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Variational algorithms to remove stationary noise.
Applications to microscopy imaging.

Jérôme Fehrenbach, Pierre Weiss, and Corinne Lorenzo

Abstract—A framework and an algorithm are presented in
order to remove stationary noise from images. This algorithm
is called VSNR (Variational Stationary Noise Remover). It can
be interpreted both as a restoration method in a Bayesian
framework and as a cartoon+texture decomposition method.
In numerous denoising applications the white noise assumption
fails: structured patterns (e.g. stripes) appear in the images. The
model described here addresses these cases. Applications are
presented with images acquired using different modalities: scan-
ning electron microscope, FIB-nanotomography, and an emerging
fluorescence microscopy technique called SPIM (Selective Plane
Illumination Microscope).

Index Terms—Stripe removal, stationary noise, non linear
filtering, total variation, texture-geometry decomposition, convex
optimization, primal-dual scheme, Atomic Force Microscope,
Light Sheet Fluorescence Microscope, Scanning Electron Micro-
scope, nanotomography.

I. INTRODUCTION

MAny imaging modalities tend to impair images with
structured noise. For instance, stripes appear in im-

ages produced by recent microscopes such as Single Plane
Illumination Microscope (SPIM) [12], Atomic Force Micro-
scope (AFM), scanning electron microscopy (SEM) [7], [13],
Synchrotron X-Ray Tomographic images, Focused Ion Beam
nanotomography [16], or in remote sensing imaging such
as MODerate-resolution Imaging Spectroradiometer (MODIS)
images or digital elevation models [2], [5], [6]. Figure 1
shows examples of stripes in images obtained using different
microscopy modalities.

The main purpose of this work is to propose a simple
noise model which describes accurately the kind of distortions
appearing in Figure 1. This statistical modeling allows to
formulate the restoration problem in a Bayesian framework.
It leads to the resolution of a large scale convex programming
problem which is solved using recent advances in numerical
optimization. We call our algorithm VSNR which stands for
Variational Stationary Noise Remover.

As far as we know, few works address this restoration
problem. Recently, [16] proposed a combined wavelet and
Fourier method which allows to interpolate and restore wavelet
coefficients impaired by stripes. In [7], a Fourier filtering is
proposed, where noisy Fourier coefficients are first detected
using statistical tests. Contrarily to our work, these approaches
do not rely on a precise statistical modeling of the noise and
incorporate prior information on the images only implicitly.
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Fig. 1. Stripes for various imaging modalities. Top-left: cement paste image
using Ion beam nanotomography. Top-right: sintered specimen of CeO2 image
using Scanning Electron Microscope (SEM). Bottom: medaka fish embryo
image using Selective Plane Illumination Microscope (SPIM)

The image formation model we consider can be stated as
follows:

u0 = u+ b

where u0 is the observed digital image and b is a noise or a
texture. Our objective is to retrieve u knowing the observation
u0. A standard assumption in the literature is that the noise
is white, meaning that the different components of b are
independent random variables of finite variance. Though this
noise assumption models accurately some real applications,
it fails to do so in many scenarii. In the case of image
restoration/denoising problems, it often leads to unsatisfactory
results.

In this article we propose a noise model that suits more
complex frameworks and that can be handled numerically
in reasonable computing times. We replace the white noise
assumption by a stationary noise assumption. A stationary
noise b can be defined as a stochastic process having the
following translation invariance property:

∀τ ∈ Z2, p(b) = p(Tτ (b)) (1)

where p denotes the probability density function and Tτ is the
translation of vector τ with periodic boundary conditions on
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the image domain. This hypothesis is natural in many appli-
cations, since it amounts to assume that there is no a-priori
knowledge about the location of any feature or noise pattern
in the image. However, the sole hypothesis of stationarity
appears to be hardly numerically tractable. In this work, we
restrict to a subclass of stationary stochastic processes, that can
be easily described in the frequency domain: these processes
are generated by convolving white noise with a given kernel.
The noise thus appears as “structured” in the sense that some
pattern might be visible, see Figure 3.

This model shares many similarities with the negative
norm models of Y. Meyer [15], its successors [1] and the
decomposition algorithms proposed in [10]. Meyer’s idea is
to decompose an image into a piecewise smooth component
and an oscillatory component. We refer to [1] for a review
of the principles, algorithms and results using this approach.
An alternative way of decomposing images was proposed in
[10]. The idea is to seek for components that are sparse in
given dictionaries. Different choices for the elementary atoms
composing the dictionary allow to recover different kinds of
textures.

The main contributions of the present paper are:
1) We propose a simple class of random processes that

describes real-life noises and textures.
2) This approach generalizes the negative norm models

proposed in [1], [15] in the discrete setting [11]. It allows
more general noise priors than [10], which focuses on
sparse models.

3) The decomposition problem is recast into a convex opti-
mization problem that is solved with a recent algorithm
of A. Chambolle and T. Pock [3] allowing to obtain
results in an interactive time.

4) We propose a C and Matlab implementation on our
webpage in the spirit of reproducible research http:
//www.math.univ-toulouse.fr/∼weiss/PageCodes.html.
Moreover, a FIJI plugin will be available soon.

The outline of this paper is as follows. In section II, we
introduce the notation. Section III contains definitions and
some properties of the noise model. Section IV presents a
restoration or decomposition model based on the maximum
a posteriori (MAP) estimator. Section V details an efficient
numerical scheme based on [3] to solve the resulting convex
programming problems. In section VI we present some appli-
cations and results on synthetic and real images.

II. NOTATION

In all the paper n = nx × ny will refer to the number
of pixels of the degraded image, m stands for the number of
filters used to describe the noise. Let u ∈ Rnx×ny be an image,
u(x) denotes the pixel of coordinates x ∈ {1, 2, · · · , nx} ×
{1, 2, · · · , ny}.

The standard `p-norm of u is denoted ‖u‖p. Let u1, u2 ∈ Rn
the dot product is denoted 〈u1, u2〉 = uT1 u2.

Let Λ = Rn×m and Q = Rn×2. An element λ ∈ Λ reads
λ = {λi}mi=1. These spaces are endowed with inner products
〈·, ·〉Λ and 〈·, ·〉Q. We set ‖q‖Q =

√
〈q, q〉Q and ‖λ‖Λ =√

〈λ, λ〉Λ.

Let A : Λ → Q be a linear operator. The adjoint A∗ of A
is defined by:

〈Aλ, q〉Q = 〈A∗q, λ〉Λ, ∀(λ, q) ∈ Λ×Q.

The norm of the operator A is defined by:

|||A||| = max
‖λ‖Λ≤1

‖Aλ‖Q.

The convolution operator with periodic boundary conditions is
denoted ∗. The discrete Fourier and inverse Fourier transforms
are respectively denoted F and F−1. We will also use the
notation û = Fu. Finally, ∇ denotes the discrete gradient
operator. In this article we use the following discretization:

∇u = (∂xu, ∂yu)

where

(∂xu)(i, j) =

{
u(i+ 1, j)− u(i, j) if i < nx

0 if i = nx

(∂yu)(i, j) =

{
u(i, j + 1)− u(i, j) if j < ny

0 if j = ny.

Let φ : Λ→ R ∪ {+∞} be a convex, closed function. The
domain of φ is defined by dom(φ) = {λ ∈ Λ, φ(λ) < +∞}.
φ∗ refers to the Fenchel conjugate of φ defined by:

φ∗(η) = sup
λ∈Λ
〈η, λ〉Λ − φ(λ). (2)

The Fenchel conjugate satisfies φ∗∗ = φ. Thus:

φ(λ) = sup
η∈Λ
〈η, λ〉Λ − φ∗(η). (3)

The sub-differential of φ at λ1 is the set defined by:

∂φ(λ1) = {η ∈ Λ, φ(λ2) ≥ φ(λ1)+〈η, λ2−λ1〉Λ, ∀λ2 ∈ Λ}.

A function φ is said to be strongly convex of parameter γ > 0,
if the following inequality holds for all λ1, λ2 ∈ dom(φ) and
for all η ∈ ∂φ(λ1):

φ(λ2) ≥ φ(λ1) + 〈η, λ2 − λ1〉Λ +
γ

2
‖λ2 − λ1‖2Λ.

Let Ξ ⊆ Λ be a closed set. The indicator function of Ξ is
denoted χΞ and defined by:

χΞ(x) =

{
0 if x ∈ Ξ

+∞ otherwise
.

The resolvent or proximal operator of φ at λ is defined by:

(Id + ∂φ)−1(λ) = arg min
λ′∈Λ

φ(λ′) +
1

2
‖λ′ − λ‖2Λ.

It can be seen as a generalization of the projection operator
since (Id +∂χΞ)−1(λ) is the projection of λ on the set Ξ. We
refer to [9], [21] for a detailed presentation of the above tools.
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III. NOISE MODEL

In this paper, we consider the class of stationary processes
(in the sense of (1)) that satisfy the following hypothesis:

Hypothesis 3.1: We assume that b reads:

b =

m∑
i=1

λi ∗ ψi, (4)

where:
• each ψi ∈ Rn is a known elementary pattern,
• The λi’s are independent realizations of white noise pro-

cesses with known probability density functions p(λi).

A. Rationale for the noise model

The images presented in Figure 1 are corrupted by parallel
stripes. A noise removal algorithm should be able both to
locate their position and to estimate their intensity. This
perturbation can be modeled as b = λ ∗ ψ where ψ is an
elementary pattern, similar to a stripe, and λ describes the
pattern positions and intensities.

In many applications, different kinds of noises or textures
appear on the image simultaneously. For instance, in SPIM
imaging in addition to stripes, Poisson or Gaussian white noise
appears due to the imperfections of the imaging system. The
Gaussian white noise can be obtained by convolving a Dirac
function with a sample of white Gaussian noise. Setting m ≥ 2
in (4) thus allows to account for several noises.

B. Filters choice

The choice of filters ψi that appear in (4) depends on the ap-
plication. For instance, in images obtained using pushbroom-
type satellites [2], straight lines could be chosen. In micro-
scopic images such as the ones presented in Figure 1 this
model is not adapted: stripes usually have a finite extent and
may be more than 1 pixel wide. The common feature of stripes
in these images is their orientation θ, as well as their size
(width and length) that belong to a restricted range. In this
paper, we model stripes as anisotropic Gaussian functions (see
Figure 2) defined by:

ψ(x, y) = exp

(
−x
′2

σ2
x

− y′2

σ2
y

)
,

where x′ = x cos θ+y sin θ and y′ = −x sin θ+y cos θ. These
functions have the advantage of being smooth both in space
and frequency domain, this allows to account for inaccuracies
between the noise model and the real noise.

Fig. 2. Left: a Gaussian function in space domain – Right: the same Gaussian
function in Fourier domain.

C. Distribution functions
The p.d.f. p(λi) in equation (4) still needs to be defined.

The p.d.f. should be chosen depending on the noise nature. In
the experiments of this paper we consider three cases:
• Uniform noise. It is obtained by setting

p(λi) ∝

{
1 if ‖λi‖∞ ≤ αi
0 otherwise.

.

This assumption allows to model bounded noises. See
right images in Figure 3.

• Gaussian noise. This hypothesis consists in setting
p(λi) ∝ exp

(
−αi2 ‖λi‖

2
2

)
. The corresponding noise com-

ponent bi = λi ∗ψi is then a colored Gaussian noise. See
middle images in Figure 3.

• Laplace noise. It is obtained by setting p(λi) ∝
exp(−αi‖λi‖1). This distribution is a convex approxi-
mation of Bernoulli processes [8], [14]. See left images
in Figure 3.

All these noise priors are generalized Gaussian distributions
and their distribution function reads:

p(λi) ∝ exp(−φi(λi)) where φi : Rn → R ∪ {+∞}. (5)

Fig. 3. Examples of stationary processes obtained by convolving white
noises with different marginals with a filter. Top row: convolution with a
Gaussian filter. Bottom row: convolution with a fish pattern. From left to
right: convolution with a white Bernoulli process, a Gaussian white noise and
a uniform white noise.

IV. RESTORATION/DECOMPOSITION MODEL

Throughout this paper, we assume the following image
formation model:

u0 = u+ b (6)

where b is independent of u and satisfies Hypothesis 3.1.

A. A MAP reconstruction approach
In order to recover the noise components λ and the image u,

the maximum a posteriori (MAP) approach leads to maximize:

p(λ, u|u0) =
p(u0|λ, u)p(λ, u)

p(u0)

=
p(u0|λ, u)p(λ)p(u)

p(u0)
.
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Taking the log of the conditional probability leads to the
following optimization problem:

Find λ∗ ∈ Arg min
λ∈Λ

− logp(u0|λ, u)− logp(λ)− logp(u).

(7)
As we assumed independence of the λis,

− logp(λ) =

m∑
i=1

− logp(λi).

Moreover

p(u0|λ, u) = p(u+

m∑
i=1

λi ∗ ψi|λ, u)

= δ

(
u+

m∑
i=1

λi ∗ ψi − u0

)
,

where δ denotes the Dirac mass. In order to specify problem
(7), we still need to define the image prior p(u).

Remark 4.1: In some applications the independence of u
and λ is questionable and a multiplicative model could be
considered. Our numerical experiments using multiplicative
models did not improve the results sensibly compared to the
additive models and required heavier computations.

B. Image prior
In this work, we use the standard assumption that images

are smooth or piecewise smooth. This can be promoted by a
p.d.f. of the form

p(u) ∝ exp(−‖∇u‖1,ε) (8)

where
‖ · ‖1,ε : Rn×2 → R

q 7→ ‖q‖1,ε =
∑

x φε(‖q(x)‖2)

and

φε(t) =

{
t2

2ε if |t| ≤ ε
|t| − ε

2 otherwise.

This function can be rewritten using duality [24] as:

||z||1,ε := max
‖q‖∞≤1

〈z, q〉 − ε

2
‖q‖22.

The interest of this prior is twofold:
• The standard isotropic `1-norm Rn×2 corresponds to
‖ · ‖1,0 and lim

ε→+∞
ε‖ · ‖1,ε = ‖ · ‖22. This formalism

thus captures the standard `1 (total variation) and `2

(Tikhonov) regularization.
• by setting ε 6= 0, the numerical scheme designed to solve

(7) converges faster than for ε = 0 and may provide better
results in some applications.

C. Resulting optimization problems
By replacing formulas (8) and (5) in (7) we obtain the

following optimization problem:

Find λ ∈ Arg min
λ∈Λ

P (λ), (9)

where

P (λ) =

∣∣∣∣∣
∣∣∣∣∣∇
(
u0 −

m∑
i=1

λi ∗ ψi

)∣∣∣∣∣
∣∣∣∣∣
1,ε

+

m∑
i=1

φi(λi).

V. NUMERICAL ALGORITHMS

In the case of Tikhonov regularization (which corresponds
to φi(λ) = αi

2 ‖λi‖
2
2 and ε � 0), Problem (9) can be solved

exactly in O(m3n log n) operations using Fourier transforms
and inversion of small m ×m linear systems. In the general
case, it is impossible to get an exact solution. The objective
of this section is to design iterative methods that lead to
approximate solutions of (9).

A. Problem relaxation

Since problem (9) cannot be solved exactly, we are inter-
ested in finding an ε-solution defined by:

Find λε ∈ Λ such that P (λε)− P (λ∗) ≤ ε. (10)

An iterative optimization algorithm defines a sequence
(λk)k∈N that converges to a solution of (9). The resolution
of (10) amounts to define an appropriate stopping criterion.
Since P (λ∗) is unknown, P (λk)−P (λ∗) cannot be evaluated.
However this quantity can be bounded by the duality gap
defined in equation (15). In order to prevent the duality gap
to be infinite (corresponding to an infeasible dual variable),
we add a box constraint to problem (10). This extra constraint
also allows to obtain convergence rates, see Proposition 5.3.

To summarize, the constrained problem we consider reads:

Find λε ∈ Ξ such that P (λε)− P (λ∗) ≤ ε, (11)

where
Ξ =

{
λ ∈ Rn×m, ‖λ‖∞ ≤ C

}
,

λ∗ is one exact solution of (9) and C is large enough (e.g. C ≥
‖λ∗‖∞). Under the latter condition, the extra box-constraint
is inactive at the minimizer and the solutions of (11) are the
same as those of (10).

B. Reformulation as a saddle-point problem

This section is devoted to the resolution of (11). In order
to apply the ideas presented in [3], we reformulate (11) as a
saddle-point problem.

To simplify the reading, let us first introduce some notation.
A is the following linear operator:

A : Λ → Q

λ 7→ ∇ (
∑m
i=1 λi ∗ ψi)

(12)

By denoting
F (g) = ‖∇u0 − g‖1,ε

and

G(λ) =

m∑
i=1

φi(λi) + χΞ(λ),

P (λ) reduces to:

P (λ) = F (Aλ) +G(λ).

Moreover using property (3), problem (11) can be recast as
the following convex-concave saddle-point problem:

min
λ∈Ξ

max
q∈Q
〈Aλ, q〉Q − F ∗(q) +G(λ). (13)
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The interest of this saddle-point reformulation is twofold:

• It allows the use of primal-dual algorithms which are
known as being robust and efficient.

• It allows to define a duality gap, which provides a reliable
stopping criterion for the iterative algorithm. See point 4)
of Theorem 5.1.

C. Elementary properties of the problem

By inverting the minimum and the maximum in (13) we
obtain the following dual problem:

max
q∈Q

D(q), (14)

where

D(q) = min
λ∈Λ
〈Aλ, q〉Q − F ∗(q) +G(λ)

= −F ∗(q)−G∗(−A∗q).

The duality gap is defined as the difference between the primal
function P and the dual function D:

∆(λ, q) = P (λ)−D(q). (15)

The following theorem characterizes the solutions of prob-
lem (11).

Theorem 5.1:

1) Problem (11) admits a convex, non-empty set of solu-
tions.

2) Problem (13) admits a non-empty set of saddle points.
3) Let (λ∗, q∗) be a saddle point of (13). It satisfies

∆(λ∗, q∗) = 0 and λ∗ is a solution of problem (11).
4) For any (λ, q) ∈ Ξ× Rn×2, ∆(λ, q) ≥ P (λ)− P (λ∗).

Proof: Points (1) and (2) result from boundedness of the
set Ξ× dom(F ∗) and convexity of the functionals. Points (3)
and (4) are standard results of convex analysis [21].

The following propositions will be useful in order to deter-
mine the algorithm step sizes.

Proposition 5.1: In the standard Euclidean metric, if ε > 0,
then F ∗ is strongly convex with parameter ε.

Proposition 5.2: In the standard Euclidean metric, if
φi(λi) = αi

2 ‖λi‖
2
2 for all i ∈ {1..m}, then G is strongly

convex with parameter:

γ = min
i∈{1..m}

αi (16)

D. A primal-dual algorithm

Recently, Nesterov paved the way to the development of
new efficient first order algorithms in [17], [20]. From a
theoretical point of view, these algorithms are shown to be
optimal in the class of first order methods and they outperform
second order algorithms - like interior point methods - for
large scale problems and moderate accuracy. Among all the
papers published recently on this topic, [3] is probably the
most versatile and we decided to present and implement
this strategy. Applied to problem (11), this algorithm reads:

Algorithm 1: Primal-Dual algorithm [3]
Input:
ε: the desired precision;
(λ̄0, q0): a starting point;
L = |||A|||;
σ0, τ0 such that σ0τ0L

2 < 1;
Output:
λε: a solution to problem (11).
begin

k=0;
while ∆(λk, qk) > ε∆(λ0, q0) do

qk+1 = (Id + σk∂F
∗)−1(qk + σkAλ̄k)

λk+1 = (Id + τk∂G)−1(λk − τkA∗qk+1)
(τk+1, σk+1, θk) =Update(τk, σk, ε, γ, L)
λ̄k+1 = λk+1 + θk(λk+1 − λk)
k = k + 1;

end
end

The resolvents of F ∗ and G are calculated in Appendix
A. Following [3], the Update function should be implemented
according to the following rules:

Algorithm 2: Step size update rules
Input:
ε: parameter of strong convexity of F ∗

γ: parameter of strong convexity of G (see eq. (16))
σk and τk: step sizes at iteration k
Output: θk, σk+1 and τk+1.
begin

if φi(·) = αi
2 ‖ · ‖

2
2 for all i ∈ {1..m} then

if ε > 0 then
The sequence ((τk, σk))k∈N is constant:
µ = 2

√
γε/L;

τk+1 = µ
2γ ;

σk+1 = µ
2ε ;

θk = 1
1+µ

else
θk = 1√

1+2γτ
;

τk+1 = θkτk;
σk+1 = σk

θk
;

end
else

The sequence ((τk, σk))k∈N is constant:
θk = 1; τk+1 = τk
σk+1 = σk

end
end

The convergence properties of this algorithm are summa-
rized below.

Proposition 5.3: The sequence (λk, qk)k∈N generated by
Algorithm 1 converges to a saddle-point of (13). Moreover
it guarantees the following convergence rates:

• If ε = 0 and a function φi is non quadratic then:

∆(λk, qk) = O

(
L

k

)
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• If ε = 0 and all functions φi are squared `2-norms:

∆(λk, qk) = O

(
L

k2

)
and

‖λk − λ∗‖22 = O

(
L2

k2

)
• If ε > 0 and all functions φi are `2-norms, the conver-

gence is at least linear:

∆(λk, qk) = O
(
ωk/2

)
and

‖λk − λ∗‖22 = O
(
ωk/2

)
with ω = 1

1+
√
γε

L

.

The proof of this proposition is a straightforward application
of results in [3].

Remark 5.1: As Chambolle-Pock’s method is first-order,
the algorithm depends on the choice of the inner products on
the primal and dual spaces. It is possible to define different
inner products 〈·, ·〉Λ and 〈·, ·〉Q, leading to different iterative
methods. This remark can be used to precondition the problem
and obtain faster convergence rates, see [4] and paragraph
VI-C for more details.

VI. RESULTS

In this section we first present experimental results on
images impaired by synthetic noise. We perform compar-
isons between the proposed algorithm and two recent works
dedicated to stripes removal [7], [16]. We also present an
example where the noise is synthetized as the sum of m = 2
stationary processes. This illustrates our algorithm’s ability
to cope with more complicated noises. We then present
results on real images acquired using different modalities:
FIB-nanotomography, SEM and SPIM. We finish the section
by discussing the experimental convergence behavior of the
algorithm.

A. Synthetic noise examples

In order to evaluate the performance of the proposed algo-
rithm, we synthetise noise according to model (4) and add it
to Figure 4. In the first experiment, we consider m = 1 noise
component, the filter ψ1 is a straight vertical line running over
the entire vertical direction and λ1 is the realization of a Gaus-
sian white noise process with different variances. The noisy
images are then restored using three algorithms: VSNR, the
DeStripe algorithm available on http://biodev.cea.fr/destripe/
[7], and the wavelet-FFT algorithm [16]. The wavelet-FFT
algorithm implementation was kindly provided by Dr. Beat
Münch as a Fiji plugin.

We compare the results of the different restoration algo-
rithms using a rescaled SNR measure (denoted SNRr) defined
as follows:

SNRr(u0, u) = SNR(ũ0, u) = 10 log10

(
‖u‖22

‖ũ0 − u‖22

)

where ũ0 = au0 − b and (a, b) = arg min
(a,b)∈R2

‖au0 − b − u‖22.

This measure provides the best SNR among all possible
affine transforms of the grey levels of u0. We chose this
measure since the wavelet-FFT algorithm tends to decrease
the contrasts.

The results are shown in Table I and in Figure 5. VSNR
outperforms the two other methods by a few dBs. Note that
when the noise level is low (first line of Table I), both the
Destripe and wavelet-FFT methods tend to degrade images.
This is due to the fact that the noise description is too rough
and this affects signal recovery.

Fig. 4. Original pirate image.

In the second experiment, we consider m = 1 noise
component, the filter ψ1 is an elongated Gaussian and λ1 is
the realization of a Gaussian white noise process with different
variances. The results are shown in table II and in Figure 6.
Once again, VSNR clearly outperforms the two other methods.
Figure 6 shows that the algorithm recovers most of the signal
even when the noise level is higher than the signal level.

TABLE I
SNRR OF THE IMAGES DENOISED USING DIFFERENT ALGORITHMS. THE
NOISE IS OBTAINED BY CONVOLVING WHITE GAUSSIAN NOISE WITH A

STRAIGHT LINE. THE THIRD LINE CORRESPONDS TO FIGURE 5.

Initial SNRr DeStripe Wavelet - FFT VSNR
33.85 33.70 22.61 43.00
19.73 20.52 22.03 37.54
8.63 16.60 15.15 25.32

TABLE II
SNRR OF THE IMAGES DENOISED USING DIFFERENT ALGORITHMS. THE
NOISE IS OBTAINED BY CONVOLVING WHITE GAUSSIAN NOISE WITH AN
ELONGATED GAUSSIAN. THE THIRD LINE CORRESPONDS TO FIGURE 6.

Initial SNRr DeStripe Wavelet-FFT VSNR
32.68 30.64 23.63 34.42
21.80 22.53 18.98 26.31
8.14 8.15 8.29 13.31

In the third experiment, we consider m = 2 noise compo-
nents, the first filter ψ1 is a radial sinc function, the second
filter ψ2 is an elongated Gaussian in the vertical direction, λ1

is a sample of a white Gaussian process and λ2 is a sample
of a white Bernoulli process with low probability. The noisy
image is shown in Figure 7 and the decomposition result is
shown in Figure 8.
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Fig. 5. Top-left: noisy pirate. Top-right: denoised using VSNR. Bottom-left:
denoised using DeStripe [7]. Bottom-right: denoised using Wavelet-FFT [16].
This experiment corresponds to the last line of Table I. The noise pattern is
a vertical line. The Destripe and Wavelet-FFT algorithms do not completely
remove low frequencies while VSNR leads to near perfect results.

B. Real images

In order to assess the efficiency of VSNR algorithm, we
perform tests on images issued from different modalities:
• FIB-nanotomography. This image was used in [16]. Re-

sults are shown in Figure 9.
• SEM imaging. This image was used in [7]. Results are

shown in Figure 11.
• SPIM imaging. Results are shown in Figure 12 and 10.

The images come from a microscope prototype developed
at ITAV-UMS3039 (CNRS).

In all experiments, algorithm 1 is applied with m = 2
filters ψ1 and ψ2. The first filter ψ1 is a Dirac (which
allows the recovery of white noise), and the second filter
ψ2 is an anisotropic Gabor filter with principal axis directed
by the stripes (this orientation is determined by the user).
Different parameters were tested for filter ψ2 and led to similar
results, outlining the robustness of this approach with respect
to the filter choice. Since no ground truth is available for
these images, only visual inspection can help assessing the
algorithm’s performance. Let us discuss the results:
• Figure 9 and 11 show that VSNR is able to preserve the

small image details and to remove the stripes and most
of the white noise. The output of the wavelet-FFT and
DeStripe algorithms are still impaired with low frequency
striping and white noise.

• In Figure 12 only the cells contour is stained. The images
are significantly denoised and small details are preserved.
This is a particularly hard example since the images are
not piecewise constant (i.e. the ideal images with bounded

Fig. 6. Top-left: noisy pirate. Top-right: denoised using VSNR. Bottom-left:
denoised using DeStripe [7]. Bottom-right: denoised using Wavelet-FFT [16].
This experiment illustrates the third line of Table II. In that example, the noise
pattern is an elongated Gaussian in the vertical direction. The noise level is
higher than the signal level. The VSNR algorithm retrieves most of the signal
while the other two algorithms do not.

Fig. 7. Synthetic image used for the toy example. PSNR = 21.5dB.

variation).
• Figure 10 is a 3D visualisation of a stack, corresponding

to a region of a multicellular tumor spheroid expressing
a nuclear fluorescent protein, the H2B-HcRed. The 3D
reconstruction of some objects (nuclei) performed by
extraction of the isosurfaces of fluorescence intensity
(in red, Imaris software) is substantially improved after
processing.

C. Numerical behavior

In this section, we briefly describe some aspects of the
algorithm and of its numerical performance.

a) Parameter tuning: The convergence rates depend on
the parameters in algorithm 1. There are at least 4 parameters
that should be tuned:
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Fig. 8. Toy example. Left column: real components; right column: estimated
components using our algorithm. Top: Baboon image (PSNR = 27dB) -
Middle: Colored Gaussian noise (PSNR = 17.55dB) - Bottom: Impulse like
noise (PSNR = 20.20dB)

1) First, it is important to have a tight estimate of L,
the highest singular value of A, in order to choose σ
and τ as large as possible such that στL2 < 1. An
overestimation of L will slow down the scheme and an
underestimation will make the scheme diverge. In the
case of total variation, the calculation of L can be done
explicitly, see Appendix B.

2) Second, the relationship στL2 < 1 still leaves a degree
of freedom in the choice of σ and τ . It is uneasy to
choose these step sizes and it seems that only experi-
mental tuning is available today.

3) Third, as stated in Remark 5.1, choosing different inner
products in the primal space Λ and dual space Q
will lead to different algorithms and can change the
numerical performances of algorithm 1 drastically. This
question is related to the previous one and we are
currently conducting theoretical investigations in order
to provide analytical solutions for these choices. A first
answer was provided in [4].

4) Finally, it is important to have a reliable stopping
criterion in order to automatize the algorithm. In all our
experiments, choosing ε = 10−3 as a stopping criterion
in algorithm 1 led to solutions that were accurate enough
for the visual system (no visible difference with the true
solution). We believe that this is a very nice property of
the proposed scheme as no user input is necessary.

b) Analytical and empirical complexity: The scheme’s
analytical complexity A is given by:

A = (iterations number)× 2×m× (FFT(n) +O(n) op.)
+m× FFT(n)

where n is the pixels number, m is the number of filters used in
the model, FFT(n) indicates an FFT applied to a size n vector
and op. means operations. This theoretical convergence rate
indicates that the scheme is adapted to large scale problems:
the dependence in n is just O(n log(n)).

Our experiments showed that when the parameters in algo-
rithm 1 are chosen correctly (σ, τ and the metrics), the scheme
requires less than 50 iterations in order to decrease the initial
duality gap by a factor ε = 10−3. The overall cost is thus
around 100 ×m FFT computations. The computational time
is around 5 seconds for a 1024 × 1024 image, on a 1.2GHz
laptop, using m = 1 filter.

A more formal complexity result could be obtained using
the worst case convergence rates of the algorithm, but this rate
seems to be always outperformed for the class of problems
considered in this paper.

c) A heuristic choice of the metrics: All the tools used
in algorithm 1 (Adjoints, singular values, Fenchel transforms,
subgradients, proximal operators,...) depend on the choice of
the inner products 〈·, ·〉Λ and 〈·, ·〉Q. In [4] some choices of
the metrics are proposed in order to improve the convergence
rates. In the present work, we simply rescaled the filters ψi and
weights αi. This normalization is equivalent to a block-wise
constant diagonal preconditionner.

VII. CONCLUSION

We proposed a variational approach to denoise images
impaired by a class of stationary noises. It takes advantage of
recent advances in convex optimization, leading to interactive
computing times. Applications to synthetic images, and to
images issued from different microscopy imaging modalities
were presented, leading to clear improvements of the image
quality compared to existing methods.

APPENDIX A
EXPLICIT EXPRESSIONS OF THE RESOLVENTS

In this section, we assume that 〈·, ·〉Λ and 〈·, ·〉Q are the
standard dot products. The Fenchel conjugates F ∗ and G∗

can be computed using Equation (2):

F ∗(q) =

{
ε
2‖q‖

2
2 − 〈∇u0, q〉Q if ‖q‖∞ ≤ 1

+∞ otherwise

and

G∗(η) =

m∑
i=1

(φi + χ[−C,C]n)∗ (ηi) .

The adjoint of A is A∗ = AT , where:

AT : Rn×2 → Rm×n

q 7→
(
∇T q ∗ ψ̌1, · · · ,∇T q ∗ ψ̌m

)
and ψ̌i = F−1ψi.
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The different Fenchel transforms useful for the computation
of G∗ are:
• If φi(λ) = αi‖λ‖1:

(φi + χ[−C,C]n)∗(η) = C‖max(0, |η| − αi)‖1.

• If φi(λ) = αi
2 ‖λ‖

2
2:

(φi + χ[−C,C]n)∗(η)

= α

∥∥∥∥∥min
(∣∣∣ η
α

∣∣∣ , C) ∣∣∣ η
α

∣∣∣− 1

2
min

(∣∣∣∣λα
∣∣∣∣ , C)2

∥∥∥∥∥
1

• If φi(λ) = χ[−αi,αi](λ):

(φi + χ[−C,C]n)∗(η) = min(αi, C)‖η‖1

1) Resolvent of F ∗: Let us detail the calculation of:

q∗ = (Id + σ∂F ∗)−1(qn)

= arg min
q∈Q,‖q‖∞≤1

σε

2
‖q‖22 − 〈σ∇u0, q〉+

1

2
‖q − qn‖2Q. (17)

Let
q̃n = qn + σ∇u0.

By writing the Karush-Kuhn-Tucker optimality conditions, we
obtain the following solution to problem (17):

q∗(x) =
q̃n(x)

max(‖q̃n(x)‖2, σε+ 1)

2) Resolvent of G: In the second step of the algorithm, we
must compute

λ∗ = (I + τ∂G)−1(λn)

= arg min
λ∈Λ

τG(λ) +
1

2
‖λ− λn‖2Λ

= arg min
λ∈Ξ

m∑
i=1

φi(λi) +
1

2τ
‖λi − λn,i‖2Λi .

As all the functions φi are separable, this problem reduces
to m× n unidimensional problems of form:

arg min
λ∈R,|λ|≤C

τf(λ) +
1

2
|λ− λn|2 (18)

where f is a convex function. In this work we focus on the
cases:
• f(λ) = α|λ|.

The solution of (18) is given by:

λ∗ =
max(|λn| − τα, 0) · sign(λn)

max(1,max(|λn| − τα, 0)/C)
.

• f(λ) = α
2 λ

2.

The solution of (18) is given by:

λ∗ =
λn
τα+1

max(1, | λnτα+1 |/C)
.

• f(λ) =

{
0 if |λ| ≤ α

+∞ otherwise

Let δ = min(C,α). The solution of (18) is given by:

λ∗ =
λn

max(1, |λn|/δ)
.

APPENDIX B
COMPUTATION OF THE OPERATOR NORM L

It is important to use a tight estimation of L = |||A|||, the
highest singular value of A defined in equation (12). In the
case of total variation, L can be computed exactly if periodic
boundary conditions are used to define the discrete gradient
operator. With these boundary conditions, the discrete gradient

operator ∇ =

(
∂1

∂2

)
can be rewritten using convolution

products and is thus diagonalized by the discrete Fourier
tranform (DFT):

∂1u = d1 ∗ u = F−1diag(d̂1)Fu

and
∂2u = d2 ∗ u = F−1diag(d̂2)Fu

where d1 and d2 are finite difference filters in the horizontal
and vertical directions.

Let Hi be the matrix associated to the convolution product
with ψi. It satisfies Hiλi = ψi ∗ λi and is thus diagonalized
by the DFT:

Hi = F−1diag
(
ψ̂i

)
F .

Let us denote Di = diag
(
d̂i

)
, |Di|2 = D̄iDi where D̄i

is the complex conjugate of Di and Σ =
∑m
i=1 diag

(
|ψ̂i|2

)
.

Elementary calculus then leads to:

AAT =

[
F−1 0

0 F−1

]
·

[
|D1|2Σ D1ΣD∗2

D2ΣD∗1 |D2|2Σ

]
·

[
F 0

0 F

]
.

The eigenvalues of AAT are the same as those of[
|D1|2Σ D1ΣD∗2

D2ΣD∗1 |D2|2Σ

]
.

This matrix is symmetric, positive, semi-definite and is consti-
tuted of four diagonal blocks. L is thus given by the maximum
largest eigenvalue of the following n, 2× 2 matrices:

M(k) =

 |d̂1(k)|2Σ(k) d̂1(k)d̂2(k)Σ(k)

d̂1(k)d̂2(k)Σ(k) |d̂2(k)|2Σ(k)

 ,
where k belongs to the frequency domain and Σ(k) =∑m
i=1 diag

(
|ψ̂i(k)|2

)
. This computation is achieved in

O(n log n) arithmetic operations.
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Fig. 9. Destriping of a single section from a 3D volume of unhydrated
particles of cement paste accessed by FIB-nanotomography. Top-Left: original
image is severely affected by the waterfall effect. Top-right: restored image
using VSNR. Bottom-left: restored image using wavelet-FFT. Bottom-right:
restored image using DeStripe.
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Fig. 10. Isosurface rendering (in red) of a three- dimensional stack of 42
planes of a Multicellular Tumor Spheroid expressing a fluorescent nuclear
protein, H2B-HcRed. SPIM images were acquired with an objective 10X NA
0.25, an excitation wavelength of 595 nm and a detection using a 593 nm
long pass filter. Top: raw data. Bottom: denoised data. The voxel size is
0.645*0.645*1µm.

Fig. 11. SEM imaging on a sintered specimen of CeO2 (cerium oxide)
at a sintering temperature of 1400 C for 2 hours and 50 minutes [7]. The
image is composed of 512x512 pixels with each side measuring 70.55 µm;
the intensity unit is 0.1 µm.

Fig. 12. SPIM images of a Multicellular Tumor Spheroid stained with DiI
acquired with an objective 20X NA 0.5, an excitation wavelength of 532
nm and an emission wavelength of 593 nm. The voxel size is 0.32*0.32*1
µm. Top: Single plane of a 3D stack; Middle: Denoised image using VSNR.
Bottom: magnified views of a small region. Left: original, right: denoised.


