [42, 17, 8, 5])
plt.show() # If needed ...

Modify the axes
plt.axis([-5, 20, 0, 50]) # Syntax: xmin, xmax, ymin, ymax� �

An alternative to figure to reset a graph is the function clf but the current plot will
be lost. The function plot admits an optional third argument as a string to define basic
formatting (color, marker, linestyle, . . .). The syntax is simple but not really intuitive and we
refer to the documentation for details.

� �
Reset current figure
plt.clf()

Cyan star markers
plt.plot([15, 3, 1, 5], [42, 17, 8, 5], 'c*')

Red square markers
plt.plot([14, 2, 0, 4], [41, 16, 7, 4], 'rs')

Green dash-dot line and circle markers
plt.plot([0, 5, 10, 15], [42, 17, 8, 5], 'go-.')� �

If Matplotlib were limited to working with lists, it would be fairly useless for numeric
processing. Generally, you will use NumPy arrays (actually, all sequences are converted
to NumPy arrays internally). This is where the NumPy function linspace becomes very
interesting for producing functional plots. As mentioned in the documentation, more graphic
options are available (alpha, linewidth, . . .) and we will introduce some of them in the
following examples.

plt.plot([1, 2, 1, 2]) # As a sequence
plt.plot([15, 3, 1, 5], [42, 17, 8, 5]) # With X and Y coordinates

Pop the window (not always needed)
plt.show()

Create a new graph
plt.figure()
plt.plot([15, 3, 1, 5], [42, 17, 8, 5])
plt.show() # If needed ...

Modify the axes
plt.axis([-5, 20, 0, 50]) # Syntax: xmin, xmax, ymin, ymax

Reset current figure
plt.clf()

Cyan star markers
plt.plot([15, 3, 1, 5], [42, 17, 8, 5], 'c*')

Red square markers
plt.plot([14, 2, 0, 4], [41, 16, 7, 4], 'rs')

Green dash-dot line and circle markers
plt.plot([0, 5, 10, 15], [42, 17, 8, 5], 'go-.')

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot

68 PRACTICALS 2 : Python for scientists� �
Gaussian increments
n = 1000
z = np.random.randn(n) # NumPy array

Discretized Brownian motion
t = np.linspace(0, 1, n)
b = z.cumsum() / np.sqrt(n)
plt.plot(t, b, 'k-', linewidth=0.5) # Set line width� �

A great freedom is given by Matplotlib to tweak the figures according to our wishes. Let’s
start with some decorating functions to set title, labels and comments. Notice that these
functions allow the use of TeX expressions surrounded by dollar signs “$... $”.� �
mu = -1.0
sigma2 = 0.5

Plot Gaussian densities
t = np.linspace(-4, 4, 500)
plt.plot(t, np.exp(-t**2/2) / np.sqrt(2*np.pi), 'k--')
plt.plot(t, np.exp(-(t-mu)**2/(2*sigma2)) / np.sqrt(2*np.pi*sigma2), 'r-')

Add a title
plt.title('Some Gaussian densities')

Add labels for the axes
plt.xlabel('Value')
plt.ylabel('Density')

Add text
plt.text(2, 0.25, 'Hello, Gauss!')

Add annotation
plt.annotate('Local maximum', xy=(-1.0, 0.564), xytext=(0.5, 0.45),

arrowprops={'facecolor': 'black', 'width': 1.0})

Replace the title with TeX expression
plt.title('Parameters: μ={m}, σ^2={s2}'.format(m=mu, s2=sigma2))� �

The decoration functions provided by Matplotlib are numerous and we can not give an
exhaustive list in this document. For example, the following code shows how to add a legend
and a grid. For more details, we encourage you to read the beginner’s guide.� �
def gauss(t, mu=0.0, sigma2=1.0):

return np.exp(-(t-mu)**2 / (2*sigma2)) / np.sqrt(2*np.pi*sigma2)

Plot two curves with labels (used by legend)
t = np.linspace(-4, 4, 500)
plt.plot(t, gauss(t), 'k-', label='σ^2=1')

Gaussian increments
n = 1000
z = np.random.randn(n) # NumPy array

Discretized Brownian motion
t = np.linspace(0, 1, n)
b = z.cumsum() / np.sqrt(n)
plt.plot(t, b, 'k-', linewidth=0.5) # Set line width

mu = -1.0
sigma2 = 0.5

Plot Gaussian densities
t = np.linspace(-4, 4, 500)
plt.plot(t, np.exp(-t**2/2) / np.sqrt(2*np.pi), 'k--')
plt.plot(t, np.exp(-(t-mu)**2/(2*sigma2)) / np.sqrt(2*np.pi*sigma2), 'r-')

Add a title
plt.title('Some Gaussian densities')

Add labels for the axes
plt.xlabel('Value')
plt.ylabel('Density')

Add text
plt.text(2, 0.25, 'Hello, Gauss!')

Add annotation
plt.annotate('Local maximum', xy=(-1.0, 0.564), xytext=(0.5, 0.45),
 arrowprops={'facecolor': 'black', 'width': 1.0})

Replace the title with TeX expression
plt.title('Parameters: μ={m}, σ^2={s2}'.format(m=mu, s2=sigma2))

def gauss(t, mu=0.0, sigma2=1.0):
 return np.exp(-(t-mu)**2 / (2*sigma2)) / np.sqrt(2*np.pi*sigma2)

Plot two curves with labels (used by legend)
t = np.linspace(-4, 4, 500)
plt.plot(t, gauss(t), 'k-', label='σ^2=1')
plt.plot(t, gauss(t, sigma2=0.5), 'r-', label='σ^2=1/2')

Add a legend
plt.legend()

Add a grid
plt.grid()

https://matplotlib.org/1.5.3/users/beginner.html

4.3 Matplotlib 69

plt.plot(t, gauss(t, sigma2=0.5), 'r-', label='σ^2=1/2')

Add a legend
plt.legend()

Add a grid
plt.grid()� �

A common question when plotting curves is the ability to draw multiple graphs on the
same device with common properties (aligned axes, . . .). With Matplotlib, the function
subplot allows you to do that. This function takes three arguments which correspond to a
plotting grid: the number of rows, the number of columns and the position for next plot in
this grid.� �
def f(t):

return np.exp(-t) * np.cos(2*np.pi*t)

Distinct abscissas
t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

First plot
plt.subplot(2, 1, 1) # 2 rows and 1 column, position 1
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')

Second plot
plt.subplot(2, 1, 2) # Same grid, position 2
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')� �

Of course, Matplotlib is not limited to simple point sequence plots. The package supplies a
lot of graphical representations and tools but it would be beyond the scope of this document to
make an complete review of these features. We give below an insight about the possibilities. If
you are interested in data visualization, you should have a look to the Matplotlib examples.� �
Scatter plot
n = 256
x = np.random.randn(n)
y = np.random.randn(n)
size = 100*np.random.random(n)
plt.scatter(x, y, s=size, alpha=0.5)

Histogram
n = 2048
x = np.random.randn(n)
u = np.linspace(-4, 4, 2*n+1)
v = gauss(u)
plt.hist(x, bins=50, normed=True, color='orange')
plt.plot(u, v, 'r-', linewidth=2)

def f(t):
 return np.exp(-t) * np.cos(2*np.pi*t)

Distinct abscissas
t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

First plot
plt.subplot(2, 1, 1) # 2 rows and 1 column, position 1
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')

Second plot
plt.subplot(2, 1, 2) # Same grid, position 2
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')

Scatter plot
n = 256
x = np.random.randn(n)
y = np.random.randn(n)
size = 100*np.random.random(n)
plt.scatter(x, y, s=size, alpha=0.5)

Histogram
n = 2048
x = np.random.randn(n)
u = np.linspace(-4, 4, 2*n+1)
v = gauss(u)
plt.hist(x, bins=50, normed=True, color='orange')
plt.plot(u, v, 'r-', linewidth=2)

Pie chart
ore = ['Gold', 'Silver', 'Ore', 'Mithril']
count = [31, 58, 93, 21]
color = ['gold', 'silver', 'brown', 'lightskyblue']
explode = (0, 0.1, 0, 0)
plt.pie(count, labels=ore, colors=color, explode=explode,
 shadow=True, startangle=90)

Boxplot
n = 256
x = np.random.randn(n)
y = np.random.randn(n)
plt.boxplot((x, y))

Violin plot
plt.violinplot((x, y))

https://matplotlib.org/examples/index.html

70 PRACTICALS 2 : Python for scientists

Pie chart
ore = ['Gold', 'Silver', 'Ore', 'Mithril']
count = [31, 58, 93, 21]
color = ['gold', 'silver', 'brown', 'lightskyblue']
explode = (0, 0.1, 0, 0)
plt.pie(count, labels=ore, colors=color, explode=explode,

shadow=True, startangle=90)

Boxplot
n = 256
x = np.random.randn(n)
y = np.random.randn(n)
plt.boxplot((x, y))

Violin plot
plt.violinplot((x, y))� �

Pandas
The package Pandas is aimed to provide efficient data structures and data analysis tools. It
is distributed under a BSD compatible licence, thus Pandas is also a free software. Pandas
offers a lot of features that we will not be able to fully cover in this brief introduction. Here
are the few functionalities we will present in this section:

• how to load data from a CSV file,

• how to work with DataFrame objects,

• how Pandas nicely integrates Matplotlib to produce high quality plots.

The interested reader is warmly encouraged to read the documentation for more information.
Let’s start by importing Pandas and shorten the namespace with the usual prefix pd.� �
import pandas as pd� �

Pandas provides various functions to read data from a file (HTML, JSON, . . .). The one
that interests us here is read_csv which allows to recover the data contained in a CSV file.
This function can take many arguments depending on how the CSV file is organized (delimiter,
column names, . . .) but most default values are often relevant. As an example, we propose
to load the data Most Popular Baby Names by Sex and Mother’s Ethnic Group, New York
City made available by the city of New York. For readability, the file has been renamed
NYnames.csv.� �
data = pd.read_csv('NYnames.csv')� �

import pandas as pd

data = pd.read_csv('NYnames.csv')

https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/
https://catalog.data.gov/dataset/most-popular-baby-names-by-sex-and-mothers-ethnic-group-new-york-city-8c742
https://catalog.data.gov/dataset/most-popular-baby-names-by-sex-and-mothers-ethnic-group-new-york-city-8c742

4.3 Pandas 71

The object returned by read_csv is a DataFrame which is the most commonly used
Pandas object. A DataFrame is a 2-dimensional labeled data structure with columns of
potentially different types.� �
type(data) # pandas.core.frame.DataFrame

Content of the DataFrame
print(data)

First look on the data set
len(data) # Number of rows
data.shape # Dimensions as with a NumPy array
data.columns # Column names
data.dtypes # Column types
data.head() # Five first rows
data.tail() # Five last rows� �

We can get a summary of the data with the method describe. This returns several
statistical measurements (mean, standard deviation, extremal values, quantiles, ...) only for
numeric columns.� �
data.describe()� �

There are two ways to access the columns of a DataFrame. The first one is to use the
name of the column in the manner of a dictionary. Several columns can be selected this way
through a list of column names. The other way to access a column is to use the dot syntax “.”
but only if the name of the column is a valid variable name for Python (no space, . . .) and if it
is not already used by Pandas (head, shape, . . .). You will notice that the returned objects
can be used in place of NumPy arrays and supply similar methods for basic computations.
This integration within Pandas is one of the great strengths of this library.� �
As with a dictionnary
data['CNT']

Works with multiple columns
data[['NM', 'CNT']]

With the dot syntax
data.CNT

Columns can be used as NumPy arrays ...
v = data['CNT']
np.log(v)
... and supply usual statistical methods
v.mean()
v.std()
v.argmax()� �

type(data) # pandas.core.frame.DataFrame

Content of the DataFrame
print(data)

First look on the data set
len(data) # Number of rows
data.shape # Dimensions as with a NumPy array
data.columns # Column names
data.dtypes # Column types
data.head() # Five first rows
data.tail() # Five last rows

data.describe()

As with a dictionnary
data['CNT']

Works with multiple columns
data[['NM', 'CNT']]

With the dot syntax
data.CNT

Columns can be used as NumPy arrays ...
v = data['CNT']
np.log(v)
... and supply usual statistical methods
v.mean()
v.std()
v.argmax()

72 PRACTICALS 2 : Python for scientists

Of course, columns and rows can also be accessed through indices with iloc and slicing
syntax.� �
Get the first row
data.iloc[1]

Get the first column
data.iloc[:,1]

Works with slicing
data.iloc[5:10,3:]
data.iloc[:5] # Same as head
data.iloc[-5:] # Same as tail� �

The statistical functions at our disposal for a column generally act on the whole set of
values. If we want to run our own functions across all values in a column (or row), we can
use apply. Such a way is usually more efficient than a loop.� �
A custom function
def name_length(name):

return len(name)

Apply it across a column
names = data['NM']
names.apply(name_length)� �

When working with data, it is common to select some rows according to specific conditions.
With Pandas, the boolean vectors associated with such a selection are referred as filters. The
dictionary syntax of a DataFrame object allows to directly use these filters in square brackets
to extract a part of the data set. Note that to be valid a composed filter must use bitwise
operators (&, |, . . .) and not boolean ones (and, or, . . .).� �
Filter for the most given names
max_name = data.CNT > 300

Extract the data
data[max_name]
data[data.CNT > 300] # Same result

Composed filter
data[(data.CNT > 300) & (data.GNDR == 'FEMALE')]

Powerful with custom filtering
def starts_with_X(name):

return name.startswith('X')

data[data.NM.apply(starts_with_X) & (data.GNDR == 'MALE')]

Get the first row
data.iloc[1]

Get the first column
data.iloc[:,1]

Works with slicing
data.iloc[5:10,3:]
data.iloc[:5] # Same as head
data.iloc[-5:] # Same as tail

A custom function
def name_length(name):
 return len(name)

Apply it across a column
names = data['NM']
names.apply(name_length)

Filter for the most given names
max_name = data.CNT > 300

Extract the data
data[max_name]
data[data.CNT > 300] # Same result

Composed filter
data[(data.CNT > 300) & (data.GNDR == 'FEMALE')]

Powerful with custom filtering
def starts_with_X(name):
 return name.startswith('X')

data[data.NM.apply(starts_with_X) & (data.GNDR == 'MALE')]

Test the presence of at least one element in the filter
max_name_300 = data.CNT > 300
max_name_300.any() # At least one name has been given 300 times
max_name_500 = data.CNT > 500
max_name_500.any() # No name has been given 500 times

4.3 Pandas 73

Test the presence of at least one element in the filter
max_name_300 = data.CNT > 300
max_name_300.any() # At least one name has been given 300 times
max_name_500 = data.CNT > 500
max_name_500.any() # No name has been given 500 times� �

If some variables are categorical, it may be useful to partition the data set according
to these ones. This is done through the function groupby which returns an iterable object
containing the name of each category and the corresponding subset of data with the same
column names. It is then possible to use all the functions available for a DataFrame object to
retrieve statistical measures.

� �
Group by gender
for gender, df in data.groupby('GNDR'):

n = len(df)
print("{gender}: {n} names.".format(gender=gender, n=n))

Crossing categorical variables
for c, df in data.groupby(['ETHCTY', 'GNDR']):

m = df.CNT.mean()
msg = "{c}: same name is given {m} times on average.".format(c=c, m=m)
print(msg)� �

Last functionality but not the least, Pandas nicely integrates Matplotlib through some
functions that allow to quickly obtain basic graphs from DataFrame objects. Although the
possibilities are not as broad as what Matplotlib allows, Pandas offers a wide variety of graphs
that we will not list here. We give some examples below but, for an exhaustive presentation, the
reader is invited to consult the page dedicated to the visualization of the official documentation.

� �
Histogram
data.CNT.hist()

Box plots
data.boxplot(column='CNT', by='GNDR') # Group by gender

Advanced example
df = data.groupby(['BRTH_YR','ETHCTY']).sum().CNT.unstack()
Clean data
df = df.fillna(0)
df['ASIAN'] = df['ASIAN AND PACI'] + df['ASIAN AND PACIFIC ISLANDER']
df['BLACK'] = df['BLACK NON HISP'] + df['BLACK NON HISPANIC']
df['WHITE'] = df['WHITE NON HISP'] + df['WHITE NON HISPANIC']
df = df[['ASIAN', 'BLACK', 'HISPANIC', 'WHITE']]
Plot the frequencies (bar need Pandas >= 0.17.0)
df.div(df.sum(axis=1), axis=0).plot.bar()� �

Group by gender
for gender, df in data.groupby('GNDR'):
 n = len(df)
 print("{gender}: {n} names.".format(gender=gender, n=n))

Crossing categorical variables
for c, df in data.groupby(['ETHCTY', 'GNDR']):
 m = df.CNT.mean()
 msg = "{c}: same name is given {m} times on average.".format(c=c, m=m)
 print(msg)

Histogram
data.CNT.hist()

Box plots
data.boxplot(column='CNT', by='GNDR') # Group by gender

Advanced example
df = data.groupby(['BRTH_YR','ETHCTY']).sum().CNT.unstack()
Clean data
df = df.fillna(0)
df['ASIAN'] = df['ASIAN AND PACI'] + df['ASIAN AND PACIFIC ISLANDER']
df['BLACK'] = df['BLACK NON HISP'] + df['BLACK NON HISPANIC']
df['WHITE'] = df['WHITE NON HISP'] + df['WHITE NON HISPANIC']
df = df[['ASIAN', 'BLACK', 'HISPANIC', 'WHITE']]
Plot the frequencies (bar need Pandas >= 0.17.0)
df.div(df.sum(axis=1), axis=0).plot.bar()

https://pandas.pydata.org/pandas-docs/stable/visualization.html

74 PRACTICALS 2 : Python for scientists

A recapitulative exercise
We propose to study meteorological data measured in the city of Rennes (France) that are
provided by the file ozone.csv. We have at our disposal n = 91 observations of the following
variables:

• maxO3: maximum concentration of ozone measured during the day,

• T6, T9, T12, T15 and T18: temperature at 6:00, 9:00, 12:00, 15:00 and 18:00,

• Ne6, Ne9, Ne12, Ne15 and Ne18: nebulosity at 6:00, 9:00, 12:00, 15:00 and 18:00,

• Vx: wind speed on the east-west axis.

The objective is to predict ozone concentration maxO3 from other data using a linear regression
model.

1. Load the data into a DataFrame object with read_csv (use argument sep).

2. Briefly explore the data set (columns, dtypes, describe(), . . .).

3. What is the day when the ozone concentration is maximum?

4. We begin by considering a simple linear model in which we want to explain y = maxO3
only from x = T18.

(a) Define the NumPy arrays x and y associated with the values of T18 and maxO3,
respectively.

(b) Output the scatter plot of the data with the plotting functions of Pandas from the
DataFrame object and with the Matplotlib functions from the vectors x and y.

(c) We want to minimize the least squares criterion according to a,b ∈ R, namely

γ(a,b) =
1
n

n

∑
k=1

(yk−a−b× xk)
2 .

Show that

∂γ

∂a
(a,b) = 2(a+b× x− y) and

∂γ

∂b
(a,b) = 2

(
a× x+b× x2− xy

)
where we have set

x =
1
n

n

∑
k=1

xk , y =
1
n

n

∑
k=1

yk , x2 =
1
n

n

∑
k=1

x2
k and xy =

1
n

n

∑
k=1

xkyk.

(d) Prove that the global minimizer of γ is given by (â, b̂) ∈ R2 where

â = y− b̂× x and b̂ =
xy− x× y

x2− x2
.

(e) Compute â and b̂ from the vectors x and y with their NumPy functionalities.

4.3 A recapitulative exercise 75

(f) Plot the regression line y = â+ b̂× x over the scatter plot.

(g) Add to the graph some lines to visualize the residuals,

εk = yk− â− b̂× xk, k ∈ {1, . . . ,n}.

5. We now consider a linear model to explain y = maxO3 from T18 and Ne6. With the
intercept, this leads us to three variables that we handle through the following n× 3
matrix,

X =

1 T181 Ne61
1 T182 Ne62
...

...
...

1 T18n Ne6n

(a) Define the NumPy arrays X and y corresponding to the matrix X and to the vector

y, respectively.

(b) Using the Matplotlib toolkit mplot3d, create a 3D scatter plot of the data.

(c) Compute X>X and verify that this matrix is invertible with NumPy functionalities.

(d) In its matrix form, the least squares criterion to minimize according to θ ∈ R3 is
given by

γ(θ) = ‖y−Xθ‖2.

Show that
∇γ(θ) =−2X>(y−Xθ).

(e) Prove that the global minimizer of γ is given by θ̂ ∈ R3 where

θ̂ =
(

X>X
)−1

X>y.

(f) Compute θ̂ through the NumPy functionalities.

(g) With the help of the mplot3d tutorial, add the surface of the regression plane
z = θ̂0 + θ̂1x+ θ̂2y to the above scatter plot.

(h) Add to the graph some lines to visualize the residuals,

εk = yk− (X θ̂)k, k ∈ {1, . . . ,n}.

https://matplotlib.org/mpl_toolkits/index.html
https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html

76 PRACTICALS 2 : Python for scientists

Practicals 3 : Adaline

Introduction
An artificial neural network is a computing system vaguely inspired by the biological neural
networks that constitute animal brains. It is said that such a system “learns” in the sense
that the parameters that define it can be calibrated from a training data set to improve the
quality of its predictions on new data. The literature on neural networks is vast and this is
not the purpose of this session. We will consider here only single-layer neural networks
taking d > 1 real input variables and returning one discrete output (or more). The usual
representation of such a network is of the following form:

Let’s focus now on the elemental brick of such a neural network. A neuron is characterized
by two objects:

• a function φ : R→ R, called activation function,

78 PRACTICALS 3 : Adaline

• a vector θ = (θ0, . . . ,θd)
> ∈ Rd+1 where the θk are referred as the weights.

Given an input vector x = (x1, . . . ,xd)
> ∈ Rd and a discrete output value y ∈ {−1,1}, the

neuron compute the quantity

φ

(
y−θ0−

d

∑
k=1

θkxk

)
.

Common choices for the activation function are Heaviside, sigmoid, . . . The goal is then to
fit the parameter θ with respect to a training data set to minimize an empirical criterion
used to measure the adequation of a prediction rule based on the output of the neuron and
the observations of y. In other words, we are facing a minimization problem that we have to
solve.

Such an optimization problem can be more or less easy to tackle according to the choice
of the function φ . In practice, the backpropagation is commonly used to this end but is beyond
the scope of this document. In 1960, Widrow and Hoff proposed to simply consider φ(z) = z
and the quadratic loss function. The neural network we obtain, called ADALINE (ADAptive
LIear NEuron), is really basic and simply amounts to minimize the empirical least squares
criterion given by n observations of the variables,

θ̂ ∈ argmin
θ∈Rd+1

‖Y −Xθ‖2

where X is the matrix of size n× (d +1) defined by

X =

1 x1,1 . . . xd,1
1 x1,2 . . . xd,2
...

...
...

...
1 x1,n . . . xd,n

and Y = (y1, . . . ,yn)

> ∈ {−1,1}n the observed output vector. Thus, the decision rule for
a new input observation xnew = (xnew

1 , . . . ,xnew
d)> ∈ Rd+1 is given by the sign of the affine

combination of its coordinates,

sg

(
θ̂0 +

d

∑
k=1

θ̂kxnew
k

)
=

{
1 if θ̂0 +∑

d
k=1 θ̂kxnew

k > 0,
−1 otherwise.

Generate data
In order to study the role of certain parameters, in particular the impact of the number n of
observations, we will not use real data here but simulated data. The following Python function
makes it possible to generate n (default is 1) Gaussian observations in dimension d (default is
2) composed of centered variables associated with the label 1 and variables decentered along
a unit vector u associated with the label −1. Then, the function returns the input n× (d +1)
matrix x, the output vector y of size n and the unit vector u. If the argument u is None (default),
a random unit vector is sampled uniformly on the sphere of dimension d.

https://en.wikipedia.org/wiki/Backpropagation

4.3 Batch approach 79� �
def generate_sample(n=1, d=2, u=None):

Get the offset
if u is None:

u = np.random.randn(d)
u = u / np.linalg.norm(u)

Output vector
y = np.random.choice((-1, 1), n)

Gaussian samples
x = np.random.randn(n, d)
x[y == -1] += np.log(n) * u
x = np.hstack([np.ones((n,1)),x])

return x, y, u� �
Batch approach
Let’s start with the batch approach consisting in computing explicitely the minimizer of the
function

∀θ ∈ Rd+1, J(θ) = ‖Y −Xθ‖2.

1. Let θ ∈ Rd+1, compute the gradient ∇J(θ) and prove that J is L-smooth. What is the
value of L?

2. Prove that the function J is convex.

3. Prove that the function J is µ-strongly convex if and only if the matrix X>X is invertible.
What is the value of µ in this case?

4. Assuming that X>X is invertible, deduce that θ ∗ = (X>X)−1X>Y is the unique global
minimizer of J.

5. Write a Python function fit_batch that takes x and y as arguments and return θ ∗.

6. Generate a sample of size n = 500 and dimension d = 2 and run fit_batch with it.
Produce a scatter plot of the data with red dots for label 1 and blue dots for label −1.
Add the line given by the equation θ ∗0 +θ ∗1 x1 +θ ∗2 x2 = 0 to visualize the frontier of the
decision rule.

7. Run the following code to time your function fit_batch for various values of d and n.� �
import time

d_values = [2, 5, 10]
n_values = [10**(k+1) for k in range(6)]
elapsed = np.zeros((len(d_values), len(n_values)))
rep = 10 # Number of repetitions

def generate_sample(n=1, d=2, u=None):
 # Get the offset
 if u is None:
 u = np.random.randn(d)
 u = u / np.linalg.norm(u)

 # Output vector
 y = np.random.choice((-1, 1), n)

 # Gaussian samples
 x = np.random.randn(n, d)
 x[y == -1] += np.log(n) * u
 x = np.hstack([np.ones((n,1)),x])

 return x, y, u

import time

d_values = [2, 5, 10]
n_values = [10**(k+1) for k in range(6)]
elapsed = np.zeros((len(d_values), len(n_values)))
rep = 10 # Number of repetitions

for i, d in enumerate(d_values):
 for j, n in enumerate(n_values):
 elapsed_current = 0.0
 for _ in range(rep):
 start = time.time()
 # Generate a sample
 x, y, u = generate_sample(n, d=d)
 # Fit the data
 theta = fit_batch(x, y)
 end = time.time()

 elapsed_current += end - start
 elapsed[i,j] = elapsed_current / rep

for i, d in enumerate(d_values):
 label = 'd={}'.format(d)
 plt.plot(np.log(n_values), elapsed[i], 'o-', label=label)
plt.legend()

80 PRACTICALS 3 : Adaline

for i, d in enumerate(d_values):
for j, n in enumerate(n_values):

elapsed_current = 0.0
for _ in range(rep):

start = time.time()
Generate a sample
x, y, u = generate_sample(n, d=d)
Fit the data
theta = fit_batch(x, y)
end = time.time()

elapsed_current += end - start
elapsed[i,j] = elapsed_current / rep

for i, d in enumerate(d_values):
label = 'd={}'.format(d)
plt.plot(np.log(n_values), elapsed[i], 'o-', label=label)

plt.legend()� �
Gradient Descent
We now consider the gradient descent {θn}n>0 with constant step sizes γn = γ given by θ0 = 0
and the recursion

∀n > 1, θn = θn−1− γ∇J(θn−1).

1. Write a Python function gradJ that takes three arguments: the input matrix x, the
output vector y and the value theta. This function must return the value of the gradient
∇J(theta).

2. Write a Python function fit_gd that takes four arguments: the input matrix x, the
output vector y, the step size gamma and the number of iterations n_iter. This function
must return the whole sequence θ1, . . . ,θn_iter as a n_iter× (d +1) matrix.

3. Considering the properties of the function J obtained in the previous section, state the
result of convergence that we expect for J(θn_iter)− J(θ ∗).

4. Run your function fit_gd on a sample of size n = 500 and dimension d = 2 with 1000
iterations and a step size γ = 10−3. Look at the result, what’s the problem? Try again
with a step size γ = 10−5, is it better?

5. Run the following code to visualize the convergence of ‖θn_iter−θ ∗‖2.

� �
x, y, u = generate_sample(500)
theta = fit_gd(x, y, 1e-5, 1000)
theta_star = fit_batch(x, y)

x, y, u = generate_sample(500)
theta = fit_gd(x, y, 1e-5, 1000)
theta_star = fit_batch(x, y)

err = np.zeros(theta.shape[0])
for i, theta_n in enumerate(theta):
 e = (theta_n - theta_star)**2
 err[i] = e.sum()
plt.plot(err)

4.3 Stochastic Gradient Descent 81

err = np.zeros(theta.shape[0])
for i, theta_n in enumerate(theta):

e = (theta_n - theta_star)**2
err[i] = e.sum()

plt.plot(err)� �
6. Using the vector err, determine approximately the number of iterations necessary to

obtain an accuracy ε = 10−2.

7. Plot the logarithm of ‖θn_iter−θ ∗‖2. Is the result consistent with what you expected
in question 3?

8. Adapt the code of Question 7 of the previous section to time your function fit_gd with
γ = 10−5 for various values of n_iter. To avoid “freezing” your computer, start with
small sample sizes n.

Stochastic Gradient Descent
Finally, we focus on the stochastic gradient descent {θ̂n}n>0 with constant step sizes γn = γ

given by θ̂0 = 0 and the recursion

∀n > 1, θ̂n = θ̂n−1− γ∇Jn(θn−1)

where, for any θ ∈ Rd+1, ∇Jn(θ) is the estimator of the gradient ∇J(θ) associated to the n-th
observation (xn,yn) ∈ Rd×{−1,1},

∇Jn(θ) =−2

(
yn−θ0−

d

∑
k=1

θkxk,n

)
×

1

x1,n
...

xd,n

 ∈ Rd+1.

1. Write a Python function gradJn that takes three arguments: the input vector xn, the
output value yn and the current state of the stochastic gradient descent theta. This
function must return the value of the gradient ∇Jn(theta).

2. We could now start our stochastic gradient descent by simulating the data one by one
(but with the same unit vector u, see Section Generate data) to take advantage of the
on-line property of the algorithm. However, this would make it difficult to compare
with θ ∗. Thus, we generate a whole data set of size n with which we can compute our
target θ ∗. Then, to simulate the on-line aspect of our approach, we randomly pick a
permutation of {1, . . . ,n} and we take the observations in the induced order to update
the stochastic gradient descent. We repeat this as many times as necessary to make
n_iter iterations. This procedure corresponds to the code below.

82 PRACTICALS 3 : Adaline� �
n = 256
x, y, u = generate_sample(n)
theta_star = fit_batch(x, y)

order = []
gamma = 1e-2
n_iter = 1000
theta = np.zeros((n_iter, x.shape[1]))
for k in range(1, n_iter):

if not order:
order = np.random.permutation(n).tolist()

I = order.pop()
theta[k] = theta[k-1] - gamma * gradJn(x[I], y[I], theta[k-1])� �

3. For any k ∈ {0, . . . ,d}, plot the difference θ̂n,k− θ ∗k to visualize how the stochastic
gradient descent behaves relative to θ ∗. Comment the aspect of this graphic.

4. Change the value of gamma. What happens when γ increases? And when γ decreases?

5. Add few lines to your code to compute the on-line averaged version of the stochastic
gradient descent, namely

∀n > 1, θ̄n =
1
n

n

∑
k=1

θ̂n = θ̄n−1 +
1
n

(
θ̂n− θ̄n−1

)
.

6. As in Question 3, for any k ∈ {0, . . . ,d}, plot the difference θ̄n,k−θ ∗k to visualize the
behavior of the averaged version. Increase the number of iterations if necessary.

n = 256
x, y, u = generate_sample(n)
theta_star = fit_batch(x, y)

order = []
gamma = 1e-2
n_iter = 1000
theta = np.zeros((n_iter, x.shape[1]))
for k in range(1, n_iter):
 if not order:
 order = np.random.permutation(n).tolist()
 I = order.pop()
 theta[k] = theta[k-1] - gamma * gradJn(x[I], y[I], theta[k-1])

Practicals 4 : Applications in Statistics

Mean estimation
Let’s start with the simple example we have seen in the lectures. Given a sequence {Xn}n>1 of
independent and identically distributed random variables, we consider the following stochastic
gradient descent algorithm to estimate the mean E[X1] = θ ∗ ∈ R. Let θ0 = 0, we define
{θn}n>0 through the recursion

∀n > 1, θn = θn−1− γn(θn−1−Xn)

where the step sizes are given by γn = γn−α with γ > 0 and α ∈ [0,1].

1. What are the random functions fn such that the recursion can be written as

∀n > 1, θn = θn−1− γn∇ fn(θn−1).

Verify that
∀n > 1, E[∇ fn(θ) | X1, . . . ,Xn−1] = 0 ⇐⇒ θ = θ

∗.

2. If γ = 1 and α = 1, what is θn? Compute the 1000 first iterations of the algorithm with
data randomly generated inline with a Gaussian distribution N (5,1). Plot the obtained
sequence to visualize how the estimation behaves.

3. Change the value of γ to 0.5 and 0.1. What happens when γ decreases?

4. Change the value of α to 0.75, 0.5, 0.25 and 0. How the estimators sequence evolves
when α decreases? What happens when α = 0?

5. Consider the averaged sequence {θ̄n}n>0 given by θ̄0 = 0 and the recursion

∀n > 1, θ̄n = θ̄n−1 +
1
n
(θn− θ̄n−1).

Change your code to simultanously compute θn and θ̄n. Plot the obtained sequences on
the same graph. Explain what happens when α decreases towards 0.

84 PRACTICALS 4 : Applications in Statistics

Regression model
We now return to the meteorological data contained in the file ozone.csv (see Practicals 2).
We propose to use a linear regression model to predict the variation of the ozone maximal
concentration y = maxO3−maxO3v between one day and the previous one with respect to the
variables

x1 = T18, x2 = Ne18 and x3 = Vx.

We have at our disposal n = 91 observations and, as usual, we denote by X the input matrix
of size n× 4 whose columns correspond to the intercept and the 3 input variables and by
Y = (y1, . . . ,yn)

> ∈ Rn the output vector. Thus, we are looking for θ ∗ given by

θ
∗ ∈ argmin

θ∈R4
‖Y −Xθ‖2.

To this end, we propose to use a stochastic gradient descent algorithm defined as follows. Let
{σN}N>1 be a sequence of independent uniform random permutations of {1, . . . ,n}, we define
the random functions sequence { fk}k>1 by

∀k > 1, θ ∈ R4, fk(θ) =

(
yσN(k)− x>

σN(k)
θ

)2

2
if k ∈ {(N−1)n+1, . . . ,Nn},

where, for any i ∈ {1, . . . ,n}, xi stands for the i-th row of X . Then, we introduce the sequence
{θk}k>0 given by θ0 = 0 and the recursion

∀k > 1, θk = θk−1− γk∇ fk(θk−1)

where the positive step sizes sequence {γk}k>1 remain to be defined.

1. Let N > 1 and k ∈ {(N−1)n+1, . . . ,Nn}, compute ∇ fk(θ) for θ ∈ R4 and prove that

E[∇ fk(θ) | σ1, . . . ,σN−1] = 0 ⇐⇒ θ = θ
∗.

2. Load the data set from the file ozone.csv (do not forget the column of X for the
intercept) and compute the optimal value theta_star of θ ∗ = (X>X)−1X>Y .

3. Let us first apply this algorithm with constant step sizes γk = γ > 0. Use the NumPy
function np.random.permutation to draw the random permutations of {1, . . . ,n} and
write a loop to compute the n_iter = 1000 first iterations of the stochastic gradient
descent that will be stored in a matrix theta of size n_iter× 4. Visualize how the
obtained coefficients behave with respect to θ ∗ and experiment with several values of γ

to get a “satisficient” result. Does the algorithm converge?

4. Modify your code to introduce the averaged version {θ̄k}k>0 given by θ̄0 = 0 and the
recursion

∀k > 1, θ̄k = θ̄k−1 + k−1(θk− θ̄k−1).

Visualize the obtained coefficients. Does the result seem better? Does it converge?

4.3 Ridge regression model 85

5. Consider the second averaging version {θ̃k}k>1 we have studied in the lectures defined
by θ̃0 = 0 and

∀k > 1, θ̃k =
2

k(k+1)

n

∑
`=1

`θ`−1.

Prove that the sequence {θ̃k}k>1 satisfies the recursion

∀k > 1, θ̃k = θ̃k−1 +
2

k+1
(
θk− θ̃k−1

)
.

Modify your code to compute inline {θ̃k}k>1. Visualize and comment the obtained
coefficients with respect to the previous averaging version.

6. We now consider decreasing step sizes γk = γ×dk/ne−α with α ∈ [0,1] where, for any
t ∈R, dte is the least integer greater than or equal to t (see the NumPy function np.ceil).
Adapt your previous code to take these step sizes into account and experiment with
several values of α . To what corresponds the case α = 0? What happens when α

increases? Take larger n_iter to clearly visualize the result if needed.

Ridge regression model
We consider the same notations and data set than in the previous section. During the lectures,
we have seen that in some situations (e.g. when X>X is not invertible), it is fruitful to handle a
regularized version of the least squares criterion, namely

θ
∗
λ
∈ argmin

θ∈R4
‖Y −Xθ‖2 +λ‖θ‖2

where λ > 0 is a regularizing parameter. Such an estimator is known as the Ridge regression
estimator.

1. Let J(θ) = ‖Y −Xθ‖2 +λ‖θ‖2, θ ∈ R4, compute the gradient ∇J(θ) and show that
the function J is 2λ -strongly convex.

2. Prove that the Ridge regression estimator is given by

θ
∗
λ
=
(

X>X +λ I4

)−1
X>Y

where I4 is the 4×4 identity matrix.

3. For λ ∈ {0, . . . ,100}, compute θ ∗
λ

and visualize how its coordinates evolve with respect
to the ones of θ ∗. We say that the Ridge regression “shrinks” the regression coefficients.

4. Let’s fix λ = 0.5, we propose to mimic the stochastic gradient descent algorithm
introduced in the previous section to compute θ ∗

λ
. Explain with your own words how to

set up this algorithm and, in particular, what random functions Jk you have to define.
The obtained sequence is denoted by {θ λ

k }k>0 in the sequel.

5. Implement your algorithm with decreasing step sizes and an averaged versions {θ̄ λ
k }k>0

and {θ̃ λ
k }k>0 of the stochastic gradient descent. Visualize the obtained coefficients and

compare them to the ones of θ ∗
λ

.

86 PRACTICALS 4 : Applications in Statistics

6. Compute and visualize the errors sequences {‖θ λ
k −θ ∗‖2}k>0, {‖θ̄ λ

k −θ ∗‖2}k>0 and
{‖θ̃ λ

k −θ ∗‖2}k>0. Discuss these results with respect to what we have seen during the
lectures. Using logarithmic scales should be useful to this end.

Logistic regression model
Finally, we consider the logistic regression as an example of a statistical methodology for
which there is not closed expression for the minimizer. To illustrate this procedure, we use the
data set given by the file chd.csv that contains n = 100 rows and two columns:

• age: the age of the patient,

• chd: a binary value equal to 1 if the patient suffers from coronary heart disease and 0
otherwise.

Thus, our goal is here to study the relation between age and chd through the logistic regression
model

Pθ (chd= 1 | age= x) =
exp(θ0 +θ1x)

1+ exp(θ0 +θ1x)

where θ = (θ0,θ1) ∈ R2 is an unknown paramater. Considering the opposite of the log-
likelihood function as the loss function for this problem, we define θ ∗ as a minimizer of the
empirical risk, namely

θ
∗ ∈ argmin

θ∈R2

n

∑
k=1

log(1+ exp(−(2chdk−1)(θ0 +θ1agek))) .

1. Load the data set from the file chd.csv (be careful, delimiter character is “;”) and
produce the scatter plot of the data. How the probability to suffer from coronary heart
disease seems to evolve when the age increases?

2. We proceed as with the regression model, let {σN}N>1 be a sequence of independent
uniform random permutations of {1, . . . ,n}, we define the random functions sequence
{ fk}k>1 by

(N−1)n+1 6 k 6 Nn, θ ∈ R2, fk(θ) = log
(

1+ e−(2chdσ(k)−1)
(

θ0+θ1ageσ(k)

))
.

Then, we introduce the sequence {θk}k>0 given by θ0 = 0 and the recursion

∀k > 1, θk = θk−1− γk∇ fk(θk−1)

where, for any k > 1, we have set the step size γk = γ × dk/ne−α with γ > 0 and
α ∈ [0,1]. Prove that, for any k > 1, the function fk is convex.

3. Let k > 1 and θ ∈R2, compute the gradient ∇ fk(θ). To this end, you can treat separately
the cases chdσ(k) = 0 and chdσ(k) = 1.

4. Implement the algorithm including the averaged versions of the stochastic gradient
descent and adjust the values of n_iter, γ and α to make it converge.

5. Plot the obtained sigmoid curve above the scatter plot. Does it fit well? What is your
conclusion about the relation between age and chd?

Practicals 5 : Going further

Mini-batch approach
In the lectures, we have studied two gradient descent algorithms:

• Batch Gradient Descent if we know an explicit form of the gradient of the function
to be minimized, we can compute it with the entire data set to update the gradient
descent sequence. We obtain an algorithm that is not often updated with a stable result.
However, each iteration can be time consuming for a large data set and the stability of
the algorithm can cause it to converge too quickly in some local minima.

• Stochastic Gradient Descent with only estimators of the gradient of the function to be
minimized, we can update the gradient descent sequence observation-by-observation
and thus provide an on-line estimation procedure. We get a frequently updated algorithm
with noisy progression that can help us avoid local pitfalls. Due to the many updates,
this approach can be computationally expensive and its random nature can lead to a
longer convergence time.

To find a trade-off between these two methods and try to exploit the advantages of each one,
there exists an intermediate approach referred as the mini-batch approach. The idea consists
in updating less often by accumulating a number m of observations called the mini-batch
size in the sequel. Thus, each step amounts to update the gradient descent sequence with the
help of these m observations. If we deal with a finite data set of size n, parameter m allows to
find a balance between the stochastic gradient descent (m close to 1) and the batch gradient
descent (m close to n). This approach is widely used nowadays when implementing machine
learning algorithms.

The choice of the mini-batch size m is not straightforward in practice and may depend
on various elements: data availability, semi real time needs, computational capacities of the
computer, . . . An interesting feature of modern computers is the vectorization that allows
making several similar computations in parallel. These tools are commonly more efficient
as the size of the data is aligned with that of the hardware. A good practice is to use powers
of 2 multiplied by 32 bits (32, 64, 128, 256, . . .) to take advantage of available vectorized
operations.

Let us illustrate this approach with the simple example of the mean estimation. Given a
sequence {Xn}n>1 of independent and identically distributed random variables, we plan to

88 PRACTICALS 5 : Going further

estimate the mean E[X1] = θ ∗ ∈ R. Using the quadratic loss function with m observations, we
have already seen that this problem amounts to minimize the random function

∀θ ∈ R, Jm(θ) =
1

2m

m

∑
j=1

(
X j−θ

)2
.

Thus, for a mini-batch size of m, the gradient used to update the algorithm is given by

∀θ ∈ R, ∇Jm(θ) = θ − X̄m

where X̄m is the empirical mean of the observations X1, . . . ,Xm. The mini-batch gradient
descent sequence {θ (m)

k }k>0 is given by θ
(m)
0 = 0 and the recursion

∀k > 1, θ
(m)
k = θ

(m)
k−1− γk∇Jm

(
θ
(m)
k−1

)
where we set the step sizes to γk = γ× k−α with γ > 0 and α ∈ [0,1].

1. Implement the above algorithm with data randomly generated inline with a Gaussian
distribution N (5,1). Run your code with various values of m to understand the role of
this parameter. Plot the obtained sequence to visualize how the estimation behaves.

2. To illustrate the link with the stochastic gradient descent, modify your code to also
compute the stochastic gradient descent sequence and its averaged versions. Be careful
to only compare what may be compared, i.e. for a mini-batch size m, the stochastic
gradient descent is updated for each observation while the mini-batch sequence is only
updated all m observations, thus {θ (m)

k }k>0 has to be compared to {θmk}k>0.

3. Consider again the exercises of the previous practicals and implement the mini-batch
approach for each of them. In particular, special attention should be paid to how to
get the m observations used by the mini-batch approach. A simple solution is to adapt
your existing code by keeping in memory the last m observations and by updating the
mini-batch sequence all m steps only.

An example of non-convex optimization
We now consider a variant of the regression model we have already handled. Thus, we use one
more time the meteorological data set given by the file ozone.csv. A question that naturally
arises with regression models is the relevance of the involved variables. In other words, we
have in mind to restrict our analysis to a subset of size s of the available variables through
a variables selection procedure. Given an input matrix X of size n× (d +1) and an output
vector Y = (y1, . . . ,yn)

> ∈ Rn, the minimization problem we have to solve amounts to seek
θ ∗ ∈ Rd+1 that exactly has s non-zero coordinates, formally

θ
∗ ∈ argmin

θ∈B0(s)
‖Y −Xθ‖2

where we have set

B0(s) =
{

θ = (θ0, . . . ,θd)
> ∈ Rd+1 such that]{i ∈ {1, . . . ,n} : θi 6= 0}= s

}
.

4.3 An example of non-convex optimization 89

Such a problem is referred as sparse regression problem. Although the statement may
seem simple at first sight, it is not an obvious problem and there is a vast literature on the topic.
It should be noted in particular that the sparse regression problem is known to be a NP-hard
problem. From the optimization point of view, our approach based on convex analysis tools
comes up against the fact that this problem is not a convex problem because B0(s) is not a
convex subset of Rd+1.

The approach we propose here to deal with sparse regression is called iterative hard-
thresholding and is based on a projected stochastic gradient descent procedure. First, we
define the projection onto B0(s) as follows. Let θ = (θ0, . . . ,θd)

> ∈ Rd+1, we denote by
I (θ) the set of the indices of the s largest coordinates of θ . Thus, the projection ps(θ) =
(p0, . . . , pd)

> ∈ Rd+1 of θ onto B0(s) is given by

∀i ∈ {0, . . . ,d}, pi =

{
θi if i ∈I (θ),

0 otherwise.

Then, we proceed as in the previous practicals by considering a sequence {σN}N>1 of indepen-
dent uniform random permutations of {1, . . . ,n} and we define the random functions sequence
{Jk}k>1 by

∀k > 1, θ ∈ Rd+1, Jk(θ) =

(
yσN(k)− x>

σN(k)
θ

)2

2
if k ∈ {(N−1)n+1, . . . ,Nn},

where, for any i ∈ {1, . . . ,n}, xi stands for the i-th row of X . The iterative hard-thresholding
sequence {θk}k>0 is given by θ0 = 0 and the recursion

∀k > 1, θk = ps (θk−1− γk∇Jk(θk−1))

where we set the step sizes to γk = γ×dk/ne−α with γ > 0 and α ∈ [0,1].

1. Prove that the subset B0(s)⊂ Rd+1 is not convex.

2. Let θ ∈Rd+1, prove that ps(θ) is the orthogonal projection of θ onto B0(s) in the sense
that it satisfies

ps(θ) ∈ argmin
p∈B0(s)

‖θ − p‖2.

3. Write a Python function proj that takes two arguments: a NumPy vector theta and an
integer s. This function must return the projection of the vector theta onto B0(s) as a
NumPy vector.

4. Implement the iterative hard-thresholding algorithm and apply it to the ozone data set to
select s = 3 variables among the 11 variables (T6, T9, T12, T15, T18, Ne6, Ne9, Ne12,
Ne15, Ne18 and Vx) to explain the ozone variation Y = maxO3− maxO3v. Tune the
parameters γ and α and the number of iterations needed to converge. Visualize the
obtained coefficients and discuss how they evolve.

5. What are the selected variables? Adapt your code to always keep the intercept and
selecting the s variables only among the relevant ones.

6. Modify your code to also compute the averaged versions of {θk}k>0 (take care of how
you handle the projection, the averaged versions must also belong to B0(s)) and the
mini-batch approach.

	Foreword
	Motivations
	Statistical framework
	Examples
	Big data
	Optimization

	Mathematical background
	Preliminaries
	Convexity
	Strong convexity

	Stochastic Algorithm
	Simple examples
	A general definition
	Limiting differential equation
	Theoretical guarantees

	Non-asymptotic properties
	Framework
	Rate of projected stochastic gradient descent
	Rates of stochastic gradient descent

	Practicals 1 : Introduction to Python
	What is Python?
	About Python version
	Where to find help?
	First steps
	Of Variables and Types
	Containers
	Control flows
	Functions
	Modules, packages and import
	Standard library
	Exceptions
	A glance at object-oriented programming
	A recapitulative exercise

	Practicals 2 : Python for scientists
	NumPy
	Matplotlib
	Pandas
	A recapitulative exercise

	Practicals 3 : Adaline
	Introduction
	Generate data
	Batch approach
	Gradient Descent
	Stochastic Gradient Descent

	Practicals 4 : Applications in Statistics
	Mean estimation
	Regression model
	Ridge regression model
	Logistic regression model

	Practicals 5 : Going further
	Mini-batch approach
	An example of non-convex optimization

