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Structure Tensor Based Analysis of Cells
and Nuclei Organization in Tissues

Wenxing Zhang, Jérôme Fehrenbach, Annaïck Desmaison, Valérie Lobjois, Bernard Ducommun, and Pierre Weiss*

Abstract—Extracting geometrical information from large 2D
or 3D biomedical images is important to better understand fun-
damental phenomena such as morphogenesis. We address the
problem of automatically analyzing spatial organization of cells or
nuclei in 2D or 3D images of tissues. This problem is challenging
due to the usually low quality of microscopy images as well as their
typically large sizes. The structure tensor is a simple and robust
descriptor that was developed to analyze textures orientation.
Contrarily to segmentation methods which rely on an object based
modeling of images, the structure tensor considers the sample
at a macroscopic scale, like a continuous medium. We show that
this tool allows quantifying two important features of nuclei in
tissues: their privileged orientation as well as the ratio between
the length of their main axes. A quantitative evaluation of the
method is provided for synthetic and real 2D and 3D images. As an
application, we analyze the nuclei orientation and anisotropy on
multicellular tumor spheroids cryosections. This analysis reveals
that cells are elongated in a privileged direction that is parallel to
the spheroid boundary. A MATLAB toolbox and an Icy plugin are
available to use the proposed method.

Index Terms—Biomedical image analysis, structure tensor, cells
and nuclei.

I. INTRODUCTION

T HE advent of new imaging technologies allows observing
biological samples with an unprecedented spatial, tem-

poral and spectral resolution. It offers new opportunities to per-
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form systematic studies of geometrical configurations of cells or
nuclei in their micro-environment to better understand the fun-
damental processes involved in morphogenesis or tumor growth
[22], [30].
Automatic procedures are however essential to analyze large

images and assess cells properties such as location, size, orien-
tation, aspect ratio, etc. The lack of robust, fast and universal
procedures to provide such a geometric description is probably
one of the main obstacles to exploit the full potential of new de-
vices.
A standard approach to analyze image contents consists

of segmenting each cell/nucleus independently [30], [33]. A
precise segmentation completely describes the geometrical
contents of images and is often regarded as the best source
of information one can hope for. However, biological im-
ages often suffer from many degradations. For instance, in
fluorescence microscopy, light scattering, absorption or poor
signal-to-noise-ratio strongly impair image quality. In many
situations it is therefore hopeless to perform a proper segmen-
tation. Moreover, in cases where large cell populations are
investigated, a complete segmentation (i.e., a precise descrip-
tion of the objects boundaries) still brings more information
than needed to understand the overall geometrical distribution.

a) Contribution: In this paper we therefore pursue a less
ambitious goal. We adopt a macroscopic point of view and
consider the biological sample as a continuous medium. This
idea stems from mathematical models that describe tissues
as continuous media such as incompressible fluids, elastic or
viscoelastic materials [1], [3], [5], [18], [19]. Our main contri-
bution is to show through both theoretical and numerical results
that the so-called structure tensor [2], [14], [15], provides a
robust and precise enough method to retrieve cells orientation
and anisotropy in 2D and in 3D. In addition, the structure
tensor can be evaluated very fast and only requires tuning one
parameter. We show the following original results:
• While the structure tensor is usually implemented to as-
sess texture orientations, we show that it also allows quan-
tifying the anisotropy of cells or nuclei. This is done by
analyzing the method behavior on images with ellipsoidal
isosurfaces. To the best of our knowledge, this is the first
theoretical result that allows exploiting the structure tensor
eigenvalues in a precise way.

• The structure tensor only requires tuning one parameter.
We show that it suffices to set it equal to the typical size of
a cell in pixels.

• The proposed mathematical analysis also allows quanti-
fying the method bias. It shows that a very good estimation
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can be expected even when very few nuclei are locally sim-
ilar (in the sense that they can be well approximated by the
same ellipsoid).

• We prove that the method is invariant under contrast
changes and robust to deformations and noise.

We also perform various experiments to validate our theoret-
ical findings. We assess the structure tensor efficiency on syn-
thetic and real 2D and 3D images. Its output is compared to
ground truth obtained analytically in the case of synthetic data
or manually in the case of real data. This analysis shows that the
structure tensor allows to quickly and robustly assess cells or-
ganization at a large scale. We also perform a comparison with
the output of standard 2D segmentation algorithms: FarSight
[27], the HK-means plugin from Icy [9], [33], the “IdentifyPri-
maryObjects” routine from Cellprofiler [7] and MINS [25]. The
structure tensor provides significantly better estimates of ori-
entation and anisotropy than all tested methods. We finish the
paper by providing an example of application to the analysis
of geometrical configurations of nuclei in multicellular tumor
spheroids.
The source codes allowing to reproduce our experiments

are available in MATLAB at http://www.math.univ-toulouse.
fr/~weiss/PageCodes.html. We also developed two Icy plugins
[9] for this project. The first one allows to manually fit ellipses
on 2D images to generate gold standards. The second one im-
plements the structure tensor and allows visualizing its output
in 2D and 3D. Both plugins are available in the official list of
Icy plugins.

b) Related Work: The structure tensor appeared in the field
of image processing in the late 80's [14] for the problem of
interest point detection. It was then justified theoretically and
popularized in different contexts such as interest point detection
[14], [17], [24], texture analysis [2], [15], representation of flow-
like images [34], optical flow problems [26] and anisotropic or
coherence enhancing diffusion [43], [44]. The structure tensor
is described precisely in standard textbooks [20], [21], [43] and
sometimes referred to as secondmomentmatrix [23]. The works
[2], [15], [34] are closely related to ours since the authors show
that the structure tensor is capable of assessing precisely the ori-
entation of textures composed of segments or step functions. In
this paper, we demonstrate that the structure tensor is capable
of retrieving the orientation of another type of functions, but we
also precisely analyze the meaning of the eigenvalues ratio. To
the best of our knowledge, this is the first result in this direction.
The structure tensor has already been used in the specific field

of biological imaging. One of its main applications is coherence
enhancing or diffusion [33] which usually allows improving im-
ages quality without degrading their geometrical content sev-
erly. It was also used to analyze geometrical features such as
fibers orientations in 2D and 3D [11], [13], [28], [31], [35].
The works [13], [35] also come with an ImageJ plugin http:/
/bigwww.epfl.ch/demo/orientation/. The authors of these two
references mention that the structure tensor allows quantifying
the orientation and the isotropy properties of a region of interest.
However, the isotropy is defined in a way different from the
present paper and the authors do not state precisely how this in-
formation relates to the image contents.

c) Paper Contents: The rest of the paper is organized as
follows. Section II constitutes the theoretical part of the paper.
We introduce the structure tensor and demonstrate its properties
when applied to images that consist of fields of functions with
ellipsoidal isosurfaces. We validate our main theoretical find-
ings with specific numerical experiments on synthetic data. In
Section III, we turn to the real problem of assessing cells con-
figurations in a dense tissue. We first illustrate the method on
synthetic 2D and 3D data with controlled degradations and fi-
nally propose results on real 2D images of tumor spheroids.

II. THEORETICAL AND EMPIRICAL ANALYSIS

In this section, we first recall the structure tensor definition
in . Second, we provide a numerical algorithm to compute
it in the discrete setting. We then show its ability to analyze
fields of ellipses (in 2D) or ellipsoids (in 3D). The motivation
for introducing fields of functions with ellipsoidal isosurfaces
is that images such as Fig. 6 are a rather good approximation of
certain dense tissues such as microtumors. We then show that
the method is robust to deformations. We finish by illustrating
the theoretical results with numerical experiments.

A. Notation

For , the angle in degrees between and is
denoted , this angle lies in (0 , 90 ). The -norm
of is denoted and defined
by . The -norm
of a function is denoted and defined
by . The -norm is de-
fined by . Let
denote a vector field, we let denote its gradient and

. The positive defi-

niteness of a matrix is denoted . The spectral norm of
a matrix is denoted , and its determinant is denoted .
We denote the normalized version of . The
largest (resp. smallest) eigenvalue of is denoted
(resp. ). The notation Id denotes the identity operator.

means that the matrices and are proportional,
and means that the functions and are proportional.
Given a vector , we let diag denote a diagonal
matrix with diagonal . The support of a function is the
closure of the set where this function does not vanish and is
denoted . A function is of class if it is continuously
differentiable and denotes the set of integrable function
on .

B. Preliminary Facts About the Structure Tensor

Let denote a grayscale image. In this paper,
we restrict to the practical cases and , although
the theory is valid in any dimension. For ease of exposition,
we assume that has bounded partial derivatives.
The function is a filter that satisfies the following
conditions:

(1)
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For any , we define , the scaled version of by

(2)

The conditions (1) still hold for any . In practice, is
usually a smoothing filter (e.g., a Gaussian). The structure tensor
of , denoted , is defined by

(3)

where denotes the gradient operator and ‘ ’ is the convolution
operation which acts independently on each component of the

tensor .

C. Discretization and Numerical Implementation

In order to implement the structure tensor on a digital image,
the differential operators have to be discretized. The discrete

gradient operator is defined by ... . In all reported

experiments, the partial differential operators are defined as
convolutions with discrete kernels. From an asymptotic point
of view any kernel leading to a consistent discretization should
provide good results. However, the kernel design turns out to
be crucial to provide good orientation and anisotropy estimates.
Key properties of discrete kernels are [20], [37], [45]: i) con-
sistency, to ensure a proper estimation of the gradient ii) rota-
tion invariance, ensuring a reliable orientation estimation and
iii) no shift, implying the use of centered finite differences. Ad-
ditionnally it can be helpful to satisfy separability which en-
sures faster computations. Following these criteria, the authors
of [37], [45] designed the following filter in 2D:

and proposed to set and . Using the
same methodology in 3D, one can derive the following filter
(using MATLAB notation):

and .
Alternative discretizations could be used. For instance, it is

possible to use wider stencils to improve rotation invariance.
Another possibility is to directly define kernels through their
discrete Fourier decomposition. This ensures the best possible
rotation invariance, but slows down computations since it re-
quires using Fast Fourier Transforms (FFTs). In this paper, we
stick to the 3 3 kernel described above since we observed that
it provides good enough results in applications.
Finally, let us mention that the structure tensor can easily

handle non isotropic pixels. This is important since very often

in imaging, the -direction has a lower resolution than the
-plane. By letting denote the pixels widths in

each direction, it suffices to normalize the filter for the -th
direction by a factor .
The gradient is computed in the space domain, while the con-

volution with is based on FFTs. The overall computational
complexity for an image with pixels is therefore .
In practice, the structure tensor can be considered as a very ele-
mentary tool and computed rapidly for most images. It can also
be easily parallelized on multicore or GPU architectures. Parts
of the Icy plugin we developed are multi-threaded.

D. Structure Tensor and a Single Ellipsoid

In this section, we analyze the structure tensor behavior on a
simple image with isosurfaces that are concentric ellipsoids. We
show that it allows recovering its principal orientations as well
as the ratios between the lengths of the ellipsoid main axes.
Let denote a function different from 0 satis-

fying . Let denote a symmetric
positive-definite matrix where and
is orthogonal. Define by

(4)

The isosurfaces of are ellipsoids in with semiaxes of length
.

Proposition 1: Let with defined in (4). Assume that
. Let be the indicator of a

unit disk:

(5)

where the normalizing constant is chosen so that the normal-
ization condition (ii) of (1) is satisfied. Then, for all ,
we have and if is small enough then

.
See Appendix B.A for the proof. This proposition leads to the

following observations:
• First, for simple functions with ellipsoidal isosurfaces,
a diagonalization of the structure tensor allows recov-
ering the orientation matrix as well as the matrix
up to a multiplicative constant. In 2D, it means that

corresponds exactly to the
ratio between the principal axes.

• Second, since this result holds for any function , the
method is contrast invariant, which is a highly desirable
property. Contrast invariance basically indicates that the
method should behave similarly on different imaging
devices or when using different stainings.

• Third, the structure tensor is stable, in the sense that this
result holds not only at point 0, but also in a neighborhood
of 0.

E. Structure Tensor and Fields of Ellipsoids

In the previous section, we focussed on a very simple image
model. We now turn to a slightly more realistic setting where
is the sum of functions with ellipsoidal isosurfaces and nonover-
lapping supports.
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Fig. 1. Top: image defined in (6). The size of test image is 256 256. The
semi-axes lengths of a single ellipsoid are respectively 8 and 4 pixels. Bottom:

w.r.t. . The quantity is the average error
within a 128 128 window (dashed line in clean image).

We use the same notation as in the previous section and as-
sume that . The Dirac comb,
denoted by , is defined by

where is the Dirac delta function (see e.g., [4]). Consider the
image

(6)

where is defined in (4). The image consists of a
function replicated periodically over all . Note
that the translated versions of do not overlap since

. Fig. 1 illustrates such an
image in the 2D case.
Proposition 1 indicates that allows retrieving the ori-

entation and anisotropy of . However, that proposition holds
under the following assumptions: (i) the image has concen-
tric ellipsoidal isosurfaces, (ii) the ellipsoid's center should be
known. Both requirements are hardly met in practical applica-
tions. The questions we tackle in this paragraph are the fol-
lowing: does the structure tensor provide an approximation of
at any point of the image domain? How many cells are nec-

essary to reach a low approximation error?
The following proposition provides a preliminary answer.
Proposition 2: Let be the function defined in (5) and be

the image defined in (6). Then for all
.

See Appendix B.B for the proof. Proposition 2 indicates that
for any and sufficiently large . However,

the asymptotic convergence rate is not compelling. The
following theorem shows that much better results can be ob-
tained by using smoother kernels.

Theorem 1: Let be the Gaussian function

(7)

and be the image defined in (6). Then there exists a constant
such that and :

See Appendix B.C for the proof. Surprisingly, the convergence
of to is extremely fast if smooth filters are used. The-
orem 1 implies that values of of the order of nuclei sizes should
produce satisfactory orientation and anisotropy estimates. This
will be confirmed in the numerical experiments, see Section III.
A closer inspection at the proof of Theorem 1 reveals that the
smoothness of the filter function plays a key role to control the
asymptotic convergence rate.
Theorem 1 is illustrated in the 2D case in Fig. 1. The conver-

gence rate is evaluated using the average of the spectral norm
on a 128 128 window. The resulting average is

denoted . It shows that the magnitude
decreases to zero (up to numerical errors) extremely fast. An
ellipse is around 20 pixels wide and a value of around 15 pro-
vides results nearly as good as can be expected.
To the best of our knowledge, Theorem 1 is the first theoret-

ical result that shows that the structure tensor can be used not
only for orientation estimation, but also for anisotropy estima-
tion. Until now, the structure tensor was only analyzed using
directed patterns such as segments [34] or step functions [2].
This result therefore sheds a new light on this fundamental tool.

F. Stability to Noise
In this paragraph, we show that the structure tensor is stable to

noise, provided that adapted pre-processing is used. The struc-
ture tensor definition given in (3) is different from what is found
in most textbooks [43], [44], where the image is pre-con-
volved with a Gaussian filter in order to improve the signal-to-
noise-ratio (SNR). Let us illustrate the detrimental effect of this
strategy.
Assume for simplicity that and that

. The image is thus a
Gaussian function with covariance matrix . If is further
convolved with a Gaussian filter as in [43], [44], we obtain

where is the Gaussian filter defined in (7). By exploiting
the facts that the convolution of Gaussian functions is still a
Gaussian with covariance matrix equal to the sum of covariance
matrices, we obtain

where is identity matrix. Consequently, pre-convolving
with a Gaussian filter shifts the eigenvalues of by a quan-
tity . This, in turn, results in biased anisotropy estimates. For
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instance, in the 2D case, the structure tensor based anisotropy
obtained using is

which is different from the ground truth anisotropy
. In other words the blurring tends

to reduce the anisotropy. This effect is illustrated on the 3rd
row of Fig. 3: the isotropic blur makes the ellipses rounder.
The simple analysis above shows that in practice, more

advanced image denoising techniques that keep isosurfaces
unchanged should be preferred over a simple convolution
with a Gaussian filter. A wide choice is now available such as
anisotropic diffusion, total variation denoising, frame based
regularization or non-local methods [6], [8], [36], [39], [41].
Let us compare some of these methods. We present compar-

isons on a synthetic image perturbed by noise in Fig. 2. The
image is denoised using three different methods: convolution
by a Gaussian filter, total variation denoising [36] and BM3D
[8]. For each of these three methods we evaluate the conver-
gence rate of the estimated tensor to the ground truth.We present
for comparison the convergence curve associated to the clean
image. It can be noted that the image denoised using BM3D
leads to results nearly as good as if the image was not perturbed
by noise.

G. Stability to Deformations

The models we proposed until now are only rough approxi-
mations of real images and one may wonder whether the results
obtained so far can be applied to real images. In this paragraph,
we provide a positive answer to this question. We show that the
structure tensor is robust, in the sense that small deformations
of the image do not change its values significantly.
Theorem 2: Let be an image such that is Lipschitz and

let be a diffeomorphism close to the identity, in the sense that
where . The scale is fixed.We let

denote the structure tensor associated to the image and the
structure tensor associated to the deformed image .
Then

and thus when , uniformly in .
This theorem is proved in Appendix B.D.

H. An Experimental Stability Analysis

To finish this section, we propose to empirically analyse
the robustness of the structure tensor to various degradations,
namely: noise, anisotropy, blur, texture, deformation and sub-
sampling. We perform experiments in 2D.
In all the experiments apart from the one related to resolu-

tion, we process images of size 256 256 composed of 8 8
synthetic cells, obtained by perturbing the image in Fig. 1. In all
experiments, we set equal to the size of a cell. Apart from the
anisotropy experiment, we fix the ratio between the short and
long axis of the ellipses to 1/2. The parameters used for each
experiment are as follows:

Fig. 2. Experiment on a noisy image: (a) noisy image, (b) denoised image
using convolution by a Gaussian kernel, (c) denoised image using total varia-
tion, (d) denoised image using BM3D, (e) evolution of the error in the estimated
anisotropy tensor with respect to the radius of the kernel.

• Noise: we add Gaussian white noise to the synthetic image
in Fig. 1. The SNRs of the noisy images vary from 67
dB (mild) to dB (severe). The structure tensor is com-
pletely unstable to noise since it requires the evaluation of
derivatives. We therefore denoise the image first using the
BM3D algorithm.

• Anisotropy: we let the anisotropy vary between 1 (mild) to
1/10 (severe). This is not properly speaking a degradation,
but allows to show that themethod works fine even for very
elongated cells.

• Blur:we generate an isotropic Gaussian blur with standard
deviations varying from 0 (mild) to 10 pixels (severe).

• Texture:we add a random stationary texture defined by
, where and

and . The variance is varied to reach different
SNRs ranging from 84 dB (mild) to 4 dB (severe). This
definition allows testing the robustness to textures with dif-
ferent frequency components. In this case, we perform no
denoising.
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Fig. 3. Illustration of one cell with various degradations.

• Deformation: we generate random diffeomorphisms with
maximal pixelwise displacement varying from 0 pixels
(mild, no deformation) to 15 pixels (severe). To define the
diffeomorphism, we generate a random Gaussian vector
field with i.i.d. components. We then smooth it with an
isotropic Gaussian of variance 10. Finally, we normalize
it so that the maximum displacement is fixed. This experi-
ment allows illustrating and validating Theorem 2.

• Resolution: we test different image resolutions. A cell res-
olution varies from 4 4 pixels (severe, the cell is repre-
sented by 3 non-zeros pixels) to 512 512 pixels (mild).
We use a dyadic scale.

The different degradations are illustrated in Fig. 3. We only
display a single cell due to space limitations. To measure
the robustness, we evaluate two criteria: the mean orienta-
tion mismatch in degrees and the anisotropy mismatch in
percents. The anisotropy mismatch is computed as follows.
Let denote the true anisotropy defined as the ratio be-
tween the smallest and the largest axis of the ellipses. Let

denote the estimated
anisotropy at point . The quality measure we propose is
defined by:

This measures how many times the estimated anisotropy is far
away from the true anisotropy. A value of 0% is perfect while a
value of 100% means that the estimated anisotropy is twice too
large or too small.
The graph in Fig. 4 shows the mean error of orientation with

respect to the degradation level. As can be seen, the orientation
is accurately estimated for all types of degradation. The max-
imum error is 3 degrees.
The graph in Fig. 5 shows the mean error of anisotropy with

respect to the degradation level. The results indicate that the

Fig. 4. Robustness of the structure tensor in terms of orientation. Mean orien-
tation error in degrees over a region containing 4 cells.

Fig. 5. Robustness of the structure tensor in terms of anisotropy. Mean
anisotropy error in % over a region containing 4 cells.

structure tensor is robust to deformation, noise, anisotropy and
resolution since the error does not exceed 20% even in very de-
graded cases. This result is in some sense surprising: after de-
formation for instance, the anisotropy may have changed sig-
nificantly, but the structure tensor retrieves the right value. The
main reason is that the structure tensor averages the information
from different cells, making it very stable.
The situation for texture and blur is not as good since themerit

function is significantly higher. The blur was already shown
to result in a biased estimation of the anisotropy in paragraph
(II.F). As can be seen on the “Blur” row in Fig. 5, this behavior
is quite natural: the severly blurred ellipse (right) is significantly
less anisotropic than the mild one (left). The structure tensor can
therefore not recover an accurate anisotropy estimate. Note that
a segmentation estimate would probably suffer from the same
bias. Deblurring algorithms are therefore crucially needed in
heavily blurred images.
The addition of textures results in large errors. The main

reason for this poor behavior is the presence of high frequency
oscillations, which are essentially related to the noise compo-
nent with . These oscillations make the gradient esti-
mates inaccurate. This results in strong biases. The best solu-
tion to avoid this behavior would be to remove high frequency
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Fig. 6. Evaluation of the structure tensor on a 2D synthetic spheroid. (a) 512
512 clean synthetic tumor spheroid. (b) Degraded synthetic spheroid. (c)

Structure tensor based analysis of the spheroid on the clean image. (d) Structure
tensor based analysis of the spheroid on the degraded image. Note that in this
case, we plot the ellipses on the clean image to ease the visualization. (a) Clean,
(b) Degraded, dB, (c) Recovered from clean, (d) Recovered from
degraded.

textures prior to analysis. This can be achieved using dedicated
methods for colored noise, see e.g., [12].
Overall, these experiments illustrate the stability of the struc-

ture tensor to strong perturbations of nearly any type. We will
show the effect of combining different degradations in the next
section.
To finish this section, let usmention that we conducted similar

experiments in 3D. We used oblate ( and
) or prolate ( and ) ellipsoids. We

do not include the results here due to space limitations. The
conclusions obtained in 2D are still valid in 3D: the structure
tensor is robust to anisotropy, deformation, resolution and noise.
It is slightly less robust to blur and texture but sufficiently to
analyse significantly degraded images. This will be illustrated
in the next section.

III. ANALYZING TUMOR SPHEROIDS
In this section, we conduct numerical experiments to eval-

uate the structure tensor performance on synthetic and real data.
The main biological problem addressed in our experiments is
the analysis of geometrical configurations of nuclei in multicel-
lular tumor spheroids. There are at least two reasons making this
analysis relevant. First, tumor development is associated with a
disorganization of the tissue. The role played by this disorga-
nization is not well understood yet and it has been shown that
it could have an impact on tumor cell behavior [46]. Second,
among the key parameters involved in tumor growth, those re-
lated to mechanical forces seem to play a critical role [10], [29],

Fig. 7. Analysis of structure tensor based accuracy for the 2D test case. His-
tograms of orientations errors (left) and of anisotropy errors (right) for the clean
(top) and degraded (bottom) images.

[40]. The elongation of nuclei in a preferential direction is an
indicator of local stresses [16], [42]. Assessing the anisotropy
and orientation of nuclei in their micro-environment is therefore
crucial to better understand tumor organization and mechanics.

A. 2D and 3D Synthetic Data
In order to validate the theory, we first concentrate on 2D

and 3D synthetic tumor spheroids, see Figs. 6(a) and 8(a)–(b).
The way spheroid images are generated is described precisely
in Appendix A. We denote the center of the -th nucleus.
Its anisotropy is denoted and defined as the ratio between
the smallest and the largest axes lengths. Its main orientation is
defined by a vector .
1) Measuring the Performance: In order to assess the struc-

ture tensor efficiency, we evaluate the following quantities:
• Orientation. Let denote the eigenvector corre-
sponding to the largest eigenvalue of and

denote the ground truth orientation.
The following angles

(8)

are used to evaluate the orientation accuracy in 2D. An
angle close to 0 indicates a good orientation estimation,
while an angle close to 90 is the worst possible esti-
mate. For the 3D case, we choose for either the largest
eigenvector (prolate spheroid) or the smallest eigenvector
(oblate spheroid).

• Anisotropy. The structure tensor based anisotropy is de-
fined by . The
ratios

(9)

are used to quantify the estimated anisotropy accuracy,
where is the ground truth anisotropy. A ratio close to
1 indicates that the anisotropy is correctly evaluated.

Note that the orientation and anisotropy are evaluated at the cen-
ters of the nuclei (which are known for synthetic data), while
the matrix field is defined at every point of the domain.
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Fig. 8. 3D synthetic data (size: 128 128 128). (a) spheroid with . (b) spheroid with . (c)–(d) structure
tensor recomposition of the isosurfaces from the clean image. (e)–(f) isosurfaces of the degraded image in (a)–(b). (g)–(h) structure tensor recomposition of the
isosurfaces from the degraded image.

Fig. 9. Analysis of structure tensor based errors for the 3D test case. His-
tograms of orientations errors (left) and anisotropy errors (right) for the clean
(top) and noisy (bottom) images. Image (a) is presented in Fig. 8(a) for the clean
case and (e) for the noisy case, image (b) is presented in Fig. 8(b) for the clean
case and (f) for the noisy case.

2) 2D Synthetic Data: We report numerical results on the 2D
synthetic spheroid displayed in Fig. 6(a)–(b).
We use the value in (3). This value is to be compared

with the small axis of the ellipses that is and the large
axis which ranges from 10 to 32. An adequate value for
is in the range , where denotes the diameter of the
objects of interest. Fig. 6(b) shows the degraded spheroid. Here
the degradation is composed of blur, deformation and texture
(i.e., the worst effects studied previously). To show the struc-
ture tensor results, we plot an ellipse above the clean image at
each cell center . Its radius is fixed by the ground truth since
this feature is not recovered by the structure tensor. Its orienta-
tion and anisotropy are determined by the structure tensor. The
resulting images are displayed in 6(c)–(d).
The orientations are well estimated even in the very degraded

regime. The anisotropy is near perfectly recovered in the non
noisy case. This is somehow surprising since for this image,
only a small number of cells share the same orientation and
anisotropy locally. This favorable behavior is another illustra-

tion of the fast convergence speed obtained in Theorem 1. The
anisotropy is also quite well estimated in the very degraded
regime, showing a remarkable robustness of the structure tensor.
To further quantify the accuracy of the results, the quanti-

ties (8)–(9) are evaluated. The histograms of both quantities are
displayed in Fig. 7. For the clean image, approximately 95%
of estimated orientations have an angular error below 4 . Sim-
ilarly, approximately 65% of estimated anisotropies have an
error below 10%. For the degraded image, 85% of estimated
orientations have an angular error below 10 and 65% of the
anisotropies have an error below 20%. Those results are remark-
able given the amount of degradation.
3) 3D Synthetic Data: We now test the structure tensor effi-

ciency on 3D synthetic data, see Fig. 8(a) for an oblate example
and (b) for a prolate example. The synthetic images have size
128 128 128 with isotropic resolution. The images are com-
posed of approximately 300 cells. The large axes of the ellipses
are approximately 9 pixels long. The structure tensor is com-
puted with .
Similarly to the previous paragraph, we can recompose an

ellipsoids field from the structure tensor and compare it to the
ground truth. In Fig. 8(c)–(d), we recompose the ellipsoids by
applying the structure tensor to the clean image. The result is vi-
sually satisfactory. The histograms of errors are shown in Fig. 9.
As can be seen all orientations are evaluated with an error below
7 . Similarly, 80% of the anisotropies are estimated with less
than 10% error.
In Fig. 8(e)–(f), we display the isosurfaces of a degraded

image. In Fig. 8(g)–(h), we show an ellipsoids field obtained by
applying the structure tensor to the noisy image. Once again, the
results are visually satisfactory: the structure tensor was able to
recompose a field of ellipsoids similar to the clean image despite
a severe degradation. This time, 80% of the orientations are es-
timated with an error below 30 while 90% of the anisotropies
are estimated with less than 30% error. This is quite remarkable
given the large deformations.
Overall, these results confirm that the structure tensor is an

attractive tool to estimate anisotropies and orientations for 3D
data.
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Fig. 10. Estimated orientations by different methods. Nuclei are stained using DAPI. Images were acquired using epifluorescence microscope (LEICA
DM5000) and 10X objective NA: 0.3. Scale bar: 100 m.

B. Performance Evaluation on Real Spheroid Images

We now evaluate the structure tensor estimates of orienta-
tion and anisotropy on a 2D real image. The image used in
our experiment is displayed in Fig. 10(a) and contains 1465
nuclei. The gold standard reference consists of an ellipse ap-
proximating each distinguishable cell. It was obtained manu-
ally using Fiji. Let us emphasize that the gold standard is impre-
cise since i) a preferential orientation cannot be defined prop-
erly on isotropic cells and ii) fitting a thousand ellipses man-
ually is subject to errors. Moreover, real data strongly depart
from the ideal models considered in Section II since the nuclei
may overlap in 2D.
The scalar is set to 10 in this section. This value is selected

manually and roughly corresponds to the mean radius of nuclei.
We compare the output of the structure tensor to a few state-

of-the-art segmentation methods. We use the following soft-
wares for comparisons: FarSight [27], the HK-means plugin
from Icy [9], [33], the “IdentifyPrimaryObjects” (IPO) routine
from Cellprofiler [7] and MINS [25].
Segmentation methods provide a more complete information

than the structure tensor. To compare the output of segmentation
methods with the structure tensor, we use the following method-
ology:
• Segment the object.
• Extract the segmentation connected components.
• For each element of the gold standard, find the closest seg-
mented connected component. The chosen metric is the
distance between barycenters.

• Approximate the closest connected component by an el-
lipse using a singular value decomposition.

• Retrieve the ratio between the eigenvalues and the leading
eigenvector to obtain a measure of anisotropy and orienta-
tion from the segmentation.

Fig. 11. Top: histogram of orientation error. Bottom: histogram of anisotropy
error.

• Compare these features with the gold standard.
The experimental results are shown in Figs. 10 and 11. De-

spite the rather poor quality of data, the structure tensor re-
sults are remarkably accurate. More than 85% of the nuclei
orientations are evaluated with an error no larger 20 , while
the anisotropy seldom exceeds 50% error. Regarding the com-
parison with other methods, the graphs show that the struc-
ture tensor method provides better estimations of orientation
and anisotropy than any of the tested segmentation algorithms.
The best segmentation method for these quantitative criteria is
MINS. It performs significantly worse than the structure tensor:
55% (in comparison to 85%) of the estimated orientations have
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Fig. 12. (a) and (e): images of Tumor spheroids cryosections with nuclei labelled using DAPI. Top row: control spheroid (with no drug). Bottom row: treated
with latrunculin. (b) and (f): orientation map. (c) and (g): angle maps. An angle equal to 90 indicates that nuclei are aligned with the spheroid boundary. (d) and
(h) anisotropy map. Images were acquired using epifluorescence microscope (LEICA DM5000) and 10X objective NA: 0.3. Scale bar: 100 m.

Fig. 13. Structure tensor based orientations for the control and treated
spheroids. (a) histogram of the orientation with respect to the normal at the
closest point on the boundary. (b) and (c) distribution of orientations with
respect to the distance to the boundary for the no-drug and drug cases respec-
tively. (d) histograms of anisotropy. (e) and (f) distributions of anisotropies
with respect to the distance to the boundary for the no-drug and drug cases
respectively.

an error below 20 . The structure tensor anisotropies are also
estimated slightly better than what is performed by MINS. The
other methods really perform worse than the structure tensor. It
can be seen in Fig. 10 that the orientations indeed seem much
better recovered with the structure tensor.

C. Application to Drug Effects Analysis on Spheroids
As a proof of concept, spheroids were treated with latrunculin

A, an inhibitor of actin polymerization. The visual comparison
of (a) and (e) in Fig. 12 shows that this treatment induces a
disorganization. We applied the structure tensor to extract the
orientation and anisotropy maps in Fig. 12(c), (d), (g) and (h).
The angle is measured with respect to the normal of the closest
point of the boundary. In other words, an angle equal to 90
means that the local orientation is parallel to the boundary and
an angle equal to 0 means that the local orientation is normal
to the boundary.

The results obtained show a decrease of both nuclei
anisotropy and alignment with the spheroid boundary in the
outer layers after treatment. This observation is confirmed by
the graphs showed in Fig. 13. In Fig. 13(a) we compare the
alignment of the nuclei with respect to the boundary with or
without treatment. In Fig. 13(b)–(c) we present the alignment
with respect to the distance to the boundary. We observe that the
mean angle at the origin is around 80 for the control spheroid
and 60 for the treated spheroid, indicating that the drug tends
to suppress the alignment of the nuclei with respect to the
spheroid boundary. Moreover, in Fig. 13(b), the gray zone is
narrow at the origin, reflecting the fact that nearly all nuclei
are well aligned with the boundary in the outer layers. On the
contrary, the gray zone at the origin of the graph in Fig. 13(c) is
thick, indicating that the orientation is much more erratic.
In Fig. 13(d) we present the distribution of anisotropy for the

control and the treated spheroid. In Fig. 13(e)–(f) we present
the anisotropy with respect to the distance to the boundary. We
observe that the mean anisotropy near the spheroid boundary is
approximately equal to 0.6 for the control spheroid and 0.8 for
the treated spheroid, indicating that nuclei are more round for
the treated case.
As a summary, our methodology allows quantifying both

the change of alignment and the decrease of anisotropy and
could therefore have interesting applications in high content
throughput.

IV. CONCLUSION & OUTLOOK

We proposed an original theoretical analysis of structure
tensors, justifying their use for evaluating orientations and
anisotropies of cells or nuclei in 2D or 3D images. Our the-
oretical results were validated by numerical experiments, on
synthetic and real data. Overall the present work shows that the
structure tensor provides a fast, simple, robust, precise enough
and user friendly method for biomedical imaging. It can be
computed in near real-time and requires the tuning of a unique
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parameter that has a simple physical interpretation. To finish,
let us add a few remarks:
• First, cells or nuclei are not the only ellipsoid like objects
and the method can be applied in any field where such
objects appear (e.g., lobules in adipose tissues).

• Second, our results show that the structure tensor can
be used as a rich source of information for segmentation
methods. Knowing the rough orientation and anisotropy
of a cell allows reducing the space of admissible segmen-
tation shapes. For instance, it is fundamental to design
good drawing distributions for methods based on marked
point processes [32], [38].

• Finally, more and more mathematical models describe tis-
sues as continuous media. The information contained in
the structure tensor is itself continuous and therefore seems
easy to use in data assimilation problems. This opens in-
teresting perspectives to understand tissue biomechanics
for instance. We plan to further investigate this problem in
forthcoming works.

APPENDIX A
SYNTHESIZING IMAGES

In this section, we describe the way we generate synthetic
images in the article.
The Givens transform, denoted by , represents

a counter-clockwise rotation for an angle in the -coordi-
nates plane. In the particular case , it is abbreviated .
Given a vector , we let denote a diagonal ma-
trix with diagonal elements are the entries of . In what follows,

is the bump function defined by

(10)

A tumor spheroid image is synthesized by

(11)

where is the number of nuclei in the spheroid; is the bump
function defined in (10); and is the -th nucleus center.
The centers are drawn at random in a -dimensional sphere in
such a way that the nuclei do not overlap.
• If , the matrix is defined by

(12)

where is the Givens transform; is the phase angle
of the radial line crossing the origin and the nucleus center
.

• If , the matrix is defined by

(13)

where denote the compass and elevation angles of
the radial line crossing the ellipsoid center.

The anisotropy of the -th nucleus is defined by

(14)

In our 2D experiment, the anisotropy increases linearly
from the image center to the outer layers of the sphere. For the
3D case, the anisotropy is set as constant. Figs. 6(a) and
8(a)–(b) display the 2D and 3D synthetic spheroids respec-
tively.

APPENDIX B
PROOF OF THEOREMS AND PROPOSITIONS

A. Proof of Proposition 1
Elementary calculus leads to

Therefore

If , then is constant on the support of . The
change of variable leads to

Since is constant on a neighborhood of the support of
is invariant by small translations hence is locally constant
around 0.

B. Proof of Proposition 2
We let denote the Euclidian

ball centered at with radius and
the Euclidean sphere centered at with radius .

We have

The image is a sum of (non-overlapping) replicas of . From
Proposition 1, we know that all the replicas of with support
included in have a contribution to proportional
to while the ones with support intersecting have
a contribution that can be considered as a bias, with compo-
nents bounded by . Let

and
. For sufficiently large scales as

(the volume of a ball of radius ) while scales as (the
area of the sphere). Therefore behaves as like
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where is some bias of bounded amplitude. This implies that

C. Proof of Theorem 1

The non-smoothed structure tensor is defined by

where the last equality follows from the fact that the functions
are nonoverlapping. By exploiting the facts that
and , it comes that

This provides a Fourier series decomposition of :

Moreover (1)—(ii) of the article implies that , and
for all :

By denoting , we obtain:

Since with bounded support, .
Therefore . Moreover, so that

We now remark that

where

Therefore is asymptotic to when and
the claim follows.

D. Proof of Theorem 2

Let us denote where is a diffeomorphism such
that , and . We also assume that

is -lipschitz and bounded uniformly: . We
fix the scale and denote for simplicity . For every

we have where
. Then

and by the chain rule we have (we denote for brevity
)

By expanding the product in the integral, we obtain:



306 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 1, JANUARY 2016

where the remainder satisfies

which proves the claim.
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