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Abstract:

In this paper, we present two algorithms to solve some
inverse problems coming from the field of image process-
ing. The problems we study are convex and can be ex-
pressed simply as sums of lp-norms (p ∈ {1, 2,∞}) of
affine transforms of the image. We propose 2 different
techniques. They are - to the best of our knowledge - new
in the domain of image processing and one of them is new
in the domain of mathematical programming. Both meth-
ods converge to the set of minimizers. Additionally, we
show that they converge at least as O

(
1
N

)
(where N is the

iteration counter) which is in some sense an “optimal” rate
of convergence. Finally, we compare these approaches to
some others on a toy problem of image super-resolution
with impulse noise.

1. Introduction

Many image processing tasks like reconstruction or seg-
mentation can be done efficiently by solving convex opti-
mization problems. Recently these models received con-
siderable attention and this led to some breakthrough.
Among them are the new sampling theorems [5] and the
impressive results obtained using sparsity or regularity as-
sumptions in image reconstruction (see e.g. [4]).
These results motivate an important research to accelerate
the convergence speed of the minimization schemes. In
the last decade, many algorithms like iterative threshold-
ing or dual approaches were reinvented by the “imaging
community” (see for instance [2, 3] for old references).
Recently, the “mathematical programming community”
got interested in those problems and it led to some drastic
improvements. As examples let us cite the papers by Y.
Nesterov [9, 10] and M. Teboulle [1] which improve by
one order of magnitude most first order approaches.
In this paper, we mainly follow the lines of Y. Nesterov
[9]. We consider the problem of minimizing the sum of
lp-norms (p ∈ {1, 2,∞}) of affine transforms of the im-
age. The general mechanism of the algorithms we propose
consists in smoothing the problem and solve it with an ef-
ficient first order scheme. Our contribution is mainly to
extend the results of [9] to a more general setting and to
propose a dual variant which behaves better in all prob-
lems we tested. We also give convergence rates for the
proposed algorithms. We believe, this gives some insight

on the important factors that influence the algorithms effi-
ciency and helps designing solvable problems.

2. The problems considered

In this paper, we consider the following seminal model of
image deterioration:

u0 = Du + b (1)

where u is an original, neat image, D : Rn → Rm is some
known linear transform, b ∈ Rm is some additive noise
and u0 ∈ Rm is a given observed image. This simple
formalism actually models many real situations. For in-
stance, D can be an irregular sampling and a convolution.
In this case recovering u from u0 is a super-resolution
problem [7]. Other applications include image inpainting,
compression noise reduction, texture+cartoon decomposi-
tions, reconstruction from noisy indirect measurements...
Finding u from the observation u0 is an inverse problem.
There exists many ways to solve it. In this paper, we con-
centrate on two variational models. The first one consists
in solving the following convex problem:

min
x∈X


||Bx||1 + λ||Dx− u0||p︸ ︷︷ ︸

Ψ(x)


 . (2)

The second one consists in solving:

min
y∈Y

(||y||1 + λ||DB∗y − u0||p
)
. (3)

In both problems, B : Rn → Ro is a linear transform, || ·
||p denotes the standard lp-norm and X and Y are simple
convex sets (like Rn or [0, 1]n).
The interpretation of the first model is as follows: we look
for an image x which minimizes ||Bx||1 such that Dx is
close to u0. The function x 7→ ||Bx||1 can be seen as a
regularity a priori on the image. For instance, if B is the
discrete gradient, then it corresponds to the total variation.
If B is some wavelet transform, it is equivalent to a Besov
semi-norm [6]. p must be chosen depending on the statis-
tics of the additive noise. For instance, p should be equal
to 2 for Gaussian noise, to 1 for impulse noise and to ∞
for uniform noise.
The interpretation of the second model is the following:
we look for a decomposition y of the restored image in



some dictionary B∗ such that its reconstruction B∗y is
close to u0. Minimizing the l1-norm of y is known to
favor sparse structures. The underlying assumption is thus
that the original image u is sparse in the dictionary B∗.
From a numerical point of view, both problems are very
similar. However, the first one is slightly more general and
complicated than the second. We will thus give a detailled
analysis of its resolution and only provide numerical re-
sults for the second one.
The remaining of the paper is as follows. We first present
an algorithm based on a regularization of the primal prob-
lem (2). Then we present a technique to regularize a dual
version of (2). Finally we propose theoretical and numeri-
cal comparisons of both techniques on a problem of image
super-resolution. Due to space limitations, we only pro-
vide the main ideas in this paper. We refer the reader to
[12] (in French), for the proofs of the propositions.

3. Smoothing of the primal problem

In this section, we propose a method to minimize (2). Its
principle is exactly the same as the method proposed by Y.
Nesterov in [9]:

1. Smooth the non-differentiable terms in (2).

2. Solve the regularized problem using an accelerated
gradient method.

The only difference is that we do not require the set X to
be bounded, which requires a slightly different analysis.
Now let us present some details of this approach.

A key observation to solve (2) is that it can be rewritten as
a so called min-max problem. Let p′ denote the conjugate
of p

(
i.e. 1

p′ + 1
p = 1

)
. We can rewrite problem (2) as

follows:

min
x∈X

(
max
y∈Y

(〈Bx, y1〉+ λ〈Dx− u0, y2〉
))

(4)

= min
x∈X


max

y∈Y
(〈Ax− h, y〉)

︸ ︷︷ ︸
Ψ(x)


 (5)

where 〈·, ·〉 denotes the canonical scalar product,

A =
[

B
λD

]
, h =

[
0

λu0

]
and (6)

Y = {y = (y1, y2) ∈ Ro×Rm, ||y1||∞ ≤ 1, ||y2||p′ ≤ 1}.
(7)

The function Ψ is a conjugate function and the set Y is
bounded. It can thus be smoothed using a Moreau regular-
ization. Let us denote:

Ψµ(x) = max
y∈Y

(
〈Ax− h, y〉 − µ

2
||y||22

)
. (8)

This function can be shown to be L-Lipschitz differen-
tiable:

||∇Ψµ(x1)−∇Ψµ(x2)||2 ≤ L||x1 − x2||2 (9)

with L = |||A|||2
µ and |||A||| = max

x∈Rn,||x||2≤1
(||Ax||2).

Furthermore, it is a good uniform approximation of Ψ in
the following sense:

0 ≤ Ψ(x)−Ψµ(x) ≤ µ

2
D. (10)

where D =
(

max
y∈Y

(||y||22
))

. Thus, we can make the dif-

ference between Ψ and Ψµ as small as desired by decreas-
ing µ. The approximation Ψµ is actually very common
in image processing. For instance, when p = 1, it cor-
responds to the approximation of the absolute value by a
Huber function. When p = ∞ it is slightly more difficult,
but it can still be computed in closed form.
The smoothed problem writes:

min
x∈X

(Ψµ(x)) . (11)

It consists in minimizing a differentiable function over a
simple set. We can thus apply projected gradient like al-
gorithms to solve it. Unfortunately, µ has to be chosen
small in order to get a good approximate solution. This
requires to use small step sizes in the gradient descent and
thus results in a very slow convergence rate. The main
observation of Y. Nesterov in [9] is that using an accel-
erated version of the projected gradient methods can ac-
tually compensate the approximation error. This results
in a convergence rate in O

(
1
N

)
(where N is the iteration

counter), while other first order approaches like projected
subgradient descents converge as O

(
1√
N

)
.

Now let us write down the complete algorithm to solve
(11). Let x∗µ denote a solution of (11) (it is not unique in
general). We propose the following algorithm:

Algorithm 1 (Primal)
Choose a number of iterations N .
Set a starting point x0 (as close as possible to x∗µ).

Set µ = µ(N) = |||A|||·||x0−x∗µ||2
N .

Set A = 0, g = 0 and x = x0.
for k = 0 to N do

a = 1
L +

√
1

L2 + 2
LA

v = ΠX

(
x0 − g

)

y = Ax+av
A+a

x = ΠX

(
y − ∇Ψµ(y)

L

)

g = g + a∇Ψµ(x)
A = A+ a

end for
Set xN = x.

Our main convergence results are as follows. Let x∗ de-
note a solution of (2).

Proposition 1 xN converges to the set of minimizers of
(2).

Proposition 2 The worst case convergence rate is:

Ψ(xN )−Ψ(x∗) ≤ 2|||A||| · ||x0 − x∗µ||2
√

D

N
. (12)



Note that the distance ||x0 − x∗µ||2 is unknown in gen-
eral, so that Algorithm 1 might not seem implementable.
In the case where X is a compact set, this quantity can
be bounded above by the diameter of X . When X is not
bounded, it actually suffices to choose µ of order |||A|||N to
get a precision of order O

(
1
N

)
. Algorithm (1) is thus im-

plementable and converges as O
(

1
N

)
. This convergence

rate is neatly sublinear and might seem bad at first sight.
Actually, it is somehow optimal. Indeed, A. Nemirovski
shows in [8] that some instances of problems like (5) can-
not be solved with a better rate of convergence than O

(
1
N

)
using first order methods.

4. Smoothing of the dual problem

In this section, we propose an approach alternative to the
previous one. Its flavor is similar to a proximal-method.
One way to understand this scheme is that we smooth the
“dual” problem instead of the primal problem. Note that
the min and the max in equation (5) cannot be inverted as
we do not suppose X to be compact. So we cannot use -
properly speaking - the term dual problem.
Instead of solving (2), we solve:

min
x∈X

(
||Bx||1 + λ||Dx− u0||p +

ε

2
||x− x0||22

)
(13)

where ε ∈ R+
∗ and x0 should be chosen close to the set

of minimizers of (2). It can be shown that as ε goes to
0, the unique solution of (13) converges to the Euclidean
projection of x0 onto the set of minimizers of (2). We can
rewrite (13) as a min-max problem:

min
x∈X

(
max
y∈Y

(〈Ax− h, y〉) +
ε

2
||x− x0||22

)
(14)

= max
y∈Y


min

x∈X

(
〈Ax− h, y〉+

ε

2
||x− x0||22

)

︸ ︷︷ ︸
Ψε(y)


 .(15)

Note that we can invert the min and the max only because
the term ε

2 ||x − x0||22 makes the problem coercive in x.
Now, the important observation is that the function Ψε is
the conjugate of a strongly convex function. It is thus con-
cave and Lipschitz differentiable:

||∇Ψε(y1)−∇Ψε(y2)||2 ≤ L||x1 − x2||2 (16)

∀(y1, y2) ∈ Y × Y with L ≤ |||A|||2
ε . Problem (15)

consists in maximizing a Lipschitz differentiable concave
function over a convex set. It thus seems interesting to use
a scheme similar to Algorithm 1 on this problem. Unfortu-
nately we will get a convergence rate on the dual variable
y and not on the variable of interest:

x(y) = arg min
x∈X

(
〈Ax− h, y〉+

ε

2
||x− x0||22

)
. (17)

Actually, a slight modification of Nesterov’s scheme (an
ergodic version) can be shown to ensure convergence of
xN with the desired convergence rate. In the following,
we detail briefly our main results.

Let x∗ε denote the solution of (13) and y∗ε denote a solution
of (15). Let X∗ denote the set of minimizers of (2) and let
us consider the following algorithm:

Algorithm 2 (Dual)
Choose a number of iterations N .
Set a point x0 (as close as possible to X∗).
Set a starting point y0 (as close as possible to y∗ε ).
Set ε = ε(N) = |||A|||·||x0−x∗ε ||2

N .
Set A = 0, g = 0, x̄ = 0 and y = y0.
for k = 0 to N do

a = 1
L +

√
1

L2 + 2
LA

v = ΠY

(
y0 − g

)

z = Ay+av
A+a

y = ΠY

(
z + ∇Ψε(z)

L

)

x̄ = x̄ + ax(y) (cf. equation (17))
g = g − a∇Ψε(y)
A = A+ a

end for
Set x̄N = x̄

A .

This algorithm can be shown to have the following prop-
erties.

Proposition 3 x̄N converges to the projection of x0 onto
the set of minimizers of (2).

Proposition 4 The worst case convergence rate is:

Ψ(x̄N )−Ψ(x∗) ≤ 2|||A||| · ||x0 − x∗ε ||2
√

D

N
. (18)

Rate (18) is actually very similar to (12). It is thus natural
to wonder if there is an interest in using this dual approach.
Let us present some interesting aspects of this scheme:

• In the dual approach, the solution of the regularized
problem is unique. This guarantees a certain stability
of the iterates.

• We can show an additional convergence rate in norm
to the regularized solution. Namely, for a fixed ε, we
have for all k:

||x̄k − x∗ε ||22 ≤
D|||A|||
ε · k2

(19)

• In practical experiments, model (13) with a small ε
leads to slightly better SNR than model (2) for some
restoration purposes in image processing.

• The practical convergence rates of the dual approach
were better than those of the primal approach in all
our experiments.

To conclude the theoretical part of this paper, let us pre-
cise that problem (3) can be solved with the same algo-
rithms. However, it is preferable not to regularize the term
y 7→ ||y||1 which can be minimized using accelerated soft-
thresholding algorithms [1, 10, 12].
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Figure 1: Cost function w.r.t. the number of iterations.

5. Numerical results

In this section we present some comparisons for a prob-
lem of image zooming with impulse noise. To solve this
problem, we simply set:

• D: convolution by a low-pass filter followed by a
down sampling of factor d in the x and y directions.

• p = 1 (which is adapted to impulse noise).

• B: a redundant wavelet transform. We set B to be
the Dual-Tree Complex Wavelet Tranform (DTCW)
[11].

In that case |||A|||2 can be computed explicitly. For the
general case, let us point out that iterated power algorithms
provide good approximations of |||A∗A||| = |||A|||2.

Figure 1 shows the evolution of the cost function w.r.t.
the number of iterations for different techniques. The pri-
mal approach is very fast (it converges in 50 iterations)
but only decreases the cost function by a factor 100. The
dual method decreases the cost function by a factor 105 in
4000 iterations, while the projected gradient method only
decreases the cost function by a factor 10. We, thus, can
see the major improvement of Y. Nesterov’s scheme on
these problems. Figure 2 shows the result of the model.
The DTCW transform slightly blurs the image but allows
to retrieve thin details. Unfortunately, we did not have
sufficient time to give some comparisons with other ap-
proaches. This will be included in the final paper version.
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