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Chapter 1

Exploratory data analysis and
dimension reduction

1.1 Data and definitions

1.1.1 Kind of data

From a general point of view, the aim of statistics is to describe phenomena based on ob-
servations of variables related to these phenomena. In the sequel, we call variable anything
that we can observe. Let us consider some variable x, we call data any set of observations
of x. For any positive integer n, we denote by x1, . . . , xn the observations of x. We have to
distinguish two kinds of data:

• if the data belong to some real vector space (e.g. if there exists some integer k > 0 such
that x1, . . . , xn ∈ Rk), we say that the data are quantitative. For instance, physical
measurements (pressure, temperature, . . . ) lead to quantitative data.

• if the data belong to some unordered finite set, we say that the data are qualitative. For
example, occupational categories (worker, student, unemployed, . . . ) lead to qualitative
data.

Hereafter, we will often consider quantitative data because it is easier for computation. But
we also will see that we are not restricted to quantitative data and that we can extend some
technics in order to deal with qualitative data.

1.1.2 The real case

Let us begin by considering the simplest kind of quantitative data, real data, x1, . . . , xn ∈ R
related to some variable x. We also introduceweights w1, . . . , wn > 0 associated to these data.
For any i ∈ {1, . . . , n}, the weight wi represents the importance of the observation xi among
the data. Usually, this importance is measured relatively to the total weight w1 + · · ·+wn by
the fraction

w̃i =
wi

w1 + · · ·+ wn
.

A first quantity that we can define in relation to quantitative data is the mean,

x =
1

w1 + · · ·+ wn

n∑
i=1

wixi =
n∑
i=1

w̃ixi .

1
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Note that it is equivalent to work with the weights w1, . . . , wn and with w̃1, . . . , w̃n. The main
difference is that the weights w̃1, . . . , w̃n are said to be normalized because w̃1 + · · ·+w̃n = 1.
In particular, the uniform weights w1 = · · · = wn = 1/n are normalized. For the sake of
legibility, in the sequel, we will always assume that we deal with normalized weights (i.e.
w1 + · · · + wn = 1). When you handle the following formulas, be careful to this hinted
assumption.

The mean x indicates around what the data are distributed. An other useful information
is how far the data are from the mean. To measure this dispersal, a classical approach consists
in considering the variance,

σ2(x) =
n∑
i=1

wi(xi − x)2 .

The variance is the mean of the squared distances between each observation and x. This
quantity is nonnegative and is close to zero only if the observations are all close to the mean.
The standard deviation σ(x) is the square root of the variance.

In order to get more precise information about how the data are distributed, we introduce
the quantiles. Let p ∈ [0, 1], the p-quantile qp(x) of the data is given by

qp(x) = inf

{
t ∈ R such that

n∑
i=1

wi1l(−∞,t](xi) > p

}
.

Note that the funtion p ∈ [0, 1] 7→ qp(x) is nondecreasing (see Figure 1.1). The quantile qp(x)
is the point that divides the data into two sets such that the set of observations smaller than
qp(x) has a total weight greater or equal to p. Some particular quantiles have names:

• q0.5(x) is called the median,

• q0.25(x) and q0.75(x) are called the first and third quartiles, respectively.

The difference between the third and the first quartiles is called the interquartile range,
IQR = q0.75(x)− q0.25(x).

summary(cars$dist)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.00 26.00 36.00 42.98 56.00 120.00

p <- (0:100)/100
qp <- quantile(cars$dist, probs=p)
plot(p, qp, type="l", col="red")

A convenient way for graphically representing the distribution of the data is the box plot.
Basically, five informations are summarized in a box plot : the smallest observation, the first
quartile, the median, the third quartile and the largest observation. Moreover, one adds two
whiskers to the box to indicate some additional informations. The lengths of these whiskers
can vary from a representation to an other but a usual choice is to use the lowest observation
still within 1.5× IQR of the first quartile and the highest observation still within 1.5× IQR
of the third quartile (see Figure 1.2).
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Figure 1.1: Quantile function of "Stopping Distances of Cars" with uniform weights

boxplot(cars$dist,horizontal=TRUE,col="orange")

0 20 40 60 80 100 120

Figure 1.2: Example of box plot based on the "Stopping Distances of Cars" with uniform
weights

An other graphical representation of the distribution of the data is the histogram. Let
b0, . . . , br be given such that all the data are in the open interval (b0, br). For each k ∈
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{1, . . . , r}, the frequency fk of the interval [bk−1, bk] is

fk =
n∑
i=1

wi1l(bk−1,bk](xi) .

Then, the histogram associated to the data is the piecewise constant function, defined for any
t ∈ R,

hx(t) =


0 if t 6 b0
fk/(bk − bk−1) if t ∈ (bk−1, bk], k ∈ {1, . . . , r}
0 if t > br

.

Note that all the frequencies are normalized by the length of the corresponding interval. In
such a way, the area below the curve is equal to one. A similar approach consists in considering
a symmetric nonnegative function K such that

∫ 1
0 K(t)dt = 1 and in defining, for any t ∈ R,

hx,λ(t) =
1

λ

n∑
i=1

wiK

(
t− xi
λ

)
for some λ > 0. It is easy to verify that the area below the curve of hx,λ is also equal to one.
Figure 1.3 gives an example of an histogram hx and a function hx,λ with uniform weights,
K(t) = exp(−t2/2)/

√
2π and λ = 7.5.

0 50 100

0.000

0.005

0.010

0.015

Figure 1.3: Histogram of "Stopping Distances of Cars" with uniform weights

1.1.3 Two real variables

In many situations, we do not observe only one quantitative variable. Let us assume, for
the moment, that we observe a pair (x, y) of real variables. Thus, we have at our disposal
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quantitative data given by n points (x1, y1), . . . , (xn, yn) ∈ R2. As previously, for any i ∈
{1, . . . , n}, the i-th observation (xi, yi) is weighted by some wi > 0. A very classical way for
representing such a data set is the scatter plot that is simply the plot of our n points (see
Figure 1.4).

plot(cars$speed, cars$dist, pch=4)
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Figure 1.4: Scatter plot of "Speed and Stopping Distances of Cars"

The natural question that arises is the existence of a relation between the variables x and
y. Many quantities have been introduced in order to deal with such a question. One of the
most famous is the covariance,

σ(x, y) =
n∑
i=1

wi(xi − x)(yi − y) .

The covariance σ(x, y) tends to be larger than 0 if the observations xi and yi are together
greater or smaller than their means (i.e. "xi > x and yi > y" or "xi 6 x and yi 6 y"). Thus,
positive covariance suggests that the variables x and y vary in the same direction. From the
other side, σ(x, y) tends to be smaller than 0 if the variables x and y vary in opposite direction.
Note that, by definition, the covariance between a variable and itself is the variance,

σ(x, x) = σ2(x) .

The underlying problem is that "larger than 0" is not well defined because the covariance
is scale dependent. In order to avoid this problem, we can consider the covariance between
normalized data, called Pearson product-moment correlation coefficient,

ρ(x, y) =
σ(x, y)√
σ2(x)σ2(y)

.
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Cauchy–Schwarz inequality directly gives that ρ(x, y) ∈ [−1, 1]. Moreover, we can prove that
|ρ(x, y)| = 1 if and only if the points (x1, y1), . . . , (xn, yn) are all distributed on a staight line.
Thus, ρ(x, y) allows to measure how the relation between x and y is far from an affine relation
(such a relation will be suggested by |ρ(x, y)| close to 1). Notice that there exist a lot of other
correlation measurments (Spearmann, Kendall, . . . ). According to the studied problem, these
other coefficient should be taken into account.

Clearly, in practice, data are never perfectly distributed along a straight line. Nevertheless,
if |ρ(x, y)| is close to 1, it can be interesting to know what kind of affine relation could rely
the variables x and y. In other words, we are looking for two reals a and b such that the least
square criterion γx,y(a, b) is minimal,

γx,y(a, b) =
n∑
i=1

wi (yi − axi − b)2 .

It is easy to see that the minimal value of γx,y(a, b) is reached by

â =
σ(x, y)

σ2(x)
and b̂ = y − â× x

and so, the linear regression line is given by the equation y = âx+ b̂ (see Figure 1.5).

cor(cars$speed, cars$dist)

## [1] 0.8068949

a <- cov(cars$speed,cars$dist)/var(cars$speed)
b <- mean(cars$dist)-a*mean(cars$speed)
abline(b, a, col="red")

1.1.4 Real vectors of observations

From a practical point of view, we often deal with much more than one or two variables. Thus,
we now consider p quantitative variables x1, . . . , xp that we observe n times. In other words,
we have at our disposal the observations x1, . . . , xn ∈ Rp with, for any i ∈ {1, . . . , n},

xi =

x
1
i
...
xpi

 ∈ Rp .

A natural way for giving sense to the mean of the xi’s is to define the center of gravity,

g(x) =
n∑
i=1

wixi =

x1

...
xp

 ∈ Rp ,

i.e. the mean of the observed vectors is the vector of the observed means.
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Figure 1.5: Linear regression line for "Stopping Distances" with respect to "Speed" and
uniform weights

Dealing with vectorial data could implies some difficulties for the notations. For this
reason, it is convenient to use matrix notations. The weights w1, . . . , wn > are given by the
diagonal n× n-weight matrix,

W =


w1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 wn

 ,

and the observations are given by the n× p-data matrix,

X =


x1

1 x2
1 . . . xp1

x1
2 x2

2 . . . xp2
...

... . . .
...

x1
n x2

n . . . xpn

 ,

where each line is relative to an individual and each column is relative to a variable. We also
often use the n×p-centered data matrix X̄ that is obtained from X by considering centered
observations,

X̄ =


x1

1 − x1 x2
1 − x2 . . . xp1 − xp

x1
2 − x1 x2

2 − x2 . . . xp2 − xp
...

... . . .
...

x1
n − x1 x2

n − x2 . . . xpn − xp

 .
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By the aid of this matrix X̄, we can define the p×p-covariance matrix that contains all the
covariances that we can compute between two observed variables,

Σ = tX̄WX̄ =


σ2(x1) σ(x1, x2) . . . σ(x1, xp)
σ(x1, x2) σ2(x2) . . . σ(x2, xp)

...
...

. . .
...

σ(x1, xp) σ(x2, xp) . . . σ2(xp)

 .

Indeed, for any i ∈ {1, . . . , n} and any j ∈ {1, . . . , p}, we have

(
tX̄WX̄

)
ij

=
n∑
k=1

n∑
`=1

tX̄ikWk`X̄`j =
n∑
k=1

wkX̄kiX̄kj =
n∑
k=1

wk(x
i
k − xi)(x

j
k − xj) = σ(xi, xj) .

Note that, by definition, we know that Σ is symmetric. It is also easy to check that Σ is
positive. Indeed, let u ∈ Rp,

tuΣu = t(X̄u)WX̄u =

n∑
i=1

wi(X̄u)2
i > 0 .

To generalize the variance, a basic approach consists in considering the standard inertia,

I(x) =

p∑
j=1

σ2(xj) ,

i.e. to measure the dispersal of the observed vectors, we sum of the measurements of the
dispersal according to each coordinate. To get a more general outlook, we can rewrite I(x) in
a particular way,

I(x) =

p∑
j=1

n∑
i=1

wi(x
j
i − xj)

2 =
n∑
i=1

wi

p∑
j=1

(xji − xj)
2 =

n∑
i=1

wi‖xi − g(x)‖2Idp

where we have set, for any positive p× p-matrix M ,

∀u, v ∈ Rp, 〈u, v〉M = tuMv and ‖u− v‖2M = t(u− v)M(u− v) .

Obviously, if M is a symmetric positive matrix, 〈·, ·〉M is a scalar product in Rp and ‖ · ‖M
is a norm in Rp. Note that replacing M by (M + tM)/2 does not change these definitions.
Thus, we will always can consider that 〈·, ·〉M and ‖ · ‖M are given by a symmetric matrix M
in the sequel. Moreover, this leads to the general definition of inertia,

IM (x) =
n∑
i=1

wi ‖xi − g(x)‖2M .

Particular choices of M lead to interesting situations. If M = diag(1/σ2(x1), . . . , 1/σ2(xp)),
it amounts to deal with normalized data, i.e. x̃ji = (xji − xj)/σ(xj). If Σ is invertible and
M = Σ−1, ‖u− v‖M is known as the Mahalanobis distance between u and v.

All these considerations bring us to consider two spaces for dealing with our data:
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• the space of variables : isomorphic to Rn, this is the space of the observations of one
variable. It is equiped with a metric relative to the weight matrix W ,

∀u, v ∈ Rn, ‖u− v‖2W = t(u− v)W (u− v) =

n∑
i=1

wi(ui − vi)2 .

• the space of individuals : isomorphic to Rp, this is the space of the observations
related to one individual. It is equiped with a metric relative to some positive matrix
M ,

∀u, v ∈ Rp, ‖u− v‖2M = t(u− v)M(u− v) .

We will often use this duality in the sequel.

1.2 Principal component analysis

1.2.1 Principle

In this section, we assume that we dispose of quantitative data x1, . . . , xn ∈ Rp relative to
some p real variables x1, . . . , xp. The goal of PCA (Principal component analysis) is to provide
a method for reducing the dimension:

• to produce some "optimal" graphical representation of the data in R2 or R3 with p > 3,

• to understand the correlation structure of the variables,

• to compress the data, i.e. to build q variables with q < p to explain the data without
losing too much information.

An important idea to keep in mind is the following one : we want to try to conserve the
distances between the observations in Rp and their versions in the reduced space. These
distances are measured according to a metric given by for some well chosen positive p × p-
matrix M . So, in other words, we want to conserve the inertia IM (x) of the data.

Let Ed ⊂ Rp be some linear space of dimension d 6 p and v1, . . . , vd ∈ Rp be a M -
orthonormal basis of Ed (i.e. orthonormal basis according to the scalar product 〈·, ·〉M ). For
any i ∈ {1, . . . , n}, we denote x̃i = xi − g(x) and we know that the orthogonal projection of
x̃i in Ed is given by

πEd
(x̃i) =

d∑
j=1

〈x̃i, vj〉Mvj =

d∑
j=1

tvjMx̃ivj .

Conserving the inertia means that we want to find a space Ed of fixed dimension d such that
the inertia IM (x,Ed) of the projected observations is as close as possible to the inertia IM (x)
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of the data. Let us write the inertia of the projected observations,

IM (x,Ed) =
n∑
i=1

wi‖πEd
(x̃i)‖2M =

n∑
i=1

wi

d∑
j=1

〈x̃i, vj〉2M

=
n∑
i=1

wi

d∑
j=1

(
tx̃iMvj

)2
=

n∑
i=1

wi

d∑
j=1

tvj tMx̃i
tx̃iMvj

=
d∑
j=1

tvj tM

(
n∑
i=1

wix̃i
tx̃i

)
Mvj =

d∑
j=1

tvj tMΣMvj

=
d∑
j=1

t
(
ΣMvj

)
Mvj =

d∑
j=1

〈ΣMvj , vj〉M .

Thus, to find the "best" space Ed, we just have to get M -orthonormal vectors v1, . . . , vd ∈ Rp
that maximize this last sum.

Of course, this optimization problem is connected to singular values decomposition. Note
that, because M is symmetric, we know that the square matrix ΣM is self-adjoint for 〈·, ·〉M ,

∀u, v ∈ Rp, 〈ΣMu, v〉M = t(ΣMu)Mv = tu tM tΣMv = tuMΣMv = 〈u,ΣMv〉M ,

and positive,
∀u ∈ Rp, 〈ΣMu, u〉M = t(Mu)ΣMu > 0 .

Thus, we know that ΣM admits p nonnegative eigenvalues λ1 > · · · > λp > 0 and we
denote by v1, . . . , vp ∈ Rp the M -orthonormal basis of eigenvectors associated to the λi’s. So,
Ed is the space generated by v1, . . . , vd (called principal vectors) that are M -orthonormal
eigenvectors associated to the d largest eigenvalues of ΣM ,

IM (x,Ed) =
d∑
j=1

〈ΣMvj , vj〉M =
d∑
j=1

〈λjvj , vj〉M =
d∑
j=1

λj .

Note that the spaces Ed are nested (E1 ⊂ E2 ⊂ · · · ⊂ Ep) and, for d = p, we have IM (x,Ep) =
IM (x) = λ1 + · · ·+ λp. We call explained inertia of Ed the fraction

d∑
j=1

λj

p∑
j=1

λj

.

This quantity gives us a way for choosing a "good" dimension d for explaining the data. An
explained inertia largest than 80% is commonly considered as good.

In practice, we do not directly compute the M -orthonormal vectors v1, . . . , vp. Indeed,
M -orthonormality is not an easy-to-handle notion and we prefer to come down to classic
orthonormality by noting that, by invertibility of M ,

”v is an eigenvalue of ΣM”⇔ ”ṽ = M1/2v is an eigenvalue of M1/2ΣM1/2” .
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Moreover, we have

〈ΣMv, v〉M = tvMΣMv = tṽM1/2ΣM1/2ṽ = 〈M1/2ΣM1/2ṽ, ṽ〉

where 〈·, ·〉 is the usual scalar product. The matrix M1/2ΣM1/2 is positive symmetric, so we
can find ṽ1, . . . , ṽp orthonormal for 〈·, ·〉 that are eigenvectors of M1/2ΣM1/2 associated to
eigenvalues λ1 > · · · > λp > 0. To get our M -orthonormal eigenvectors of ΣM , we set, for
any j ∈ {1, . . . , p}, vj = M−1/2ṽj (easy to check that they are M -orthonormal eigenvectors).

1.2.2 Toy examples

We introduce two examples that we will handle in the sequel of this chapter.

Grades

We consider data that are grades of n = 9 students in p = 4 topics:

Maths Physics French English
Benny 6 6 5 5.5
Bobby 8 8 8 8
Brandy 6 7 11 9.5
Coby 14.5 14.5 15.5 15
Daisy 14 14 12 12.5
Emily 11 10 5.5 7
Judy 5.5 7 14 11.5
Marty 13 12.5 8.5 9.5
Sandy 9 9.5 12.5 12

To not favour anyone, we consider uniform weights w1 = · · · = wn = 1/n (i.e. W = 1
n Idn).

Thus, we have

X =



6 6 5 5.5
8 8 8 8
6 7 11 9.5

14.5 14.5 15.5 15
14 14 12 12.5
11 10 5.5 7
5.5 7 14 11.5
13 12.5 8.5 9.5
9 9.5 12.5 12


and the covariance matrix

Σ =
1

n
tX̄X̄ =


11.3888889 9.9166667 2.6574074 4.8240741
9.9166667 8.9444444 4.1203704 5.4814815
2.6574074 4.1203704 12.0617284 9.2932099
4.8240741 5.4814815 9.2932099 7.9135802

 .

Let us have a look to the distribution of these variables (see Figure 1.6). We see that the
4 variables are "normally" distributed. We decide to compare them in the classical way with
M = Id4 (i.e 〈·, ·〉M is the usual scalar product in Rp).
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boxplot(X,col="orange")
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Figure 1.6: Box plot of the grades data
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Then, we can get the ordered eigenvalues of ΣM = Σ and consider that d = 2 is a good
trade-off for representing the data (99.89% of explained inertia). A usefull tool for helping
us to see what is a good value of d is to plot the ordered eigenvalues λk according to k (see
Figure 1.7).

dg <- eigen(Sigma)
dg$values

## [1] 28.23487122 12.03054605 0.03263201 0.01059269

cumsum(dg$values)/sum(dg$values)

## [1] 0.7004669 0.9989277 0.9997372 1.0000000

plot(1:4, dg$values, type="b", col="orange")
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Figure 1.7: Ordered eigenvalues of the grades data

Skyrim bows

The data of the second example are the weight, value, damage and speed (so, p = 4) of the
n = 14 bows of the game "The Elder Scrolls V: Skyrim". As above, we consider uniform
weights W = 1

n Idn, X denotes the data and Σ the covariance matrix. The box plot of the
data (see Figure 1.8) shows that the scale of the each variable can not be compared (the
variable "Value" is too important). To avoid this problem, we deal with normalized data (i.e.
M is the diagonal matrix with 1/σ(xi)’s).
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Weight Value Damage Speed
Long Bow 5 30 6 1
Hunting Bow 7 50 7 0.9375
Orcish Bow 9 150 10 0.8125
Nord Hero Bow 7 200 11 0.875
Dwarven Bow 10 270 12 0.75
Elven Bow 12 470 13 0.6875
Glass Bow 14 820 15 0.625
Ebony Bow 16 1440 17 0.5625
Daedric Bow 18 2500 19 0.5
Dragonbone Bow 20 2725 20 0.75
Crossbow 14 120 19 1
Enhanced Crossbow 15 200 19 1
Dwarven Crossbow 20 350 22 1
Enhanced Dwarven Crossbow 21 550 22 1

X =



5 30 6 1
7 50 7 0.9375
9 150 10 0.8125
7 200 11 0.875
10 270 12 0.75
12 470 13 0.6875
14 820 15 0.625
16 1440 17 0.5625
18 2500 19 0.5
20 2725 20 0.75
14 120 19 1
15 200 19 1
20 350 22 1
21 550 22 1



Σ =
1

n
tX̄X̄ =


25.8163265 2588.0612245 25.1530612 −0.1377551

2588.0612245 7.3538023× 105 2050.3061224 −98.2844388
25.1530612 2050.3061224 26.6938776 −0.0325255
−0.1377551 −98.2844388 −0.0325255 0.0294962



M =


1/σ2(x1) 0 0 0

0 1/σ2(x2) 0 0
0 0 1/σ2(x3) 0
0 0 0 1/σ2(x4)

 =


0.0387352 0 0 0

0 1.3598407× 10−6 0 0
0 0 0.0374618 0
0 0 0 33.9027027


boxplot(Xbar,col="orange")
boxplot(Xbar %*% sqrt(M),col="blue")

Two dimensions seems to be a good trade-off (94.03% of explained inertia).
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Figure 1.8: Box plot of the centered "Skyrim bows" data with uniform weigths (not normalized
and normalized)

Mhalf <- diag(sqrt(diag(M)))
dg <- eigen(Mhalf %*% Sigma %*% Mhalf)
dg$vectors <- diag(1/sqrt(diag(M))) %*% dg$vectors
dg$values

## [1] 2.5110468 1.2502687 0.2094900 0.0291945

cumsum(dg$values)/sum(dg$values)

## [1] 0.6277617 0.9403289 0.9927014 1.0000000

plot(1:4, dg$values, type="b", col="orange")

1.2.3 Principal components and representation of the individuals

TheM -orthonormal eigenvectors v1, . . . , vp are a basis of Rp. Thus, we can write the observed
data X into this basis. For i ∈ {1, . . . , n} and j ∈ {1, . . . , p}, we denote by cji the coordinate
of x̃i = xi − g(x) along the vector vj ,

cji = 〈x̃i, vj〉M = tx̃iMvj .

This leads us to consider p new centered vectors of observations c1, . . . , cp ∈ Rn given by

cj =

c
j
1
...
cjn

 = X̄Mvj .
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Figure 1.9: Ordered eigenvalues of the "Skyrim bows" data

c1, . . . , cp are called the principal components and the n × p-data matrix C associated to
them is the principal components matrix,

C = X̄MV

where V is the transformation matrix from the standard basis to the basis of the vj ’s,

V =
[
v1 . . . vp

]
=

v
1
1 . . . vp1
... . . .

...
v1
p . . . vpp

 .

The principal components are centered and noncorrelated. Indeed, we can easily compute
the covariance matrix associated to C,

tCWC = tV tM tX̄WX̄MV = tV (MΣM)V = Λ =


λ1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 λp

 ,

because V is an M -orthogonal matrix formed by the M -orthonormal eigenvectors of ΣM .
Thus, for any j 6= k ∈ {1, . . . , p}, we have

σ2(cj) = λj and σ(cj , ck) = 0 .

Thus, the first column of C contains the coordinates of the n individuals along the first
principal axe, the second columns contains their coordinates along the second principal axe,
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. . . This allows us to represent the individuals in Ed. In particular, E2 is called the principal
plan and the coordinates of the n individuals in E2 are given by the two first columns of C.
Moreover, for any i ∈ {1, . . . , n}, we can measure the quality of the representation of xi by
the quantity

cos2 θi =
‖πE2(x̃i)‖2M
‖x̃i‖2M

=

(
c1
i

)2
+
(
c2
i

)2(
c1
i

)2
+ · · ·+ (cpi )

2
.

When we produce the scatter plot of the data in E2, it can be usefull to draw the points with
a size proportionnal to this quantity.

To discuss about each individual and detect outliers, we can now define several quantities
as the contribution of the i-th individual to the inertia,

wi‖x̃i‖2M
IM (x)

,

the contribution of the i-th individual to the j-th principal component,

wi(c
j
i )

2

λj
, . . .

If we have at our disposal a new individual s, we do not need to compute again all the stuff
for adding s to the plot in E2. Indeed, it suffices to consider s̃ = s− g(x) and to plot(

〈s̃, v1〉M , 〈s̃, v2〉M
)

= ( ts̃Mv1, ts̃Mv2) .

Grades

Because M = Idp, we have C = X̄V and we can easily compute the quality of the representa-
tion of each individual in E2 and the contribution of each individual to the two first principal
components.

C <- Xbar %*% dg$vectors
cos2 <- rowSums(C[,1:2]^2)/rowSums(C^2)
cos2

## Benny Bobby Brandy Coby Daisy Emily Judy
## 0.9998728 0.9996600 0.9986273 0.9997552 0.9990726 0.9992720 0.9993354
## Marty Sandy
## 0.9980322 0.9807683

rbind(C[,1]^2/(nrow(X)*dg$values[1]),C[,2]^2/(nrow(X)*dg$values[2]))

## Benny Bobby Brandy Coby Daisy Emily
## [1,] 0.29186747 0.059205877 0.0406348 0.381947288 0.16151891 0.0362031
## [2,] 0.01834526 0.002329559 0.1110988 0.003319477 0.03868406 0.2236650
## Judy Marty Sandy
## [1,] 0.00413805 0.01502477 0.009459738
## [2,] 0.37559607 0.16288732 0.064074536



18 CHAPTER 1. EXPLORATORY DATA ANALYSIS

Thus, we obtain Figure 1.10 when we draw the scatter plot in E2

plot(C[,1:2], pch=2, cex=cos2, col="orange", xlab="", ylab="")
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Figure 1.10: Scatter plot of the grades data in E2
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Skyrim bows

We have C = X̄MV and we can proceed as above. In particular, we get Figure 1.11 in the
principal plan.

C <- Xbar %*% M %*% dg$vectors
cos2 <- rowSums(C[,1:2]^2)/rowSums(C^2)
cos2

## Long Bow Hunting Bow
## 0.9348944 0.9590128
## Orcish Bow Nord Hero Bow
## 0.9852860 0.9574949
## Dwarven Bow Elven Bow
## 0.8813076 0.6941128
## Glass Bow Ebony Bow
## 0.7384271 0.9496699
## Daedric Bow Dragonbone Bow
## 0.9962952 0.8511160
## Crossbow Enhanced Crossbow
## 0.9466848 0.9816916
## Dwarven Crossbow Enhanced Dwarven Crossbow
## 0.9880126 0.9878681

plot(C[,1:2], pch=2, cex=cos2, col="orange", xlab="", ylab="")

1.2.4 Representation of the variables and biplot

In order to get a graphical representation of the variables, we can proceed as above but with
tX̄ in the place of X̄. In particular, W and M are inverted and we deal with a scalar product
〈·, ·〉W . Thus, we need to get two W -orthonormal vectors u1, u2 ∈ Rn that are eigenvectors of
X̄M tX̄W associated to the two largest eigenvalues. Hereafter, we assume that min(n, p) > 2
which is a quite common situation. Basic linear algebra gives us

u1 =
c1

√
λ1

and u2 =
c2

√
λ2

.

Indeed, we have

X̄M tX̄Wu1 = X̄M tX̄W
c1

√
λ1

=
1√
λ1
X̄M tX̄WX̄Mv1

=
1√
λ1
X̄MΣMv1

=
λ1√
λ1
X̄Mv1 =

λ1√
λ1
c1 = λ1u

1 .
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Figure 1.11: Scatter plot of the "Skyrim bows" data in E2

Arguing in the same way shows that u1 and u2 are the two W -orthonormal eigenvectors
of X̄M tX̄W associated to the two largest eigenvalues λ1 > λ2. As a consequence, for any
j ∈ {1, . . . , p}, the variable xj can be represented by(

〈xj , u1〉W , 〈xj , u2〉W
)

=
(√

λ1v
1
j ,
√
λ2v

2
j

)
.

Note that, more generally, this is the two first columns of V Λ1/2.
In order to interpret the role of the initial variable in the construction of the principal

components, it is usefull to consider the correlation between them,

ρ(xj , ck) =
σ(xj , ck)

σ(xj)
√
λk

=
〈xj , ck〉W
σ(xj)

√
λk

=
〈xj , uk〉W
σ(xj)

=

√
λk

σ(xj)
vkj

because ck is centered and then σ(xj , ck) = 〈xj , ck〉W , by construction. It is easy to verify
that the points

Pj(ρ(xj , c1), ρ(xj , c2))

are in the unit circle (compute σ2(xj) = ‖x̃j‖2W w.r.t. the W -orthonormal basis u1, . . . , up ∈
Rn). Representation of these points is known as the correlation circle (see Figures 1.12
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and 1.14). The closer a variable is to the circle, the better it is represented in the considered
direction of E2. Note that the last notice (λ1(v1

j )
2 + · · · + λp(v

p
j )

2 = σ2(xj)) allows us to
interpret ρ(xj , ck)2 as the contribution of ck to xj .

The fact that the axes of E2 and the correlation circle are the same up to a homothetic
transformation allow us to represent E2 and the correlation circle on the same graphic. Such
a representation is known as a biplot and we generally use two different scales for keeping
the biplot as clear as possible (see Figures 1.13 and 1.15). It is important to notice that there
exists other choices for the scale of the axes in biplot. Indeed, we use C and D−1

σ V Λ1/2 for
plotting but one also can use C and V (line isometry, this is what R does with prcomp and
biplot), U and V Λ1/2 (column isometry), . . .

Grades

Rho <- diag(1/sqrt(diag(Sigma))) %*% dg$vectors %*% diag(sqrt(dg$values))
Rho[,1:2]

## [,1] [,2]
## Math -0.8111521 0.5844514
## Phys -0.9018802 0.4305779
## Fr -0.7531811 -0.6573021
## Eng -0.9148759 -0.4007291

rowSums(Rho[,1:2]^2)

## Math Phys Fr Eng
## 0.9995511 0.9987852 0.9993277 0.9975817

DrawCorCircle(Rho)

DrawBiplot(C,Rho)
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Figure 1.12: Correlation circle of the grades data

Skyrim bows

Rho <- diag(1/sqrt(diag(Sigma))) %*% dg$vectors %*% diag(sqrt(dg$values))
Rho[,1:2]

## [,1] [,2]
## Weight -0.9202730 -0.3667223
## Value -0.8375940 0.4252481
## Damage -0.8518698 -0.4961416
## Speed 0.4867222 -0.8299343

rowSums(Rho[,1:2]^2)

## Weight Value Damage Speed
## 0.9813877 0.8823996 0.9718387 0.9256895

DrawCorCircle(Rho)
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Figure 1.13: Biplot of the grades data

DrawBiplot(C,Rho)
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Figure 1.14: Correlation circle of the "Skyrim bows" data

1.2.5 Summary

We brievely summarize the various notations that we handle in this section. First, we had the
input matrices:

• X : n× p matrix of the data,

• W : n× n matrix (gives the scalar product 〈·, ·〉W in the space of variables),

• M : p× p matrix (gives the scalar product 〈·, ·〉M in the space of individuals).

Based on these objects, we have defined the following ones:

• X̄ : n× p matrix of centered data,

• Σ = tX̄WX̄ : p× p covariance matrix,

• V : p × p transformation matrix from the standard basis to the M -orthonormal basis
given by the eigenvectors v1, . . . , vp of ΣM ,

• C = X̄MV : n× p principal components matrix.
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Figure 1.15: Biplot of the "Skyrim bows" data

1.3 Correspondence analysis

In the previous section, we have introduced PCA. One of the application of this method is
that it allows us to discuss about the correlation structure of the variables. Moreover, it helps
us to give a graphical representation of this structure. A priori, this work is only available
for quantitative data because we need to quantify the distances and the variations. In this
section, we will see that we can handle quantitative data and use PCA in order to reach a
similar goal. The important fact is to understand what we call "individual" and "variable".
Thus, the general outlook that we had on PCA (X, W and M) will can be applied to other
kinds of problems. In particular, we are going to see that we can deal with the question of
correspondences between the states of two qualitative variables. This procedure is known as
the correspondence analysis.

1.3.1 Introduction

Let us consider two qualitative variables x and y such that:

• x can take the p values of {x1, . . . , xp},
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• y can take the q values of {y1, . . . , yq}.

We observe n times the variable couple (x, y) and we have at our disposal the data associated
to these observations. Usually, this kind of data set is represented by the contingency table
T = (nij)16i6p,16j6q that is the p× q matrix given by

∀(i, j) ∈ {1, . . . , p} × {1, . . . , q}, nij = ] {i ∈ {1, . . . , n} s.t. (xi, yj) is observed)} .

When T is represented, we add the marginal totals of each line,

ni· =

q∑
j=1

nij , i ∈ {1, . . . , p} ,

and of each column,

n·j =

p∑
i=1

nij , j ∈ {1, . . . , q} .

Of course, the grand total is n,

p∑
i=1

ni· =

q∑
j=1

n·j = n ,

and T take the following form,

y1 . . . yj . . . yq Total
x1 n11 . . . n1j . . . n1q n1·
...

...
. . .

...
. . .

...
...

xi ni1 . . . nij . . . niq ni·
...

...
. . .

...
. . .

...
...

xp np1 . . . npj . . . npq np·

Total n·1 . . . n·j . . . n·q n

The goals of CA (correspondence analysis) are

• to describe the correspondences between the values taken by the variables x and y (i.e.
does the observation of x1 influence the fact that I also observe y5?),

• to give a graphical representation of the correspondence.

To reach these goals, the method consists in doing a double PCA on the lines and on the
columns of T .

Note that this framework implies that the order of the values that can take x and y are
ignored. Moreover, we assume that each individual has exactly one value for x and one value
for y (no multiple choices allowed) and that all the values are observed at least one time (if
not, we can throw it away).
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Example

All along this section, we will handle the following example. The data come from the work of
the french sociologist Pierre Bourdieu and are based on n = 8869 students. They represent
the socioprofessional category of his/her father (variable x):

EAG Exploitant agricole

SAG Salarié agricole

PT Patron

PLCS Profession libérale & cadre supérieur

CM Cadre moyen

EMP Employé

OUV Ouvrier

OTH Other

and the kind of studies followed by the student (variable y):

DR Droit

SCE Sciences éco.

LET Lettres

SC Sciences

MD Médecine ou dentaire

PH Pharmacie

PD Pluridisciplinaire

IUT IUT

DR SCE LET SC MD PH PD IUT Total
EAG 80 36 134 99 65 28 11 58 511
SAG 6 2 15 6 4 1 1 4 39
PT 168 74 312 137 208 53 21 62 1035

PLCS 470 191 806 400 876 164 45 79 3031
CM 236 99 493 264 281 56 36 87 1552
EMP 145 52 281 133 135 30 20 54 850
OUV 16 6 27 11 8 2 2 8 80
OTH 305 115 624 247 301 47 42 90 1771

Total 1426 575 2692 1297 1878 381 178 442 8869
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1.3.2 Profiles

The two PCA that we will do are based on vectors of frequencies called profiles. According
to the case, we consider the xi’s as the individuals and the yj ’s as the variables (PCA on the
line profiles) or the yj ’s as the individuals and the xi’s as the variables (PCA on the column
profiles).

Line profiles

Let i ∈ {1, . . . , p}, the line profile associated to the observations of xi is the vector f (xi) ∈
[0, 1]q of the frequencies of the observations of each value of y with xi, namely

f (xi) =

ni1/ni·...
niq/ni·

 =
1

ni·

ni1...
niq

 .

Putting these p profiles in the lines of a p× q matrix P1 leads to the line profiles matrix,

P1 = D1T =


tf (x1)

...
tf (xp)

 =

n11/n1· . . . n1q/n1·
...

. . .
...

np1/np· . . . npq/np·


with D1 = diag(1/n1·, . . . , 1/np·).

By definition, the line profiles are all in the subspace of Rq of dimension q − 1 defined by

Zq =

v ∈ Rq s.t.
q∑
j=1

vj = 1

 .

Seeing P1 as the data matrix, we handle q "variables" that correspond to the various values of
y and we observe these "variables" on p "individuals" that corresponds to the values of x. For
i ∈ {1, . . . , p}, we associate to the "individual" xi the weight corresponding to its frequency,

w1,i =
ni·
n

.

Note that this choice corresponds to take uniform weights 1/n on the n observations. Then,
we can compute the center of gravity g1 = (g1,1, . . . , g1,q)

′ ∈ Rq associated to it,

∀j ∈ {1, . . . , q}, g1,j =

p∑
i=1

w1,if
(xi)
j =

1

n

p∑
i=1

ni· ×
nij
ni·

=
n·j
n

.

Thus, g1 is the vector of the marginal frequencies of the variable y.

Column profiles

Let j ∈ {1, . . . , q}, we define in the same way the column profile associated to the observations
of yj by

f (yj) =

n1j/n·j
...

npj/n·j

 =
1

n·j

n1j
...
npj

 ∈ [0, 1]p .
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Putting these q profiles in the lines of a q×p matrix P2 leads to the column profiles matrix,

P2 = D2
tT =


tf (y1)

...
tf (yq)

 =

n11/n·1 . . . np1/n·1
...

. . .
...

n1q/n·q . . . npq/n·q


with D2 = diag(1/n·1, . . . , 1/n·q).

As above, the column profiles are all in the subspace of Rp of dimension p− 1 defined by

Zp =

{
u ∈ Rp s.t.

p∑
i=1

ui = 1

}
.

Moreover, for any j ∈ {1, . . . , q}, the weight of the "individual" yj is its frequency,

w2,j =
n·j
n

and we can compute the center of gravity g2 = (g2,1, . . . , g2,p)
′ ∈ Rp,

∀i ∈ {1, . . . , p}, g2,i =

q∑
j=1

w2,jf
(yj)
i =

1

n

q∑
j=1

n·j ×
nij
n·j

=
ni·
n

.

Again, g2 is the vector of the marginal frequencies of the variable x.

Profiles of independence

As explained above, we are interested in describing the correspondences between the values
taken by x and by y. To discuss, we compare the profiles obtained from the table T to
theoritical profiles that should appear if there is no significative correspondence. Such a case
is known as independence between the variables x and y and can be express as follows.

Let i ∈ {1, . . . , p}, if we observe xi, the variable y take its various values y1, . . . , yq with
frequencies that are independent from xi. So, the frequency of simultaneous observation of xi
and yj is simply the marginal frequency of yj , namely n·j/n. Thus, the theoritical line profile
associated to the observations of xi, in case of independence, is given by the center of gravity
g1,

f̃ (xi) = g1 =

n·1/n...
n·q/n

 .

Let j ∈ {1, . . . , q}, arguing in the same way as above, the theoritical column profile associated
to the observations of yj , in case of independence, is given by the center of gravity g2,

f̃ (yj) = g2 =

n1·/n
...

np·/n

 .

We now want to be able to compare the observed profiles with the theoritical ones. Let
u, v ∈ Zq be two line profiles, we compare them by introducing the χ2 distance between u
and v,

q∑
j=1

(uj − vj)2

g1,j
=

q∑
j=1

n

n·j
(uj − vj)2 = ‖u− v‖2nD2

.
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Note that the sum is weighted by the coordinates of g1. It amounts to give more importance
to the relative differences between u and v for the less frequent values of yj . Similarly, for two
columns profiles u, v ∈ Zp, the χ2 distance is defined by

p∑
i=1

(ui − vi)2

g2,i
=

p∑
i=1

n

ni·
(uj − vj)2 = ‖u− v‖2nD1

.

1.3.3 Double PCA

To study the correspondences, we use two PCA procedures with the following parameters:

• PCA on line profiles:

– Data matrix P1 = D1T ,

– Center of gravity g1 = 1
nD
−1
2 1q = 1

n
tT1p,

– Weight matrix W1 = 1
nD
−1
1 ,

– Distance on space of individuals given by M1 = nD2,

• PCA on column profiles:

– Data matrix P2 = D2
tT ,

– Center of gravity g2 = 1
nD
−1
1 1p = 1

nT1q,

– Weight matrix W2 = 1
nD
−1
2 ,

– Distance on space of individuals given by M2 = nD1,

where, for any k, 1k = (1, . . . , 1)′ ∈ Rk.

Line profiles

Before dealing with PCA, let us make the following remark. Using σ(x, y) = xy − x× y, it is
easy to verify that the covariance matrix Σ1 associated to the data matrix P1 is given by

Σ1 = tP1W1P1 − g1
tg1 =

1

n
tTD1T − g1

tg1 .

Thus, we are looking for the eigenvalues of

Σ1M1 = tTD1TD2 − ng1
tg1D2 .

The rank of ng1
tg1D2 is 1 and its only nontrivial eigenvector is g1 (associated to the eigenvalue

1). Indeed,
ng1

tg1D2g1 = g1
tg11q = g1 .

Moreover, g1 is also an eigenvector of tTD1TD2 associated to the eigenvalue 1,

tTD1TD2g1 =
1

n
tTD1T1q = tTD1g2 = g1 .

Thus, basic linear algebra gives us that Σ1M1 and tTD1TD2 have the same eigenvalues apart
from the one associated to g1 (that is trivial due to the stochastic nature of the matrix P1).
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We know that tTD1TD2 admits at most κ = min(p, q) − 1 nontrivial eigenvalues λ1 >
· · · > λκ > 0. We consider the M1-orthonormal eigenvectors associated to these eigenvalues
and we obtain the q × κ matrix V1. Then, we define the p× κ principal components matrix

C(1) = P1(nD2)V1 = nD1TD2V1

and the coordinates of the "individual" xi are given by the i-th line of C(1). Note that,
despite the data are not centered, the principal component are centered because the trivial
eigenvector, given by the center of gravity g1, is not considered in V1.

Column profiles

Arguing in the same way for the column profiles, we get κ nontrivial eigenvalues λ′1 > · · · >
λ′κ > 0 for the matrix TD2

tTD1 and the M2-orthonormal associated eigenvectors in the p×κ
matrix V2. Then, we define the q × κ principal components matrix

C(2) = P2(nD1)V2 = nD2
tTD1V2

and the coordinates of the "individual" yj are given by the j-th line of C(2).

Transition principle

Note that the λi are the eigenvalues of ( tTD1) × (TD2) = tP1
tP2 and that the λ′i are the

eigenvalues of (TD2) × ( tTD1) = tP2
tP1. So, we know that, for any i ∈ {1, . . . , κ}, λi = λ′i

and we denote Λ = diag(λ1, . . . , λκ). Moreover, by definition, we know that V1 and V2 are the
unique matrices (up to a column permutation in case of multiple eigenvalues) such that

tP1
tP2V1 = V1Λ and tP2

tP1V2 = V2Λ .

Simple computation gives

tP2
tP1 × tP2V1Λ−1/2 = tP2V1Λ1/2 = ( tP2V1Λ−1/2)Λ .

Similar argument leads to

V1 = tP1V2Λ−1/2 and V2 = tP2V1Λ−1/2 .

So, we obtain
C(1) = nD1

tP2V1 = nD1 × tP2
tP1V2︸ ︷︷ ︸

=V2Λ

×Λ−1/2

and, finally,
C(1) = nD1V2Λ1/2 and C(2) = nD2V1Λ1/2 .

We also can write these equalities in the following way, known as transition formulae,

C(1) = P1C
(2)Λ−1/2 and C(2) = P2C

(1)Λ−1/2 .

The main advantage of these formulae is that they allow to get the two principal components
matrices by computing only one of them. Indeed, if you have at your disposal V1 and C(1),
you directly get V2 and C(2) without working to get the eigenvalues.



32 CHAPTER 1. EXPLORATORY DATA ANALYSIS

1.3.4 Graphical representation

As for the biplot of PCA, there is no justified choice for normalizing the axes of the CA
representation. A common choice is to plot the xi’s and the yj ’s in the plan by using the two
first columns of C(1) and C(2) respectively. Other choices are often used by normalizing one
axe or the other (e.g. barycentric representation, . . . ).

All the criteria inherited from PCA are available. We can measure the global quality of
the representation by the explained inertia,

λ1 + λ2
κ∑
k=1

λk

,

measure the quality of the representation of xi by(
C

(1)
i1

)2
+
(
C

(1)
i2

)2

κ∑
k=1

(
C

(1)
ik

)2
,

or the one of yj by (
C

(2)
j1

)2
+
(
C

(2)
j2

)2

κ∑
k=1

(
C

(2)
jk

)2
.

We also can consider the contribution of xi to each principal component, . . .

Bourdieu data

We begin by computing the line and column profiles matrices,

D1 <- diag(1/rowSums(T))
P1 <- D1 %*% T
D2 <- diag(1/colSums(T))
P2 <- D2 %*% t(T)

We now proceed to get the PCA of the line profiles matrix, as we did in the previous section,
and the principal components matrix C(1).

M1half <- diag(sqrt(n/colSums(T)))
M1halfInv <- diag(sqrt(colSums(T)/n))
dg <- eigen(M1half %*% t(T) %*% D1 %*% T %*% D2 %*% M1halfInv)
dg$values <- dg$values[2:8] # Avoid the trivial eigenvlue
dg$vectors <- (M1halfInv %*% dg$vectors)[,2:8] # Idem
C1 <- P1 %*% (n*D2) %*% dg$vectors

With the aid of transition formulae, we directly get the principal components matrix C(2)

and we can compute the various quantities relative to the quality of the representation, for
instance.
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C2 <- P2 %*% C1 %*% diag(1/sqrt(dg$values))
cumsum(dg$values)/sum(dg$values)

## [1] 0.7939074 0.9612612 0.9928056 0.9968960 0.9986875 0.9999757 1.0000000

# Representation quality of the x's values
rowSums(C1[,1:2]^2)/rowSums(C1^2)

## EAG SAG PT PLCS CM EMP OUV
## 0.9987801 0.9029523 0.3170859 0.9994798 0.7107327 0.9778616 0.8647598
## OTH
## 0.9914724

# Representation quality of the y's values
rowSums(C2[,1:2]^2)/rowSums(C2^2)

## DR SCE LET SC MD PH PD
## 0.5035835 0.2708271 0.9927045 0.6677505 0.9990910 0.9605193 0.9764390
## IUT
## 0.9889960

plot(dg$values,type="b",col="orange",xlab="",ylab="")
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Figure 1.16: Eigenvalues of "Bourdieu data"
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Finally, we can plot the CA representation and interpret the correspondences by considering
the proximity between points.

DrawCA(C1,C2)
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Figure 1.17: Correspondence analysis of "Bourdieu data"

1.4 Multiple correspondence analysis

By arguing in a similar way, it is also possible to deal with more than two variables. See the
practical sessions.
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Chapter 2

Supervised learning

The aim of supervised learning is to deal with labeled data in order to construct a procedure
that predict the label of a new data. Various approach have been proposed to tackle this very
common problem. We introduce here three such methods.

2.1 Multiple discriminant analysis

2.1.1 Introduction

After having seen the PCA procedure, we could naturally use it to deal with supervised
learning. Indeed, when we interpreted the results of PCA, we have often consider that the
principal axes allows us to distinguish different groups of data. But how far such an approach
is valid? Actually, we never claim that PCA was a good tool for discrimating groups. PCA
is only well adapted for getting better representation in a space of fixed dimension. A priori,
there is no connection with label discrimination.

Lubischew data

To illustrate MDA (Multiple Discriminant Analysis), we handle the Lubischew data set. This
set is about n = 74 insects and, for each one, we measure p = 6 morphologic sizes. Moreover,
for each insect, we know its species (denoted by "A", "B" and "C") that plays the role of
label information. We can begin by look at the result of a PCA procedure for this data set
with uniform weights and standard Euclidean metric.

Xbar <- scale(X,scale=F)
Sigma <- t(Xbar) %*% Xbar / nrow(Xbar)
dg <- eigen(Sigma)
C <- Xbar %*% dg$vectors
cos2 <- rowSums(C[,1:2]^2)/rowSums(C^2)
plot(C[,1:2],pch=2,cex=cos2,xlab="",ylab="")

We see that the PCA helps us to suggest some groups but are they related to the species?
Moreover, we know that we are dealing with three species. But how can we retrieve this
information with unlabeled PCA? Let us make the species appear on this scatter plot.

37
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Figure 2.1: Scatter plot of the "Lubischew data" in E2

text(C[,1:2],labels=data$V8,cex=cos2,col=species)

This time, information is clearer and we could use it to construct our supervised learning
procedure. The remaining problem is how to choose a good frontier between the colored
groups in Figure 2.2? Indeed, it could be easier to handle and more precise if the groups were
organised in a clearer way. This is the aim of MDA procedure.

Framework

From a general point of view, we handle p quantitative variables x1, . . . , xp and one qualitative
variable t that can take m different values in {τ1, . . . , τm}. Our data set is relative to n
observations of these p + 1 variables, i.e. for each i ∈ {1, . . . , n}, the observation of the i-th
individual gives

xi = (x1
i , . . . x

p
i )
′ ∈ Rp and ti ∈ {τ1, . . . , τm} .

Moreover, we associate a weight wi to the i-th individual and we denote byW = diag(w1, . . . , wn)
the weight matrix.



2.1. MULTIPLE DISCRIMINANT ANALYSIS 39

-60 -40 -20 0 20 40

-30

-20

-10

0

10

20

30

A
A

A

A

A

A

A A A

A

A
A

A A

A

A A

A

A

A

A

B

B

B

B

B

B

B

B
B

B

B

B B
B

B

B B

B

B

B

B

B

C

C

C

C

C

C

C

C

C

C

CC

C

C
C

C
C

C

C

C

C

C

C

C

C

C

CC

C
C

C

Figure 2.2: Scatter plot of the "Lubischew data" in E2 with species

The variable t induce a partition of {1, . . . , n} given by the m blocks Ω1, . . . ,Ωm defined
as, for any ` ∈ {1, . . . ,m},

Ω` = {i ∈ {1, . . . , n} s.t. ti = τ`} .

This partition can be represented in a matrix by the n×m matrix T given by

Ti` =

{
1 if i ∈ Ω`

0 else , i ∈ {1, . . . , n}, ` ∈ {1, . . . ,m} .

Note that, by construction, there is only one nonzero cell on each line of T . Moreover, we can
associate a weight to a block Ω` by suming the weights of its elements,

w̄` =
∑
i∈Ω`

wi, ` ∈ {1, . . . ,m} .

These grouped weights are given by the m×m diagonal matrix,

W̄ = tTWT .
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In the sequel, we implicitely assume that each value allowed for t is observed, at least, one
time (i.e. W̄ is of full rank). This hypothesis is quite free because, if one value is not observed,
it suffices to throw it away from the allowed values of the variable t.

The goals of MDA are to:

• get the best representation of the groups Ω`’s,

• allow us to predict the value of t for any new vector of observations of the variables
x1, . . . , xp.

You can notice that the two goals are quite similar. The first one take a PCA point of view
and the second one is quite the definition of supervised learning.

To deal with our data, we introduce some additional notations. As usual, we denote by X
the n× p data matrix associated to the observations of x1, . . . , xp and X̄ its centered version.
Let ` ∈ {1, . . . ,m}, we can define the center of gravity g` ∈ Rp of the group Ω` as we did for
the "global" center of gravity g,

g` =
1

w̄`

∑
i∈Ω`

wixi ,

and we can put these centers of gravity in the lines of a m× p matrix G,

G = W̄−1 tTWX =


tg1
...
tgm

 .

These centers of gravity will help us to separate the groups in the way that we will put them
the most far away from the others. To do that, we avoid global centering and we prefer to
center according to each class. For this reason, let us introduce the n × p matrix Xb of
repeated centers of gravity,

Xb = TG

and the following decomposition,
X̄ = X̄w + X̄b

where we have set
X̄w = X −Xb and X̄b = Xb − 1n tg .

2.1.2 Covariance matrix decomposition

Note that this last decomposition of X̄ is the similar basic argument for proving the decom-
position of the variance of a real variable along some partition of the set of the index. It leads
to the famous decomposition of the variance as the sum of the variance within (i.e. the
mean of the variances) and the variance between (i.e. the variance of the means). Thus,
we proceed in the same way by considering the m× p centered centers of gravity matrix,

Ḡ = G− 1m tg ,

the p× p covariance within matrix,

Σw = tX̄wWX̄w =
m∑
`=1

∑
i∈Ω`

wi(xi − g`) t(xi − g`)
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and the p× p covariance between matrix,

Σb = tḠW̄ Ḡ = tX̄bWX̄b =

m∑
`=1

w̄`(g` − g) t(g` − g) .

Note that we obtain the same decomposition relation for the covariance matrix,

Σ = Σw + Σb .

This decomposition contains an important statistical idea. Indeed, Σb stands for what
happens between the groups and Σw is related to what happens in the groups. The aim of
MDA is to get the best discrimination between the groups. Thus, this is the term related
to Σb that will lead us to our goal. Let M be some p × p positive symmetric matrix and
v1, . . . , vd ∈ Rp be M -orthonormal vectors, we know that the inertia of the projections of the
observations in the set generated by the vj ’s is given by

d∑
j=1

〈ΣMvj , vj〉M =

d∑
j=1

〈ΣwMvj , vj〉M︸ ︷︷ ︸
dispersal in the groups

+

d∑
j=1

〈ΣbMvj , vj〉M︸ ︷︷ ︸
dispersal between the groups

.

Thus, we want to maximize what happens between the groups with respect to the global
dispersal,

d∑
j=1

〈ΣbMvj , vj〉M

d∑
j=1

〈ΣMvj , vj〉M

.

The problem is the presence of the vj ’s both in numerator and denominator. To avoid that
and keep a linear problem to solve, we take M = Σ−1 (assuming that this is possible) and we
obtain, up to the numerical constant factor 1/d,

d∑
j=1

〈ΣbΣ
−1vj , vj〉Σ−1 .

In other word, we are doing the PCA of Ḡ with the weight matrix W̄ and a distance on
the space of individuals given by M = Σ−1. This distance is known as the Mahalanobis
distance.

2.1.3 MDA procedure

Let κ = min(m− 1, p), we know that we can find κ eigenvectors v1, . . . , vκ ∈ Rp of the matrix
ΣbΣ

−1 that are Σ−1-orthonormal and associated to the ordered eigenvalues 1 > λ1 > · · · >
λκ > 0 (the eigenvalues are in [0, 1] because of the normalization, see PCA on correlation
matrix). The vj ’s are called discriminant axis and λ1 is the power of discrimination. If
λ1 = 1 all the points of each group are equal to the center of gravity of their group and if
λ1 = 0, no linear separation is possible (back to the choice of M).
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Denoting by V the matrix of eigenvectors, we obtain the principal components matrix, as
usual, for the centers of gravity,

C̄ = ḠΣ−1V ,

and also for the individuals,
C = X̄Σ−1V .

Then, we simultaneously plot the data and the centers of gravity. The quality of the repre-
sentation is measured by the classical tools of PCA (cosine, . . . ).

Lubischew data

We compute the usefull matrix that we need to deal with MDA.

W <- diag(rep(1/n,n))
Wbar <- t(T) %*% W %*% T
WbarInv <- diag(1/diag(Wbar))
G <- WbarInv %*% t(T) %*% W %*% X
g <- colMeans(X)
Gbar <- G - rep(1,3) %*% t(g)
XB <- T %*% G
XBbar <- XB - rep(1,n) %*% t(g)
SigmaB <- t(Gbar) %*% Wbar %*% Gbar

Thus, we compute the eigenvectors as we did for PCA,

M <- solve(Sigma)
dgM <- eigen(M)
P <- dgM$vectors
Mhalf <- P %*% diag(sqrt(dgM$values)) %*% t(P)
dg <- eigen(Mhalf %*% SigmaB %*% Mhalf)
dg$vectors <- P %*% diag(1/sqrt(dgM$values)) %*% t(P) %*% dg$vectors
C <- Xbar %*% M %*% dg$vectors
Cbar <- Gbar %*% M %*% dg$vectors

Finally, we can measure the quality of the representation and plot the MDA (recall that κ = 2
here),

dg$values[1]

## [1] 0.94675

cumsum(dg$values)/sum(dg$values)

## [1] 0.5434695 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

text(C[,1:2],labels=data$V8,col=species)
points(Cbar[,1:2],pch=15)
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Figure 2.3: Multiple discriminant analysis of "Lubischew data"

2.1.4 Notes about MDA

Other normalizations are used. A common consists in getting the eigenvectors of ΣbΣ
−1
w . It

doesn’t modify the interpretation of MDA but be careful when you use a software.
To predict the label of a new individual, we use the graphical representation. This tool

is useful because it is easy to handle but it is also known to be too optimistic (penalization
procedure is needed to get a trade-off with the number of groups).

Other example : Fisher iris data

To illustrate MDA (Multiple Discriminant Analysis), we handle the well known iris data set
of Fisher. This set is about n = 150 iris and, for each one, we measure the sepal length and
width and the petal length and width (p = 4 variables). Moreover, for each iris, we know its
species ("Setosa", "Versicolor" and "Virginica") that plays the role of label information. We
can begin by look at the result of a PCA procedure for this data set with uniform weights and
standard Euclidean metric.
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X <- as.matrix(iris[,1:4])
Xbar <- scale(X,scale=F)
Sigma <- t(Xbar) %*% Xbar / nrow(Xbar)
dg <- eigen(Sigma)
C <- Xbar %*% dg$vectors
cos2 <- rowSums(C[,1:2]^2)/rowSums(C^2)
plot(C[,1:2],pch=2,cex=cos2,xlab="",ylab="")
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Figure 2.4: Scatter plot of the "Iris data" in E2

We clearly see that the PCA helps us to discriminate two groups but are they related to the
species? Moreover, we know that we are dealing with three species. But we only discriminate
two groups. Let us make the species appear on this scatter plot.

plot(C[,1:2],pch=2,cex=cos2,xlab="",ylab="",col=species)

This time, information is clearer and we could use it to construct our supervised learning
procedure. The remaining problem is how to choose a good frontier between the blue and the
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Figure 2.5: Scatter plot of the "Iris data" in E2 with species

green set in Figure 2.5? Indeed, it could be easier to handle and more precise if the groups
were organised in a clearer way. This is the aim of MDA procedure.

We compute the usefull matrix that we need to deal with MDA.

W <- diag(rep(1/n,n))
Wbar <- t(T) %*% W %*% T
WbarInv <- diag(1/diag(Wbar))
G <- WbarInv %*% t(T) %*% W %*% X
g <- colMeans(X)
Gbar <- G - rep(1,3) %*% t(g)
XB <- T %*% G
XBbar <- XB - rep(1,n) %*% t(g)
SigmaB <- t(Gbar) %*% Wbar %*% Gbar

Thus, we compute the eigenvectors as we did for PCA,
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M <- solve(Sigma)
dgM <- eigen(M)
P <- dgM$vectors
Mhalf <- P %*% diag(sqrt(dgM$values)) %*% t(P)
dg <- eigen(Mhalf %*% SigmaB %*% Mhalf)
dg$vectors <- P %*% diag(1/sqrt(dgM$values)) %*% t(P) %*% dg$vectors
C <- Xbar %*% M %*% dg$vectors
Cbar <- Gbar %*% M %*% dg$vectors

Finally, we can measure the quality of the representation and plot the MDA,

dg$values[1]

## [1] 0.9698722

cumsum(dg$values)/sum(dg$values)

## [1] 0.8137202 1.0000000 1.0000000 1.0000000

points(Cbar[,1:2],pch=15)
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Figure 2.6: Multiple discriminant analysis of "Iris data"

2.2 CART

As above, we consider labeled data given by n observations of p+ 1 variables: p real variables
x1, . . . , xp and 1 categorical variable t with values in {τ1, . . . , τm}. Moreover, to each individual
i ∈ {1, . . . , n}, we associate a weight wi.

2.2.1 Introduction

From a general point of view, a decision tree is a tool used to provide a predictive model
that makes correspond individuals to labels. There exist two classical such a procedure, known
as classification tree and regression tree. Classification And Regression Tree (CART) is
a generic name that cover these two approaches. In this section, we are going to deal with
classification trees but there are few differences for dealing with regression trees (see the
literature).

Let us describe by explaining how a tree can be built in order to represent a classification
rule on an example. We consider the case of p = 2 with x1 and x2 both with values in [0, 1].
To keep the topic simple, we restrict ourself to cases given by partitions of [0, 1]2 with blocks
paralell to the axes (see Figure 2.7). We have at our disposal 5 regions R1, . . . , R5. It is clear
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that such a partition always can be described by binary paritions (i.e. test if x1 < 0.2, then,
if yes test if x2 < 0.6, . . . ). Such sequence of tests can easily been represented by a tree as
the one presented in Figure 2.8. Note that there is not unicity of the tree that represents the
partition. An important advantage of the recursive binary tree is its interpretability. Indeed,
the space or observations, as complicated as it is, can be fully represented by a tree. Of course,
it is easy to see that such trees can be used for more than only two variables. It is harder
to give a graphical representation of the partitioning of the space but the idea is the same.
We divide it by testing for a condition and we recursivly continue till we reach some stopping
rule.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

X1

X
2

R1

R2

R3

R4

R5

Figure 2.7: Example of binary partition of [0, 1]2
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X1 < 0.2

X2 < 0.6

X2 < 0.8

R5

R2 R1

X2 < 0.3

R4

X2 < 0.6

R3

X2 < 0.8

R2 R1

X1 < 0.5

X1 < 0.8

Figure 2.8: Example of binary tree representing the partition

Spam data

In the sequel of this section, we handle a data set relative to some measures on n = 4601
mails labeled as "mail" or "spam". This data set was first considered for Hewlett-Packard
technical report and is now famous as a training/testing set. The aim is to determine if a
mail is spam or not. To do this, the data set contains p = 57 real variables x1, . . . , x57 and
one qualitative variable (0 for mail and 1 for spam). The data set contains 1813 spams (i.e.
39.4% of spams). The variables measures various things as the frequencies of some particular
words ("make", "address", "george", . . . ), the frequencies of some characters (’;’, ’$’, ’#’, . . . ),
lengths of uninterrupted sequences of capital letters, . . .

# Mail n°1

## [1] "spam"

## WFmake WFaddress WFall WF3d WFour WFover
## 0.00 0.64 0.64 0.00 0.32 0.00
## WFremove WFinternet WForder WFmail
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## 0.00 0.00 0.00 0.00
## [ ... ]
## WFedu WFtable WFconference CF; CF(
## 0.000 0.000 0.000 0.000 0.000
## CF[ CF! CF$ CF# CAPave
## 0.000 0.778 0.000 0.000 3.756
## CAPlon CAPtot
## 61.000 278.000

# Mail n°1900

## [1] "mail"

## WFmake WFaddress WFall WF3d WFour WFover
## 0 0 0 0 0 0
## WFremove WFinternet WForder WFmail
## 0 0 0 0
## [ ... ]
## WFedu WFtable WFconference CF; CF(
## 7.14 0.00 0.00 0.00 0.00
## CF[ CF! CF$ CF# CAPave
## 0.00 0.00 0.00 0.00 5.50
## CAPlon CAPtot
## 10.00 11.00

2.2.2 Procedure

Our aim is to construct a classification procedure for the variable t, i.e. we want to get a tree
based rule that lead to a good partition (in the sense of t) of the data solely based on the
observations xi = (x1

i , . . . , x
p
i )
′ ∈ Rp. The question is how to grow such a classification tree,

i.e. how can we find the splitting variables and the split points? To illustrate the difficulty of
this question, let us assume that we know a partition of Rp into M regions R1, . . . , RM such
that the variable t is given by the Rp-valued vector of variables x = (x1, . . . , xp)′,

t = t(x) = τλ(k) if x ∈ Rk ,

where the function λ : {1, . . . ,M} → {1, . . . ,m} is simply the function that associate one
of the labels to each region. Of course, if we know the regions R1, . . . , RM , the supervised
learning problem amounts to get this function λ. This is just a way for rewriting the problem.

A basic way to estimate λ in such a case and, then, to build the classification procedure,
is to consider the index sets, for any k ∈ {1, . . . ,M},

Rk = {i ∈ {1, . . . , n} s.t. xi ∈ Rk} ,

and the weight of Rk,
w̄k =

∑
i∈Rk

wi .
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Then, we can compute the frequencies of each value τ` of the elements of Rk,

p̂k` =
1

w̄k

∑
i∈Rk

wi1lti=τ` , ` ∈ {1, . . . ,m} ,

and attribute to Rk the most represented element,

λ̂(k) = argmax
`∈{1,...,m}

p̂k` .

Because of the categorical nature of the variable t, we can not use a least-square criterion
to measure the "quality" of the estimated vector of frequencies p̂k = (p̂k1, . . . , p̂km)′. Such a
quantity is known as a measure of node impurity. Many impurities have been considered
in the literature. For classification trees, a very common choice is the Gini index,

Gk =
m∑
`=1

p̂k`(1− p̂k`) .

This index is related to the error rate obtained by choosing the label of Rk at random with
the probabilites given by p̂k.

Of course, in practice, we have no idea about what is a "good" partition R1, . . . , RM and, in
our framework, we have to find the best (in a sense to precise later) binary partition. Generally,
computing such a partition is infeasible (we can prove that this is a NP-complete problem).
Hence, we consider the following greedy algorithm (i.e. a step by step algorithm that aims
to solve a general problem by only solving it at each step, hoping that the constructed object
is an acceptable solution for the global problem).

Let us describe the first step of this algorithm. For any j ∈ {1, . . . , p} and s ∈ R, we define
the pair of half-planes given by splitting the variable xj at s,

R1(j, s) =
{
x = (x1, . . . , xp)′ ∈ Rp s.t. xj 6 s

}
and

R2(j, s) =
{
x = (x1, . . . , xp)′ ∈ Rp s.t. xj > s

}
.

These two sets give us a trivial partition of Rp and we can use them to proceed as above
to compute the frequencies p̂1`(j, s) and p̂2`(j, s), ` ∈ {1, . . . ,m}, of the τ`’s in R1(j, s) and
R2(j, s), respectively. Moreover, we can associate a label

τ1(j, s) = τλ(1)(j, s) and τ2(j, s) = τλ(2)(j, s)

to each region R1(j, s) and R2(j, s) by taking the most represented value. In order to choose
good index j ∈ {1, . . . , p} and split point s ∈ R, we take the values that make the Gini
index minimal. Precisely, we have at our disposal G1(j, s) and G2(j, s) and the region weights
w̄1 = w̄1(j, s) and w̄2 = w̄2(j, s). Thus, we take j∗ ∈ {1, . . . , p} and s∗ ∈ R which reach the
minimal value

min
j,s
{w̄1G1(j, s) + w̄2G2(j, s)} .

The sequel of the algorithm then consists in repeating the same procedure in each region.
In such a way, we divide the considered region by two at each step.
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Spam data

To deal with the spam data set, we use uniform weights. Thus, each mail is weighted by 1/n
and each region is weighted by its cardinal divided by n. In Figures 2.9, 2.10 and 2.11, we
show the CART for fixed depth equal to 1, 2 and 3 respectively.

Mail
1813 / 4601

CF$ < 0.055

Mail
816 / 3471

Spam
133 / 1130

Figure 2.9: CART for Spam data with depth 1
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Mail
1813 / 4601

CF$ < 0.055

Mail
816 / 3471

WFremove < 0.050
Spam

133 / 1130

WFhp < 0.380

Mail
516 / 3141

Spam
30 / 330

Spam
70 / 1060

Mail
7 / 70

Figure 2.10: CART for Spam data with depth 2

2.2.3 Pruning the tree

The problem with our procedure is when should we stop it? In other terms, how large should
we grow the tree? This question leads us to the important statistical dilemma: a large tree
might overfit the data, while a small tree might not capture the important structure. We have
to find some tradeoff between the capacity of the tree to represent a complicated classification
rule and its complexity.

The idea of pruning is due to Breiman and can be done as follows. Let us consider a large
tree T0 constructed as above by stopping the process only when some minimum node sizeMT0

is reached (e.g. level 5 reached with 25 terminal leaves, for instance). We now want to prune
this large tree in order to only keep the important part. Let T ⊂ T0 be any subtree of T0, this
tree leads to 1 6MT 6MT0 regions R1, . . . , RMT

and, for each one, we have a weight w̄k, an
estimated label λ̂(k) and a Gini index Gk(T ). To get the announced trade-off, we consider the
penalized criterion

γα(T ) =

MT∑
k=1

w̄kGk(T ) +
αMT

n

for some α > 0. The first part is relative to the goodness of the tree to fit to the data and
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Mail
1813 / 4601

CF$ < 0.055

Mail
816 / 3471

WFremove < 0.050
Spam

133 / 1130

WFhp < 0.380

Mail
516 / 3141

CF! < 0.377
Spam
30 / 330

WFgeorge < 0.000
Spam

70 / 1060

WFedu < 0.480
Mail
7 / 70

WFremove < 0.000

Mail
275 / 2737

Spam
163 / 404

Spam
17 / 317

Mail
0 / 13

Spam
55 / 1045

Mail
0 / 15

Mail
1 / 64

Spam
0 / 6

Figure 2.11: CART for Spam data with depth 3

the second term is a penalty that punishes the trees with too much leaves. For any α > 0,
we can choose Tα ⊂ T that minimizes γα(T ). Of course, if α = 0, we get Tα = T0 and, by
convexity, if α grows towards infinity, Tα tends to be the trivial tree with only one (root) node.
Finally, the problem amounts to adaptively choose α. This last point is generally treated by
a cross-validation procedure and it is hard to get a theoritical justification of what is a good
choice for α.

To help us in practice to compute Tα (because there are a lot of subtrees), we use weakest
link pruning: we successively collapse the internal node that produces the smallest per-node
increase of the mean of the Gini indices, and continue until we produce the single node tree.
This gives a finite sequence of subtrees and one can show this sequence must contain Tα.

2.3 Perceptron (Practical session)

2.4 Bibliography

• The Elements of Statistical Learning : Data Mining, Inference and Prediction, J. Fried-
man, T. Hastie and R. Tibshirani (2009)



2.4. BIBLIOGRAPHY 55

• Classification and Regression Trees, L. Breiman, J. Friedman, R. Olshen and C. Stone
(1984)

• Sélection de variables pour la discrimination en grande dimension et classification de
données fonctionnelles (PhD. Thesis), C. Tuleau (2005)

• Wiki Stat, http://wikistat.fr/

http://wikistat.fr/


56 CHAPTER 2. SUPERVISED LEARNING



Chapter 3

Clustering

3.1 Introduction

In contrast with the previous chapter, we are now interested in unlabeled data for which we
want to create "good" groups. In other terms, we want to construct a partition of the observed
individuals that leads to groups of similar individuals. Because we do not have access to any
prior partition of the data, such a problem is called clustering (or unsupervised learning).
Note that the number of partitions of {1, . . . , n} in k groups is given by

Nn,k =
k∑
j=0

(−1)k−j
(
k
j

)
jn .

Then, the total number of partitions of {1, . . . , n} is Nn,0 + Nn,1 + · · · + Nn,n. This number
is huge, even for small values of n (e.g. for n = 5, there are 541 partitions), and this is not
feasable to explore all such partitions (the problem is said to be NP-complete). Thus, we will
have to construct the one that we are looking for.

In order to give a sense to the word "similar", we have to deal with a notion of distance or
with the weaker concept of similarity. To be precise, if the observed data take their values
in a space X , we measure the dissimilarity between x and x′ ∈ X with the aid of a function

d : X × X −→ R+

that is such that

1. d(x, x′) = d(x′, x),

2. d(x, x) = 0.

Note that this definition is weaker than the one of a distance on X . Indeed, if we want that
δ is a distance, we need to impose some additional properties, namely

1. d(x, x′) = 0 =⇒ x = x′,

2. d(x, x′) 6 d(x, x′′) + d(x′′, x′), ∀x′′ ∈ X .

Moreover, we say that d is an Euclidean distance if there exists some norm ‖ · ‖ over X such
that d(x, x′) = ‖x− x′‖.

57
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In the sequel, we assume that we do not directly handle observed data x1, . . . , xn ∈ X but
only the n× n matrix of their mutual distances,

X =
[
d(xi, xi′)

]
16i,i′6n

.

Note that we did not assume anything about the space X . We now discuss a bit about what
kind of measure of dissimilarity we can handle in various basic situations.

Quantitative data

If all the observed variables x1, . . . , xp are quantitative, for instance in R, we still have seen
that we can define Euclidean distances by considering some positive symmetric matrix M .
The distance is given by,

dM (x, y) =
√

t(x− y)M(x− y), ∀x, y ∈ Rp .

Particular choices are famous:

• M = Idp gives the standard Euclidean distance,

• M = diag(1/σ2(x1), . . . , 1/σ2(xp)) gives the normalized distance,

• M = Σ−1, with Σ the invertible variance matrix of the observations, gives the Maha-
lanobis distance.

More generally, we can deal with non-Euclidean distances (e.g. geodesic on some manifold to
deal with GPS data).

Qualitative data

If all the variables x1, . . . , xp are qualitative, we can deal with a distance on the space of the line
profiles. To introduce this generalized χ2 distance, let us introduce some notations. For any
j ∈ {1, . . . , p}, the variable xj takes its values in {1, . . . ,mj} and, for any i1, i2 ∈ {1, . . . , n},
we can check if two individuals share the same value for xj by considering

δj`(i1, i2) =

{
0 if xji1 and xji2 are both equal or unequal to ` ,
1 else ,

, ∀` ∈ {1, . . . ,mj} .

Then, the distance is given by

dχ2(i1, i2) =
n

p

p∑
j=1

mj∑
`=1

δj`(i1, i2)

]{i s.t. xji = `}
.

Binary data

We often deal with qualitative data that only can take two values (e.g. yes/no question,
presence or no of something, . . . ). If all the variables are like that, we deal with p variables
x1, . . . , xp with values in {0, 1} and each individual is represented by some vector xi ∈ {0, 1}n,
i ∈ {1, . . . , n}. In such a particular case, we can consider the following quantities defined for
any pair i, i′ ∈ {1, . . . , n},
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• Ai,i′ number of common 1 in xi and xi′ ,

• Bi,i′ number of digits equal to 0 in xi and to 1 in xi′ ,

• Ci,i′ number of digits equal to 1 in xi and to 0 in xi′ ,

• Di,i′ number of common 0 in xi and xi′ .

Of course Ai,i′+Bi,i′+Ci,i′+Di,i′ = p. Then, we can define the Hamming distance between
xi and xi′ ,

dHam(xi, xi′) = Bi,i′ + Ci,i′ ,

the Jaccard distance between xi and xi′ ,

dJac(xi, xi′) =
Bi,i′ + Ci,i′

Ai,i′ +Bi,i′ + Ci,i′
,

the concordance distance between xi and xi′ ,

dCon(xi, xi′) =
Bi,i′ + Ci,i′

p
,

or the Dice distance between xi and xi′ ,

dDic(xi, xi′) =
Bi,i′ + Ci,i′

2Ai,i′ +Bi,i′ + Ci,i′
.

Mixed data

Last but not least, we can have to deal with a mix of quantitative and qualitative data. In
such a situation, we have to choose between:

• make all variable qualitative by slicing the quantitative variables to get groups of intervals
(quantiles, . . . ),

• make all variable quantitative by doing a CA or a MCA and keeping some principal
components as compressed data.

More generally, all the methods seen in the first chapter (PCA, CA, . . . ) can be handled as
a preliminar step for the clustering.

Distance between cities

To illustrate the clustering procedures that we are going to study, we will deal with a data
set that contains the distances between n = 47 cities. Our aim, in the sequel, will be to use
clustering to automaticaly detect geographical groups. Note that we do not handle position
coordinates but only spatial distances between cities.
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Amiens Andorre Angers Bâle LaBaule Besançon Bordeaux . . .
Amiens 0 1020 440 560 590 560 730 . . .
Andorre 1020 0 760 1130 830 970 430 . . .
Angers 440 760 0 770 160 620 340 . . .
Bâle 560 1130 770 0 940 160 840 . . .

LaBaule 590 830 160 940 0 770 400 . . .
Besançon 560 970 620 160 770 0 700 . . .
Bordeaux 730 430 340 840 400 700 0 . . .

...
...

...
...

...
...

...
...

. . .

Figure 3.1: Map of cities

3.2 K-means and K-medoids

Let us assume that we have at our disposal the n× n matrix of the similarity measurements
of our n individuals. The first approach of clustering is very simple and intuitive and it is
known as K-means procedure (or K-medoids, see below). A drawback of such an approach is
that we need to consider, a priori, some fixed number K of clusters. Base on the same idea as
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MDA, the principle of this procedure is to provide a "good" partition of the data in the sense
that the inertia within is minimal (i.e. each group contains similar elements). The procedure
is iterative and a step of the algorithm can be describe in few words: each individual is put
in the closest group.

3.2.1 K-means clustering

The K-means procedure is the oldest one and is not only based on X but also on the coordi-
nates of the individuals. Indeed, we need to deal with points in Rp, for instance, or with data
that allow us to compute centers of gravity. Each cluster is given by a centroid ck and the
associated individuals.

1. Pick K individuals at random in the data set. These points are the initial centroids of
the K clusters.

2. For each individual, put it in the cluster of the closest centroid.

3. Compute the centers of gravity of each cluster. These centers of gravity become the new
centroids.

4. Compute the inertia within criterion,

K∑
k=1

1

w̄k

∑
i∈Ck

wid
2(xi, ck) .

If it is smaller, go back to step 2, else stop.

This procedure converges to some local minimal. It should be sharper to repeat the operation
some times in order to avoid bad clustering.

Variant 1 (Faster)

We can update the center of gravity of a cluster (thus, its centroid) each time we add or remove
an individual. This variant is faster to converge towards a local minimum. In particular, it
means that it is faster but it is more liable to fall in a local minimum that is far from a global
minimum.

Variant 2 (Nuées dynamiques)

In order to only deal with the matrix X, we can avoid the computation of the centers of
gravity. The centroids are taken equal to some element of the cluster that minimizes the
inertia within criterion among the elements of the cluster,

K∑
k=1

1

w̄k

∑
i∈Ck

wiX
2
ick

.

Note that, in this variant, the stopping time is reached when the the centroids do not change.
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Cities data set

Here are the initial settings for the K-means procedure that we use for the three variants
(results in Figures 3.2, 3.3 and 3.4).

K <- 5
VilleNom[start]

## [1] "Nice" "Rouen" "Orléans" "Reims" "LeHavre"

step # K-means (no variant)

## [1] 6

Figure 3.2: K-means clustering (no variant)
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step # K-means (variant 1)

## [1] 3

Figure 3.3: K-means clustering (variant 1)

step # K-means (variant 2)

## [1] 4

3.2.2 K-medoids clustering

The procedure called K-medoids is very similar to the K-means but is based on medians with
non-Euclidean distances rather than on the means of square Euclidean distance. The main
advantage of this slight variant is that K-medoids are more robust to noise and outliers.

The basic algorithm of K-medoids is the same as the K-means procedure, only subsituting
"means" by "medians" and deleting the square in the powers of distances. Note that the
variant 2 is probably the most famousK-medoids procedure, known as Partitioning Around
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Figure 3.4: K-means clustering (variant 2)

Medoids (PAM). It is only based on the disimilarity matrix X and the main difference with
K-means is that there is no square in the criterion.

3.3 Hierarchical clustering

3.3.1 Introduction

Hierarchical clustering is a clustering procedure based on aggregating groups of individuals
that are closed. This procedure does not need to know the number of cluster. The idea is to
start with all the individuals and to group the two that are the closest. It leads to a group
of individuals and, if we know how to quantify the distance between groups, we can do it
again till we acheive an only-one-group configuration. As for the CART procedure, usually,
we represent the result by some binary tree, called dendrogram.

In order to apply such a procedure, we only need to define what we call the distance/disimilarity
between two groups. We have to give sense to this distance only by using the weights of the
individuals and the distance/disimilarity matrix X.
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3.3.2 Distance between groups

There is no standard way for defining how far are two clusters. Among the most used pro-
cedure, we can list the following ones that make sense for any dissimilarity matrix X. Let A
and B be two disjoint subset of {1, . . . , n}, we introduce:

• Single linkage:

d(A,B) = min
i∈A,j∈B

Xij ,

• Complete linkage:

d(A,B) = max
i∈A,j∈B

Xij ,

• Group average linkage:

d(A,B) =
1

]A× ]B
∑

i∈A,j∈B
Xij .

If we are dealing with some Euclidean distance and if we can compute the centers of gravity
(knowledge of the coordinates), we also can consider

• Centroid distance:

d(A,B) = d(gA, gB) ,

• Ward distance:

d(A,B) =
wAwB
wA + wB

d(gA, gB) .

The two most used definition are the group average linkage and the Ward distance. Note that
the Ward distance is very natural because it corresponds to the loss of inertia between by
joining A and B (i.e. maximization of inertia between by loosing the minimal quantity).

3.3.3 Procedure

The hierarchical clustering is an easy algorithm to apply:

1. Take the n singletons of individual and compute/get the distances.

2. Repeat till you only get one cluster:

(a) group the two closest clusters in the sense of chosen group distance.

(b) update the distance matrix by replacing the joined cluster by the new one and its
distances to other clusters.

It leads us to the dendrogram and we now need to choose where we cut it to get our clustering.
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Figure 3.5: Dendrogram of hierarchical clustering with single linkage

Cities data set

To illustrate the important role played by the choice of the group distance, Figures 3.5, 3.6
and 3.7 represent the results obtained for the single linkage, average linkage and complete
linkage, respectively.

Moreover, in order to be able to use the clustering in practice, we have to choose where
we cut the tree. Figure 3.8 illustrate this point by presenting the dendrogram obtained with
Ward distance and the groups that we get by taking 3, 4 and 9 clusters. What are the "good"
choices?

## The "ward" method has been renamed to "ward.D"; note new "ward.D2"

3.3.4 Cutting the tree

As usual, there are various method for dealing with the question of how many clusters we
should consider. This is again a tradeoff to find between the capacity to fit to the data and
the complexity of the obtained clustering. A usual choice (see practical sessions for other
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Figure 3.6: Dendrogram of hierarchical clustering with average linkage

ways) is to mimic the PCA by cutting the tree when the gain in term of variance between
becomes small. This approch is mainly used for the hierarchcal clustering obtained with the
Ward method because it is exactly the interpretation of the Ward distance. It can be done
graphically by considering the fall of the clustering heights.

Cities data set

To illustrate the important role played by the choice of the group distance, Figures 3.5, 3.6
and 3.7 represent the results obtained for the single linkage, average linkage and complete
linkage, respectively.

## The "ward" method has been renamed to "ward.D"; note new "ward.D2"

3.4 Bibliography

• The Elements of Statistical Learning : Data Mining, Inference and Prediction, J. Fried-
man, T. Hastie and R. Tibshirani (2009)
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Figure 3.7: Dendrogram of hierarchical clustering with complete linkage

• Wiki Stat, http://wikistat.fr/

• Quick-R, http://www.statmethods.net/

http://wikistat.fr/
http://www.statmethods.net/
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Figure 3.8: Dendrogram of hierarchical clustering with Ward linkage
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Figure 3.9: Fall of the clustering heights with Ward method
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Figure 3.10: Hierarchical clustering with 4 clusters
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Figure 3.11: Hierarchical clustering with 9 clusters



Chapter 4

Model selection and calibration

4.1 Model selection

4.2 Cross-validation (Practical session)

4.3 Bootstrap (Practical session)
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