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Abstract. This paper presents new fast algorithms to minimize total variation and more gener-
ally l1-norms under a general convex constraint. Such problems are standards of image processing.
The algorithms are based on a recent advance in convex optimization proposed by Yurii Nesterov.
Depending on the regularity of the data fidelity term, we solve either a primal problem, either a
dual problem. First we show that standard first order schemes allow to get solutions of precision ǫ

in O
“

1

ǫ2

”

iterations at worst. We propose a scheme that allows to obtain a solution of precision

ǫ in O
`

1

ǫ

´

iterations for a general convex constraint. For a strongly convex constraint, we solve a

dual problem with a scheme that requires O
“

1√
ǫ

”

iterations to get a solution of precision ǫ. Finally

we perform some numerical experiments which confirm the theoretical results on various problems
of image processing.
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1. Introduction. In this paper we are interested in the fast resolution of a
class of image restoration and decomposition problems that can be written under the
general constrained form

inf
u∈Rn,F (u))≤α

(||∇u||1) (1.1)

or the "equivalent" Lagrangian form

inf
u∈Rn

(||∇u||1 + γF (u)) . (1.2)

R
n is the discrete space of 2D images (n is the number of pixels). ||∇u||1 cor-

responds to the discrete total variation (see the appendix for the discretization of
differential operators). F is a convex proper function. We will give a particular
attention to functions F that write as lp-norms of affine transforms of the images.

In section (3) we review the applications of such a formalism and show that it
is widely used. This is certainly due to the fact that total variation has interesting
theoretical properties and leads to good practical results. The difficulty in minimizing
it lies in the non differentiability of the l1-norm. It makes it a challenging task to
design efficient numerical methods. This is very important for image processing
applications which involve huge dimension problems. A lot of different techniques
have been proposed. Some are PDE based with explicit [46, 47], semi-implicit [29] or
fixed point [50] schemes. Others are based on the minimization of a discretized energy.
Those include subgradient descents [17] and subgradient projections [18], Newton-like
methods [30], second order cone programming [26], interior point methods [24], or
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graph based approaches [20, 12]. Recently, some authors tried to use primal-dual or
dual-only approaches [14, 27, 11].

In this work, we propose new convergent schemes to solve (1.1) and (1.2). They
are all based on first order explicit schemes proposed recently by Y. Nesterov [36, 37].
These schemes are given with explicit convergence rates (which is seldom seen in
the literature), are optimal with respect to a certain class of convex problems, require
little memory and are easy to parallelize and implement 1. We compare their efficiency
with some other classical first order schemes. We show their theoretical and practical
superiority.

Depending on the regularity of F , we propose two different approaches motivated
by the maximization of the theoretical rates of convergence. For general convex F , we
follow the approach of Y. Nesterov in [37] and use a smooth approximation of the total
variation. Doing so, getting a solution of precision ǫ requires O

(

1
ǫ

)

iterations while

most first order schemes require O
(

1
ǫ2

)

iterations. For strongly convex F (typically
l2-norms), we show that the resolution of a dual problem with a Nesterov’s scheme

leads to algorithms demanding O
(

1√
ǫ

)

iterations to get an ǫ-solution.

The outline of the paper is as follows :

• In section (2) we settle the main notations and definitions.
• In section (3) we show that many image processing problems such as restora-

tion or decomposition can be expressed as (1.1) or (1.2).
• In section (4) we analyse two commonly used first order approaches to solve

problem (1.1).
• In section (5) we detail the proposed algorithm to solve the constrained prob-

lem (1.1). It is based on a regularization of the total variation followed by a
fast Nesterov’s algorithm. Its convergence rate outperforms the other classical
schemes by one order of magnitude.

• In section (6) we give an algorithm that solves the lagrangian problem (1.2)
for strongly convex function F . It is based on the resolution of a dual problem
with a Nesterov’s scheme.

• In section (7), we finally compare our approach with some other existing first
order methods.

2. Notations and definitions.

2.1. Notations. Let us describe the notations we use throughout this paper.

To simplify the notations, we use X = R
n, Y = X ×X , and J(u) = ||∇u||1.

All the theory developed in this paper can be applied to color images using for instance
color total variation [8]. To simplify the notations, we focus on gray-scale images.

ū denotes a solution of (1.1) or (1.2). f ∈ X will denote the given observed datum.

For u ∈ X , ui ∈ R denotes the i-th component of u.

For g ∈ Y , gi ∈ R
2 denotes the i-th component of g, and gi = (gi,1, gi,2).

〈·, ·〉X denotes the usual scalar product on X . For u, v ∈ X we have

〈u, v〉X :=

n
∑

i=1

uivi. (2.1)

1this is an important feature for Graphic Processing Unit or Programmable Logic Device pro-
gramming
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〈·, ·〉Y denotes the usual scalar product on Y . For g, h ∈ Y

〈g, h〉Y :=

n
∑

i=1

2
∑

j=1

gi,jhi,j . (2.2)

| · |p, p ∈ [1,∞[ is the lp-norm on X

|u|p :=

(

n
∑

i=1

|ui|p
)1/p

. (2.3)

| · |∞ is the l∞-norm on X

|u|∞ = max
i∈{1,2,...,n}

(|ui|) . (2.4)

|| · ||p, for p ∈ [1,∞[ is a norm on Y defined by

||g||p :=

(

n
∑

i=1

|gi|p2

)1/p

(2.5)

and

||g||∞ := max
i∈{1,2,...,n}

(|gi|2) . (2.6)

Let A be a linear invertible transform. A∗ denotes its complex conjugate. A−∗ denotes
the complex conjugate of A−1.
Finally ⌊a⌋ is the integer part of a ∈ R.

2.2. Definitions and some recalls of convex optimization [23, 36, 45].
Definition 2.1 (Euclidean projector). Let K ⊂ X be a convex set. The Euclidean
projector on K is defined by

ΠK(x) = arg min
u∈K

(|u− x|2) .

Definition 2.2 (Euclidean norm of an operator). Let B be a linear operator
from X to Y . The Euclidean norm of B is defined by

||B||2 = max
x∈X,|x|2≤1

(||Bx||2) .

Definition 2.3 (Proper function). A convex function F on X is proper if and
only if F is not identically equal to +∞ and that it does not take the value −∞ on
X.

Definition 2.4 (Indicator function). Let K ∈ X be a non empty closed convex
subset of X. The indicator function of K, denoted χK , is defined by

χK(x) =

{

0 if x ∈ K
∞ otherwise

(2.7)

.
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Definition 2.5 (Subdifferential and subgradient). Let J : X → R be a convex
function. The subdifferential of J at point u ∈ X, is defined by

∂J(u) = {η ∈ X, J(u) + 〈η, (x − u)〉X ≤ J(x), ∀x ∈ X}. (2.8)

η ∈ ∂J(u) is called a subgradient.

Definition 2.6 (L-Lipschitz differentiable function). A function F defined on K
is said to be L-Lipschitz differentiable if it is differentiable on K and that |∇F (u1)−
∇F (u2)|2 ≤ L|u1 − u2|2 for any (u1, u2) ∈ K2.

Definition 2.7 (Strongly convex differentiable function). A differentiable func-
tion F defined on a convex set K ∈ X is said to be strongly convex if there exists σ〉0
such that

〈∇F (u) −∇F (v), u − v〉X ≥ σ

2
|u− v|22 (2.9)

for any (u, v) ∈ K2. σ is called the convexity parameter of F . Note that property
(2.9) implies that |∇F (u) −∇F (v)|2 ≥ σ

2 |u− v|2.
Definition 2.8 (Legendre-Fenchel Conjugate). Let G be a convex proper appli-

cation from X to R ∪ {∞}. The conjugate function of G is defined by

G∗(y) = sup
x∈X

(〈x, y〉X −G(x)). (2.10)

G∗ is a convex proper function. Moreover, we have : G∗∗ = G.

Definition 2.9 (ǫ-solutions). Let ū be a solution of (1.1). An ǫ-solution of
problem (1.1), is an element uǫ of {u, F (u) ≤ α} satisfying

||∇uǫ||1 − ||∇ū||1 ≤ ǫ

Let ū be a solution of (1.2). An ǫ-solution of problem (1.2), is an element uǫ of
X satisfying

||∇uǫ||1 + γF (uǫ) − (||∇ū||1 + γF (ū)) ≤ ǫ

3. Presentation of some applications. Many image processing models use
the total variation J(u) = ||∇u||1 as a prior on the images. This quantity somehow
measures the oscillations of an image. It was introduced by Rudin, Osher and Fatemi
(ROF) in [47] as a regularizing criterion for image denoising. Its main interest lies
in the fact that it regularizes the images without blurring the edges. Nowadays it
is appreciated for its ability to model the piecewise smooth or constant parts of an
image. In this section, we give a non exhaustive review of the different applications
in which it is involved. We give a particular attention to functions F that write

F (u) = |λ(Au − f)|p (3.1)

where A is a linear invertible transform (identity, wavelet transform, Fourier trans-
form,...), λ is a diagonal matrix whose elements belong to [0,∞], p belongs to {1, 2,∞},
and f is a given datum. Let us show that this formalism covers a wide range of ap-
plications.
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3.1. A = Id, p ∈ {1, 2,∞} - Denoising or decomposition. Many image
degradation models write : f = u + b. u is the original image, b is a white additive
noise and f is the degraded observation. Suppose that we have a probability P (u)
over the space of images that is proportional to exp(−J(u)) 2. Then it can be shown
using the Bayes rule that the "best" way to retrieve u from f using the Maximum A
Posteriori estimator is to solve the following problem

inf
u∈X,|u−f |p≤α

(J(u)) (3.2)

with p = 1 for impulse noise [2, 41, 13, 20], p = 2 for Gaussian noise [47], p = ∞ for
uniform noise [51], and α a parameter depending on the variance of the noise. The
noise might have a different variance on different parts of the image. In this case, we
can solve the problem

inf
u∈X,|λ(u−f)|p≤α

(J(u)) (3.3)

where λ = diag(λi) with λi ∈ [0,∞] is a diagonal matrix that will allow to treat
differently the different regions of the image. On pixels where λi = ∞ the model will
impose ūi = fi. On pixels where λi = 0, the value of ūi will only depend on the
prior J . This idea was proposed in [46, 7]. This also allows to do tasks like inpainting
[15]. Recently, the BV − l1 model was also shown to be an efficient model for the
decomposition of an image into a cartoon and a texture [52].

3.2. A = wavelet transform, p ∈ {1,∞}. In this part, we describe three
applications. Namely, the restoration of compressed images, the restoration of images
that have been thresholded in the wavelet domain and the denoising of white noises.

• A classical way to compress a signal is to:
1. Transform it with some linear, bijective application.
2. Quantize the obtained coefficients to reduce the entropy.
3. Use a lossless compression algorithm on the quantized coefficients.

In image compression the first used transform was the local cosine transform
in jpeg. The new standard is jpeg2000 which uses a wavelet transform. This
kind of compression introduces artefacts like oscillations near the edges. Let
u be an original image, and f a compressed image. The degradation operator
Ψ can be written

Ψ(u) = A−1(Q(Au)) (3.4)

where Q is a uniform or non uniform quantizer and A is a linear transform
(local cosine transform, wavelet transform,...). A natural way to recover u,
is to look for the image of minimal total variation in the convex set Ψ−1(f)
[4, 21]. This amounts to solving

inf
u∈X,∀i∈[1..n], |(A(u−f))i|≤αi

2

(J(u))

where αi stands for the quantization steps. This problem can easily be rede-
fined as

inf
u∈X,|λA(u−f)|∞≤1

(J(u)) (3.5)

with the diagonal coefficients of λ belonging to [0,∞].

2This is possible if we suppose that images have a bounded amplitude.
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• Wavelet thresholding is widely used to denoise signals. Such operations show
good performances, but introduce oscillatory artefacts when using non re-
dundant wavelet transforms. Solving a problem similar to (3.5), (A being a
wavelet transform) can be shown to reduce those artefacts.

• Recently a model similar to (3.5), with an l1-norm instead of the l∞-norm
was proposed for image denoising [22]. We refer the reader to [22] for further
details.

3.3. A = Fourier transform, p = 2 - Image deconvolution, image zoom-
ing.

• One of the fundamental problems of image processing is the deblurring. A
common way to model image degradation is : f = h⋆u+b. u is a given original
image, b is a white Gaussian noise and h is a convolution kernel representing
the degradation due to the optical system and sensors. To retrieve the original
image, we can solve the following problem

inf
u∈X,|h⋆u−f |2≤α

(J(u)) . (3.6)

The operator h⋆ is linear, it can thus be represented by a n × n matrix H .
It is shown in [39] that the FFT diagonalizes H if ⋆ denotes the convolution
operation with periodic boundary conditions and the DCT diagonalizes H
if h is symmetric and ⋆ denotes the convolution with Neumann boundary
conditions. In any case, we see that H = A−1λA, λ being a diagonal matrix
and A denoting either the FFT, either the DCT. As both transforms are
isometries from X to X , we have

|h ⋆ u− f |2 = |Hu− f |2 = |λAu −Af |2. (3.7)

Finally (3.6) is equivalent to

inf
u∈X,|λAu−Af |2≤α

(J(u)) . (3.8)

• In view of Shannon’s theorem, one could think that the best way to zoom an
image is to use a zero-padding technique. Unluckily, this introduces oscilla-
tions near the edges. A simple way to avoid them is to solve the following
problem

inf
u∈X,|λ(Au−f)|2≤α

(J(u)) (3.9)

with f the zero-padded Fourier coefficients of the reduced image, λi = ∞
where fi is known, and λi = 0 otherwise. This problem is a particular instance
of a more general class of zooming techniques proposed in [32].

3.4. Summary. We summarize the applications detailled previously in table 3.1.

This formalism also allows to do image cartoon + texture decompositions [33],
inpainting [15] and restoration with perturbed sampling [3, 10]. Considering pseudo-
invertible transforms it would include other interesting applications like denoising
using redundant transforms (dictionnaries, curvelets, ...) [31, 9] or image decomposi-
tions [48]. Let us now look at the numerical algorithms to solve (1.1) and (1.2).
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Table 3.1

Summary of the problems covered by our formalism.

p = 1 p = 2 p=∞
A =Identity Impulse noise

denoising, Image
decomposition
[2, 41, 13, 20]

Gaussian noise de-
noising [47]

Bounded noise de-
noising [51]

A =Fourier trans-
form

Robust deconvo-
lution [24]

Image deconvo-
lution [46, 14, 7],
Image zooming
[32]

No known refer-
ence

A = Wavelet, lo-
cal cosine trans-
form

Image decomposi-
tion or denoising
[22]

Image denois-
ing (No known
reference)

Compression
noise denoising
[4, 49, 16]

4. Classical first order approaches. Problem (1.1) covers many useful appli-
cations but it is difficult to solve and many currently used algorithms are slow. This
clearly limits the industrial interest for such models. In this section, we show that two
commonly used approaches require O

(

1
ǫ2

)

iterations to provide an ǫ-solution. With
such a rate getting a 10−3-solution requires (on the worst case) of order 106 iterations.

4.1. Projected subgradient descents. Maybe the most straightforward al-
gorithm to solve (1.1) for general convex function F , is the projected subgradient
descent algorithm. It writes

{

u0 ∈ K

uk+1 = ΠK

(

uk − tk ηk

|ηk|2

)

. (4.1)

Here, tk > 0 for any k, ηk is any element of ∂J(uk) (see (2.8)) and ΠK is the Euclidean
projector on K = {u, F (u) ≤ α}. It was proposed recently in some image processing
papers [4, 17]. This kind of scheme has two severe drawbacks. First, it is difficult to
design the sequence {tk}. Secondly, even if the sequence {tk} is defined optimally, it
might be very slow. It is shown in [34] that any algorithm only using the sequences
J(uk) and ∂J(uk) has a worst case complexity of O

(

1
ǫ2

)

. We refer the reader to
[28] and [17] for optimal choices of the sequence {tk} in algorithm (4.1). Let us
finally precise that scheme (4.1) might converge much faster if J belongs to certain
function classes (see for instance [45]), but total variation does not possess the required
properties.

4.2. Smoothing and projected gradient descent. Another widely spread
technique consists in smoothing the total variation [46, 50] by

J̃µ(u) =

n
∑

i=1

√

|(∇u)i|2 + µ2 (4.2)

and use a projected gradient descent with constant step to minimize it. Let us analyse
its rate of convergence.

Proposition 4.1. The following algorithm:






u0 ∈ K

uk+1 = ΠK

(

uk − τdiv

(

∇u√
|∇u|2+µ2

))

(4.3)
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where τ = 2µ
||div ||22

and µ = ǫ
n ensures that after N iterations |J(uN ) − J(ū)| ≤ ǫ with

N ≤ O

(

1

ǫ2

)

.

The proof is given in the appendix. To get an ǫ-solution, we thus need to choose
µ of order ǫ

n and N of order O
(

1
ǫ2

)

. The two strategies presented are widely used
but require large computing times to get acceptable estimates of the solutions. In the
following sections we introduce much faster algorithms.

5. A new algorithm to minimize the total variation under simple con-
straints. In [37], Y. Nesterov presents an efficient scheme to minimize non-differentiable
convex functions on convex sets. His idea is as follows:

• Approximate the non-differentiable function by a differentiable one.
• Compensate the approximation error using a fast scheme adapted to differ-

entiable functions.
In this section, we show how to apply his ideas to total variation problems.

5.1. How to smooth the total variation?. Following the ideas in [37], we use
a smooth approximation of J . First note that

J(u) = sup
q∈Y,||q||∞≤1

(〈∇u, q〉Y ) . (5.1)

The approximation we propose writes

Jµ(u) = sup
q∈Y,||q||∞≤1

(

〈∇u, q〉Y − µ

2
||q||22

)

+
nµ

2
. (5.2)

This corresponds to the Moreau-Yosida regularization. It is easily shown that Jµ(u) =
∑n

i=1 ψµ(|(∇u)i|) with

ψµ(x) =

{

|x| if |x| ≥ µ
x2

2µ + µ
2 otherwise

. (5.3)

ψµ is called Huber function. Jµ seems more appropriate than J̃µ defined in (4.2), as

both approximations are
||div ||22

µ -Lipschitz differentiable 3, but

0 ≤ J̃µ(u) − J(u) ≤ nµ (5.4)

while

0 ≤ Jµ(u) − J(u) ≤ nµ

2
. (5.5)

The approximation Jµ thus seems "twice" better. Let us note that

∇Jµ(u) = −div (Ψ) with Ψi =

{

(∇u)i

|(∇u)i| if |(∇u)i| ≥ µ.
(∇u)i

µ otherwise.
(5.6)

In all numerical experiments we perform, the minimization of (5.3) leads to solu-
tions that have a lower total variation than (4.2), but the visual aspect of the solutions
are the same. As the complexity of computing ∇Jµ or ∇J̃µ is the same, we think that
using Jµ definitely is a better choice if one aims at approximating the total variation.

3the Lipschitz constant determines the convergence rate of most first order schemes
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5.2. Nesterov’s scheme for differentiable function. In [37], Y. Nesterov

presents an O
(

1√
ǫ

)

algorithm adapted to the problem

inf
u∈K

(E(u)) (5.7)

where E is any convex, L-Lipschitz differentiable function, andK is any convex, closed
set. For this class of problems, it can be shown that no algorithm - only using the

values and gradients of E - has a better rate of convergence than O
(

1√
ǫ

)

uniformly

on all problems of type (5.7). Y. Nesterov’s algorithm is thus optimal for this class of
problems. In this algorithm, two sequences {xk}, {yk} ∈ K are updated recursively
in order to satisfy ∀x ∈ K

AkE(yk) ≤ L

2
||x− x0||2 +

k
∑

i=0

αi(E(xi) + 〈∇E(xi), x− xi〉X). (5.8)

In this equation αi is a sequence of increasing coefficients and Ak =
∑k

i=0 α
i will

define the rate of convergence. The right-hand side of (5.8) is an approximation of
AkE(x). The linear part is a lower approximation of AkE(x) and a fortiori of AkE(x̄).

Condition (5.8) thus ensures that E(yk) − E(x̄) ≤ L

2Ak
||x̄− x0||2.

The idea underlying this condition is to exploit the fact that the gradient of a
convex function not only gives its local ascent direction but also indicates facts about
its global topological properties. It is thus possible - as in the conjugate gradient
algorithm - to accelerate the convergence rate of the first order schemes by using the
information brought by the gradients at all iterations. That is why the right-hand side
of (5.8) is a linear combination of the gradients. Based on these ideas, Y. Nesterov
shows the following result in his paper [37].

Theorem 5.1. Let ū be a solution of (5.7). The following algorithm

Algorithm 1: Accelerated gradient descent

Input: Number of iterations N , a starting point x0 ∈ K.
Output: yN an estimate of ū.
begin1

Set G−1 = 02

Set L =Lipschitz constant of ∇E3

for k going from 0 to N do4

Set ηk = ∇E(xk).5

Set yk = arg min
y∈K

(

〈ηk, y − xk〉X +
1

2
L||y − xk||2

)

.
6

Set Gk = Gk−1 +
k + 1

2
ηk.

7

Set zk = argmin
z∈K

(

L

σ
d(z) + 〈Gk, z〉X

)

.
8

Set xk+1 =
2

k + 3
zk +

k + 1

k + 2
yk.

9

end10

end11
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ensures that

0 ≤ E(yk) − E(ū) ≤ 4Ld(ū)

σ(k + 1)(k + 2)
. (5.9)

At step 6, || · || denotes any norm, at step 8, d is any convex function satisfying

d(x) ≥ σ

2
||x− x0||2 for some element x0 ∈ K. σ is the convexity parameter of d.

Using inequality (5.9), it is easily seen that getting an ǫ-solution does not require

more than
√

4Ld(ū)
ǫ iterations. This shows that (1) is an O

(

1√
ǫ

)

algorithm. Suppos-

ing that steps 3 and 5 are achievable, this scheme has many qualities. It is simple
to implement, does not require more than 5 times the size of the image and it is
theoretically optimal (see [36] for a precise definition of its optimality). Let us remind
that the classical projected gradient descent is an O

(

1
ǫ

)

algorithm.

5.3. Solving the constrained problem for some convex functions F . The
scheme we propose consists in solving

inf
u∈Rn,F (u)≤α

(Jµ(u)) (5.10)

with algorithm (1). Let us precise how to achieve steps 3 and 5 and how to choose
the regularization parameter µ.

5.3.1. How to achieve steps 6 and 8?. To apply algorithm (1), we first have to
choose a norm ||·|| and a function d. For simplicity and because we found no numerical
interest in other choices, we choose the Euclidean norm | · |2 and set d(x) = 1

2 |x−x0|22,
where x0 ∈ K is the center of K or an estimate of the solution. With this choice, the
convexity parameter of d is σ = 1. We have to find - preferably in closed form - the
expressions of the arg min at steps 3 and 5.

Proposition 5.2. With the above choices, step 6 reduces to yk = ΠK

(

xk − ηk

L

)

and step 8 reduces to zk = ΠK

(

x0 − Gk

L

)

. ΠK stands for the Euclidean projector on

K.

Proof. Let us solve the problem argmin
y∈K

(f(y)) with f(y) = 〈η, y〉X + L
2 |y − x|22.

From first order optimality conditions, we get that the solution ȳ of this problem
satisfies 〈(−∇f(ȳ)), w− ȳ〉X ≤ 0 for any w ∈ K. This is equivalent to 〈(x− η

L)− ȳ, w−
ȳ〉X ≥ 0 for any w ∈ K and finally, thanks to projection theorem to ȳ = ΠK(x− η

L ).

5.3.2. How to choose µ and the number of iterations?. In [40], the author
shows that the singularity at 0 of the l1-norm is responsible for the so-called staircase
effect: the solutions of total variation problems are - roughly speaking - piecewise
constant. A way to avoid that is to use a regularized operator such as (5.3). In
practice, in the case of denoising, this leads to better SNR and more satisfying visual
results. Figures (5.1) illustrate this fact. Lena image is degraded adding Gaussian
noise with different variances. Then it is denoised using various µ parameters. It can
be seen that the optimal µ value is around 0.002 independently of the initial SNR. In
restoration applications, for natural images of amplitude 1, our experiments led us to
the conclusion that the optimal µ should be taken in the range [0.001, 0.005] and that
few visual differences are observed in that range.
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Figure 5.1. SNR of the denoised image w.r.t. the µ parameter.

In some situations we would like to exactly minimize the total variation (µ =
0). Making a regularization might thus seem unappropriate. Actually the following
proposition shows that smoothing the total variation is still a good solution.

Proposition 5.3. Let K = {u ∈ X,F (u) ≤ α} and D = max
u∈K

(d(u)). Algorithm

(1) applied to problem (5.10) with µ =
ǫ

n
and N = ⌊2

√
2||div ||2

√
Dn

ǫ
⌋ + 1 ensures

that |J(yN ) − J̄ | ≤ ǫ where J̄ denotes the infimum of (1.1).
Proof. Let J̄µ denote the solution of (5.10), let ū be the solution of problem (1.1)

and L =
||div ||22

µ . We have

J(yk)
(5.5)

≤ Jµ(yk) (5.11)

(5.9)

≤ J̄µ +
4LD

k2
(5.12)

≤ Jµ(ū) +
4LD

k2
(5.13)

(5.5)

≤ J̄ +
nµ

2
+

4LD

k2
. (5.14)

We thus obtain 0 ≤ J(yk)−J̄ ≤ 4LD
k2 + nµ

2 . To obtain an ǫ-solution, it is thus sufficient

to have 4LD
k2 + nµ

2 ≤ ǫ. Setting µ ≤ 2ǫ
n and k = ⌊

√

4||div ||22D
µ(ǫ−nµ

2 ) ⌋ + 1 thus gives an ǫ-

solution. To get the result, it suffices to maximize the denominator in the previous
equation.

We thus gain one order in the convergence rate compared to classical algorithms.
It shows that smoothing the total variation is a good way to exploit its structure.
Unfortunately, in most problems, knowing that |J(yk) − J(ū)| ≤ ǫ does not bring
any quantitative information on more important features like |yk − ū|∞. Thus, we
cannot use the bound (5.9) to define the number of iterations. Experimentally, for
images rescaled in [0, 1], we can check that the solution of (5.10) obtained by choosing
µ = 0.01 is very close perceptually to the solution of (1.1). Choosing µ = 0.002 leads
to solutions that are perceptually identical to the solution of (1.1), independently of
the problem dimension. From this remark, we infere that a sufficient precision ǫ lies
in [0.002n

2 , 0.01n
2 ]. Thus, using proposition (5.3) the approach we suggest consists in

choosing µ ∈ [0.001, 0.005] and there is no reason to choose N > 2
√

2||div ||2
√

Dn
nµ . In all
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cases we studied (except deconvolution) D ∼ θn, with θ ∈]0, 1[. Thus, the maximum
iterations needed to get a good approximate solution is

N =
2
√

2||div ||2
√
θ

µ
. (5.15)

This quantity does not exceed 8000 iterations for the worst case problem, and lies
in [30, 400] for most practical applications. The theoretical rate of convergence leads
to low iterations number and computing times. Let us show how to apply the ideas
presented for some applications.

5.4. Some application examples.

5.4.1. Restoration involving linear invertible transforms : F (u) = |λ(Au−
f)|p with p ∈ {1, 2,∞}. We showed in section (3) that one of the most interesting
data term is F (u) = |λ(Au − f)|p where p ∈ {1, 2,∞}, A is a linear invertible trans-
form, λ is a diagonal matrix with elements in [0,∞]n, and f are the given data. To
apply algorithm (1) to problem (5.10), we need to be able to compute projections on
{u, |λ(Au− f)|p ≤ α}. As this might be cumbersome, we use the change of variable

z = Au− f (5.16)

and solve the equivalent problem

inf
z,|λz|p≤α

(Eµ(z)) (5.17)

with Eµ(z) = Jµ(A−1(z + f)). The solution ū of (5.10) can be retrieved from the
solution z̄ using formula ū = A−1(z̄ + f). It is easy to show that Eµ is L-Lipschitz

differentiable with L =
||div ||22||A−1||22

µ . For all invertible transforms the final algorithm

to solve (5.17) writes:

Algorithm 2: Y. Nesterov’s scheme for problem (5.10)

Input: Number of iterations N and regularization parameter µ.
(depending on the precision required).
Output: uN an estimate of ū.
begin1

Set G−1 = 0.2

Set L =
||div ||22||A−1||22

µ .3

Set xk = 0.4

for k going from 0 to N do5

Set ηk = A−∗∇Jµ(A−1(xk + f)).6

Set yk = ΠK

(

xk − ηk

L

)

.
7

Set Gk = Gk−1 +
k + 1

2
ηk.

8

Set zk = ΠK

(

−G
k

L

)

.
9

Set xk+1 =
2

k + 3
zk +

k + 1

k + 2
yk.

10

end11

Set uN = A−1(yk−1 + f).12

end13
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At steps 7 and 9, K = {u ∈ X, |λu|p ≤ α}. We refer the reader to the appendix
for the expressions of the projections on weighted lp-balls.

Figure 5.2 shows the result of a compression noise restoration using this technique
for µ = 0.06 (60 iterations until visual stability) and µ = 0.0004 (210 iterations until
visual stability). Clearly, for such bounded noises it is preferable to use the regularized
total variation in order to avoid the staircase effect. This was already remarked in
[51]. The price per iteration is about 2 wavelet transforms. We do not give our com-
putational times as we used a slow Matlab implementation of Daubechies 9-7 wavelet
transform. We refer the reader to section (7) for comparisons with other algorithms.
Let us note that to our knowledge, no precise schemes exist in the literature to solve
this problem. Large oscillations are removed, while thin details are preserved. The
main drawback of this model is that the contrast of the details decreases.

Figure 5.2. Example of image decompression - TL: Original image (scaled im [0, 1]) -
TR: Compressed image using Daubechies 9-7 wavelet transform (the implementation is similar to
Jpeg2000) - BL: Solution of (3.5) using µ = 0.006 - BR : Solution of (3.5) using µ = 0.0004

5.4.2. Deconvolution : F (u) = |h ⋆ u − f |2. In this paragraph we present a
new way to do deconvolution using a Nesterov’s scheme. This problem is particularly
difficult and cannot be solved by the previous algorithm as the convolution matrices
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are generally non-invertible or ill-conditioned. In (3.3), we showed that problem

inf
u∈X,|h⋆u−f |2≤α

(Jµ(u)) (5.18)

is equivalent to

inf
u∈X,|λz−Af |2≤α

(

Jµ(A−1z)
)

(5.19)

whereA is the discrete cosine transform and λ is a diagonal matrix. In this formulation

z → Jµ(A−1z) is L-Lipschitz-differentiable with L =
||div ||22

µ . The interests of this
formulation are that we have a very fast Newton algorithm to do projections on
K = {u ∈ X, |λz − Af |2 ≤ α} (see the appendix paragraph (9.2.3)), and that the
Lipschitz constant of the gradient of z → Jµ(A−1z) does not blow up. Note that the
set K = {u ∈ X, |λz − Af |2 ≤ α} might be unbounded if λ contains zeros on its
diagonal. Thus we lose the convergence rate unless we estimate an upper bound on
d(ū). Practically, the Nesterov scheme remains very efficient (see Figure (7.3)). The
cost per iteration is around 2 DCTs and 2 projections on ellipsoids. For a 256 × 256
image, the cost per iteration is 0.2 seconds (we used the dct2 function of Matlab and
implemented a C code with Matlab mex compiler for the projections). Figure (5.3)
shows an experimental result. We display the bottom right result to show that it
is useless (for visual purposes) to choose very small µ parameters. Perceptually, the
bottom left picture is the same while the computing times needed to obtain it are
much lower.

5.4.3. Image texture + cartoon decomposition : F (u) = λ|u − f |G. The
first application of total variation in image processing was proposed by Rudin-Osher-
Fatemi in [47]. It consisted in choosing F (u) = |u−f |2. In [33], Y. Meyer studied this
model theoretically, and figured out its limitation to discriminate a cartoon in a noise
or a texture. He observed that this limitation could be overpassed using a different
data term than the rather uninformative L2-distance to the data. To simplify the
presentation, we present the model in the discrete setting and refer the interested
reader to [33, 6] for more details. Y. Meyer defined a norm

||v||G = inf
g∈Y

(||g||∞, div (g) = v) (5.20)

and proposed to decompose an image f into a cartoon u and a texture v using the
following model

inf
(u,v)∈X2,f=u+v

(J(u) + λ||v||G) . (5.21)

The G-norm of an oscillating function remains small and it blows up for charac-
teristic function. That is why this model should permit to better extract oscillating
patterns of the images.

Y. Meyer did not propose any numerical method to solve his problem. The first
authors who tried to compute a solution were L. Vese and S. Osher in [44]. Later,
other authors tackled this problem. Let us cite the works of J.F. Aujol et. al. in
[5] and of D. Goldfarb et. al. in [26]. The former is based on a first order scheme
which solves a differentiable approximation of Meyer’s model, while the latter solves
it exactly with second order cone programming methods. In the following, we propose
a new efficient scheme. Y. Meyer’s discretized problem writes

inf
u∈X

(

J(u) + λ inf
g∈Y,div (g)=f−u

(||g||∞)

)

. (5.22)
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Figure 5.3. Image deconvolution - TL : Original Image - TR : Convolved noisy image - BL :
Solution of (5.19) µ = 0.001, N = 150 - BR : Solution of (5.19) µ = 10−7, N = 105

Proposition 5.4. Problem (5.22) can be reformulated as follows:

inf
g∈Y,||g||∞≤α

(J(f − div (g))) (5.23)

Proof. The idea simply is to use the change of variable u = f −div (g) in order to
get an optimization problem that depends only of one variable g. The operator div
is surjective from Y to X̃ = X − {(γ, γ, ..., γ), γ ∈ R}, so that

inf
u∈X

(

J(u) + λ inf
g∈Y,div (g)=f−u

(||g||∞)

)

= inf
g∈Y

(J(f − div (g)) + λ||g||∞) . (5.24)

Turning the Lagrange multiplier λ into a constraint, we get the result.
Instead of solving problem (5.23), we solve

inf
g∈Y,||g||∞≤α

(Jµ(f − div (g))) (5.25)
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and get an O
(

1
ǫ

)

algorithm. Note that the solution of (5.25) is unique while that
of Meyer’s model is not. Also note that if we replace the l∞-norm by an l2-norm
in (5.23), we get the model of Osher-Solé-Vese [43]. In Figure (5.6), we also show
the result of (5.23) with an l1-norm instead of the l∞-norm. We do not provide any
theoretical justification to this model, we present it to alleviate the curiosity of the
reader and show that it competes with the BV − l1 model. Formula (5.23) allows
to easily constrain the properties of the g field. This might also be interesting for
spatially varying processing.

Figure 5.4. Image to be decomposed

In all experiments we took µ = 0.001 to smooth the total variation. After 200
iterations, very little perceptual modifications are observed in all experiments, while
a projected gradient descent requires around 1000 iterations to get the same result.
Let us finally precise that all the texture components have the same l2-norm.

In Figure (5.5), we observe that Meyer’s model does not allow to retrieve correctly
the oscillating patterns of the clothes of Barbara. It can be shown that the amplitude
of the texture (v component) is bounded by a parameter depending linearly on α in
(5.23). That might explain the deceiving result. On the given example, Osher-Solé-
Vese’s model gives more satisfying results. This was already observed in [52].

The BV − l1 model correctly separates the oscillating patterns and the geometry.
The same observation holds when minimizing the l1-norm of the g field in (5.23). We
remark that both decompositions are very similar, except that the cartoon component
of the BV − l1 model is slightly less blurred than that of the new model and that the
new model better extracts the oscillating patterns (chair and clothes for instance).
We think that the blurring effect is due to the numerical scheme which is slightly
more diffusive for the new model as it is based on fourth order finite differences.

6. A new algorithm to solve the lagrangian problem for strongly con-
vex data term. Having the previous section in mind, a straightforward approach to
solve (1.2) is to smooth the total variation, if F is non-smooth, it can be smoothed
too, and then one just needs to use a fast scheme like (1) adapted to the uncon-
strained minimization of Lipschitz differentiable functions [35]. This method should
be efficient, but in the case of strongly convex F - which notably corresponds to l2-

data fidelity term - one can do much better. We present an O
(

1√
ǫ

)

algorithm rather
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Figure 5.5. Cartoon + texture decompositions. Top: Meyer’s model. Bottom: Osher-Solé-
Vese’s model

than the previous O
(

1
ǫ

)

algorithm. The proposed algorithm can notably solve the
problem of Rudin-Osher-Fatemi with local constraints, the problem of deconvolution
in the case of an invertible transform and the cartoon+texture decomposition model
of Vese-Osher.

Instead of directly attacking (1.2) we can solve its dual problem for which no
smoothing is needed. The key idea is that for strongly convex F , F ∗ is Lipschitz
differentiable. We first recall some facts of convex analysis (see [23], for a complete
reference).

Let F : X → R and G : Y → R be two convex proper functions. Let P , be the
primal problem

inf
u∈X

(G(∇u) + F (u)). (6.1)

The dual problem P∗ is then defined by

inf
q∈Y

(G∗(−q) + F ∗(−div(q))) . (6.2)

Let ū and q̄ be the solutions of P and P∗ respectively. Those solutions are related
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Figure 5.6. Cartoon + texture decompositions. Top: BV − l1 model. Bottom: result of
minimizing the l1-norm of the g field in (5.23)

through the extremality relations

F (ū) + F ∗(−div(q̄)) = 〈−div(q̄), ū〉X (6.3)

and

G(∇ū) +G∗(−q̄) = 〈−q̄,∇ū〉Y . (6.4)

Furthermore we have

G(∇ū) + F (ū) = −(G∗(−q̄) + F ∗(−div(q̄))). (6.5)

6.0.4. Application to our problem. To apply the previous theory to our
problem, we take

G(q) = ||q||1 (6.6)

We wish to solve

inf
u∈X

(G(∇u) + F (u)) (6.7)
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where F is differentiable, strongly convex, with convexity parameter σ.
Theorem 6.1. The dual problem of (6.7) is defined by

inf
q∈K

(F ∗(−div(q))) (6.8)

with K = {q ∈ Y, ||q||∞ ≤ 1}. The application H : q → F ∗(−div(q)) is L-Lipschitz

differentiable, with L =
2||div||22

σ . Problem (6.8) can thus be solved with a Nesterov
scheme (no smoothing is needed!). ū can be retrieved from the solution q̄ of (6.8)
using

ū = ∇F ∗(−div(q̄)), (6.9)

moreover

∇ū = q̄|∇ū|. (6.10)

This methods thus amounts to evolving the orientation of the level lines of u instead
of its intensity.

Proof.
1. Let us compute G∗:

G∗(q) = sup
r∈Y

(〈q, r〉Y − ||r||1) (6.11)

= sup
t>0

(

sup
||r||1=t

(〈q, r〉Y − t)

)

(6.12)

= sup
t>0

(t||q||∞ − t) (6.13)

= χK(q) (6.14)

with K = {q ∈ Y, ||q||∞ ≤ 1}.
2. Let us show F ∗ is 2

σ -Lipschitz differentiable.

F ∗(u) = sup
v∈X

(〈u, v〉X − F (v)) (6.15)

First, note that F ∗ is convex (see section 2). As F is strictly convex, the
solution of problem (6.15) exists and is unique. Let v(u) denote the argmax
in (6.15). From uniqueness of the solution of (6.15), we get that F ∗ is dif-
ferentiable and its derivative is v(u). From the optimality conditions we get
that u−∇F (v(u)) = 0. Thus for any (u1, u2) ∈ X2

∇F (v(u1)) −∇F (v(u2)) = u1 − u2 (6.16)

and

|u1 − u2|2 = |∇F (v(u1)) −∇F (v(u2))|2 (6.17)

≥ σ

2
|v(u1) − v(u2)|2 (6.18)

≥ σ

2
|∇F ∗(u1) −∇F ∗(u2)|2. (6.19)

This shows that F ∗ is 2
σ -Lipschitz differentiable.
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3. Let us show (6.9). The first extremality relation gives

F (ū) = 〈−div(q̄), ū〉X − F ∗(−div(q̄)).

We also recall that F ∗∗(u) = F (u). So that F (ū) = sup
v∈X

(〈ū, v〉X − F ∗(v)).

Those two equations imply that −div(q̄) cancels the derivative of v → 〈ū, v〉X−
F ∗(v). This ends the proof.

4. Finally let us show equation (6.10). It is done using the second extremality
relation

G(∇ū) = G∗∗(∇ū) (6.20)

= sup
q∈Y

(〈∇ū, q〉Y −G∗(q)) (6.21)

= 〈−q̄,∇ū〉Y −G∗(−q̄). (6.22)

Thus −q̄ solves problem (6.21). This yields the existence of multipliers µi

such that

(∇ū)i − µiq̄i = 0 (6.23)

with µi = 0 if |q̄i|2 < 1 or µi > 0 if |q̄i|2 = 1. In both cases we get µi =
|(∇ū)i|2.

6.0.5. Nesterov’s algorithm in the general strongly convex case. Nes-
terov’s algorithm applied to problem (6.8) writes:

Algorithm 3: Y. Nesterov’s scheme for problem (6.8)

Input: Number of iterations N .
Output: uN an estimate of ū.
begin1

Set G−1 = 0.2

Set L =
2||div||22

σ .3

Set xk = 0.4

for k going from 0 to N do5

Set ηk = ∇(∇F ∗(−div(xk))).6

Set yk = ΠK

(

xk − ηk

L

)

.
7

Set Gk = Gk−1 +
k + 1

2
ηk.

8

Set zk = ΠK

(

−G
k

L

)

.
9

Set xk+1 =
2

k + 3
zk +

k + 1

k + 2
yk.

10

end11

end12

This algorithm returns a variable yN that should be close to the solution of the
dual problem. To retrieve the solution in the primal problem, we could thus set

uN = ∇F ∗(−div(yN )). (6.24)
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Furthermore, using (5.9), we get that

0 ≤ F ∗(−div(yN )) − F ∗(−div(q̄)) ≤ 8||div||22n
σ(k + 1)(k + 2)

(6.25)

which is a convergence rate on the dual variable. Another choice consists in using
a linear combination of the solutions at all iterations. It leads to better practical
efficiency and allows to prove convergence rates for the primal variables. Let us set
ūN = 2

(N+1)(N+2)

∑N
i=1(i + 1)ui with ui = ∇F ∗(−div(xi)) and φ∗(u) = ||∇u||1 +

F (u). The following proposition summarizes the rates of convergence we obtain on
the variable ūN :

Proposition 6.2. Algorithm (3) ensures that

0 ≤ φ∗(ū
N ) − φ∗(ū) ≤

4||div||22n
σ(N + 1)(N + 2)

(6.26)

and

|ūN − ū|2 ≤ 2
√

2||div||2
√
n

σN
. (6.27)

The proof is given in the appendix.

6.0.6. Application example : F (u) = |λ(Au − f)|22. An important class of
strongly convex functions writes: F (u) = |λ(Au − f)|22 with A a bijective linear
application and λ = diag(λi) a diagonal matrix with λi ∈]0,∞]. Let λ− = min

i
λi and

λ−(A) denote the smallest eigenvalue of A.
Proposition 6.3. F ∗ is L-Lipschitz differentiable, with L ≤ 1

2λ2
−

λ−(A)2
. More-

over

F ∗(v) = 〈A−1f, v〉 +
1

4
|λ−1A−∗v|22. (6.28)

Proof. F is obviously differentiable, with derivative ∇F (u) = 2A∗λ2(Au − f).
Thus

|∇F (u) −∇F (v)|2 = 2|A∗λ2A(u− v)|2 ≥ 2λ2
−λ

2
−(A)|u − v|2.

F is thus strongly convex with convexity parameter σ = 4λ2
−λ−(A)2. Then

F ∗(v) = sup
u∈X

(

〈u, v〉X − |λ(Au − f)|22
)

(6.29)

= sup
w∈X

(

〈A−1(λ−1w + f), v〉 − |w|22
)

(6.30)

= 〈A−1f, v〉 + sup
r≥0

(

r|λ−1A−∗v|22 − r2|λ−1A−∗v|22
)

(6.31)

(6.32)

and we get the result by canceling the derivative of r → r − r2.
To solve problem

inf
u∈X

(

J(u) + |λ(Au − f)|22
)

(6.33)
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the approach we propose consists in solving its dual problem (6.8) using a Nesterov
algorithm. Setting K = {q ∈ Y, ||q||∞ ≤ 1}, the algorithm is as follows:

Algorithm 4: Y. Nesterov’s scheme for problem (6.33)

Input: Number of iterations N .
Output: uN an estimate of ū.
begin1

Set G−1 = 0.2

Set L =
||div||22

2λ2
−

λ−(A)23

Set ūN = 04

Set xk = 0.5

for k going from 0 to N do6

Set ηk = ∇(A−1f) − 1

2
∇A−1λ−2A−∗div(xk).

7

Set yk = ΠK

(

xk − ηk

L

)

.
8

Set Gk = Gk−1 +
k + 1

2
ηk.

9

Set zk = ΠK

(

−G
k

L

)

.
10

Set xk+1 =
2

k + 3
zk +

k + 1

k + 2
yk.

11

Set ū = ū+ (k + 1)(A−1f − 1

2
A−1λ−2A−∗div(xN ))

12

end13

Set ūN =
2

(N + 1)(N + 2)
ū.

14

end15

Note that in this formulation, we optimize a variable in Y = X × X instead of
X . Using (6.26), we get that

φ∗(ū
N ) − φ∗(ū) ≤

||div||22n
λ2
−λ

2
−(A)N2

(6.34)

7. Numerical results and discussion. We cannot do an exhaustive compar-
ison of all numerical methods that solve total variation problems. The bibliography
about this problem contains more than 50 items. Most are time consuming to im-
plement and their efficiency heavily depends on some choices like preconditionners.
We thus restrict our experimental numerical comparisons to widely used first order
methods. Namely: the projected gradient descent and the projected subgradient
descent.

7.1. Some comparisons for the Rudin-Osher-Fatemi problem.. The prob-
lem we choose for numerical comparisons is the Rudin-Osher-Fatemi model. The
reasons for this choice are that many recent papers give convergence results on that
problem and that it allows to compare the primal and dual approaches. It consists in
solving

inf
u∈X

(

J(u) + λ2|u− f |22
)

(7.1)
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or equivalently

inf
u∈X,|u−f |2≤α

(J(u)) . (7.2)

Finding λ and α such that the solution of (7.1) is the same as that of (7.2) is not
straightforward. To find those parameters, we let the Nesterov method applied to the
dual problem of (7.1) run until convergence. This provides a solution ūλ. Then we
set α = |ūλ − f |2. Let us describe the methods we implement for comparisons:
Algo1 is the presented Nesterov approach applied to the dual problem (6.8). This

corresponds to algorithm (4).
Algo2 is the projected gradient applied to the dual problem (6.8). This approach

is slightly faster than A. Chambolle’s initial algorithm [11] (see [12] for a
comparison).

Algo3 is the presented Nesterov + smoothing approach (2).
Algo4 is a projected gradient descent with optimal constant step

{

u0 = f
uk+1 = ΠK(uk − t∇Jµ(uk))

(7.3)

We set K = {u ∈ X, |u − f |22 ≤ α2}. The optimal step can be shown to be
t = 2µ

||div||22
[45].

We use the 256×256 Lena image rescaled in [0, 1]. We add a white gaussian noise
(σ = .15). This corresponds to the images in figure (7.1). The bottom-left figure
(BL) is given in order to show that the smoothing technique gives satisfying results in
a really small number of iterations. The curves in figure (7.2) compare the distance
from the current estimate to the minimizer w.r.t. the number of iterations for the
different methods.

First note that the precision of the smoothing approaches (Algo3 and Algo4) is
bounded below by a positive constant due to the approximation error. Therefore, it
is useless - for a fixed regularization parameter µ - to iterate too much.

The dual problem solved with a Nesterov scheme (Algo1) clearly outperforms all
tested approaches. Algo2 seems to be the second most efficient algorithm. However,
it leads to precise solutions much slowlier.

In the primal formulation, Nesterov’s algorithm (Algo3) outperforms the pro-
jected gradient descent (Algo4). In any case we see that it is preferable to use Nes-
terov’s scheme compared to simpler schemes as the projected gradient descent. When
it is possible (strongly convex data term), it is very interesting to solve a dual problem.

Let us finally precise that depending on the applications, the computational effort
per iteration of Nesterov’s technique is between one and twice that of the projected
gradient descent.

Now let us compare more precisely the efficiency of the projected gradient descent
applied to the dual of (7.1) (Algo2), with the “smoothing + Nesterov” technique
(Algo3). In experiment (7.3), we treat the original Lena image and set λ = 1. We can
see that for any iterations number k, there exists a pair (k, µ) such that the precision
obtained by Algo2 is the same as that obtained by Algo3. It indicates that the
“smoothing + Nesterov” algorithm has roughly the same efficiency as A. Chambolle’s
scheme. Note that this algorithm can be used in a much wider class of constrained
problems.

Another interesting remark is that the best precision that can be obtained with
the smoothing technique depends linearly on µ.
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Figure 7.1. TL: Original image (scaled in [0, 1]) - TR: Noisy Lena - BL: Solution of (7.2)
obtained using Algo3 and setting µ = 0.01 and N = 50 iterations - BR: Exact solution of (7.2)
obtained using Algo1 until convergence

7.2. Comparisons for other constrained problems. In this paragraph, we
focus on the primal formulations. Our aim is to compare three different algorithms
for solving the constrained total variation problem (1.1) with different functions F .
The tested algorithms are Algo3 and Algo4 setting µ = 0.001 4 and Algo5 which is
described below:
Algo5 is a projected subgradient descent with optimal step (4.1). ηk must belong

to ∂J(uk) for convergence. We choose:

ηk = −div(Ψ) with Ψi =

{

(∇uk)i

|(∇uk)i|2 if |(∇uk)i|2 > 0

0 otherwise
(7.4)

and tk = J(uk)−J̄
|ηk|2 . This step is optimal in the sense that it leads to an O

(

1
ǫ2

)

algorithm. As J̄ is unknown, some authors try to evaluate it iteratively

4this leads to solutions that are perceptually identical to the solutions using µ = 0
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ū
| 2

 

 

Nesterov Dual
Projected Gradient Descent Dual
Nesterov Primal, µ=10−3

Projected Gradient Descent Primal, µ=10−3
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Figure 7.3. Comparison of the projected gradient applied to the dual of (7.1) with the Nes-
terov’s scheme applied to the smoothed version of (7.2)

[28, 17]. To find it, we just let a program (Nesterov) run until convergence,
and get the optimal value J̄ . Clearly this method is not usable in practice
but serves as a reference.

We test the efficiency of the method under various constraints. The tested prob-
lems are:

• The Rudin-Osher-Fatemi problem (Fig. 7.4) which consists in choosing F (u) =
|u− f |2.
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• The BV-L1 problem (Fig. 7.5). It consists in choosing F (u) = |u− f |1.
• The deconvolution problem (Fig. 7.6), which consists in choosing F (u) =
|h ⋆ u− f |2.

Figure 7.4. ||∇uk||1 − ||∇ū||1 in log scale for ROF problem. Results on Figure (7.1).
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Figure 7.6. ||∇uk||1 − ||∇ū||1 in log scale for deconvolution problem. Results on Figure (5.3).

We notice that in all cases, Nesterov’s scheme (Algo3) achieves much better than
the projected gradient descent (Algo4). The projected subgradient descent with opti-
mal step (Algo5) decreases the cost function very fast in the first iterations. Asymp-
totically, its rate of convergence seems to be lower than the proposed “Nesterov +
smoothing” approach. Our conclusion is that the projected subgradient descent with
precomputed sequences {tk} might be of interest to get approximate solutions in just
a few iterations. To get accurate solutions in slightly higher computing times, the
proposed approach “Nesterov + smoothing” approach is very appropriate.

7.3. Discussion.

7.3.1. Stability of the Nesterov scheme. In private correspondences, people
having tested the Nesterov technique reported that it is unstable. We have found on
the contrary, that in all tested cases, the Nesterov algorithm was stable and much
faster than the projected gradient descent. The algorithm we apply [37] dates from
2005. The first optimal scheme was proposed in 1983 [35] and it seems that it is the
one most people test. Our experiences confirm that the new proposed schemes are
really efficient in practice as is shown by Y. Nesterov in his papers. Let us finally
mention that the Nesterov’s schemes were recently generalized and accelerated for a
broader class of problems in [38]. Y. Nesterov gives further numerical results on l1

type problems.

7.3.2. Comparisons with other methods. Second order methods are com-
monly used to solve problem (1.2) and it seems they represent the closest rivals of
our approach. Many papers suggest the use of half-quadratic minimization [25] which
was shown recently to be equivalent to quasi-Newton techniques [42]. Those methods
are proved to converge linearly [1]. Such a rate is better asymptotically than our
polynomial energy decays. This results in convergence after fewer iterations. The
counterpart clearly is the need to solve a huge linear system at each iteration. The
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efficiency of this method strongly depends on the conditioning number of the system
and the choice of preconditioners. It is thus difficult to compare both approaches.

Second order cone programming was proposed recently [52] and leads to very
precise solutions, but the computing times seem to be very high. It is definitely a
good choice to get ’exact’ solutions.

A very promising approach based on graph-cuts was proposed recently [20, 12].
The authors solve (1.2) for A = Id and p ∈ {1, 2,∞}. They show that they get exact
solutions (up to a quantization parameter) in a finite number of iterations. That kind
of approach continues being improved [19] and is clearly faster than our approach for
the BV −L1 problem. However, the approach presented in this paper allows to solve
a much larger class of problems with a good efficiency and simpler implementations.

We think that very precise solutions are not needed in general in image processing.
The visual system is unable to detect small perturbations 5. Our method is thus very
competitive with previously proposed schemes. It leads to precise enough solutions
in short times and the algorithms are very easy to implement.

8. Conclusion. We presented efficient first order algorithms to minimize the
total variation under many smooth or non-smooth convex sets. Those schemes are
simple to implement and present low computing times. They are based on a recent
advance [37] in convex optimization. Their efficiency is comparable or better than
state of the art methods.

In this paper we focused on total variation problems. It is straightforward to
replace the operators ∇ and −div of the paper by other linear transforms B and
B∗. This would allow to solve efficiently many other interesting problems like sparse
reconstructions.

Acknowledgement:. The first author would like to thank Alexis Baudour for useful
mathematical discussions.

9. Appendix.

9.1. Discretization of differential operators. In this section, to simplify the
notations, we denote u(i, j) the value of u on pixel (i, j). nx and ny will represent the
number of pixels in the horizontal and vertical directions respectively.

To discretize the gradient we used in all experiments the following classical first
order scheme borrowed from [11]. For u ∈ X

(∇u)(i, j) = ((∂1u)(i, j), (∂2u)(i, j)). (9.1)

∇u is an element of Y .

(∂1u)(i, j) =

{

u(i+ 1, j) − u(i, j) if i < nx

0 if i = nx
(9.2)

(∂2u)(i, j) =

{

u(i, j + 1) − u(i, j) if j < ny

0 if j = ny
(9.3)

This definition allows to define the divergence properly by duality, imposing

〈∇u, p〉Y = −〈u, div (p)〉X . (9.4)

5a uniform noise of amplitude 5 is almost invisible for images of amplitude 256
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Simple computation gives

(div (p))(i, j) =







p1(i, j) − p1(i− 1, j) if 1 < i < nx

p1(i, j) if i = 1
−p1(i− 1, j) if i = nx

+







p2(i, j) − p2(i, j − 1) if 1 < j < ny

p2(i, j) if j = 1
−p2(i, j − 1) if j = ny

(9.5)

Note that the operator div is surjective from Y to X − {(γ, γ, ..., γ), γ ∈ R}.
Moreover it can be shown [11] that ||div ||2 ≤ 2

√
2.

9.2. Projections on weighted lp-balls (p ∈ {1, 2,∞}). Until now, we sup-
posed that we could do Euclidean projections on weigthed lp-balls. Some projection
operators are not straightforward to implement and we propose solutions to that prob-
lem. Let K = {y ∈ X, |λ(y− f)|p ≤ α}, where λ is a diagonal matrix whose elements
λi belong to [0,∞]. The problem of projection on K can be written analytically

ΠK(x) = argmin
y∈K

(

|y − x|22
)

(9.6)

Let ȳ denote the solution of (9.6). A first important remark that holds for any p is
that if λi = 0, then ȳi = xi. If λi = ∞ then ȳi = fi. Thus in all projection algorithms
the first step is to set all those known values. This allows to restrict our attention to
the elements λi ∈]0,∞[.

9.2.1. Projections on weighted l∞-balls. The simplest projector is the one
on weighted l∞-balls. It writes in closed form

ȳi =

{

xi if |λi(fi − xi)| ≤ α

fi + xi−fi

|xi−fi|
α
λi

otherwise
(9.7)

9.2.2. Projections on weighted l1-balls. Up to a change of variable, the
projection on a weighted l1-ball writes

ΠK(x) = argmin
u,|λu|1≤α

(

|u− x|22
)

(9.8)

with λi ∈]0,∞[ and α > 0.
• First notice that if |λx|1 ≤ α, then ū = x.
• In the other cases, existence and uniqueness of a minimizer results from strict

convexity of |u − x|22 and convexity of K. There exists σ ∈ [0,∞[ s.t. the
solution of (9.8) is given by the solution of the Lagrangian problem

ΠK(x) = arg min
u∈Rn

(

|u− x|22 + σ|λu|1
)

(9.9)

The solution of this problem is in closed form

u(σ)i =

{

xi − sgn(xi)
σλi

2 if |xi| ≥ σλi

2
0 otherwise

(9.10)

Let Ψ(σ) = |λu(σ)|1. Our problem is to find σ̄ such that Ψ(σ̄) = α. Ψ
is a convex function (thus continuous) and decreasing. Moreover Ψ(0) =
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|λx|1, and limσ→∞ Ψ(σ) = 0. From intermediary values theorem, for any
α ∈ [0, |λx|1], there exists σ̄ s.t. Ψ(σ̄) = α.

Ψ(σ) =

n
∑

i=1

|λiūi| (9.11)

=
∑

i,|xi|≥σλi/2

λi(|xi| − σλi/2) (9.12)

=
∑

i,yi≥σ

λi|xi| − σλ2
i /2 (9.13)

with yi = 2|xi|
λi

. Now, it is important to remark that Ψ is a piecewise linear
decreasing function. The changes of slopes might only occur at values σ = yj .
Thus, an algorithm to find σ̄ is the following

1. For i ∈ [1..n], compute yi = 2|xi|
λi

. [O(n) operations]
2. Using a sort function, store the permutation j s.t. k → yj(k) is increas-

ing. [O(n)log(n) operations]
3. Compute the partial sums : Ψ(yj(k)) = E(k) =

∑n
i=k λj(i)|xj(i)| −

yj(k)λ
2
j(i)

2 . E is decreasing. [O(n) operations]
4. – If E(1) < α, set a1 = 0, b1 = |λx|1, a2 = yj(1), b2 = E(1). [O(1)

operations]
– Otherwise, find k̄ s.t. E(k̄) ≥ α and E(k̄ + 1) < α. Set a1 = yj(k̄),

b1 = |E(k̄)|1, a2 = yj(k̄+1), b2 = E(k̄ + 1). [O(n) operations]

5. Set σ̄ = (a2−a1)α+b2a1−b1a2

b2−b1
. [O(1) operations]

6. Set ū = u(σ̄) using (9.10). [O(n) operations]

9.2.3. Projections on weighted l2-balls. The projection on a weighted l2-ball
(an ellipsoid) writes

ΠK(x) = argmin
{y,|λy|22≤α}

|y − x|22 (9.14)

Contrarily to the l∞ and l1 cases, we do not propose an exact solution to this
problem. We give an algorithm that leads to solutions that have the level of precision
of the machine.

• First notice that ȳ = x if |λx|22 ≤ α.
• Otherwise it can be shown using Lagrange multipliers that the solutions of

(9.14) writes

ȳi =
x

σ̄|λi|2 + 1
(9.15)

for some parameter σ̄ > 0. Moreover, we know that |λȳ|22 = α. Let Ψ(σ) =
∑n

i=1 | λixi

σ|λi|2+1 |22. We are looking for a parameter σ̄ s.t. Ψ(σ̄) = α. It can be

shown that Ψ is convex decreasing. To find σ̄ we can use a Newton method.
It writes:

1. Set k = 0, σk = 0.
2. Compute αk = Ψ(σk).

3. Compute βk = Ψ′(σk) = −2
∑n

i=1
λ4

i x2
i

(σkλ2
i
+1)3

.
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4. Set σk+1 = σk + (α−αk)
βk .

5. Set k = k + 1, go back to 2 until |αk − α| ≤ ǫ.
6. Set ȳ = x

σk|λ|2+1 .

Theoretically, this scheme converges superlinearly. In all our numerical ex-
periments on deconvolution, we never needed more than 15 iterations to get
a 10−15 precision, and the ellipsoids are degenerate in that case. The average
number of iterations is 6. The projection on a weighted l2-balls is thus very
fast.

9.3. Proof of proposition (4.1). Proof. Let J̄µ denote the solution
of (5.10) and J̄ denote the solution of (1.1). Using (5.5), we easily get that
|J̄− J̄µ| ≤ nµ

2 . The projected gradient is an O(LD
k ) algorithm, where L is the

Lipschitz constant of the gradient of the function to be minimized and D is
the squared euclidean distance from the initial point to the solution (see for
instance [45]). Thus algorithm (4.3) ensures that |J̄µ(uk)− J̄µ| ≤ C

kµ . Where
C is some constant independent of µ and k. Combining those two inequalities,
we get that |J(uk) − J̄ | ≤ C

kµ + nµ
2 . To get an ǫ-solution, it is thus sufficient

to have C
kµ + nµ

2 < ǫ. It is the case if k = ⌊ C
µ(ǫ−nµ

2 )⌋ + 1. Maximizing the

denominator in this expression, we get that the optimal pair (µ, k) is µ = ǫ
n

and k = ⌊Cn
2ǫ2 + 1⌋.

9.4. Proof of proposition (6.2). Proof. A direct consequence of
equality (6.5) is

inf
q∈K

(F ∗(−div (q))) = − inf
u∈X

(||∇u||1 + F (u)) . (9.16)

Let us introduce the notations. We set αi = i+1
2 , Ak =

∑k
i=0 α

i = (k+1)(k+2)
4 .

We denote φ(q) = F ∗(−div (q)) and φ∗(u) = ||∇u||1 +F (u). Equation (9.16)
reduces to φ(q̄) = −φ∗(ū).
Let us introduce the function

Ψk(x) =
L

2
||x− x0||22 +

k
∑

i=0

αi(φ(xi) + 〈∇φ(xi), x− xi〉Y ). (9.17)

where L is the Lipschitz constant of φ. We proved in (6.1) that L ≤ ||div ||22
σ .

Using equation (5.8), we get that algorithm (3) ensures

Akφ(yk) ≤ inf
x∈K

(

Ψk(x)
)

(9.18)

We have φ(xk) = F ∗(−div (xk)) = sup
u∈X

(

〈u,−div (xk)〉X − F (u)
)

. Let uk

denote the solution of that problem. It is unique as F is strongly con-
vex. As F is differentiable, uk satisfies: −div (xk) − ∇F (uk) = 0. So that:
φ(xk) = 〈uk,∇F (uk) > −F (uk). Moreover as F ∗ is defined as a supremum,
its derivative is given by ∇F ∗(−div (xk)) = uk. So that

φ(xk + h) − φ(xk) = 〈∇F ∗(−div (xk)),−div (h)〉X + o(||h||2) (9.19)

= 〈∇(∇F ∗(−div (xk))), h〉Y + o(||h||2) (9.20)

= 〈∇uk, h〉Y + o(||h||2) (9.21)
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Thus we get ∇φ(xk) = ∇uk. Replacing φ(xi) and ∇φ(xi) by their expressions
in terms of ui, we get

φ(xi) + 〈∇φ(xi), x− xi〉Y (9.22)

= 〈ui,∇F (ui)〉X − F (ui) + 〈ui, div (xi)〉X + 〈∇ui, x〉Y (9.23)

= −F (ui) + 〈∇ui, x〉Y (9.24)

Let us denote: ūk =
∑k

i=0
αi

Ak u
i. As F is convex, F (ūk) ≤ ∑k

i=1
αi

AkF (ui).
So that

inf
x∈K

(

Ψk(x)
)

(9.25)

= inf
x∈K

(

L

2
||x− x0||22 −Ak

k
∑

i=1

αi

Ak
F (ui) +Ak〈∇ūk, x〉Y

)

(9.26)

≤ −AkF (ūk) + inf
x∈K

(

L

2
||x− x0||22 +Ak〈∇ūk, x >

)

(9.27)

≤ −Ak(F (ūk) + ||∇uk||1) +
L

2
|| − ∇ūk

|∇ūk| − x0||22 (9.28)

≤ −Akφ∗(ū
k) +

L

2
|| − ∇ūk

|∇ūk| − x0||22. (9.29)

At line (9.28), q̄k = ∇ūk

|∇ūk| is defined only on the set U = {p, (|∇ūk|)p 6= 0}.
On the complement of U a possible choice is to set q̄k

p = x0
p. Now, taking

x0 = 0, we have supx∈K

(

||x0 − x||22
)

= n.

So that finally infx∈K

(

Ψk(x)
)

≤ −Akφ∗(ūk) + Ln
2 . Using (9.18), we get

φ∗(ū
k) ≤ −φ(yk) +

Ln

2Ak
. (9.30)

As φ(q̄) = −φ∗(ū), we have

φ∗(ū
k) − φ∗(ū) ≤ −φ(yk) + φ(q̄) +

Ln

2Ak
. (9.31)

Furthermore, as yk ∈ K, −φ(yk) + φ(ȳ) ≤ 0. Finally, replacing every expres-
sion by their majoration, we get the first result

φ∗(ū
k) − φ∗(ū) ≤

4||div ||22n
σ(k + 1)(k + 2)

. (9.32)

Then, we can remark that φ∗ is strongly convex. Thus it satisfies (see [45]):
φ∗(u + h) ≥ φ∗(u) + 〈η, h〉X + σ

2 |h|22 for any η ∈ ∂φ∗(x) and any h ∈ X . In
particular φ∗(u) − φ∗(ū) ≥ σ

2 |u− ū|22. Using (9.32) it is thus straightforward
to get

|ūk − ū|2 ≤ 2
√

2||div ||2
√
n

σk
. (9.33)
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