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Practicals 5 : Perceptron

1 Framework
The aim of this last session is to introduce the basics of neural networks theory through the

special case of the perceptron. We will see that there exist many kinds of perceptron and we will
focus on some of them to handle supervised learning problems in practice.

As usual, to get the data and some graphical functions in the sequel, we load the script tp5.R,

source("http://www.math.univ-toulouse.fr/~xgendre/ens/m2se/tp5.R")

2 Neuron concept
A neuron is a mathematical object that was first introduced, among other reasons, to model

how the human brain works from the point of view of the cognitive sciences. Connecting several
neurons, we give form to a neural network. We are not going here to speak about the parallel
between the biological concept of a neuron and this mathematical approach. The interested reader
will find a lot of additional informations on the internet.

2.1 Introduction
A neuron is the atomic computing unit of a neural network. From a very general outlook, it

returns some output information from several input data. The inputs can be the outputs of
other neurons in the framework of a network. More precisely, we denote by x1, . . . , xn ∈ R the
inputs and, for each i ∈ {1, . . . , n}, we give a weight wi ∈ R to xi. Unlike what we have seen
during the lecture, here, the weights wi are real numbers that can be negative with a sum not
necessarily equal to 1. We also introduce a weight w0 ∈ R, called bias coefficient, associated to
a virtual input x0 = −1 that will play a particular role in the sequel. Each neuron does not deal
with all the xi’s but only with the weighted mean,

x̄ =

n∑
i=0

wixi =

n∑
i=1

wixi − w0 .

The goal of a neuron is to give an answer y in [0, 1] from x̄. To that purpose, we use a function
g : R→ [0, 1], called activation function. When the output is close to 1, we say that the neuron
is active and if the output is close to 0, we say that the neuron is inactive. Thus, the answer
given by the neuron is defined as

y = g(x̄) = g

(
n∑

i=1

wixi − w0

)
.

Let us notice that if g is a linear function of the inputs, this model is equivalent to the linear
regression. Of course, neural networks become more interesting when g is not linear. According to
the definition, any function with values in [0, 1] can be used as an activation function. Nevertheless,
two particular functions are often used in practice :



– Heaviside step function,

∀x ∈ R, g(x) =

{
1 if x > 0,

0 otherwise.

plot(Heaviside, xlim=c(-5,5))

– Sigmoid function,

∀x ∈ R, g(x) =
1

1 + e−x
.

plot(Sigmoide, xlim=c(-5,5))

These two functions are nondecreasing and the advantage of the sigmoid is to be differentiable on
R. These two functions switch from inactivity to an active state when x̄ becomes larger than 0.
Thus, the role of the bias coefficient is to set where this happens around w0,

x̄ =

n∑
i=1

wixi − w0 > 0⇔
n∑

i=1

wixi > w0 .

Using vectors, we can write x = (x1, . . . , xn)′ ∈ Rn, w = (w1, . . . , wn)′ ∈ Rn and define x̄ as
the scalar product of these vectors,

x̄ = w · x− w0 .

The frontier between active and inactive states is then given by the set

Xw = {x ∈ Rn such that w · x = w0} .

If w 6= 0, the space Xw is a hyperplane that splits Rn into two parts according to w · x is greater
or smaller than w0. So, the principle of a neuron is to split the space of the variables into two
parts : one where the neuron is active, the other where the neuron is inactive. More generally, a
neural network leads to several splits of the space that we will use to produce some puzzle. On
each piece of space, the network will take a particular state that we can associate, for example, to
a given cluster in a supervised learning problem.

2.2 First examples
To illustrate the introduced ideas, we take the basic case of n = 2 binary variables (i.e. with

values in {0, 1}) and the Heaviside step function as activation function. This case is very simple
because the pair of input variables (x1, x2) can only take 4 distinct values which can be summarized
in a truth table with the value taken by the output variable y in the last column,

x1 x2 y
0 0 y00
0 1 y01
1 0 y10
1 1 y11

Being given the values taken by y, the arising question is to find a neural network compatible with
these data.

First, we are going to study a toy example where only one neuron is enough : the binary
operator OR related to the following table,

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 1



Because there are only two variables, we can draw these data in the plane with distinct colors, red
for 0 and blue for 1,

plot(x1b, x2b, col=yOR)

With the help of the function abline, find and plot a straight line that splits these points according
to their colors. Doing a parallel with the previous section, deduce three real numbers w0, w1 and
w2 such that y is equal to 1 if and only if w1x1 + w2x2 > w0. In particular, verify that w0 = 1/2
and w1 = w2 = 1 do the job. The network (of one neuron) that we have just described if sometimes
represented as in Figure 1.
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Figure 1 – Operator OR neuron

You can do the same exercise for the operator AND given by the following truth table,

x1 x2 y
0 0 0
0 1 0
1 0 0
1 1 1

which you can plot with the command

plot(x1b, x2b, col=yAND)

In particular, find some values w0, w1 and w2 appropriated to this neuron.
Consider now the case of the operator XOR given by

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

and plotted with

plot(x1b, x2b, col=yXOR)

What is the problem here ? This problem cannot be solved with only one neuron and we will be
back to that later.



3 Single layer perceptron

3.1 Neural network
The first neural network that we consider is known as the single layer perceptron. The neurons

are not really organized as in a network but can be seen as a set. As in Section 2.1, we deal with
n input variables x1, . . . , xn ∈ R. The single layer perceptron is composed of p neurons, each one
being connected to all the input variables. On the whole, this network has n inputs and p outputs
and it can be represented as in Figure 2.

x1 x2 x3 x4

w0
1 w0

2 w0
3

y1 y2 y3

Figure 2 – Single layer perceptron with n = 4 inputsand p = 3 outputs

We denote the input vector by x = (x1, . . . , xn)′ ∈ Rn, the output vector by y = (y1, . . . , yp)′ ∈
[0, 1]p and, for any j ∈ {1, . . . , p}, wj

0 ∈ R is the bias coefficient of the j-th neuron. Moreover,
for any i ∈ {1, . . . , n} and any j ∈ {1, . . . , p}, wj

i ∈ R is the weight associated to xi by the j-th
neuron. Then, we define the n× p weight matrix W = (wj

i )i,j .

3.2 Supervised learning
The neural network of the single layer perceptron allows us to build a classification procedure

into p clusters by considering each neuron as a score. The cluster returned for some input vector is
the one associated to the neuron giving the maximal output. Building such a procedure amounts
to compute the bias coefficients w1

0, . . . , w
p
0 ∈ R and a weight matrix W . As we did for the other

supervised learning methods, we are going to handle this one from a labeled dataset by considering
the weights and the bias coefficients that lead to some minimal criterion (least squares, entropy,
. . .).

We do not develop here the optimization algorithms used in practice for getting W and the
wj

0’s. Classical approaches are based on gradient descent techniques. Among them, the algorithm
of Widrow-Hoff (a.k.a. delta rule or back propagation) is one of the most popular. The interested
reader will find explanations, proofs and implementations in the references given at the end of this
document.

To put into practice the single layer perceptron, we use the package neuralnet (if needed,
install it with install.packages("neuralnet")). This package implements, among other things,
the Widrow-Hoffmethod and its main function is neuralnet,



library(neuralnet)

## Loading required package: grid
## Loading required package: MASS

help(neuralnet)

Let us apply that to a fertility dataset about 248 women that comes from the work of Trichopoulos
et al. (1976). These data are reachable in the R software with infert. To get more details, read
the fine manual,

help(infert)

The function neuralnet is similar to lm. The three main parameters to give are :
formula to indicate what is the variable to explain and what are the explanatory variables.

Its syntax is the same as in the function lm and additinal informations can be found in
the manual pages about R object formula. We simply deal with the variable infert_form
defined by
infert_form <- case~age+parity+induced+spontaneous

data the dataset that contains the variables used in the formula. Here, this is infert.
hidden this parameter will be explained in the next section and, for the single layer perceptron,
it suffices to set it to 0.

Let’s go for a first try with the following command,

mono <- neuralnet(infert_form,data=infert,hidden=0)

There are various ways for getting details about the obtained perceptron. For example,

mono
mono$result.matrix

With the help about objects defined in neuralnet, explain what does represent the value Steps ?
What is the error measurement ? Where can we get the weights ? et cætera . . .

Of course, we can get a picture of this perceptron,

plot(mono)

Explain what you see on this graph. Moreover, if you have at your disposal some new inputs, you
can apply the neural network to them with the function compute,

help(compute)

4 Multilayer perceptron
It is possible to generalize the perceptron by piling up several single layer perceptrons. In such

a procedure, the outputs of one layer are the inputs of the next one. This neural network is, of
course, more complicated but can be used in the same way as the single layer perceptron. The main
benefit is the ability to approximate nonlinear behaviours and to get smaller errors on the training
dataset (better adequation to the data) at the cost of an higher complexity (does it remind you
something ?).



For a two layers perceptron with n inputs and p outputs, we have to choose how many neurons
we put on the transitional layer. In practice, this is often better to have too much hidden neurons
than not enough if we plan to capture nonlinear phenomena. However, if we use too much neurons,
we take the risk of an overfitting behaviour on our training dataset. In practice, we can tackle this
problem through cross validation. The parameter of neuralnet that sets the number of hidden
neurons is hidden. To compute the two layers network with 2 hidden neurons,

multi <- neuralnet(infert_form,data=infert,hidden=2)

Compare the error with the one obtained in the single layer case. Plot this neural network and
modify the parameters to understand their roles (especially algorithm).

To conclude, we propose to go back to the toy problem of the binary operator XOR seen in
Section 2.2. We create a simple dataset xor_data and a first perceptron with what follows,

x1 <- c(0,0,1,1)
x2 <- c(0,1,0,1)
y <- c(0,1,1,0)
xor_data <- matrix(c(x1,x2,y),ncol=3)
colnames(xor_data) <- c("x1","x2","y")
perceptron <- neuralnet(y~x1+x2,data=xor_data)

Vary the parameter hidden and study the perceptrons that you get from the point of view of
the smallest error. Repeat the computation (see the parameter rep in neuralnet) to describe
a "good" network structure for XOR. Introduce a new input variable x3 <- c(0,0,0,1). What
does represent x3 ? Compute again the perceptrons and find a neural network for the operator
XOR.
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