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1 Preliminaries

1.1 What is R?

According to The R Project for Statistical Computing,

R is a language and environment for statistical computing and graphics. It is a
GNU project (https://www.gnu.org/) which is similar to the S language and
environment which was developed at Bell Laboratories (formerly AT&T, now
Lucent Technologies) by John Chambers and colleagues. R can be considered as
a different implementation of S. There are some important differences, but much
code written for S runs unaltered under R.

R provides a wide variety of statistical (linear and nonlinear modelling, classical
statistical tests, time-series analysis, classification, clustering, . . . ) and graphical
techniques, and is highly extensible. The S language is often the vehicle of choice
for research in statistical methodology, and R provides an Open Source route to
participation in that activity.

One of R’s strengths is the ease with which well-designed publication-quality plots
can be produced, including mathematical symbols and formulae where needed.
Great care has been taken over the defaults for the minor design choices in graphics,
but the user retains full control.

R is available as Free Software under the terms of the Free Software Foundation’s
GNU General Public License (https://www.r-project.org/COPYING) in source
code form. It compiles and runs on a wide variety of UNIX platforms and simi-
lar systems (including FreeBSD and Linux), Windows and MacOS.

Novice and experienced R users can consult the R project homepage,

https://www.r-project.org/

and The Comprehensive R Archive Network

https://www.cran.r-project.org/

They will find all the useful resources: how to install, updates, packages, FAQ, newsletter,
documentation, etc.

1.2 Working with R

There are various ways to work with R: entering commands through the R prompt, writing
executable scripts or using a graphical user interface (R Commander, RGui, RStudio, etc).
In the sequel of this document, we will use the R prompt and give commands to illustrate
the discussed topics. We make this choice for two reasons,

• whatever your operating system and the software you use to deal with R, you have a R
prompt at your disposal,
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• ’click-button’ interfaces usually hide important things while entering the commands
allow to highlight key concepts.

In the sequel, the R commands will be written in verbatim style. R commands to be
experimented are highlighted in the following way,

R > help(plot)
R > print(
+ > "Hello world!"
+ > )

Note the convention used for the prompt: R > stands for the R prompt, it does not have to
be entered in the command line. The R prompt becomes + > when a command is incom-
plete, in such a case the command spreads over several lines until it is finished.

In R language, a comment starts with a character # and anything after it until the end
of the line won’t be interpreted. Using comments is a good habit, especially when you write
scripts.

Any R function needs to be followed by a pair of brackets containing its arguments. If the
function takes no argument, you still have to put an empty pair (). Indeed, without brackets,
the function is not called but its code is displayed (this is often not what we want).

R > # It is a comment
R > print( # Comments can be put at the end of a line
+ > "R is fun!")
R > q # Without brackets, show the code
R > q() # With brackets, quit R

1.3 Getting help

R provides a large range of help pages. They are very helpful and they constitute a good
starting point when you need to use a new tool. To reach them, you can use the function
search or the prefix ?. As an example, the help about the function plot is accessible as
follows,

R > help(plot)
R > ?plot # Shortcut version

Generally, the help pages consist of the following sections:

• Description

• Usage

• Arguments

• Details
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• Value

• Note

• Authors

• References

• See Also

• Examples

The names of these sections are quite self-explanatory to understand what they contain. For
novices, the more useful sections are the last two. Section See Also contains links to other
functions related to the searched one, this is often fruitful to follow these links in order to get
a good outlook. Section Examples allows to learn how to use the function by giving working
commands that you can directly copy-paste.

If you do not know the name of the function to use or if you want to look for general
words, you can search for a given word among all the help pages. To do this, you can use
the function help.search or the prefix ??. To get a lot of information about how to plot
graphics with R, you can enter:

R > help.search("plot")
R > ??plot # Shortcut version

You obtain a list of functions prefixed by the name of the related package (see below) and ::
and followed by a brief description. Thus, you can call help to get more informations. To
get more informations about help and help.search,

R > help(help) # Yes, it works!
R > help(help.search)

1.4 Packages

A R package is a set of functions (and sometimes also data) offered by the community of R
users for extending the R language. Usually, a package is devoted to a specific task described
by its name. At the time of writing this document, the package repository of the CRAN
(Comprehensive R Archive Network) features 7111 available packages.

To use a function provided by a package, you need two preliminary steps:

• installation: the function install.packages permits to get the sources and to install
a package. This step only has to be done one time for each package you need.

• loading: the function library loads the package in the current R environment and
allows you to use its functions. This step needs to be done each time you start R and
you need the package.

It is wise to keep your packages up to date. To this end, you should regularly run the command
update.packages.
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To list all the installed packages (but not necessarily loaded), simply run library without
argument. The command search gives you the list of all the packages currently loaded. To
get the content of a loaded package, we can call the function ls by giving it the index of the
package in the list returned by search. Here is an example for the package foreign,

R > install.packages("foreign") # Install the package
R > library() # Check if the package is installed
R > library(foreign) # Load the package
R > search() # Check if the package is loaded, often in position 2
R > ls(pos=2) # List content of the package
R > update.packages() # Update installed packages
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2 Basic concepts
This section mainly focus on manipulating the various types of elementary objects defined in
R. We also broach the ways to import and export data.

2.1 Variables and types

2.1.1 Variables

R > a = 17
R > b <- 8
R > 17 -> c
R > a + b + c
R > z_42 <- "Hello"
R > z_42 <- a + b + c
R > ls()
R > objects()
R > rm(z_42)
R > remove(a)

• A variable name starts with a letter and can only con-
tain alphanumeric characters and ’_’.

• To assign a value to a variable, you can use the op-
erators = or <-. There also exists the operator -> for
which the variable to be assigned has to be placed after
the operator.

• The functions ls and objects return a list the objects
defined in the current environment.

• The functions rm and remove can be used to remove
objects.

2.1.2 Scalars

R > a <- 2 + 2
R > pi
R > cos(3*pi/2)
R > b <- exp(8.17)
R > typeof(a)
R > typeof(b)
R > typeof(a + b)
R > s <- "Hello"
R > typeof(s)
R > 2 == 3
R > t <- 2 < 3
R > typeof(t)

• The function typeof determines the R internal type of any
object.

• Identify the different types of objects.
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2.1.3 Vectors

R > v1 <- c(2, 3, 5, 8, 4, 6); v1
R > typeof(v1) # Type of elements
R > is.vector(v1)
R > c(1, 3.14, "Hello")
R > 1:10
R > seq(from=1, to=20, by=2)
R > seq(1, 20, by=5)
R > seq(1, 20, length=5)
R > rep(5, times=10)
R > rep(c(1, 2), 3)
R > rep(c(1, 2), each=3)
R > v1[2]; v1[2:4]; v1[c(1, 4)]
R > v1[-3]
R > v1[-1:2] # Error, why?
R > v1[-(1:2)]
R > v1[3] <- NA; v1
R > summary(v1)
R > is.na(v1)
R > help(NA)
R > any(is.na(v1))
R > all(is.na(v1))
R > v2 <- c(a=32, b=26, c=12, d=41)
R > v2["b"] <- 22; v2
R > names(v2)
R > names(v2) <- c(
+ > "a1", "a2", "a3", "a4")
R > v2 > 30
R > v2[v2 > 30]
R > which(v2 > 30)
R > v2 + 100
R > v1 + v2 # Error, why?
R > 1:4 + v2; 1:8 + v2
R > cos(v2)
R > length(v2)
R > sort(v2)

• To create a vector we can combine its ele-
ments with the function c, use a sequence
with seq (or operator :) or a repetition
with rep.

• All the elements of a vector have the
same type.

• To get an element of a vector via its in-
dex, we use the operator []. Several in-
dices can be passed at one time. A neg-
ative index omits the corresponding ele-
ment.

• NA (Not Available) permits to deal with
missing data.

• The functions any and all can be very
useful when working with vectors.

• Instead of indices, we can use names.

• Conditional extraction of elements is a
very useful tool when dealing with vec-
tors.

• Various operations can be done on vec-
tors up to some length restrictions.

Questions

1. Describe the various arguments of the function seq.

2. Describe the various arguments of the function rep.

3. What is the function unique? Give an example use case of this function.
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2.1.4 Matrices

R > A <- matrix(1:15, ncol=5)
R > A; t(A)
R > B <- matrix(1:15, nc=5, byrow=TRUE)
R > B2 <- B; B2[1, 1] <- "Hello"; B2
R > typeof(B); typeof(B2)
R > cbind(A, B)
R > rbind(A, B)
R > A[1, 3]; A[2,]; A[, 2]
R > A[1:3, 2:4]
R > g <- seq(0, 1, length=20)
R > C <- matrix(g, nrow=4)
R > C[C[, 1] > 0.1,] # ***
R > A + B; A * B # Elementwise
R > A %*% t(B) # Matrix product
R > cos(A)
R > I <- diag(rep(1, 2))
R > diag(A)
R > D <- solve(A[1:2, 1:2])
R > all(A[1:2, 1:2] %*% D == I) # Why?
R > apply(A, 2, sum)
R > apply(A, 1, max)

• Matrices are constructed with the
function matrix. Note that the ar-
guments of matrix can be ambigu-
ous (e.g. nc for ncol).

• Function t returns the transposed
matrix.

• Like vectors, matrices contain only
one type of data.

• To extract a submatrix or access to
some elements, use the operator [].
First argument is for the row index,
second one is for column index.

• Be careful with standard operators
like + or *, they act element by ele-
ment. The matrix product operator
is %*%.

• Various operations can be done on
matrices up to some length restric-
tions.

• You can create diagonal matrix with
diag. This function can also extract
the diagonal elements of a matrix.

• To inverse an invertible matrix, use
solve.

• The function apply is crucial in R.
This is quite the basics of this soft-
ware! Moreover, apply is much
faster than using loops.

Questions

1. What do the functions cbind and rbind?

2. Explain what happens in command ***.

3. See the help page of apply and understand the two last examples.
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2.1.5 Arrays

R > A <- array(1:12, c(2, 3, 2))
R > A
R > dim(A); length(A)
R > nrow(A); ncol(A)
R > apply(A, 1, mean)
R > apply(A, 2, mean)
R > apply(A, 3, mean)

• The object produced by the function
array generalizes the matrix object. It
can be seen as an array of matrices and
can have more than three dimensions.

• You can use apply with arrays.

• It is wise to avoid naming a variable T or
F in order to not confuse with TRUE and
FALSE.

Questions

1. Explain the three calls to apply.

2. Create an array with four dimensions and compute the sums of its elements in all the
dimensions.

2.1.6 Lists

R > l1 <- list("Bobby", 1:8); l1
R > l1[[1]]
R > l1[[2]] + 10
R > l2 <- list(
+ > vect=1:5, text="DVORAK", scal=8)
R > names(l2)
R > l2$text
R > l2[c("scal", "vect")]
R > length(l2); length(l2$vect)

• An object of type list can contain
different types of objects.

• A list is useful to return more than
one value from a function.

• To access to an element of a list, use
operator [[]] or $ if the element has
a name.
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2.1.7 Data frames

R > height <- runif(20, 150, 180)
R > mass <- runif(20, 50, 90)
R > sex <- sample(c("M", "F"), 20,
+ > rep=TRUE)
R > color <- c("Blue", "Green", "Brown")
R > eyes <- sample(color, 20, rep=TRUE)
R > table(sex); table(eyes)
R > table(sex, eyes)
R > H <- data.frame(
+ > height, mass, sex, eyes)
R > H; summary(H)
R > head(H)
R > tail(H)
R > H[1,]
R > H$height
R > H$sex
R > is.data.frame(H)
R > is.matrix(H)
R > as.matrix(H) # Cast as a matrix

• Functions runif and sample
will be described later. They
produce random vectors.

• Notice the results returned by
the function table.

• The function data.frame re-
turns a structure devoted to
handle data sets with individ-
uals in lines and variables in
columns.

• Like with the lists, the variables
can have different types.

• Notice the similarities between
data.frame, list and matrix.

Questions

1. Try the function summary on various types of object.

2. What is the consequence of cast of H as a mtrix?

3. Extract the mass of the individuals with a height greater than 160.

4. Extract the mass and the sex of these individuals.

5. Extract the height of males whose mass is less than 70. You can do it in one line with
the logical operator & (see help("&")).

2.2 Input and output

2.2.1 Importing a data set

Use a text editor to create the following files,

• File file1.csv:

5,2.5,3.8
8,3.2,3.4
12,4.6,5

• File file2.txt:

5 2.5 3.8
8 3.2 3.4
12 4.6 5

• File file3.txt:

X1;X2;X3
5;2.5;3.8
8;3.2;3.4
12;4.6;5

• File file4.txt:

5;2,5;3,8
8;3,2;3,4
12;4,6;5
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R > f1 <- read.table("file1.csv", sep=",")
R > f1
R > f1bis <- read.csv("file1.csv")
R > f1bis
R > f1bis <- read.csv("file1.csv",
+ > header=FALSE)
R > f1bis

• The function read.table reads
the content of a text file and re-
turns a R object based on it.

• You can specify whether the file
contains a header line, what is
the column separator and what
is the character for decimal
point with arguments header,
sep and dec respectively.

• The functions read.csv and
read.csv2 are similar to
read.table but with different
default parameters.

Questions

1. Import the files file2.txt, file3.txt and file4.txt.

2.2.2 Exporting a data set

R > A <- seq(1, 10, length=50)
R > write.table(A, "A.txt")
R > sink("A2.txt")
R > A
R > summary(A)
R > sink()
R > summary(A)

• The function write.table prints its required
argument to a file.

• The function sink redirects the results of the
next commands to a file instead of displaying
them in the standard output. To close the
file and stop sinking, simply call sink without
argument.
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2.3 Graphic functions

2.3.1 Discrete and qualitative data

R > v <- c(12,10,7,13,26,16,4,12)
R > pie(v)
R > pie(v, clockwise=T)
R > names(v) <- LETTERS[1:8]
R > barplot(v)
R > par(mfrow=c(1, 2))
R > pie(v); barplot(v)
R > par(mfrow=c(1, 1))
R > barplot(v, col=1:8)
R > dotchart(v)
R > par(bg="lightgrey")
R > dotchart(v, pch=16, col=1:8)
R > par(bg="white")
R > colors()

• The functions pie, barplot and
dotchart (like all the other graphic
functions) offer a large amount of ar-
guments that allow you to modify the
appearance of the graphic result.

• General graphic parameters can also be
set through the function par. See
help(par) for a lot of details on this
topic.

• Notice the use of par(mfrow=c(1, 2))
to split the graphic window into two ar-
eas (one line, two columns) and to plot
several graphs in the same device.

Questions

1. What is the difference between par(mfrow=c(2, 2)) and par(mfcol=c(2, 2))?

2. Through the help pages, experiment optional graphic arguments of the functions pie,
barplot and dotchart.

3. Test and comment the following commands,

R > n <- 200
R > pie(rep(1, n), labels="", col=rainbow(n), border=NA)

2.3.2 Quantitative data

R > x <- rnorm(50)
R > boxplot(x)
R > hist(x)
R > stripchart(x)

• The function rnorm will be described later. It produces a
Gaussian random vector.

• As other graphic functions, boxplot, hist and stripchart
offer a lot of argument to customize your graphs.

Questions

1. Plot in the same window the ’stripchart’, the horizontal boxplot and the histogram one
below the other.
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2.3.3 2D Graphics

R > x <- seq(-10, 10, length=50)
R > plot(x, sin(x))
R > plot(x, sin(x), type="l")
R > abline(v=0, col="blue", lwd=5, lty=3)
R > abline(h=sin(0.7), col=3)
R > text(-5, -0.5, "Hello", font=3)
R > par(mfrow=c(1, 2))
R > plot(x, sin(x), type="l", col=1,
+ > main="Sinus")
R > plot(x, cos(x), type="b", col=3,
+ > xlab="X-axis")
R > par(mfrow=c(1, 1))
R > plot(x, cos(x), type="l")
R > points(0, 1, pch="o", cex=3,
+ > col="blue")
R > lines(c(-5, 5), c(0, 0), lty=2, col=2)
R > locator(1)
R > text(locator(2), c("tic","tac"),
+ > font=c(2, 3))
R > A <- cbind(seq(0, 1, length=20),
+ > rnorm(20), runif(20))
R > matplot(A, type="b")

• Some graphic functions create a
new graph and others draw over
an existing graph.

• The function locator reads the
position of the graphics cursor
when the first mouse button is
pressed.

• The arguments main, xlab,
ylab, ... allow to set some cap-
tions on the graph or on the
axes.

• The function matplot plots the
columns of a matrix.

Questions

1. Spend some time to understand the various graphic functions and their arguments in
the above examples.

2. Draw the following guy face,

3. Give a hat to your guy.

Hint
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R > plot(0, 0, xlim=c(-15,15), ylim=c(-15,15), type="n", axes=FALSE,
+ > xlab="", ylab="", asp=1)
R > points(0, 0, pch=2, cex=4)
R > points(c(-4, 4), c(5, 5) ,cex=4)
R > rect(-3, -6, 3, -5, col="black")
R > lines(10*sin(0:360*pi/180), 10*cos(0:360*pi/180), lwd=5)

2.3.4 Headed to 3D

R > M <- matrix(1:100, ncol=10)
R > image(M)
R > x <- seq(-10, 10, length=30); y <- x
R > f <- function(x, y) {
+ > r <- sqrt(x^2+y^2)
+ > 10 * sin(r)/r
+ > }
R > z <- outer(x, y, f)
R > z[is.na(z)] <- 1
R > persp(x, y, z)
R > persp(x, y, z, theta=30, phi=30,
+ > expand=0.5, col="lightblue")
R > image(x, y, z)
R > contour(x, y, z)
R > filled.contour(x, y, z)
R > image(x, y, z)
R > contour(x, y, z, add=TRUE)
R > install.packages("rgl")
R > library(rgl)
R > x=rnorm(100)
R > y=rnorm(100)
R > z=rnorm(100)
R > plot3d(x,y,z)

• To display 3D data, you can use
image, persp and contour.

• Function definition will be de-
scribed later.

• To understand the function outer,
try

R > outer(1:5, 1:5, "+")

• The package rgl allows to get in-
teractive 3D graphics (zoom, rota-
tion).

• There exist other packages to en-
hance the standard graphic out-
puts (see ggplot2 for example)

Questions

1. Draw the following 10× 10 checked pattern. You can do it in just one line.

16



2.3.5 Exporting graphics

R > pdf("my_file.pdf")
R > plot(1:10, col=c("orange", "blue"))
R > dev.off() # Close the device
R > jpeg("my_file.jpg")
R > plot(1:10, col=c("orange", "blue"))
R > dev.off() # Close the device
R > png("my_file.png")
R > plot(1:10, col=c("orange", "blue"))
R > dev.off() # Close the device

• To export a graphic output, you
need a graphics device. R provides
several ones for classic format: pdf
to export in PDF file, jpeg to ex-
port in JPG file, png to export in
PNG file, etc

• When a graphics device is open, the
graphic outputs no longer appear in
the standard window.

• Always close the graphics device
with dev.off when you have finish
your masterpiece.

• See library(help="grDevices")
to get a full list of graphics devices.

2.4 Programming

2.4.1 Conditionals

R > x <- rnorm(10)
R > if (is.double(x)) print("OK")
R > if (is.integer(x)) print("KO")
R > if (x[1] > 0) 1 else -1
R > if (x[1] > 0) {
+ > y <- 1
+ > print("Positive")
+ > } else {
+ > y <- -1
+ > print("Non positive")
+ > }
R > y <- ifelse(x > 0, 1, -1); y
R > z <- "cat"
R > switch(z,
+ > cat=print("Hi Felix!"),
+ > dog=print("Hi Snowy!"),
+ > print("What is this pet?"))

• A conditional starts with if followed
by a logical and a command to run
only if the logical is TRUE.

• The if statement can be followed by
else and a command to run if the
initial logical is FALSE.

• When there are several commands
to run, you need to gather them to-
gether in a block between { and }.

• You can abbreviate a conditional
with the function ifelse.

• A switch statement chooses one of
the further arguments and run the
associated command.
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2.4.2 Loops

R > x <- c(17, 8, 42, 3)
R > for (e in x) print(e)
R > for (i in 1:length(x)) print(x[i])
R > for (i in seq_along(x)) print(x[i])
R > for (i in seq_len(5)) {
+ > fact <- prod(1:i)
+ > cat(i, "! = ", fact, "\n", sep="")
+ > }
R > for (k in seq_len(10)) {
+ > if (k %% 2 == 0) next
+ > print(k)
+ > }
R > i <- 1; s <- 0
R > while (i <= length(x)) {
+ > s <- s + x[i]
+ > i <- i + 1
R > }
R > s
R > x <- 0
R > repeat {
+ > print(x)
+ > x <- x + 1
+ > if (x == 10) break
R > }

• Loop statements starts with
for, while or repeat.

• Using loops is quite always
slower than using vectorial op-
erations.

• With for, we iterate along a
vector or an iterator. When
this is possible, it is smarter to
use seq_along and seq_len.

• The function cat concatenates
its argument and display them.
It is useful to get well formatted
string.

• The instruction next halts the
processing of the current itera-
tion and advances the looping
index.

• The loop while repeats its con-
tent until the given logical be-
comes FALSE. If the logical is
FALSE at the beginning, the
content of the loop is not eval-
uated.

• The loop repeat repeats its
content until it reaches an in-
struction break. Its content is
always at least evaluated one
time.

Questions

1. Why is it better to use seq_along and seq_len?

2. The example of the while loop can be done in one line. See help(sum) to compute it.

3. Compute the mean of x with for, while and repeat loops. Compare your result with
the value returned by mean(x).

4. Display the following "ASCII art" with a loop,

*
***

*****
*******
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2.4.3 Functions

R > f1 <- function() print("Hello!")
R > f1
R > f1()
R > f2 <- function(k) cat(2*k)
R > f2(21)
R > f3 <- function(k) return(2*k)
R > f3(21)
R > y <- f3(21); y
R > f3 <- fix(f3)
R > f4 <- function(a, b=0) return(a + 2*b)
R > f4(2, 3); f4(5); f4(b=2, a=1)
R > f5 <- function(a, b=a) return(a + 2*b)
R > f5(2, 3); f5(5)
R > my_circle <- function(r) {
+ > p <- 2*pi*r
+ > a <- pi*r*r
+ > return(list(radius=r,
+ > perimeter=p,
+ > area=a))
+ > }
R > y <- my_circle(3)
R > y$area == pi*y$radius^2
R > my_var <- 17
R > f6 <- function(x) {
+ > my_var <- x
+ > print(my_var)
+ > }
+ > print(my_var); f6(8); print(my_var)

• Avoid using F as name for a
function not to be confused
with FALSE.

• Use function to create a func-
tion and fix to edit its body.

• To return a value from a func-
tion, use return. Note that it
ends the function and any com-
mand after return is not inter-
preted. If the end of a func-
tion is reached without call-
ing return, the value of the
last evaluated expression is re-
turned.

• A default value can be given to
an argument.

• A function can return only one
object. If you need more, use a
list.

• Variables defined in a function
are limited to the scope of the
function.

Questions

1. What is the difference between f2 and f3?

2. Write a function my_rectangle that takes two arguments l1 and l2 and return the
lengths of the sides, the perimeter and the area of the rectangle. How to deal with a
square?

3. Write a function that computes the n first terms of the Fibonacci sequence (u1 = u2 = 1
and ∀n > 2, un = un−1 + un−2).

4. Write a function that removes the lines of a matrix or a data frame that contain at least
one NA.
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2.5 A bit of statistics

2.5.1 Distribution

R > sample(c("Blue", "Red"), 10,
+ > replace=TRUE, prob=c(4, 1))
R > help.search("Distribution")
R > help(rnorm)
R > rnorm(10)
R > dnorm(0)
R > pnorm(1.96); qnorm(0.975)
R > plot(dnorm, -3, 3, col="blue",lwd=3)
R > y <- seq(qnorm(0.975), 3, length=100)
R > polygon(c(y, rev(y)),
+ > c(dnorm(y), rep(0, 100)), col=3)
R > text(2.2, 0.015, "0.025", cex=0.9,
+ > font=2)
R > set.seed(17881)
R > rnorm(1)
R > set.seed(17881)
R > rnorm(1) # Wow!

• The most common distribu-
tions are available with R.

• For categorical distribution, the
function sample takes a sample
of the specified size from the el-
ements of a given vector of val-
ues.

• For each defined distributions,
you have at your disposal sev-
eral functions. For exam-
ple, the Gaussian distribution
comes with dnorm for the den-
sity function, pnorm for the dis-
tribution function, qnorm for
the quantile function and rnorm
to generate random realiza-
tions.

• Note the way to use plot in the
example.

• The function set.seed allows
to set the initial seed of the ran-
dom number generator. When
a seed is given, it sets the "ran-
domness" and you can repro-
duce the random events.

Questions

1. What are the arguments of sample.

2. Generate a sample of 256 independent exponential variables. In the same graphic, draw
the associated histogram and the density function of the exponential distribution.

3. Plot the density function and the distribution function of several distributions (Cauchy,
χ2, ...)
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2.5.2 Statistical tests

R > help.search("Test")
R > x <- rnorm(100)
R > y <- rnorm(100, mean=1)
R > t.test(x, y)
R > my_result <- t.test(x, y)
R > my_result
R > names(my_result)
R > my_result$method; my_result$p.value
R > var.test(x, y)
R > t.test(x, y, var.equal=TRUE)
R > cor.test(x, y)
R > ks.test(x, y)
R > ks.test(x, "pnorm")
R > ks.test(y, "pnorm")
R > ks.test(y, "pnorm", 1)

• The most common statistical tests
(and some that are less so) are avail-
able with R.

• Use t.test for Student’s t-tests,
var.test for F -tests, cor.test for
correlation tests, ks.test for Kol-
mogorov–Smirnov tests, ...

• The result of a test can be saved in
a variable to use its elements later
(p-value, test statistic, ...).

Questions

1. Apply the Shapiro-Wilk test instead of the Kolmogorov-Smirnov test.

2. Test the nullity of the Spearman’s rank correlation coefficient between x and y.

2.5.3 Univariate and bivariate analysis

R > x <- runif(100)
R > mean(x); var(x); sd(x)
R > min(x); max(x)
R > quantile(x); median(x)
R > quantile(x, 0.9)
R > summary(x)
R > boxplot(x); boxplot(x, plot=FALSE)
R > my_bp <- boxplot(c(x, 2)); my_bp
R > hist(x); hist(x, plot=FALSE)
R > hist(x, density=10)
R > hist(x, nclass=5)
R > y=runif(100)
R > cov(x, y)
R > cor(x, y)
R > cor(x, y, method="spearman")
R > z <- x + rnorm(100, sd=0.05)
R > pairs(cbind(x, y, z))

• Functions are already defined for
most common quantities to com-
pute.

• The results of boxplot and hist can
be stored without being displayed
with plot=FALSE. It can be useful
for getting some parameters of the
graphics.

• You can tweak the graphic output of
hist to suit your needs.

• The function pairs produces a ma-
trix of scatterplots.
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2.5.4 Linear regression

R > ifelse(
+ > "package:datasets" %in% search(),
+ > "OK", "KO")
R > help(cars)
R > res1 <- lm(dist ~ speed, data=cars)
R > res1
R > names(res1)
R > summary(res1)
R > anova(res1)
R > plot(cars)
R > abline(res1, col="red")
R > res2 <- lowess(cars$speed,
+ > cars$dist, f=0.5)
R > lines(res2, col="blue", lty=2)

• First, we check that the package
datasets is loaded. This pack-
age provides various datasets whose
cars.

• Note the use of the operator %in%.

• The function lm fits a linear
model between cars$dist and
cars$speed. Note the use of
argument data. The function lm
can do much more than basic linear
regressions.

• The first argument of lm is a
formula. Such an object is used by a
lot of functions in R and you can get
informations with help(formula).

• The object returned by lm can be
plugged in several R functions.

• The function lowess uses locally-
weighted polynomial regression.

Questions

1. Modify the argument f of lowess and explain what happens.
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3 Advanced concepts

3.1 Specific data manipulation

3.1.1 Character strings

R > s <- "I play with characters"
R > length(s); nchar(s)
R > substr(s, start=1, stop=8)
R > strsplit(s, "a")
R > strsplit(s, "with")
R > s_words <- strsplit(s, " ")
R > s_words <- unlist(s_words)
R > s_letters <- strsplit(s, NULL)
R > length(s_letters[[1]])
R > toupper(s)
R > tolower("WOW!")
R > "wit" %in% s_words
R > "with" %in% s_words
R > res <- grep("play", s_words)
R > s_words[res]
R > grep("^p|c", s_words) # ***
R > grep("whit", s_words) # Search whit
R > agrep("whit", s_words)
R > paste("A", 1:5, sep="")
R > sub("play with", "master the", s)

• To get the number of characters in
a string, use nchar, not length.

• When working with characters, you
must be careful with handling of
spaces.

• Note the use of the function unlist.

• You can search for patterns with the
grep’s functions.

• You can use regular expressions as
argument (see help(regexp)). For
example, the command *** looks for
the words starting with ’p’ or ’c’.

• The functions paste and sub are
often needed by any ’Lord of the
strings’.

Questions

1. What is the difference between grep and agrep?

2. In the data set USArrests, extract the line whose the name contains C. Same question
for names which starts with C.
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3.1.2 Factors

R > eye <- sample(c("Blue","Brown"),
+ > size=256, replace=TRUE)
R > eye
R > eye.fact <- factor(eye)
R > eye.fact
R > eye[1] <- "Green"; eye
R > eye.fact[1] <- "Green"
R > eye.fact
R > levels(eye.fact)
R > levels(eye)
R > object.size(eye)
R > object.size(eye.fact)
R > x <- rnorm(100)
R > bins <- cut(x, breaks=-4:4)
R > bins
R > table(bins)

• Even if they look like strings, factors
are not handled in the same way.

• A factor can only take values in a
given set of levels. Giving a value
that is not a valid level leads to an
error and set the factor to <NA>.

• Factors are less bulky in memory
than vectors of strings because the
levels are stored only one time, each
element being a reference to a level.

• The function cut turns a quantita-
tive data set into a categorical data
set by returning a factor object.

Questions

1. Create a vector of strings size with 25 elements Small, Medium or Large. Convert this
vector into an ordered factor (see help(factor)). Verify that the levels are ordered.

3.1.3 Sets

R > A <- 1:10
R > B <- c(3:6, 12, 15, 18)
R > union(A, B)
R > intersect(A, B)
R > setdiff(A, B)
R > setdiff(B, A)
R > is.element(2, A)
R > is.element(2, B)
R > is.element(A, B)
R > is.element(B, A)
R > L <- letters[1:10]
R > union(A, L)

• Note the importance of the order of ar-
guments in setdiff.

• This commands need objects with the
same type (see the last example).

Questions

1. Use the operator %in% to achieve the same results as with is.element.

2. Test the membership of the letter ’k’ to the vector letters. How can we get the position
of ’k’ in the alphabet?

24



3.1.4 Dates and time

R > help("Date")
R > now <- Sys.time(); now
R > today <- Sys.Date(); today
R > date()
R > weekdays(today)
R > months(today)
R > quarters(today)
R > as.Date(29813, origin="1900-01-01")
R > format(now, "%a %d %b %Y %X %Z")
R > strptime(c("03/01/1892", "02/09/1973"),
+ > "%d/%m/%y")
R > system.time(
+ > for(i in 1:100) var(runif(100000))
+ > )

• There exist specific functions
to extract information about a
date or a time.

• To convert an object to a date,
use as.Date.

• To convert between char-
acter representations and
date objects, use format and
strptime.

• The function system.time re-
turn times that the command
passed as argument used:

user time spent to run the com-
mand,

system time spent by the system
for the command (I/O,
write on disk, ...),

total sum of above times.
Questions

1. What will be the weekday of the next January 1?

2. How many days are there between now and the end of the year?

3.1.5 Merging and aggregating data frames

With the function merge, we can merge two data frames. It is mandatory to specify the
reference column in the data frames with by. If the names of the reference columns differ
between the data frames, we also can use by.x and by.y. For example, consider a data frame
patient which contains information about patients and a data frame visit for their visits,

R > patient <- data.frame(
+ > name=c("Bobby", "Cindy", "Billy", "Jenny"),
+ > date.birth=c("1955/02/02", "1952/03/03", "1992/10/01",
+ > "1940/02/02"),
+ > sex=c("M", "F", "M", "F"))
R > visit <- data.frame(
+ > patient.name=c("Bobby", "Cindy", "Bobby", "Teddy", "Billy"),
+ > date.visit=c("2014/01/01", "2013/12/01", "2014/01/05",
+ > "2013/12/04", "2012/10/05"))

The reference column is the name of the patient which has a different name in the two data
frames. First, we only merge the individuals present in both data frames,
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R > merge(patient, visit, by.x="name", by.y="patient.name")

If we want to keep all the informations of patient, we have to specify all.x=TRUE,

R > merge(patient, visit, by.x="name", by.y="patient.name", all.x=TRUE)

To keep all the informations of both data frames, we also have to specify all.y=TRUE,

R > patient.visit <- merge(patient, visit, by.x="name",
+ > by.y="patient.name", all.x=TRUE, all.y=TRUE)

We are now interested in the age of the patients with respect to their sex at the time of
their visits. We add these informations to the new data frame,

R > patient.visit$age <- floor(as.numeric(
+ > as.Date(patient.visit$date.visit, format="%Y/%m/%d")
+ > - as.Date(patient.visit$date.birth, format="%Y/%m/%d"))/365)
R > patient.visit$age

To get the average age with respect to the sex of patients, we need to split the data frame
into subsets and compute the mean for each one. This operation in known as an aggregation
and can be done through the function aggregate. We have to give a list of grouping elements
with by and a function to apply with FUN,

R > aggregate(patient.visit$age, by=list(sex=patient.visit$sex),
+ > FUN=mean, na.rm=TRUE)

Questions

1. Using the dataset iris, create an object iris1 which contains the mean of Petal.Length
for each species.

2. Create also an object iris2 which contains the sum of Petal.Width for each species.

3. Merge iris1 and iris2.
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3.1.6 Files and directories

R > dir()
R > file.info(dir())
R > R.home()
R > f <- dir(file.path(R.home(), "bin"),
+ > full.names=TRUE); f
R > f[file.access(f, 0) == 0]
R > f[file.access(f, 1) == 0]
R > f[file.access(f, 2) == 0]
R > f[file.access(f, 4) == 0]
R > dir.create("Output")
R > getwd()
R > setwd("Output/")
R > getwd() # We are in "Output" now

• Note the difference between dir
and ls.

• Try the various arguments
available for the function dir.

• The function file.path is use-
ful for dealing with path names
regardless of the operating sys-
tem.

• Understand the commands
with file.access.

• The absolute path of the cur-
rent working directory is re-
turned by getwd. This is the
default path where R looks for
the files, saves them, ... To
change it, use setwd.

• These functions are mainly use-
ful for writing scripts that pro-
duces tidy outputs.

Questions

1. Write a function that takes one integer argument n and does the following things:

• generate n independent realizations of a standard Gaussian variable,
• put the values in a file named with the current date and time in a directory called

Val,
• produce the boxplot of the data set in a JPEG file named similarly in a directory
called Fig.
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3.2 More programming

3.2.1 Avoiding loops

R > t <- array(1:24, dim=2:4)
R > apply(t, 1, sum)
R > apply(t, 1:2, sum)
R > res <- apply(t, 3,
+ > function(x) runif(max(x)))
R > res
R > x <- rnorm(100)
R > bins <- cut(x, breaks=-4:4)
R > tapply(x, bins, mean)
R > lapply(res, mean)
R > sapply(res, mean)
R > lapply(res, quantile)
R > sapply(res, quantile)
R > v <- replicate(500, mean(rnorm(10)))
R > boxplot(v)
R > rep(x=1:4, times=4:1)
R > mapply(rep, x=1:4, times=4:1)

• Note that the object returned by
apply can take many shapes.

• The sidekick of tapply for data
frames is by (see help(by)).

• Understand the difference between
lapply and sapply.

• The function replicate is usefull
to repeat the same command a
bunch of times.

• Note the object returned by
mapply.

• These functions are core function-
alities of R. They improve the
readability of the code and they
are faster than loops. See the fol-
lowing exercise to be convinced.

Questions

1. Define the two following functions,

R > f1 <- function(n, p) {
+ > v <- matrix(0, n, 1)
+ > for(i in 1:n) {
+ > v[i] <- mean(rnorm(p))
+ > }
+ > return(v)
+ > }

R > f2 <- function(n, p) {
+ > v <- replicate(n,
+ > mean(rnorm(p)))
+ > return(v)
+ > }

2. Compare the time spent in each function,

R > system.time(f1(50000, 500))
R > system.time(f2(50000, 500))

3.2.2 Advanced functions

When you define a function, you can allow to give it any argument for an other function that
you want to call without having to specify all these arguments. The reserved word for that
is ..., see help("...") and help(dotsMethods). Let’s take an example,
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R > plot.lm <- function(x, y, fit.pol=TRUE, ...) {
+ > plot(y ~ x, ...)
+ > abline(lm(y ~ x), col="blue")
+ > if (fit.pol) {
+ > pol.reg <- loess(y ~ x)
+ > t <- seq(min(x), max(x), length.out=25)
+ > lines(t, predict(pol.reg, t), col="red")
+ > }
+ > }

Any argument of plot.lm apart from x, y and fit.pol will belong to ... and will be
passed to the function plot called in the second line. Try the following commands,

+ > x <- rnorm(100); y <- runif(100)
+ > plot.lm(x, y)
+ > plot.lm(x, y, fit.pol=FALSE)
+ > plot.lm(x, y, pch=16, col="pink",
+ > xlab="Explanatory variable", ylab="Response variable")

Questions

1. Explain what the function plot.lm does.

2. Write a function gaussian.hist which takes an integer argument n and the reserved
word ... for arguments to be passed to hist. This function has to do the next steps,

• generate n independent realizations of a standard Gaussian variable,
• plot the normalized histogram of these realizations,
• add the standard Gaussian density curve to the graph.

3.2.3 Non-interactive mode (BATCH )

It is feasible to run R non-interactively by giving the commands to complete through a text
file. Such a way can be useful when you need to run R commands on a remote computing
server. For more details, see help(BATCH).

Here is an example of text file containing R commands. Let’s call it my-commands,

2+2
jpeg("my_graph.jpg")
plot(rnorm(10))
dev.off()
3+3

To run it non-interactively from a system prompt,

• in a GNU/Linux environment,

$ R CMD BATCH my-commands
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• in a Windows environment,

C:\> "C:\Program Files\R\R-3.1.1\bin\R.exe" CMD BATCH my-commands

You could also specify the name of the output file but, by default, this is my-commands.Rout.

Questions

1. Read help(Rscript) and understand the difference between BATCH and Rscript.

3.2.4 Debugging

R offers some elementary tools to debug your functions. To illustrate them, define the follow-
ing three functions,

R > f <- function(x) return(x - g(x))
R > g <- function(y) return(y * h(y))
R > h <- function(z) {
+ > t <- log(z)
+ > if (t < 10) return(t^2) else return (t^3)
+ > }

Try to execute f(-1) to get an error message. Here, the problem is easy to identify but it
is often more complicated with nested calls of functions and the values of arguments can be
harder to follow.

To know in which function the error appears, you can call traceback() directly after
observing the problem. It gives you the name of the last called function from top to bottom,

R > f(-1)
R > traceback() # Error in function h

Getting only the function name is often not sufficient to fix a bug. In order to know which
line causes the error, you may want to step through the function using debug,

R > debug(h) # h flagged for debug
R > f(-1)
R > undebug(h) # h unflagged

During the call f(-1), when R enters in the flagged function h, it breaks the run and gives
you a specific prompt Browse[2]>. The next line to be interpreted is marked by #N where N
is the step number. You can interact with R to get the values of the variables, check things,
... When you are done, validate an empty line and R goes forward to the next line to run. In
such a way, you can run the function step by step and identify exactly where is the bug to
fix. Use undebug to remove the flag and let the function runs as usual.
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3.2.5 Writing scripts

Entering commands in the R prompt as we do till the beginning of this document is good for
testing or for doing one-shot analysis. We often need to repeat the same operations or reuse
some useful code. For that, it is possible (and encouraged) to write your R code as scripts.
A R script is nothing else than a simple text file that contains R commands. You can give
the file extension .R to your script; this is not mandatory but, for instance, if you use a text
editor that does syntax highlighting, this can be useful.

Let’s consider a first example, create a file script01.R with the following content,

gaussian_hist <- function(n, ...) {
x <- rnorm(n)
hist(x, freq=FALSE, ...)
t <- seq(min(x), max(x), length=256)
points(t, dnorm(t), type="l", lwd=2, col="blue")
lines(density(x), lwd=2, lty=2, col="green")

}

# Get a color for the histogram
repeat {

cat("Enter a color name: ")
hist_color <- scan(file="stdin",

what="character", n=1, quiet=TRUE)
if (hist_color %in% colors()) {

break
} else {

cat("Color \"", hist_color,
"\" is not valid color.\n", sep="")

}
}

# Plot the histogram in a JPG file
jpeg("my_plot.jpg")
gaussian_hist(512, col=hist_color)
graphics.off()

• The function density
returns the empirical
density associated to
its argument.

• Note the use of scan
to ask for user in-
put. See help(scan)
for more details.
You could also use
readline to this end
but it only works in
interactive mode.

• This script uses sev-
eral techniques dis-
cussed earlier in this
document. Be sure to
understand all it does.

To run this script, you can use source in a R prompt,

R > source("script01.R")
Enter a color name: crimson
Color "crimson" is not valid color.
Enter a color name: goldenrod
R >

In a GNU/Linux environment, you can also make it executable. For that, you need to add
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the shebang line #!/usr/bin/Rscript --vanilla in the first line of the script file and chmod
it,

$ chmod +x script01.R
$ ./script01.R
Enter a color name: red
$ ls my_plot.jpg
my_plot.jpg

With executable scripts, you have to be careful with the R commands you use according to
the non-interactive mode (see the comment above about readline and scan).

It is possible to give arguments to an executable script and to get them into R with
commandArgs. Let’s create a second example script02.R of executable script,

#!/usr/bin/Rscript --vanilla
my_args <- commandArgs(TRUE)
cat("You gave me", length(my_args), "argument(s).\n")
for (i in seq_along(my_args)) {

cat("Argument ", i, "\t: ", my_args[i], "\n", sep="")
}

Then, make it executable and test it,

$ chmod +x script02.R
$ ./script02.R
You gave me 0 argument(s).
$ ./script02.R Hello World 42
You gave me 3 argument(s).
Argument 1 : Hello
Argument 2 : World
Argument 3 : 42

Note that passing arguments in such a way is not feasible through the R prompt. Thus,
source cannot be directly used but there exist some workarounds like redefining the function
commandArgs before calling source (beyond the scope of this document).

3.2.6 Calling C from R

We introduce here an elementary way to run C code into R. This topic raises many issues to
address and should be treated in a more technical way. The interested reader will find more
details on the internet. One of the advantages of using C functions in R is the considerable
gain in execution time.

Let’s create a file convolve.c for our C code,
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void convolve(double * a, int * na, double * b, int * nb, double * ab) {
int i, j;
int nab = *na + *nb - 1;

for(i = 0; i < nab; ++i) ab[i] = 0.0;
for(i = 0; i < *na; i++) {

for(j = 0; j < *nb; j++) {
ab[i + j] += a[i] * b[j];

}
}

}

We have to compile this source code to get a proper dynamic library (*.so in a GNU/Linux
environment or *.dll in a Windows environment) to load in our R environment,

$ R CMD SHLIB convolve.c

Thus, the easiest way to call this library from R is to load it and to create a wrapper function,

R > dyn.load("convolve.so") # GNU/Linux environment
R > dyn.load("convolve.dll") # Windows environment
R > convolve.with.C <- function(a, b) {
+ > .C("convolve",
+ > as.double(a), as.integer(length(a)),
+ > as.double(b), as.integer(length(b)),
+ > ab = double(length(a) + length(b) - 1))$ab
+ > }
R > convolve.with.C(1:10, seq(0, 1, length=10))

To get more details, you can read help(.C). Note that the trailing $ab ensures that this
function returns the created vector ab.

To compare the performances with a R function, let’s create an equivalent function in R
and measure how fast are the two versions,

R > convolve.with.R <- function(a, b) {
+ > ab <- rep(0, length(a) + length(b) - 1)
+ > for (i in seq_along(a)) {
+ > for (j in seq_along(b)) {
+ > ab[i+j-1] <- ab[i+j-1] + a[i]*b[j]
+ > }
+ > }
+ > return(ab)
+ > }
R > system.time(convolve.with.C(1:500, seq(0, 500, length=500)))
R > system.time(convolve.with.R(1:500, seq(0, 500, length=500)))
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The performances are clearly on the side of the function written in C. More generally, using
C (or other compiled language) is a good alternative when loops are unavoidable in critical
functions.

3.2.7 Parallel computing

With the multiplication of the number of CPU and their improved performances, parallel
computing has known an important development in the last decade. Such an approach is no
longer reserved to supercomputers and can be used to fully exploit the possibilities of your
computer.

Let’s take again the example of convolve with a new version,

R > install.packages("snowfall")
R > library(snowfall)
R > convolve.parallel <- function(x, a, b) {
+ > a <- sample(a)
+ > b <- sample(b)
+ > ab <- rep(0, length(a)+length(b)-1)
+ > for (i in seq_along(a)) {
+ > for (j in seq_along(b)) {
+ > ab[i+j-1] <- ab[i+j-1] + a[i]*b[j]
+ > }
+ > }
+ > return(ab)
+ > }

To run this function in parallel, we need to initialize a cluster with a given number of involved
CPU. In the next example, we assume that you have at least 4 CPU at your disposal (if not,
adjust the commands),

R > sfInit(parallel=TRUE, cpus=4) # Init cluster
R > system.time(result <- sfClusterApplyLB(1:4, convolve.parallel,
+ > a=1:500, b=seq(0, 500, length=500)))
R > sfStop() # Stop cluster

Again, to get more details, read the help pages related to sfClusterApplyLB.

3.2.8 Classes

R is an object oriented language and any R object you handle is an instance of some class.
Hereafter, we call method a function associated with a particular type of object. In R, you
have at your disposal three object oriented systems, namely S3, S4 and R5. Most objects in
R are implemented with S3 style and we are focusing on this particular system in the sequel.
If you want more informations about other systems, you will find a lot of things on the internet.

You use object oriented techniques almost all the time with R, mainly when you deal
with print, summary and plot. These methods offer you a generic function which behaves
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differently according to the class of the object. Indeed, printing a vector is differentto printing
a linear regression, for instance.

R > my.vector <- 1:10
R > class(my.vector)
R > print(my.vector)
R > plot(my.vector)
R > my.lm <- lm(rnorm(100) ~ runif(100))
R > class(my.lm)
R > print(my.lm)
R > plot(my.lm) # Note the specific behavior of plot

The class of an object is given by its class attribute. To create an object of your custom
class MyClass, you can use structure,

R > my.object <- structure(42, class="MyClass")
R > class(my.object)
R > my.object # Data is integer 42, class is MyClass
R > print(my.object) # Behave poorly

Generic functions like print, mean, plot, ... are usually very simple and search for a
given method associated to the class of the object. For that, they use the function UseMethod
(see help(UseMethod)) and fallback to a generic (and poor) way if they do not find an
appropriate method (see example above for print). To list all available methods for an S3
generic function, or all methods for a class, use methods,

R > methods(mean)
R > methods(plot)
R > methods(t)

Let’s see how to define a custom print method for objects of our class MyClass. Unlike
other object oriented languages (C++, Java, ...), the methods are not defined in the class
but according to a special naming convention function.class (see examples returned by
methods). Thus, we simply need to create a function print.MyClass,

R > print.MyClass <- function(x) cat("My data is", x, ":-)\n")
R > print(my.object) # Now, it is better!
R > my.object # Silently call print

If you understand these mechanisms, you are now able to define your own generic function
in R. As a bonus, here is an example,
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R > my.generic <- function(x, ...) UseMethod("my.generic", x)
R > my.generic.numeric <- function(x, ...)
+ > cat("Numeric value:", x, "\n")
R > my.generic.character <- function(x, ...)
+ > cat("Character value:", x, "\n")
R > my.generic.MyClass <- function(x, ...)
+ > cat("Awesome value:", x, "\n")
R > methods(my.generic)
R > my.generic(17)
R > my.generic(pi)
R > my.generic("Hello")
R > my.generic(my.object)
R > my.generic(data.frame()) # Fail, why?

Object oriented programming offers a tremendous amount of freedom and covering these
possibilities is absolutely beyond the scope of this document. If you look for more informa-
tion on the subject, you can read documents about inheritance, internal generic functions,
operators, ...

Questions

1. Create a custom class for which method plot makes sense and write your own version
of plot for objects of this class.

3.3 More graphics

3.3.1 Plot arrangements

In Section 2.3.3, we have seen how to use mfrow and mfcol to arrange plots on a device.
Dealing with these parameters can become tricky if we want complex arrangements and
layout provides a way to tackle that in an easier way. Be careful because layout is totally
incompatible with mfrow and mfcol.

R > m <- matrix(c(2, 0, 1, 3), 2, 2,
+ > byrow=TRUE); m
R > my.layout <- layout(m, widths=c(3, 1),
+ > heights=c(1, 3), TRUE)
R > layout.show(my.layout)
R > x <- runif(10)
R > y <- runif(10)
R > plot(x, y, pch=16, cex=2,
+ > col=rainbow(10))
R > plot(x, rep(1, 10), pch=16, cex=2,
+ > col=rainbow(10))
R > plot(rep(1, 10), y, pch=16, cex=2,
+ > col=rainbow(10))

• Compare the content of the
matrix m and the output of
layout.show.

• Understand the parame-
ters widths and heights in
layout.

• Do you see how to obtain sim-
ilar graphics with mfrow and
mfcol?
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Questions

1. Generate two samples x <- rnorm(500) and y <- rf(500, 5, 5) and display the
scatter plot with the associated box plots (down horizontally for x, left vertically for y).

2. In the help page of layout, experiment and understand the example Create a scatterplot
with marginal histograms.

3.3.2 Graphical Parameters

R > plot(LakeHuron, xlab="Year",
+ > ylab="Level in feet",
+ > main="Level of Lake Huron")
R > old.par <- par(bty="n",
+ > col="red", bg="grey",
+ > mar=c(2.5, 2.5, 2, 2),
+ > mgp=c(1.5, 0.5, 0),
+ > oma=c(0, 0, 0, 0),
+ > cex.main=0.8,
+ > cex.lab=0.7,
+ > cex.axis=0.7)
R > plot(LakeHuron, xlab="Year",
+ > ylab="Level in feet",
+ > main="Level of Lake Huron")
R > par(old.par) # Reset settings

• The function par allows you to mod-
ify the graphical parameters. There are
plenty of options, see help(par).

• A good habit is to save the current pa-
rameters before doing any modification
by keeping the object returned by par.
When your graphics are done, call par
with this object to reset all the parame-
ters to their initial values. This is espe-
cially important when you tweak graphi-
cal parameters in the body of a function
to avoid modifying the global settings.

• In the examples, we use various param-
eters related to framing. Use the help
pages to understand their roles.

3.3.3 Axes and margins

R > x <- runif(50)
R > y <- runif(50)
R > plot(x, y)
R > plot(x, y, axes=FALSE)
R > axis(1)
R > axis(1, at=c(0.2,0.5,0.8), padj=1,
+ > label=c("Low", "Average", "High"))
R > axis(2, lty=2, col=2)
R > mtext(c("A", "B", "C", "D", "E"),
+ > side=2, at=seq(0.2, 1, by=0.2))
R > plot(x, y)
R > rug(x)
R > rug(y, side=4)

• The axes of a graph can be con-
structed retrospectively.

• The function axis adds an axis
to the current graph. See
help(axis) for details about
the options.

• The function mtext permits to
write text in the margins.

• The function rug is not related
to axes or margins but stick to
them.
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Questions

1. Consider two vectors v1 <- 1:10 and v2 <- 100*sample(v1). What is the problem
for displaying them together on the same graph?

2. Use the option new of the function par to represent v1 and v2 on the same graph with
an axis on the right for v1 and one one the left for v2.

3.3.4 Mathematical formulas

R > help(expression)
R > help(plotmath)
R > demo(plotmath)
R > plot(dnorm, -3, 3)
R > x <- seq(-3, 3, length=256)
R > lines(x, dnorm(x, 1, 1), col=2)
R > lines(x, dnorm(x, 0, 2), col=3)
R > title(expression(
+ > over(1, sigma*sqrt(2*pi))
+ > *e^{over(-(x-mu)^2, 2*sigma^2)}))
R > expr1 <- expression(mu==0~~sigma==1)
R > expr2 <- expression(mu==1~~sigma==1)
R > expr3 <- expression(mu==0~~sigma==2)
R > legend("topleft", c(expr1, expr2, expr3),
+ > lty=1, col=1:3)

• Mathematical formulas can
be written as text on the
graphics in title, axes, leg-
ends, ...

• To write math, you need
to use objects of type
expression. The content
of these objects has to be
formatted according to a
specific syntax derived from
the famous TEX language of
the awesome Donald Knuth.

3.3.5 Plotting networks

R > install.packages("igraph") # Take time
R > library(igraph)
R > g <- graph.ring(10)
R > plot(g)
R > plot(g, layout=layout.kamada.kawai,
+ > vertex.color="green")
R > tkplot(g) # Interactive
R > g.lay <- layout.fruchterman.reingold(g, dim=3)
R > rglplot(g, layout=g.lay) # 3D

• The package igraph
offers various functions
to analyze networks.
We only look at graph-
ics ones in the exam-
ples.

• For more details, read
the help pages about
igraph, plot.igraph
and igraph.plotting.
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3.3.6 Geographical maps

R > install.packages("maps")
R > library(maps)
R > library(help=maps)
R > map("france", fill=TRUE, col=rainbow(10))
R > my.map <- map("france",
+ > regions="haute-garonne", fill=TRUE,
+ > col=grey(0.8))
R > title(my.map$names)
R > gps.coord <- matrix(c(1.443962, 43.604482),
+ > nrow=1)
R > points(gps.coord, pch=16, cex=1.5)
R > text(gps.coord, labels="Toulouse", pos=3)

• There exist several pack-
ages which provide geo-
graphical data, maps is one
of them.

• For geographical data
analysis, you can look
for information about
packages sp and GeoXp.

3.4 Integrating R

3.4.1 R and OpenDocument

With the package odfWeave, you can insert R commands in an OpenDocument like *.odt
files of Libre Office Writer. This is a powerfull tool to produce elegant reports and properly
integrate R outputs without modifying the initial file. The blocks of R commands are called
chunks and are structured in the following way,

1. a line to introduce the chunk that contains << followed by the chunk’s name, some
options, ... and ended with >>=,

2. your R commands,

3. a symbol @ to end the chunk.

Let’s take an example with a file TestRaw.odt,

This is an example of use of odfWeave.
<<chunk1, echo=TRUE>>=
x = rnorm(64)
summary(x)
@

It also works with graphics !
<<chunk2, echo=FALSE, fig=TRUE>>=
hist(rnorm(512), col=’green’)
@

Various options for the chunks are at your disposal in order to display or not the com-
mands, to insert a figure, ... See help(RweaveOdf) for details. To produce the final document
Test.odt, proceed as follows,
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R > install.packages("odfWeave")
R > library(odfWeave)
R > odfWeave("TestRaw.odt", "Test.odt")

3.4.2 LATEX

R fits perfectly with the powerful document markup language LATEX. You can convert R
objects to a formatted string to be directly included in your LATEX document with the generic
functions toLatex and toBibtex or with the package xtable,

R > toLatex(sessionInfo())
R > install.packages("xtable")
R > library(xtable)
R > xtable(data.frame(x=rnorm(10), y=runif(10)))

This relationship between R and LATEX is widely used by packages like Sweave and knitr
to produce high quality documents. LATEX users and any interested readers should focus on
these packages in order to see the quite limitless possibilities.
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