Introduction to

Xavier Gendre

September 21, 2017

Contents

1 Preliminaries 4
1.1 What is R? 4
1.2 Working with R 4
1.3 Getting help 5
1.4 Packages 6
2 Basic concepts 8
2.1 Variables and types 8
2.1.1 Variables 8
2.1.2 Scalars 8
2.1.3 Vectors 9
2.1.4 Matrices 10
2.1.5 Arrays 11
2.1.6 Lists 11
2.1.7 Data frames 12
2.2 Input and output 12
2.2.1 Importing a data set 12
2.2.2 Exporting a data set 13
2.3 Graphic functions 14
2.3.1 Discrete and qualitative data 14
2.3.2 Quantitative data 14
2.3.3 2D Graphics 15
2.3.4 Headed to 3D 16
2.3.5 Exporting graphics 17
2.4 Programming 17
2.4.1 Conditionals 17
2.4.2 Loops 18
2.4.3 Functions 19
2.5 A bit of statistics 20
2.5.1 Distribution 20
2.5.2 Statistical tests 21
2.5.3 Univariate and bivariate analysis 21
2.5.4 Linear regression 22
3 Advanced concepts 23
3.1 Specific data manipulation 23
3.1.1 Character strings 23
3.1.2 Factors 24
3.1.3 Sets 24
3.1.4 Dates and time 25
3.1.5 Merging and aggregating data frames 25
3.1.6 Files and directories 27
3.2 More programming 28
3.2.1 Avoiding loops 28
3.2.2 Advanced functions 28
3.2.3 Non-interactive mode ($B A T C H$) 29
3.2.4 Debugging 30
3.2.5 Writing scripts 31
3.2.6 Calling C from R 32
3.2.7 Parallel computing 34
3.2.8 Classes 34
3.3 More graphics 36
3.3.1 Plot arrangements 36
3.3.2 Graphical Parameters 37
3.3.3 Axes and margins 37
3.3.4 Mathematical formulas 38
3.3.5 Plotting networks 38
3.3.6 Geographical maps 39
3.4 Integrating R 39
3.4.1 R and OpenDocument 39
3.4.2 LATEX 40

Acknowledgements

This document is essentially based on the two french papers written by Sébastien Déjean and Thibault Laurent,

- Pour se donner un peu d'R, Sébastien Déjean http://www.math.univ-toulouse.fr/~sdejean/PDF/un-peu-d-R.pdf
- Encore besoin d'R?, Sébastien Déjean and Thibault Laurent http://www.math.univ-toulouse.fr/~sdejean/PDF/R-avance.pdf

I deeply thank the authors for allowing me to use their great works.

1 Preliminaries

1.1 What is R ?

According to The R Project for Statistical Computing,
R is a language and environment for statistical computing and graphics. It is a GNU project (https://www.gnu.org/) which is similar to the S language and environment which was developed at Bell Laboratories (formerly AT\&T, now Lucent Technologies) by John Chambers and colleagues. R can be considered as a different implementation of S . There are some important differences, but much code written for S runs unaltered under R .

R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, ...) and graphical techniques, and is highly extensible. The S language is often the vehicle of choice for research in statistical methodology, and R provides an Open Source route to participation in that activity.

One of R's strengths is the ease with which well-designed publication-quality plots can be produced, including mathematical symbols and formulae where needed. Great care has been taken over the defaults for the minor design choices in graphics, but the user retains full control.
R is available as Free Software under the terms of the Free Software Foundation's GNU General Public License (https://www.r-project.org/COPYING) in source code form. It compiles and runs on a wide variety of UNIX platforms and similar systems (including FreeBSD and Linux), Windows and MacOS.

Novice and experienced R users can consult the R project homepage,
https://www.r-project.org/
and The Comprehensive R Archive Network

```
https://www.cran.r-project.org/
```

They will find all the useful resources: how to install, updates, packages, FAQ, newsletter, documentation, etc.

1.2 Working with R

There are various ways to work with R : entering commands through the R prompt, writing executable scripts or using a graphical user interface (R Commander, RGui, RStudio, etc). In the sequel of this document, we will use the R prompt and give commands to illustrate the discussed topics. We make this choice for two reasons,

- whatever your operating system and the software you use to deal with R, you have a R prompt at your disposal,
- 'click-button' interfaces usually hide important things while entering the commands allow to highlight key concepts.

In the sequel, the R commands will be written in verbatim style. R commands to be experimented are highlighted in the following way,

```
R > help(plot)
R > print(
+ > "Hello world!"
+ > )
```

Note the convention used for the prompt: $\mathbf{R}>$ stands for the R prompt, it does not have to be entered in the command line. The R prompt becomes $+>$ when a command is incomplete, in such a case the command spreads over several lines until it is finished.

In R language, a comment starts with a character \# and anything after it until the end of the line won't be interpreted. Using comments is a good habit, especially when you write scripts.

Any R function needs to be followed by a pair of brackets containing its arguments. If the function takes no argument, you still have to put an empty pair (). Indeed, without brackets, the function is not called but its code is displayed (this is often not what we want).

```
R > # It is a comment
R > print( # Comments can be put at the end of a line
+ > "R is fun!")
R > q # Without brackets, show the code
R > q() # With brackets, quit R
```


1.3 Getting help

R provides a large range of help pages. They are very helpful and they constitute a good starting point when you need to use a new tool. To reach them, you can use the function search or the prefix ?. As an example, the help about the function plot is accessible as follows,

```
R > help(plot)
R > ?plot # Shortcut version
```

Generally, the help pages consist of the following sections:

- Description
- Usage
- Arguments
- Details
- Value
- Note
- Authors
- References
- See Also
- Examples

The names of these sections are quite self-explanatory to understand what they contain. For novices, the more useful sections are the last two. Section See Also contains links to other functions related to the searched one, this is often fruitful to follow these links in order to get a good outlook. Section Examples allows to learn how to use the function by giving working commands that you can directly copy-paste.

If you do not know the name of the function to use or if you want to look for general words, you can search for a given word among all the help pages. To do this, you can use the function help. search or the prefix ??. To get a lot of information about how to plot graphics with R, you can enter:

```
R > help.search("plot")
R > ??plot # Shortcut version
```

You obtain a list of functions prefixed by the name of the related package (see below) and : : and followed by a brief description. Thus, you can call help to get more informations. To get more informations about help and help.search,

```
R > help(help) # Yes, it works!
R > help(help.search)
```


1.4 Packages

A R package is a set of functions (and sometimes also data) offered by the community of R users for extending the R language. Usually, a package is devoted to a specific task described by its name. At the time of writing this document, the package repository of the CRAN (Comprehensive R Archive Network) features 7111 available packages.

To use a function provided by a package, you need two preliminary steps:

- installation: the function install. packages permits to get the sources and to install a package. This step only has to be done one time for each package you need.
- loading: the function library loads the package in the current R environment and allows you to use its functions. This step needs to be done each time you start R and you need the package.

It is wise to keep your packages up to date. To this end, you should regularly run the command update. packages.

To list all the installed packages (but not necessarily loaded), simply run library without argument. The command search gives you the list of all the packages currently loaded. To get the content of a loaded package, we can call the function ls by giving it the index of the package in the list returned by search. Here is an example for the package foreign,

```
R > install.packages("foreign") # Install the package
R > library() # Check if the package is installed
R > library(foreign) # Load the package
R > search() # Check if the package is loaded, often in position 2
R > ls(pos=2) # List content of the package
R > update.packages() # Update installed packages
```


2 Basic concepts

This section mainly focus on manipulating the various types of elementary objects defined in R. We also broach the ways to import and export data.

2.1 Variables and types

2.1.1 Variables

```
R > a = 17
R > b <- 8
R > 17 -> c
R > a + b + c
R > z_42 <- "Hello"
R > z_42 <- a + b + c
R > ls()
R > objects()
R > rm(z_42)
R > remove(a)
```

- A variable name starts with a letter and can only contain alphanumeric characters and '.'.
- To assign a value to a variable, you can use the operators $=$ or <-. There also exists the operator $->$ for which the variable to be assigned has to be placed after the operator.
- The functions ls and objects return a list the objects defined in the current environment.
- The functions rm and remove can be used to remove objects.

2.1.2 Scalars

```
R > a <- 2 + 2
R > pi
R > cos(3*pi/2)
R > b <- exp(8.17)
R > typeof(a)
R > typeof(b)
R > typeof (a + b)
R > s <- "Hello"
R > typeof(s)
R > 2 == 3
R > t <- 2 < 3
R > typeof(t)
```

- The function typeof determines the R internal type of any object.
- Identify the different types of objects.

2.1.3 Vectors

```
R > v1 <- c(2, 3, 5, 8, 4, 6); v1
R > typeof(v1) # Type of elements
R > is.vector(v1)
R > c(1, 3.14, "Hello")
R > 1:10
R > seq(from=1, to=20, by=2)
R > seq(1, 20, by=5)
R > seq(1, 20, length=5)
R > rep(5, times=10)
R > rep(c(1, 2), 3)
R > rep(c(1, 2), each=3)
R > v1[2]; v1[2:4]; v1[c(1, 4)]
R > v1[-3]
R > v1[-1:2] # Error, why?
R > v1[-(1:2)]
R > v1[3] <- NA; v1
R > summary(v1)
R > is.na(v1)
R > help(NA)
R > any(is.na(v1))
R > all(is.na(v1))
R > v2 <- c(a=32, b=26, c=12, d=41)
R > v2["b"] <- 22; v2
R > names(v2)
R > names(v2) <- c(
+ > "a1", "a2", "a3", "a4")
R > v2 > 30
R > v2[v2 > 30]
R > which(v2 > 30)
R > v2 + 100
R > v1 + v2 # Error, why?
R > 1:4 + v2; 1:8 + v2
R > cos(v2)
R > length(v2)
R > sort(v2)
```


Questions

1. Describe the various arguments of the function seq.
2. Describe the various arguments of the function rep.
3. What is the function unique? Give an example use case of this function.

2.1.4 Matrices

```
R > A <- matrix(1:15, ncol=5)
R > A; t(A)
R > B <- matrix(1:15, nc=5, byrow=TRUE)
R > B2 <- B; B2[1, 1] <- "Hello"; B2
R > typeof(B); typeof(B2)
R > cbind(A, B)
R > rbind(A, B)
R > A[1, 3]; A[2,]; A[, 2]
R > A[1:3, 2:4]
R > g <- seq(0, 1, length=20)
R > C <- matrix(g, nrow=4)
R > C[C[, 1] > 0.1,] # ***
R > A + B; A * B # Elementwise
R > A %*% t(B) # Matrix product
R > cos(A)
R > I <- diag(rep(1, 2))
R > diag(A)
R > D <- solve(A[1:2, 1:2])
R > all(A[1:2, 1:2] %*% D == I) # Why?
R > apply(A, 2, sum)
R > apply(A, 1, max)
```

- Matrices are constructed with the function matrix. Note that the arguments of matrix can be ambiguous (e.g. nc for ncol).
- Function t returns the transposed matrix.
- Like vectors, matrices contain only one type of data.
- To extract a submatrix or access to some elements, use the operator []. First argument is for the row index, second one is for column index.
- Be careful with standard operators like + or $*$, they act element by element. The matrix product operator is $\% * \%$.
- Various operations can be done on matrices up to some length restrictions.
- You can create diagonal matrix with diag. This function can also extract the diagonal elements of a matrix.
- To inverse an invertible matrix, use solve.
- The function apply is crucial in R . This is quite the basics of this software! Moreover, apply is much faster than using loops.

Questions

1. What do the functions cbind and rbind?
2. Explain what happens in command $* * *$.
3. See the help page of apply and understand the two last examples.

2.1.5 Arrays

R > A <- $\operatorname{array}(1: 12, c(2,3,2))$
$\mathrm{R}>\mathrm{A}$
$\mathrm{R}>\operatorname{dim}(\mathrm{A})$; length(A)
R > nrow (A); $\operatorname{ncol}(\mathrm{A})$
R > apply(A, 1, mean)
R > apply(A, 2, mean)
R > apply (A, 3, mean)

Questions

1. Explain the three calls to apply.
2. Create an array with four dimensions and compute the sums of its elements in all the dimensions.

2.1.6 Lists

```
R > l1 <- list("Bobby", 1:8); l1
R > l1[[1]]
R > l1[[2]] + 10
R > 12 <- list(
+ > vect=1:5, text="DVORAK", scal=8)
R > names(12)
R > l2$text
R > 12[c("scal", "vect")]
R > length(12); length(l2$vect)
```

- An object of type list can contain different types of objects.
- A list is useful to return more than one value from a function.
- To access to an element of a list, use operator [[]] or \$ if the element has a name.

2.1.7 Data frames

```
R > height <- runif(20, 150, 180)
R > mass <- runif(20, 50, 90)
R > sex <- sample(c("M", "F"), 20,
+ > rep=TRUE)
R > color <- c("Blue", "Green", "Brown")
R > eyes <- sample(color, 20, rep=TRUE)
R > table(sex); table(eyes)
R > table(sex, eyes)
R > H <- data.frame(
+ > height, mass, sex, eyes)
R > H; summary(H)
R > head(H)
R > tail(H)
R > H[1,]
R > H$height
R > H$sex
R > is.data.frame(H)
R > is.matrix(H)
R > as.matrix(H) # Cast as a matrix
```


Questions

1. Try the function summary on various types of object.
2. What is the consequence of cast of H as a mtrix?
3. Extract the mass of the individuals with a height greater than 160.
4. Extract the mass and the sex of these individuals.
5. Extract the height of males whose mass is less than 70 . You can do it in one line with the logical operator \& (see help("\&")).

2.2 Input and output

2.2.1 Importing a data set

Use a text editor to create the following files,


```
R > f1 <- read.table("file1.csv", sep=",")
R > f1
R > f1bis <- read.csv("file1.csv")
R > f1bis
R > f1bis <- read.csv("file1.csv",
+ > header=FALSE)
R > f1bis
```

- The function read.table reads the content of a text file and returns a R object based on it.
- You can specify whether the file contains a header line, what is the column separator and what is the character for decimal point with arguments header, sep and dec respectively.
- The functions read.csv and read.csv2 are similar to read.table but with different default parameters.

Questions

1. Import the files file2.txt, file3.txt and file4.txt.

2.2.2 Exporting a data set

$R>A<-\operatorname{seq}(1,10$, length=50)
R > write.table(A, "A.txt")
R > sink("A2.txt")
R > A
R > summary (A)
R > sink()
R > summary (A)

- The function write.table prints its required argument to a file.
- The function sink redirects the results of the next commands to a file instead of displaying them in the standard output. To close the file and stop sinking, simply call sink without argument.

2.3 Graphic functions

2.3.1 Discrete and qualitative data

```
R > v <- c(12,10,7,13,26,16,4,12)
R > pie(v)
R > pie(v, clockwise=T)
R > names(v) <- LETTERS[1:8]
R > barplot(v)
R > par(mfrow=c(1, 2))
R > pie(v); barplot(v)
R > par(mfrow=c(1, 1))
R > barplot(v, col=1:8)
R > dotchart(v)
R > par(bg="lightgrey")
R > dotchart(v, pch=16, col=1:8)
R > par(bg="white")
R > colors()
R > par(bg="white")
```

- The functions pie, barplot and dotchart (like all the other graphic functions) offer a large amount of arguments that allow you to modify the appearance of the graphic result.
- General graphic parameters can also be set through the function par. See help(par) for a lot of details on this topic.
- Notice the use of par (mfrow=c $(1,2)$) to split the graphic window into two areas (one line, two columns) and to plot several graphs in the same device.

Questions

1. What is the difference between $\operatorname{par}(\operatorname{mfrow}=\mathrm{c}(2,2))$ and $\operatorname{par}(\mathrm{mfcol}=\mathrm{c}(2,2))$?
2. Through the help pages, experiment optional graphic arguments of the functions pie, barplot and dotchart.
3. Test and comment the following commands,
```
R > n <- 200
R > pie(rep(1, n), labels="", col=rainbow(n), border=NA)
```


2.3.2 Quantitative data

```
R > x <- rnorm(50)
R > boxplot(x)
R > hist(x)
R > stripchart(x)
```

- The function rnorm will be described later. It produces a Gaussian random vector.
- As other graphic functions, boxplot, hist and stripchart offer a lot of argument to customize your graphs.

Questions

1. Plot in the same window the 'stripchart', the horizontal boxplot and the histogram one below the other.

2.3.3 2D Graphics

```
R > x <- seq(-10, 10, length=50)
R > plot(x, sin(x))
R > plot(x, sin(x), type="l")
R > abline(v=0, col="blue", lwd=5, lty=3)
R > abline(h=sin(0.7), col=3)
R > text(-5, -0.5, "Hello", font=3)
R > par(mfrow=c(1, 2))
R > plot(x, sin(x), type="l", col=1,
+ > main="Sinus")
R > plot(x, cos(x), type="b", col=3,
+ > xlab="X-axis")
R > par(mfrow=c(1, 1))
R > plot(x, cos(x), type="l")
R > points(0, 1, pch="o", cex=3,
+ > col="blue")
R > lines(c(-5, 5), c(0, 0), lty=2, col=2)
R > locator(1)
R > text(locator(2), c("tic","tac"),
+ > font=c(2, 3))
R > A <- cbind(seq(0, 1, length=20),
+ > rnorm(20), runif(20))
R > matplot(A, type="b")
```

- Some graphic functions create a new graph and others draw over an existing graph.
- The function locator reads the position of the graphics cursor when the first mouse button is pressed.
- The arguments main, xlab, ylab, ... allow to set some captions on the graph or on the axes.
- The function matplot plots the columns of a matrix.

Questions

1. Spend some time to understand the various graphic functions and their arguments in the above examples.
2. Draw the following guy face,

3. Give a hat to your guy.

Hint

```
R > plot(0, 0, xlim=c(-15,15), ylim=c(-15,15), type="n", axes=FALSE,
+ > xlab="", ylab="", asp=1)
R > points(0, 0, pch=2, cex=4)
R > points(c(-4, 4), c(5, 5) , cex=4)
R > rect(-3, -6, 3, -5, col="black")
R > lines(10*sin(0:360*pi/180), 10*cos(0:360*pi/180), lwd=5)
```


2.3.4 Headed to 3D

```
R > M <- matrix(1:100, ncol=10)
R > image(M)
R > x <- seq(-10, 10, length=30); y <- x
R > f <- function(x, y) {
+ > r <- sqrt( (x^2+y^2)
+ > 10 * sin(r)/r
+ > }
R > z <- outer(x, y, f)
R > z[is.na(z)] <- 1
R > persp(x, y, z)
R > persp(x, y, z, theta=30, phi=30,
+ > expand=0.5, col="lightblue")
R > image(x, y, z)
R > contour(x, y, z)
R > filled.contour(x, y, z)
R > image(x, y, z)
R > contour(x, y, z, add=TRUE)
R > install.packages("rgl")
R > library(rgl)
R > x=rnorm(100)
R > y=rnorm(100)
R > z=rnorm(100)
R > plot3d(x,y,z)
```

- To display 3D data, you can use image, persp and contour.
- Function definition will be described later.
- To understand the function outer, try

```
R > outer(1:5, 1:5, "+")
```

- The package rgl allows to get interactive 3D graphics (zoom, rotation).
- There exist other packages to enhance the standard graphic outputs (see ggplot2 for example)

Questions

1. Draw the following 10×10 checked pattern. You can do it in just one line.

```
R > pdf("my_file.pdf")
R > plot(1:10, col=c("orange", "blue"))
R > dev.off() # Close the device
R > jpeg("my_file.jpg")
R > plot(1:10, col=c("orange", "blue"))
R > dev.off() # Close the device
R > png("my_file.png")
R > plot(1:10, col=c("orange", "blue"))
R > dev.off() # Close the device
```

- To export a graphic output, you need a graphics device. R provides several ones for classic format: pdf to export in PDF file, jpeg to export in JPG file, png to export in PNG file, etc
- When a graphics device is open, the graphic outputs no longer appear in the standard window.
- Always close the graphics device with dev.off when you have finish your masterpiece.
- See library(help="grDevices") to get a full list of graphics devices.

2.4 Programming

2.4.1 Conditionals

```
R > x <- rnorm(10)
R > if (is.double(x)) print("OK")
R > if (is.integer(x)) print("KO")
R > if (x[1] > 0) 1 else -1
R > if (x[1] > 0) {
+ > y<- 1
+ > print("Positive")
+ > } else {
+ > y <- -1
+ > print("Non positive")
+ > }
R > y <- ifelse(x > 0, 1, -1); y
R > z <- "cat"
R > switch(z,
+ > cat=print("Hi Felix!"),
+ > dog=print("Hi Snowy!"),
+ > print("What is this pet?"))
```

- A conditional starts with if followed by a logical and a command to run only if the logical is TRUE
- The if statement can be followed by else and a command to run if the initial logical is FALSE.
- When there are several commands to run, you need to gather them together in a block between \{ and \}.
- You can abbreviate a conditional with the function ifelse.
- A switch statement chooses one of the further arguments and run the associated command.

2.4.2 Loops

```
R > x <- c(17, 8, 42, 3)
R > for (e in x) print(e)
R > for (i in 1:length(x)) print(x[i])
R > for (i in seq_along(x)) print(x[i])
R > for (i in seq_len(5)) {
+ > fact <- prod(1:i)
+ > cat(i, "! = ", fact, "\n", sep="")
+ > }
R > for (k in seq_len(10)) {
+ > if (k %% 2 == 0) next
+ > print(k)
+ > }
R > i <- 1; s <- 0
R > while (i <= length(x)) {
+ > s <- s + x[i]
+ > i <- i + 1
R > }
R > s
R > x <- 0
R > repeat {
+ > print(x)
+ > x <- x + 1
+ > if (x == 10) break
R > }
```


Questions

- Loop statements starts with for, while or repeat.
- Using loops is quite always slower than using vectorial operations.
- With for, we iterate along a vector or an iterator. When this is possible, it is smarter to use seq_along and seq_len.
- The function cat concatenates its argument and display them. It is useful to get well formatted string.
- The instruction next halts the processing of the current iteration and advances the looping index.
- The loop while repeats its content until the given logical becomes FALSE. If the logical is FALSE at the beginning, the content of the loop is not evaluated.
- The loop repeat repeats its content until it reaches an instruction break. Its content is always at least evaluated one time.

1. Why is it better to use seq_along and seq_len?
2. The example of the while loop can be done in one line. See help (sum) to compute it.
3. Compute the mean of x with for, while and repeat loops. Compare your result with the value returned by mean(x).
4. Display the following "ASCII art" with a loop,

2.4.3 Functions

```
R > f1 <- function() print("Hello!")
R > f1
R > f1()
R > f2 <- function(k) cat(2*k)
R > f2(21)
R > f3 <- function(k) return(2*k)
R > f3(21)
R > y <- f3(21); y
R > f3 <- fix(f3)
R > f4 <- function(a, b=0) return(a + 2*b)
R > f4(2, 3); f4(5); f4(b=2, a=1)
R > f5 <- function(a, b=a) return(a + 2*b)
R > f5(2, 3); f5(5)
R > my_circle <- function(r) {
+ > p <- 2*pi*r
+ > a <- pi*r*r
+ > return(list(radius=r,
+ > perimeter=p,
+ > area=a))
+ > }
R > y <- my_circle(3)
R > y$area == pi*y$radius^2
R > my_var <- 17
R > f6 <- function(x) {
+ > my_var <- x
+ > print(my_var)
+ > }
+ > print(my_var); f6(8); print(my_var)
```

- Avoid using F as name for a function not to be confused with FALSE.
- Use function to create a function and fix to edit its body.
- To return a value from a function, use return. Note that it ends the function and any command after return is not interpreted. If the end of a function is reached without calling return, the value of the last evaluated expression is returned.
- A default value can be given to an argument.
- A function can return only one object. If you need more, use a list.
- Variables defined in a function are limited to the scope of the function.

Questions

1. What is the difference between f 2 and f 3 ?
2. Write a function my_rectangle that takes two arguments 11 and 12 and return the lengths of the sides, the perimeter and the area of the rectangle. How to deal with a square?
3. Write a function that computes the n first terms of the Fibonacci sequence $\left(u_{1}=u_{2}=1\right.$ and $\left.\forall n>2, u_{n}=u_{n-1}+u_{n-2}\right)$.
4. Write a function that removes the lines of a matrix or a data frame that contain at least one NA.

2.5 A bit of statistics

2.5.1 Distribution

```
R > sample(c("Blue", "Red"), 10,
+ > replace=TRUE, prob=c(4, 1))
R > help.search("Distribution")
R > help(rnorm)
R > rnorm(10)
R > dnorm(0)
R > pnorm(1.96); qnorm(0.975)
R > plot(dnorm, -3, 3, col="blue",lwd=3)
R > y <- seq(qnorm(0.975), 3, length=100)
R > polygon(c(y, rev(y)),
+ > c(dnorm(y), rep(0, 100)), col=3)
R > text(2.2, 0.015, "0.025", cex=0.9,
+ > font=2)
R > set.seed(17881)
R > rnorm(1)
R > set.seed(17881)
R > rnorm(1) # Wow!
```

- The most common distributions are available with R .
- For categorical distribution, the function sample takes a sample of the specified size from the elements of a given vector of values.
- For each defined distributions, you have at your disposal several functions. For example, the Gaussian distribution comes with dnorm for the density function, pnorm for the distribution function, qnorm for the quantile function and rnorm to generate random realizations.
- Note the way to use plot in the example.
- The function set.seed allows to set the initial seed of the random number generator. When a seed is given, it sets the "randomness" and you can reproduce the random events.

Questions

1. What are the arguments of sample.
2. Generate a sample of 256 independent exponential variables. In the same graphic, draw the associated histogram and the density function of the exponential distribution.
3. Plot the density function and the distribution function of several distributions (Cauchy, χ^{2}, \ldots)

2.5.2 Statistical tests

```
R > help.search("Test")
R > x <- rnorm(100)
R > y <- rnorm(100, mean=1)
R > t.test(x, y)
R > my_result <- t.test(x, y)
R > my_result
R > names(my_result)
R > my_result$method; my_result$p.value
R > var.test(x, y)
R > t.test(x, y, var.equal=TRUE)
R > cor.test(x, y)
R > ks.test(x, y)
R > ks.test(x, "pnorm")
R > ks.test(y, "pnorm")
R > ks.test(y, "pnorm", 1)
```


Questions

1. Apply the Shapiro-Wilk test instead of the Kolmogorov-Smirnov test.
2. Test the nullity of the Spearman's rank correlation coefficient between x and y .

2.5.3 Univariate and bivariate analysis

```
R > x <- runif (100)
\(R>\operatorname{mean}(x) ; \operatorname{var}(x) ; \operatorname{sd}(x)\)
\(R>\min (x) ; \max (x)\)
\(R \quad>\) quantile( \(x\) ) ; median ( \(x\) )
R > quantile(x, 0.9)
R > summary ( \(x\) )
R > boxplot(x) ; boxplot(x, plot=FALSE)
R > my_bp <- boxplot (c (x, 2)) ; my_bp
R > hist(x) ; hist(x, plot=FALSE)
R > hist( \(x\), density=10)
R > hist(x, nclass=5)
R > y=runif(100)
R > cov( \(x, y\) )
R > cor \((x, y)\)
\(R \quad>\operatorname{cor}(x, y, m e t h o d=" s p e a r m a n ")\)
R > z <- x + rnorm(100, sd=0.05)
R > pairs(cbind(x, y, z))
```

- Functions are already defined for most common quantities to compute.
- The results of boxplot and hist can be stored without being displayed with plot=FALSE. It can be useful for getting some parameters of the graphics.
- You can tweak the graphic output of hist to suit your needs.
- The function pairs produces a matrix of scatterplots.

2.5.4 Linear regression

```
R > ifelse(
+ > "package:datasets" %in% search(),
+ > "OK", "KO")
R > help(cars)
R > res1 <- lm(dist ~ speed, data=cars)
R > res1
R > names(res1)
R > summary(res1)
R > anova(res1)
R > plot(cars)
R > abline(res1, col="red")
R > res2 <- lowess(cars$speed,
+ > cars$dist, f=0.5)
R > lines(res2, col="blue", lty=2)
```

- First, we check that the package datasets is loaded. This package provides various datasets whose cars.
- Note the use of the operator $\%$ in $\%$.
- The function $1 m$ fits a linear model between cars\$dist and cars\$speed. Note the use of argument data. The function lm can do much more than basic linear regressions.
- The first argument of lm is a formula. Such an object is used by a lot of functions in R and you can get informations with help(formula).
- The object returned by lm can be plugged in several R functions.
- The function lowess uses locallyweighted polynomial regression.

Questions

1. Modify the argument f of lowess and explain what happens.

3 Advanced concepts

3.1 Specific data manipulation

3.1.1 Character strings

```
R > s <- "I play with characters"
R > length(s); nchar(s)
R > substr(s, start=1, stop=8)
R > strsplit(s, "a")
R > strsplit(s, "with")
R > s_words <- strsplit(s, " ")
R > s_words <- unlist(s_words)
R > s_letters <- strsplit(s, NULL)
R > length(s_letters[[1]])
R > toupper(s)
R > tolower("WOW!")
R > "wit" %in% s_words
R > "with" %in% s_words
R > res <- grep("play", s_words)
R > s_words[res]
R > grep("^plc", s_words) # ***
R > grep("whit", s_words) # Search whit
R > agrep("whit", s_words)
R > paste("A", 1:5, sep="")
R > sub("play with", "master the", s)
```

- To get the number of characters in a string, use nchar, not length.
- When working with characters, you must be careful with handling of spaces.
- Note the use of the function unlist.
- You can search for patterns with the grep's functions.
- You can use regular expressions as argument (see help (regexp)). For example, the command $* * *$ looks for the words starting with 'p' or 'c'.
- The functions paste and sub are often needed by any 'Lord of the strings'.

Questions

1. What is the difference between grep and agrep?
2. In the data set USArrests, extract the line whose the name contains C. Same question for names which starts with C.

3.1.2 Factors

```
R > eye <- sample(c("Blue","Brown"),
+ > size=256, replace=TRUE)
R > eye
R > eye.fact <- factor(eye)
R > eye.fact
R > eye[1] <- "Green"; eye
R > eye.fact[1] <- "Green"
R > eye.fact
R > levels(eye.fact)
R > levels(eye)
R > object.size(eye)
R > object.size(eye.fact)
R > x <- rnorm(100)
R > bins <- cut(x, breaks=-4:4)
R > bins
R > table(bins)
```


Questions

- Even if they look like strings, factors are not handled in the same way.
- A factor can only take values in a given set of levels. Giving a value that is not a valid level leads to an error and set the factor to <NA>.
- Factors are less bulky in memory than vectors of strings because the levels are stored only one time, each element being a reference to a level.
- The function cut turns a quantitative data set into a categorical data set by returning a factor object.

1. Create a vector of strings size with 25 elements Small, Medium or Large. Convert this vector into an ordered factor (see help(factor)). Verify that the levels are ordered.

3.1.3 Sets

```
R > A <- 1:10
R > B <- c(3:6, 12, 15, 18)
R > union(A, B)
R > intersect(A, B)
R > setdiff(A, B)
R > setdiff(B, A)
R > is.element(2, A)
R > is.element(2, B)
R > is.element(A, B)
R > is.element(B, A)
R > L <- letters[1:10]
R > union(A, L)
```

- Note the importance of the order of arguments in setdiff.
- This commands need objects with the same type (see the last example).

Questions

1. Use the operator \%in\% to achieve the same results as with is.element.
2. Test the membership of the letter ' k ' to the vector letters. How can we get the position of ' k ' in the alphabet?

3.1.4 Dates and time

```
R > help("Date")
R > now <- Sys.time(); now
R > today <- Sys.Date(); today
R > date()
R > weekdays(today)
R > months(today)
R > quarters(today)
R > as.Date(29813, origin="1900-01-01")
R > format(now, "%a %d %b %Y %X %Z")
R > strptime(c("03/01/1892", "02/09/1973"),
+ > "%d/%m/%y")
R > system.time(
+ > for(i in 1:100) var(runif(100000))
+ > )
```

- There exist specific functions to extract information about a date or a time.
- To convert an object to a date, use as.Date.
- To convert between character representations and date objects, use format and strptime.
- The function system.time return times that the command passed as argument used:
user time spent to run the command,
system time spent by the system for the command (I/O, write on disk, ...),
total sum of above times.

Questions

1. What will be the weekday of the next January 1 ?
2. How many days are there between now and the end of the year?

3.1.5 Merging and aggregating data frames

With the function merge, we can merge two data frames. It is mandatory to specify the reference column in the data frames with by. If the names of the reference columns differ between the data frames, we also can use by. x and by.y. For example, consider a data frame patient which contains information about patients and a data frame visit for their visits,

```
R > patient <- data.frame(
+ > name=c("Bobby", "Cindy", "Billy", "Jenny"),
+ > date.birth=c("1955/02/02", "1952/03/03", "1992/10/01",
+ > "1940/02/02"),
+ > sex=c("M", "F", "M", "F"))
R > visit <- data.frame(
+ > patient.name=c("Bobby", "Cindy", "Bobby", "Teddy", "Billy"),
+ > date.visit=c("2014/01/01", "2013/12/01", "2014/01/05",
+ > "2013/12/04", "2012/10/05"))
```

The reference column is the name of the patient which has a different name in the two data frames. First, we only merge the individuals present in both data frames,

```
R > merge(patient, visit, by.x="name", by.y="patient.name")
```

If we want to keep all the informations of patient, we have to specify all.x=TRUE,

```
R > merge(patient, visit, by.x="name", by.y="patient.name", all.x=TRUE)
```

To keep all the informations of both data frames, we also have to specify all.y=TRUE,

```
R > patient.visit <- merge(patient, visit, by.x="name",
+ > by.y="patient.name", all.x=TRUE, all.y=TRUE)
```

We are now interested in the age of the patients with respect to their sex at the time of their visits. We add these informations to the new data frame,

```
R > patient.visit$age <- floor(as.numeric(
+ > as.Date(patient.visit$date.visit, format="%Y/%m/%d")
+ > - as.Date(patient.visit$date.birth, format="%Y/%m/%d"))/365)
R > patient.visit$age
```

To get the average age with respect to the sex of patients, we need to split the data frame into subsets and compute the mean for each one. This operation in known as an aggregation and can be done through the function aggregate. We have to give a list of grouping elements with by and a function to apply with FUN,

```
R > aggregate(patient.visit$age, by=list(sex=patient.visit$sex),
+ > FUN=mean, na.rm=TRUE)
```


Questions

1. Using the dataset iris, create an object iris1 which contains the mean of Petal. Length for each species.
2. Create also an object iris2 which contains the sum of Petal. Width for each species.
3. Merge iris1 and iris2.

3.1.6 Files and directories

```
R > dir()
R > file.info(dir())
R > R.home()
R > f <- dir(file.path(R.home(), "bin"),
+ > full.names=TRUE); f
R > f[file.access(f, 0) == 0]
R > f[file.access(f, 1) == 0]
R > f[file.access(f, 2) == 0]
R > f[file.access(f, 4) == 0]
R > dir.create("Output")
R > getwd()
R > setwd("Output/")
R > getwd() # We are in "Output" now
```

- Note the difference between dir and ls.
- Try the various arguments available for the function dir.
- The function file.path is useful for dealing with path names regardless of the operating system.
- Understand the commands with file.access.
- The absolute path of the current working directory is returned by getwd. This is the default path where R looks for the files, saves them, ... To change it, use setwd.
- These functions are mainly useful for writing scripts that produces tidy outputs.

Questions

1. Write a function that takes one integer argument n and does the following things:

- generate n independent realizations of a standard Gaussian variable,
- put the values in a file named with the current date and time in a directory called Val,
- produce the boxplot of the data set in a JPEG file named similarly in a directory called Fig.

3.2 More programming

3.2.1 Avoiding loops

```
R > t <- array(1:24, dim=2:4)
R > apply(t, 1, sum)
R > apply(t, 1:2, sum)
R > res <- apply(t, 3,
+ > function(x) runif(max(x)))
R > res
R > x <- rnorm(100)
R > bins <- cut(x, breaks=-4:4)
R > tapply(x, bins, mean)
R > lapply(res, mean)
R > sapply(res, mean)
R > lapply(res, quantile)
R > sapply(res, quantile)
R > v <- replicate(500, mean(rnorm(10)))
R > boxplot(v)
R > rep(x=1:4, times=4:1)
R > mapply(rep, x=1:4, times=4:1)
```

- Note that the object returned by apply can take many shapes.
- The sidekick of tapply for data frames is by (see help(by)).
- Understand the difference between lapply and sapply.
- The function replicate is usefull to repeat the same command a bunch of times.
- Note the object returned by mapply.
- These functions are core functionalities of R. They improve the readability of the code and they are faster than loops. See the following exercise to be convinced.

Questions

1. Define the two following functions,
```
R > f1 <- function(n, p) {
+ > v <- matrix(0, n, 1)
+ > for(i in 1:n) {
+ > v[i] <- mean(rnorm(p))
+ > }
+ > return(v)
+ > }
```

2. Compare the time spent in each function,
```
R > system.time(f1(50000, 500))
R > system.time(f2(50000, 500))
```


3.2.2 Advanced functions

When you define a function, you can allow to give it any argument for an other function that you want to call without having to specify all these arguments. The reserved word for that is ..., see help("...") and help(dotsMethods). Let's take an example,

```
R > plot.lm <- function(x, y, fit.pol=TRUE, ...)
+ > plot(y ~ x, ...)
+ > abline(lm(y ~ x), col="blue")
+ > if (fit.pol) {
+ > pol.reg <- loess(y ~ x)
+ > t <- seq(min(x), max(x), length.out=25)
+ > lines(t, predict(pol.reg, t), col="red")
+> }
+ > }
```

Any argument of plot.lm apart from x , y and fit.pol will belong to \ldots and will be passed to the function plot called in the second line. Try the following commands,

```
+ > x <- rnorm(100); y <- runif(100)
+ > plot.lm(x, y)
+ > plot.lm(x, y, fit.pol=FALSE)
+ > plot.lm(x, y, pch=16, col="pink",
+ > xlab="Explanatory variable", ylab="Response variable")
```


Questions

1. Explain what the function plot.lm does.
2. Write a function gaussian.hist which takes an integer argument n and the reserved word ... for arguments to be passed to hist. This function has to do the next steps,

- generate n independent realizations of a standard Gaussian variable,
- plot the normalized histogram of these realizations,
- add the standard Gaussian density curve to the graph.

3.2.3 Non-interactive mode (BATCH)

It is feasible to run R non-interactively by giving the commands to complete through a text file. Such a way can be useful when you need to run R commands on a remote computing server. For more details, see help (BATCH).

Here is an example of text file containing R commands. Let's call it my-commands,

```
2+2
jpeg("my_graph.jpg")
plot(rnorm(10))
dev.off()
3+3
```

To run it non-interactively from a system prompt,

- in a GNU/Linux environment,
\$ R CMD BATCH my-commands
- in a Windows environment,

```
C:\> "C:\Program Files\R\R-3.1.1\bin\R.exe" CMD BATCH my-commands
```

You could also specify the name of the output file but, by default, this is my-commands.Rout.

Questions

1. Read help(Rscript) and understand the difference between BATCH and Rscript.

3.2.4 Debugging

R offers some elementary tools to debug your functions. To illustrate them, define the following three functions,

```
R > f <- function(x) return(x - g(x))
R > g <- function(y) return(y * h(y))
R > h <- function(z) {
+ > t <- log(z)
+ > if (t < 10) return(t^2) else return (t^3)
+ > }
```

Try to execute $f(-1)$ to get an error message. Here, the problem is easy to identify but it is often more complicated with nested calls of functions and the values of arguments can be harder to follow.

To know in which function the error appears, you can call traceback() directly after observing the problem. It gives you the name of the last called function from top to bottom,

```
R > f(-1)
R > traceback() # Error in function h
```

Getting only the function name is often not sufficient to fix a bug. In order to know which line causes the error, you may want to step through the function using debug,

```
R > debug(h) # h flagged for debug
R > f(-1)
R > undebug(h) # h unflagged
```

During the call $f(-1)$, when R enters in the flagged function h, it breaks the run and gives you a specific prompt Browse [2]>. The next line to be interpreted is marked by \#N where N is the step number. You can interact with R to get the values of the variables, check things, ... When you are done, validate an empty line and R goes forward to the next line to run. In such a way, you can run the function step by step and identify exactly where is the bug to fix. Use undebug to remove the flag and let the function runs as usual.

3.2.5 Writing scripts

Entering commands in the R prompt as we do till the beginning of this document is good for testing or for doing one-shot analysis. We often need to repeat the same operations or reuse some useful code. For that, it is possible (and encouraged) to write your R code as scripts. A R script is nothing else than a simple text file that contains R commands. You can give the file extension.R to your script; this is not mandatory but, for instance, if you use a text editor that does syntax highlighting, this can be useful.

Let's consider a first example, create a file script01. R with the following content,

```
gaussian_hist <- function(n, ...) {
    x <- rnorm(n)
    hist(x, freq=FALSE, ...)
    t <- seq(min(x), max(x), length=256)
    points(t, dnorm(t), type="l", lwd=2, col="blue")
    lines(density(x), lwd=2, lty=2, col="green")
}
# Get a color for the histogram
repeat {
    cat("Enter a color name: ")
    hist_color <- scan(file="stdin",
        what="character", n=1, quiet=TRUE)
    if (hist_color %in% colors()) {
        break
    } else {
        cat("Color \"", hist_color,
                    "\" is not valid color.\n", sep="")
    }
}
# Plot the histogram in a JPG file
jpeg("my_plot.jpg")
gaussian_hist(512, col=hist_color)
graphics.off()
```

To run this script, you can use source in a R prompt,

```
R > source("script01.R")
Enter a color name: crimson
Color "crimson" is not valid color.
Enter a color name: goldenrod
R >
```

In a GNU/Linux environment, you can also make it executable. For that, you need to add
the shebang line \#!/usr/bin/Rscript --vanilla in the first line of the script file and chmod it,

```
$ chmod +x script01.R
$ ./script01.R
Enter a color name: red
$ ls my_plot.jpg
my_plot.jpg
```

With executable scripts, you have to be careful with the R commands you use according to the non-interactive mode (see the comment above about readline and scan).

It is possible to give arguments to an executable script and to get them into R with commandArgs. Let's create a second example script02. R of executable script,

```
#!/usr/bin/Rscript --vanilla
my_args <- commandArgs(TRUE)
cat("You gave me", length(my_args), "argument(s).\n")
for (i in seq_along(my_args)) {
    cat("Argument ", i, "\t: ", my_args[i], "\n", sep="")
}
```

Then, make it executable and test it,

```
$ chmod +x script02.R
$ ./script02.R
You gave me 0 argument(s).
$ ./script02.R Hello World 42
You gave me 3 argument(s).
Argument 1 : Hello
Argument 2 : World
Argument 3 : 42
```

Note that passing arguments in such a way is not feasible through the R prompt. Thus, source cannot be directly used but there exist some workarounds like redefining the function commandArgs before calling source (beyond the scope of this document).

3.2.6 Calling C from R

We introduce here an elementary way to run C code into R . This topic raises many issues to address and should be treated in a more technical way. The interested reader will find more details on the internet. One of the advantages of using C functions in R is the considerable gain in execution time.

Let's create a file convolve.c for our C code,

```
void convolve(double * a, int * na, double * b, int * nb, double * ab) {
    int i, j;
    int nab = *na + *nb - 1;
    for(i = 0; i < nab; ++i) ab[i] = 0.0;
    for(i = 0; i < *na; i++) {
            for(j = 0; j < *nb; j++) {
            ab[i + j] += a[i] * b[j];
        }
    }
}
```

We have to compile this source code to get a proper dynamic library (${ }^{*}$.so in a GNU/Linux environment or *. $d l l$ in a Windows environment) to load in our R environment,

```
$ R CMD SHLIB convolve.c
```

Thus, the easiest way to call this library from R is to load it and to create a wrapper function,

```
R > dyn.load("convolve.so") # GNU/Linux environment
R > dyn.load("convolve.dll") # Windows environment
R > convolve.with.C <- function(a, b) {
+ > .C("convolve",
+ > as.double(a), as.integer(length(a)),
+ > as.double(b), as.integer(length(b)),
+ > ab = double(length(a) + length(b) - 1))$ab
+ > }
R > convolve.with.C(1:10, seq(0, 1, length=10))
```

To get more details, you can read help(.C). Note that the trailing \$ab ensures that this function returns the created vector $a b$.

To compare the performances with a R function, let's create an equivalent function in R and measure how fast are the two versions,

```
R > convolve.with.R <- function(a, b) {
+ > ab <- rep(0, length(a) + length(b) - 1)
+ > for (i in seq_along(a)) {
+ > for (j in seq_along(b)) {
+ > ab[i+j-1] <- ab[i+j-1] + a[i]*b[j]
+ > }
+ > }
+ > return(ab)
+ > }
R > system.time(convolve.with.C(1:500, seq(0, 500, length=500)))
R > system.time(convolve.with.R(1:500, seq(0, 500, length=500)))
```

The performances are clearly on the side of the function written in C. More generally, using C (or other compiled language) is a good alternative when loops are unavoidable in critical functions.

3.2.7 Parallel computing

With the multiplication of the number of CPU and their improved performances, parallel computing has known an important development in the last decade. Such an approach is no longer reserved to supercomputers and can be used to fully exploit the possibilities of your computer.

Let's take again the example of convolve with a new version,

```
R > install.packages("snowfall")
R > library(snowfall)
R > convolve.parallel <- function(x, a, b) {
+ > a <- sample(a)
+ > b <- sample(b)
+ > ab <- rep(0, length(a)+length(b)-1)
+ > for (i in seq_along(a)) {
+ > for (j in seq_along(b)) {
+ > ab[i+j-1] <- ab[i+j-1] + a[i]*b[j]
+> }
+ > }
+ > return(ab)
+ > }
```

To run this function in parallel, we need to initialize a cluster with a given number of involved CPU. In the next example, we assume that you have at least 4 CPU at your disposal (if not, adjust the commands),

```
R > sfInit(parallel=TRUE, cpus=4) # Init cluster
R > system.time(result <- sfClusterApplyLB(1:4, convolve.parallel,
+ > a=1:500, b=seq(0, 500, length=500)))
R > sfStop() # Stop cluster
```

Again, to get more details, read the help pages related to sfClusterApplyLB.

3.2.8 Classes

R is an object oriented language and any R object you handle is an instance of some class. Hereafter, we call method a function associated with a particular type of object. In R, you have at your disposal three object oriented systems, namely $S 3, S 4$ and $R 5$. Most objects in R are implemented with S3 style and we are focusing on this particular system in the sequel. If you want more informations about other systems, you will find a lot of things on the internet.

You use object oriented techniques almost all the time with R, mainly when you deal with print, summary and plot. These methods offer you a generic function which behaves
differently according to the class of the object. Indeed, printing a vector is differentto printing a linear regression, for instance.

```
R > my.vector <- 1:10
R > class(my.vector)
R > print(my.vector)
R > plot(my.vector)
R > my.lm <- lm(rnorm(100) ~ runif(100))
R > class(my.lm)
R > print(my.lm)
R > plot(my.lm) # Note the specific behavior of plot
```

The class of an object is given by its class attribute. To create an object of your custom class MyClass, you can use structure,

```
R > my.object <- structure(42, class="MyClass")
R > class(my.object)
R > my.object # Data is integer 42, class is MyClass
R > print(my.object) # Behave poorly
```

Generic functions like print, mean, plot, ... are usually very simple and search for a given method associated to the class of the object. For that, they use the function UseMethod (see help(UseMethod)) and fallback to a generic (and poor) way if they do not find an appropriate method (see example above for print). To list all available methods for an S3 generic function, or all methods for a class, use methods,

```
R > methods(mean)
R > methods(plot)
R > methods(t)
```

Let's see how to define a custom print method for objects of our class MyClass. Unlike other object oriented languages ($\mathrm{C}++$, Java, ...), the methods are not defined in the class but according to a special naming convention function.class (see examples returned by methods). Thus, we simply need to create a function print. MyClass,

```
R > print.MyClass <- function(x) cat("My data is", x, ":-)\n")
R > print(my.object) # Now, it is better!
R > my.object # Silently call print
```

If you understand these mechanisms, you are now able to define your own generic function in R. As a bonus, here is an example,

```
R > my.generic <- function(x, ...) UseMethod("my.generic", x)
R > my.generic.numeric <- function(x, ...)
+ > cat("Numeric value:", x, "\n")
R > my.generic.character <- function(x, ...)
+ > cat("Character value:", x, "\n")
R > my.generic.MyClass <- function(x, ...)
+ > cat("Awesome value:", x, "\n")
R > methods(my.generic)
R > my.generic(17)
R > my.generic(pi)
R > my.generic("Hello")
R > my.generic(my.object)
R > my.generic(data.frame()) # Fail, why?
```

Object oriented programming offers a tremendous amount of freedom and covering these possibilities is absolutely beyond the scope of this document. If you look for more information on the subject, you can read documents about inheritance, internal generic functions, operators, ...

Questions

1. Create a custom class for which method plot makes sense and write your own version of plot for objects of this class.

3.3 More graphics

3.3.1 Plot arrangements

In Section 2.3.3, we have seen how to use mfrow and mfcol to arrange plots on a device. Dealing with these parameters can become tricky if we want complex arrangements and layout provides a way to tackle that in an easier way. Be careful because layout is totally incompatible with mfrow and mfcol.

```
R > m <- matrix(c(2, 0, 1, 3), 2, 2,
+ > byrow=TRUE); m
R > my.layout <- layout(m, widths=c(3, 1),
+ > heights=c(1, 3), TRUE)
R > layout.show(my.layout)
R > x <- runif(10)
R > y <- runif(10)
R > plot(x, y, pch=16, cex=2,
+ > col=rainbow(10))
R > plot(x, rep(1, 10), pch=16, cex=2,
+ > col=rainbow(10))
R > plot(rep(1, 10), y, pch=16, cex=2,
+ > col=rainbow(10))
```

- Compare the content of the matrix m and the output of layout.show.
- Understand the parameters widths and heights in layout.
- Do you see how to obtain similar graphics with mfrow and mfcol?

Questions

1. Generate two samples $x<-\operatorname{rnorm}(500)$ and $y<-r f(500,5,5)$ and display the scatter plot with the associated box plots (down horizontally for x , left vertically for y).
2. In the help page of layout, experiment and understand the example Create a scatterplot with marginal histograms.

3.3.2 Graphical Parameters

```
R > plot(LakeHuron, xlab="Year",
+ > ylab="Level in feet",
+ > main="Level of Lake Huron")
R > old.par <- par(bty="n",
+ > col="red", bg="grey",
+ > mar=c(2.5, 2.5, 2, 2),
+ > mgp=c(1.5, 0.5, 0),
+ > oma=c(0, 0, 0, 0),
+ > cex.main=0.8,
+ > cex.lab=0.7,
+ > cex.axis=0.7)
R > plot(LakeHuron, xlab="Year",
+ > ylab="Level in feet",
+ > main="Level of Lake Huron")
R > par(old.par) # Reset settings
```

- The function par allows you to modify the graphical parameters. There are plenty of options, see help(par).
- A good habit is to save the current parameters before doing any modification by keeping the object returned by par. When your graphics are done, call par with this object to reset all the parameters to their initial values. This is especially important when you tweak graphical parameters in the body of a function to avoid modifying the global settings.
- In the examples, we use various parameters related to framing. Use the help pages to understand their roles.

3.3.3 Axes and margins

```
R > x <- runif(50)
R > y <- runif(50)
R > plot(x, y)
R > plot(x, y, axes=FALSE)
R > axis(1)
R > axis(1, at=c(0.2,0.5,0.8), padj=1,
+ > label=c("Low", "Average", "High"))
R > axis(2, lty=2, col=2)
R > mtext(c("A", "B", "C", "D", "E"),
+ > side=2, at=seq(0.2, 1, by=0.2))
R > plot(x, y)
R > rug(x)
R > rug(y, side=4)
```

- The axes of a graph can be constructed retrospectively.
- The function axis adds an axis to the current graph. See help(axis) for details about the options.
- The function mtext permits to write text in the margins.
- The function rug is not related to axes or margins but stick to them.

Questions

1. Consider two vectors v1 <- $1: 10$ and v2 <- $100 *$ sample(v1). What is the problem for displaying them together on the same graph?
2. Use the option new of the function par to represent v1 and v2 on the same graph with an axis on the right for v 1 and one one the left for v 2 .

3.3.4 Mathematical formulas

```
R > help(expression)
R > help(plotmath)
R > demo(plotmath)
R > plot(dnorm, -3, 3)
R > x <- seq(-3, 3, length=256)
R > lines(x, dnorm(x, 1, 1), col=2)
R > lines(x, dnorm(x, 0, 2), col=3)
R > title(expression(
+ > over(1, sigma*squrt(2*pi))
+ > *e^{over(-(x-mu)^2, 2*sigma^2)}))
R > expr1 <- expression(mu==0~~sigma==1)
R > expr2 <- expression(mu==1~~sigma==1)
R > expr3 <- expression(mu==0~~sigma==2)
R > legend("topleft", c(expr1, expr2, expr3),
+ > lty=1, col=1:3)
```

- Mathematical formulas can be written as text on the graphics in title, axes, legends, ...
- To write math, you need to use objects of type expression. The content of these objects has to be formatted according to a specific syntax derived from the famous $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ language of the awesome Donald Knuth.

3.3.5 Plotting networks

```
R > install.packages("igraph") # Take time
R > library(igraph)
R > g <- graph.ring(10)
R > plot(g)
R > plot(g, layout=layout.kamada.kawai,
+ > vertex.color="green")
R > tkplot(g) # Interactive
R > g.lay <- layout.fruchterman.reingold(g, dim=3)
R > rglplot(g, layout=g.lay) # 3D
```

- The package igraph offers various functions to analyze networks. We only look at graphics ones in the examples.
- For more details, read the help pages about igraph, plot.igraph and igraph.plotting.

3.3.6 Geographical maps

```
R > install.packages("maps")
R > library(maps)
R > library(help=maps)
R > map("france", fill=TRUE, col=rainbow(10))
R > my.map <- map("france",
+ > regions="haute-garonne", fill=TRUE,
+ > col=grey(0.8))
R > title(my.map$names)
R > gps.coord <- matrix(c(1.443962, 43.604482),
+ > nrow=1)
R > points(gps.coord, pch=16, cex=1.5)
R > text(gps.coord, labels="Toulouse", pos=3)
```

- There exist several packages which provide geographical data, maps is one of them.
- For geographical data analysis, you can look for information about packages sp and GeoXp.

3.4 Integrating R

3.4.1 R and OpenDocument

With the package odfWeave, you can insert R commands in an OpenDocument like *.odt files of Libre Office Writer. This is a powerfull tool to produce elegant reports and properly integrate R outputs without modifying the initial file. The blocks of R commands are called chunks and are structured in the following way,

1. a line to introduce the chunk that contains << followed by the chunk's name, some options, \ldots and ended with $\gg=$,
2. your R commands,
3. a symbol @ to end the chunk.

Let's take an example with a file TestRaw.odt,

```
This is an example of use of odfWeave.
<<chunk1, echo=TRUE>>=
x = rnorm(64)
summary(x)
@
It also works with graphics !
<<chunk2, echo=FALSE, fig=TRUE>>=
hist(rnorm(512), col='green')
@
```

Various options for the chunks are at your disposal in order to display or not the commands, to insert a figure, ... See help (RweaveOdf) for details. To produce the final document Test.odt, proceed as follows,

```
R > install.packages("odfWeave")
R > library(odfWeave)
R > odfWeave("TestRaw.odt", "Test.odt")
```


3.4.2 $\quad \mathrm{AT} \mathrm{EX}$

R fits perfectly with the powerful document markup language $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$. You can convert R objects to a formatted string to be directly included in your $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ document with the generic functions toLatex and toBibtex or with the package xtable,

```
R > toLatex(sessionInfo())
R > install.packages("xtable")
R > library(xtable)
R > xtable(data.frame(x=rnorm(10), y=runif(10)))
```

This relationship between R and $\mathrm{AA}_{\mathrm{E}} \mathrm{X}$ is widely used by packages like Sweave and knitr to produce high quality documents. $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ users and any interested readers should focus on these packages in order to see the quite limitless possibilities.

