
Université Paul Sabatier M2 SE Data Mining

Practicals 4 : Unsupervised learning

1 Framework
To illustrate the two unsupervised learning methods studied during the lecture, we propose to

handle road data from the french institute IGN. This dataset includes distances between 47 french
cities and border places by road.

To load these data and some useful functions used in the sequel, we begin by loading the script
tp4.R,

source("http://www.math.univ-toulouse.fr/~xgendre/ens/m2se/tp4.R")

We always manipulate the same data in the sequel, thus we now put them in the data matrix X,

X <- DataVilles()

2 k-means
The k-means clustering allows us to classify the individuals into k groups for some fixed k.

With the R software, we have at our disposal a function called kmeans to compute this clustering.
The manual page help(kmeans) is brief but we read that to get the clustering into k = 5 classes,
we just need the following command,

cmob <- kmeans(X, 5)

The obtained object cmob contains various informations. Among them, we have :
cmob$cluster vector of integers between 1 and k that gives the group index of each individual,
cmob$centers matrix of the distances between the individuals and the center of each class,
cmob$size sizes of the classes.

We can print the result of the clustering on a map with

AfficheVilles(cmob$cluster)

Run again the command that gave you cmob and display the result on a map. What do you notice ?
Explain why the result is not the same at each time.

To stabilise this variability, it is possible to give to kmeans the initial centers of gravity. We
will use this approach in Section 4. An other way amounts to repeat several times the procedure
and to take the clustering with the minimal criterion (see details in the lecture). To try this, we
can deal with the variable cmob$tot.withinss. With the help of the manual page, understand
the meaning of this value. Compute several times the clustering and print the corresponding value
cmob$tot.withinss. Explain with your own words why we do that and how it can help us.

As we have seen during the lecture, we also can consider a robust variant of the k-means called
PAM (Partitioning Around Medoids). The R package cluster provides a function pam to use this
procedure,



library(cluster)
help(pam)

The function pam is similar to kmeans and we get a clustering into 5 classes with the next com-
mands,

cpam <- pam(X,5)
AfficheVilles(cpam$clustering)

Do some tests and compare the results obtained by kmeans and pam. What is the content of
cpam$id.med ? Use this variable and function VillePos to locate the medoids on the map.

3 Hierarchical clustering
The main drawback of procedures like k-means and its variants is the needed prior knowledge

of the number of classes. To bypass this problem, various methods exist and, among them, we have
considered the hierarchical clustering. To compute it, the R software has the function hclust,

help(hclust)

Here, we only use the two first parameters of this function :
d data given by a matrix of dissimilarities (we use as.dist to convert our matrix X),
method method to compute the similarity between two clusters (single linkage, complete lin-

kage, . . .).
We can display the obtained dendrogram with the classical function plot applied to the object
returned by hclust. Thus, we get the following result for the hierarchical clustering computed
with the Ward’s method,

cah <- hclust(as.dist(X),method="ward.D2")
plot(cah)

The instance cah contains several informations whose the heights of the branches. We can see the
scree of these heigths,

plot(rev(cah$height),type="b")

With the help about hclust, compute the hierarchical clustering for the various methods seen
during the lecture. Compare the results you obtain.

To get the actual clustering, we also need to cut the tree at some height. The function
rect.hclust can be used to plot this cut of the tree for a given number k of clusters or a fixed
height h.

plot(cah)
rect.hclust(cah, k=5, border="red")
rect.hclust(cah, h=1500, border="blue")

The function cutree is used to get the cluster indices,

help(cutree)

This function can return the clustering by choosing a number k of classes or by cutting at a given
height.



cluster1 <- cutree(cah, k=5) # 5 classes
cluster2 <- cutree(cah, h=1000) # height 1000

Display the clusterings obtained in cluster1 and cluster2. Make vary the values k and h and
the aggregation method. Comment the various results that you get.

4 Stabilisation
During the lecture, we have seen that the scree of the heights given by the hierarchical clustering

can help us to select a number of classes. Recall how we did that and discuss about the number
of clusters that is choosen for each aggregation method.

In particular, to get a stable result that profit by the two methods studied in these practicals,
we can use the number of clusters given by the hierarchical clustering in any of the variants of
k-means. In such a case, we also can initialize the procedure with the clusters from the hierarchical
clustering. Explain and run the few next commands,

cah <- hclust(as.dist(X),method="ward.D2")
cluster <- cutree(cah, h=2000)
AfficheVilles(cluster)

nc <- max(cluster)
init <- c()
for (i in 1:nc) init <- rbind(init, colMeans(X[cluster==i,]))
cmob <- kmeans(X,init)
AfficheVilles(cmob$cluster)

Do other tests around this procedure. Try to use PAM, to change the aggregation method, to
change h, . . .


