
Université Paul Sabatier M2 SE Data Mining

Practicals 3 : Supervised Learning

1 Framework
During the lecture, we have introduced two methods to handle the problem of supervised

learning. The first one, the Multiple Discriminant Analysis (MDA), is based on an adapted PCA
and the other one, the Classification And Regression Tree (CART), is a predictive method built
from some binary decision tree.

To get the data and some useful graphical functions for the sequel of these practicals, we start
by loading the script tp3.R,

source("http://www.math.univ-toulouse.fr/~xgendre/ens/m2se/tp3.R")

We will also use the package rpart. If this package is not installed, you can do it with the command
install.packages("rpart", dependencies=TRUE).

2 Lubischew’s insects (MDA)
The example used during the lecture to illustrate the MDA is related to some dataset based

on physical measures of insects. We have at our disposal p = 6 measures taken on n = 74 insects
distributed among three species numbered from 1 to 3 in the sequel. To obtain this dataset,

X <- DataLubischew()

As usual, each line of the data matrix X contains the measures relative to one individual. Moreover,
we also have an extra column for the label of each individual (i.e. the species of the insect).

To illustrate the differences between PCA and MDA for this dataset, let us begin by drawing
the data in the principal plan.

Xbar <- scale(X[, 1:6], scale = F)
Sigma <- t(Xbar) %*% Xbar/nrow(Xbar)
ACP <- eigen(Sigma)
C <- Xbar %*% ACP$vectors
cos2 <- rowSums(C[, 1:2]^2)/rowSums(C^2)
plot(C[, 1:2], cex = cos2)

Comment this graph. Are you able to discriminate three groups of insects ? Compare your intuition
with the help of the following command,

plot(C[, 1:2], cex = cos2, col = X[, 7])

To set up the MDA procedure, we need the matrix T that assigns each individual to the group
of its label.

T <- matrix(0, nrow = nrow(X), ncol = 3)
for (i in 1:nrow(X)) T[i, X[i, 7]] <- 1

Check and explain the content of this matrix. Each label defines a group of individuals. Using
uniform weights, each group can be weighted proportionally to its size.

W <- diag(rep(1/nrow(X), nrow(X)))
Wbar <- t(T) %*% W %*% T

To pull apart the variance between and the variance within, we consider the matrix G that contains
the centers of gravity of each group and its centered version Gbar.

G <- diag(1/diag(Wbar)) %*% t(T) %*% W %*% X[, 1:6]
g <- colMeans(X[, 1:6])
Gbar <- G - c(1, 1, 1) %*% t(g)

This last matrix allows us to compute the between variance matrix,

SigmaB <- t(Gbar) %*% Wbar %*% Gbar

Take the time to understand the previous lines. In particular, you can verify that the matrix Wbar
is diagonal. Moreover, its diagonal elements are the weights of the groups, by definition. Writing
the expression G[i,j], you can also verify that the lines of G contain the centers of gravity of the
groups.

We have seen that doing a MDA amounts to compute the PCA of Gbar with the weight
matrix Wbar and the Mahalanobis’ distance given by the inverse of Sigma. Thus, we can do the
computations as we did in the previous practicals,

M <- solve(Sigma)
EigenM <- eigen(M)
P <- EigenM$vectors
Mhalf <- P %*% diag(sqrt(EigenM$values)) %*% t(P)

Gprime <- Gbar %*% Mhalf
AFD <- eigen(t(Gprime) %*% Wbar %*% Gprime)

C <- Xbar %*% Mhalf %*% AFD$vectors
Cbar <- Gprime %*% AFD$vectors

Explain the computation of Mhalf and recall why it is easier to handle Gprime than Gbar for our
computations.

In a MDA with m groups, we know that there is only κ = min(m−1, p) non trivial eigenvalues.
What is the value of κ for our data ? Comment the results of the following command,

cumsum(AFD$values)/sum(AFD$values)

What is the value of AFD$values[1] and how do you interpret that ? We finish with a plot of the
results of the MDA in the plan,

plot(C[, 1:2], col = X[, 7])
points(Cbar[, 1:2], pch = 15)

Compare this graph with the one obtained from PCA.

3 Mails and spams (CART)
We now focus on the CART procedure and the mail/spam data of Hewlett-Packard. This

dataset contains n = 4601 mails with 1813 spams among them and, for each mail, we have p = 57
variables relative to some word frequencies, to some character frequencies and to sequences of
capital characters. These data can be obtained with the command,

X <- DataSpam()

Our goal is to provide a supervised learning procedure. This time, there are 2 labels : "Mail" and
"Spam". Explain why the MDA can only provide a limited answer to this problem. To check if
the label of a mail is "Mail" or "Spam", we use the last column of X, called Status,

X$Status

To set up the procedure, we use the package rpart. Let us load it and have a look to the manual
pages related to the main functions,

library(rpart)
help(rpart)

You see in these pages that there are three mandatory parameters for the function rpart :
formula this parameter indicates what is the variable to explain and what are the explanatory
variables. The syntax is common for the R software and is the same as the one for the function
lm. We do not give more details here about R objects of type formula and we will use the
variable spam_form defined as follows,

spam_form <- paste("Status ~ ", paste(colnames(X)[1:57], collapse = " + "))

method as explained during the lecture, the CART procedure can be handled for other aims
than supervised learning. Here, we just want to classify the data, then we choose the value
"class".

data this is the set of data used in the above formula. For us, this is simply X.
Thus, we get our first decision tree with the command

tree <- rpart(formula = spam_form, method = "class", data = X)

The command print(tree) displays the variables and the thresholds computed for each binary
test and summary(tree) gives you more informations. To print the tree, you can run the following
commands,

plot(tree, uniform = TRUE)
text(tree, all = TRUE)

Take some time to read the manual page about text.rpart in order to understand all the infor-
mations that you can display on the tree. Comment these results.

During the lecture, we have discussed about the problem of overfitting due to a too great
adequation to the data. In particular, we have introduced a penalized procedure for pruning a
decision tree to close to the dataset. The command rpart proceeds in the same way and the control
parameters are passed through the argument control. Read the manual pages about the object
rpart.control for more details. Consider now the tree obtained by the following commands,

spam_ctrl <- rpart.control(cp = 1e-04)
tree <- rpart(formula = spam_form, method = "class", data = X, control = spam_ctrl)

What is the role of the parameter cp ? Change this value and comment what you get. What is the
link with the pruning method seen during the lecture ?

To conclude, let us prune by ourselves the large tree obtained with the parameter cp=0.0001.
A common method to do that amounts to estimate the error rate by cross-validation (see the
parameter xval of spam_ctrl). This error is computed by rpart and you can read it with the
command printcp(tree) in the column xerror. It is feasible to see this error with respect to the
size of the tree,

plotcp(tree)

What is the value of cp suggested by this graph ? Prune the tree with this value with the function
prune. Does the result seem satisfactory ? What is the problem ? With the help of the informations
given by tree$cptable, propose a method similar to the one seen during the lecture for doing a
"graphical" choice of the value cp.

