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Abstract

A Hamilton-Jacobi formulation has been established previously for phenotypically structured
population models where the solution concentrates as Dirac masses in the limit of small diffusion.
Is it possible to extend this approach to spatial models? Are the limiting solutions still in the form
of sums of Dirac masses? Does the presence of several habitats lead to polymorphic situations?

We study the stationary solutions of a structured population model, while the population is
structured by continuous phenotypical traits and discrete positions in space. Several habitable
zones are possible and the growth term varies from one zone to another, for instance because of a
change in the temperature. The individuals can migrate from one zone to another with a constant
rate. The mathematical modeling of this problem, considering mutations between phenotypical
traits and competitive interaction of individuals within each zone via a single resource, leads to a
system of coupled parabolic integro-differential equations. We study the asymptotic behavior of
the stationary solutions to this model in the limit of small mutations. The limit, which is a sum of
Dirac masses, can be described with the help of an effective Hamiltonian. The presence of migration
can modify the dominant traits and lead to polymorphic situations. Numerical computations show
that the asymptotic stationary solutions obtained in theoretical results, approximate well the large
time behavior of the solutions of the time-dependent problem.

Key-Words: Structured populations, phenotypical and spatial structure, Hamilton-Jacobi equation,
viscosity solutions, Dirac concentrations, stationary solutions
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1 Introduction

Non-local Lotka-Volterra equations arise in models of adaptive evolution of phenotypically structured
populations. These equations have the property that the solutions concentrate generally, in the limit
of small diffusion, on several isolated points, corresponding to distinct traits. Can we generalize these
models by adding a spatial structure? How do the dominant traits evolve if we introduce a new habitat?
To understand the interaction of ecological and evolutionary processes in population dynamics, spatial
structure of the communities and adaptation of species to the environmental changes, it is crucial to
dispose mathematical models that describe them jointly. We refer to [19] and the references therein
for general literature on the subject. In this manuscript we consider a model where several distinct
favorable habitable zones are possible. Population dynamics models structured by spatial patches
have been studied using both deterministic and probabilistic methods (see for instance [30, 1]). Our

∗CMAP, Ecole Polytechnique, CNRS, INRIA. Route de Saclay, 91128 Palaiseau Cedex, France. Email: mir-

rahimi@cmap.polytechnique.fr.

1



model, in the case of two patches, is indeed very close to the one studied in [30] where the authors
use adaptive dynamics theory (adaptive dynamics is a theory, based on dynamical systems and their
stability, to study population dynamics [11]). Here we model similar phenomena, by adding a spatial
structure to an earlier known integro-differential model describing the darwinian evolution. Integro-
differential models have the advantage that the mutations can be considered directly in the model
without assuming a separation of time scales of evolution and ecology. The present work provides a
general description of the asymptotic stationary solutions, in the general case where two or several
patches are possible.

We study the asymptotic behavior of solutions of a system of coupled elliptic integro-differential
equations with small diffusion terms. These solutions are the stationary solutions to a parabolic system
describing the dynamics of a population density. The individuals are characterized by phenotypical
traits, that we denote by x ∈ R

d. They can move between two or several patches, which are favorable
habitable zones, with constant rates (that we denote by ν1 and ν2 in the case of two patches). The
mathematical modeling is based on the darwinian evolution and takes into account mutations and
competition between the traits. There is a large literature for mathematical modeling and analysis
on the subject of adaptive evolution, we refer the interested reader to [16, 15, 11, 12, 22, 10]. Here,
we represent the birth and death term by a net growth term Ri(x, Ii) that is different in each patch,
for instance because of a change in the temperature, and depends on the integral parameter Ii, which
corresponds to the the pressure exerted by the whole population within patch i on the resource. To
model the mutations, we use Laplace terms with a small rate ε that is introduced to consider only rare
mutations. We study the asymptotic behavior of stationary solutions as the mutation rate ε goes to
0. The asymptotic solutions are generally concentrated on one or several Dirac masses. We describe
the position and the weight of these Dirac masses using a Hamilton-Jacobi approach.

The time-dependent model, in the case of two patches, is written as





∂tn
1
ε − ε∆n1ε = 1

ε
n1εR

1(x, I1ε ) +
1
ε
ν2n2ε − 1

ε
ν1n1ε,

x ∈ R
d,

∂tn
2
ε − ε∆n2ε = 1

ε
n2εR

2(x, I2ε ) +
1
ε
ν1n1ε − 1

ε
ν2n2ε,

(1)

with

Iiε =

∫
ψi(x)niε(x)dx, for i = 1, 2. (2)

Such models, without the structure in space, have been derived from stochastic individual based
models in the limit of large populations (see [7, 6]). This manuscript follows earlier works on parabolic
Lotka-Volterra type equations to study concentration effects in models of phenotypically structured
populations, that are based on a Hamilton-Jacobi formulation (see [12, 25, 2, 20]). The novelty of
our work is that we add a spatial structure to the model by considering a finite number of favorable
habitable zones. We thus have a system instead of a single equation. A Hamilton-Jacobi approach
in the case of systems has also been introduced in [5] for an age structured model. See also [4] for a
study of stationary solutions of the latter system. The Hamilton-Jacobi approach can also be used in
problems other than adaptive evolution to prove concentration phenomena. See for instance [27, 26, 24]
where related methods have been used to study the motion of motor proteins.

We are interested in the equilibria of (1) limited to a bounded domain, that are given by solutions
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of the following system





−ε2∆n1ε = n1εR
1(x, I1ε ) + ν2n2ε − ν1n1ε in BL(0),

−ε2∆n2ε = n2εR
2(x, I2ε ) + ν1n1ε − ν2n2ε in BL(0),

∇niε · ~n = 0 in ∂BL(0) and for i = 1, 2,

(3)

where BL(p) is a ball of radius L with center in p and ~n(x) is the unit normal vector, at the point
x ∈ ∂BL(0), to the boundary of BL(0). The Neumann boundary condition is a way to express that
mutants cannot be born in R

d \BL(0).
To formulate our results we introduce the assumptions we will be using throughout the paper. We

assume that, there exist positive constants am and aM such that

ψ1 = ψ2 = ψ, am ≤ ψ(x) ≤ aM , ‖ψ(x)‖W 2,∞ ≤ A and ∇ψ · ~n = 0 in ∂BL(0). (4)

Moreover there exist positive constants Im, IM , δ and C such that, for all x ∈ BL(0) and i, j = 1, 2,

δ ≤ min

(
Ri(x,

νj

νi
Im), Ri(x, Im)

)
, max

(
Ri(x,

νj

νi
IM ), Ri(x, IM )

)
≤ −δ, −C ≤ ∂Ri

∂I
(x, I) ≤ − 1

C
.

(5)
−D ≤ Ri

ξξ(x, I), for x ∈ BL(0), I ∈ [Im, IM ], ξ ∈ R
d, |ξ| = 1 and i = 1, 2. (6)

We use the Hopf-Cole transformation

niε = exp(
uiε
ε
), for i = 1, 2, (7)

and replace the latter in the system satisfied by niε to obtain





−ε∆u1ε = |∇u1ε|2 +R1(x, I1ε ) + ν2 exp(u
2
ε−u1

ε

ε
)− ν1, in BL(0),

−ε∆u2ε = |∇u2ε|2 +R2(x, I2ε ) + ν1 exp(u
1
ε−u2

ε

ε
)− ν2 in BL(0),

∇uiε · ~n = 0 in ∂BL(0) and for i = 1, 2.

(8)

We prove the following

Theorem 1.1 Assume (4) and (5). Then, as ε → 0 along subsequences, both sequences (u1ε)ε and
(u2ε)ε converge uniformly in BL(0) to a continuous function u ∈ C(BL(0)) and (I1ε , I

2
ε ) goes to (I1, I2),

with (u, I1, I2) such that u is a viscosity solution to the following equation





−|∇u|2 = H(x, I1, I2), in BL(0),

maxx∈BL(0) u(x) = 0,
(9)

with

H(x, I1, I2) the largest eigenvalue of the matrix A =

(
R1(x, I1)− ν1 ν2

ν1 R2(x, I2)− ν2

)
. (10)
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The function H is indeed an effective Hamiltonian that contains information from the two patches
and helps us in Theorem 1.2 to describe the support of the weak limits of (n1ε, n

2
ε) as ε → 0. We can

interpret H(x, I1, I2) as the fitness of the system in the limit of ε → 0 (see [23] for the definition of
fitness).
The difficulty here is to find appropriate regularity estimates on uiε, that we obtain using the Harnack

inequality [3] and the Bernstein method [9]. To prove convergence to the Hamilton-Jacobi equation,
we are inspired from the method of perturbed test functions in homogenization [14].
The above information on the limit of uiε allows us to describe the limit of the densities niε as ε

vanishes. We have

Theorem 1.2 Assume (4), (5) and (6). Consider a subsequence such that u1ε and u2ε converge uni-
formly to u ∈ C (BL(0)) and (I1ε , I

2
ε ) goes to (I1, I2), as ε → 0, with (u, I1, I2) solution of (9). Let

niε, for i = 1, 2, converge weakly in the sense of measures to ni along this subsequence. We have

supp ni ⊂ Ω ∩ Γ, for i = 1, 2, (11)

with

Ω = {x ∈ BL(0) |u(x) = 0}, Γ = {x ∈ BL(0) |H(x, I1, I2) = max
x∈BL(0)

H(x, I1, I2) = 0}. (12)

Moreover, we have

(
R1(x)− ν1

)
n1(x) + ν2n2(x) = 0,

(
R2(x)− ν2

)
n2(x) + ν1n1(x) = 0, in BL(0) (13)

in the sense of distributions. The above condition is coupled by
∫

BL(0)
ψi(x)ni(x) = Ii. (14)

Theorem 1.2 provides us with a set of algebraic constraints on the limit, which allows us to describe
the latter. In particular, if the support of ni, for i = 1, 2, is a set of distinct points: suppni ⊂
{x1, x2, · · · , xk}, (13) implies that

ni =
k∑

j=1

ρijδ(x− xj), for i = 1, 2, (15)

with

ρ2j = ρ1j

(
ν1 −R1(xj , I

1)

ν2

)
= ρ1j

(
ν1

ν2 −R2(xj , I2)

)
. (16)

Furthermore, the weights (ρi1, · · · , ρik) satisfy the normalization condition

k∑

j=1

ψi(xj)ρ
i
j = Ii, for i = 1, 2. (17)

Condition (16) means that the vector

(
ρ1j
ρ2j

)
is the eigenvector corresponding to the largest eigenvalue

of the matrix A at the point xj, which is 0. Thereby (16) implies once again that suppni ⊂ Γ.
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We point out that since ni, for i = 1, 2, is such that the fitness H vanishes on the support of ni and is
negative outside the support, we can interpret ni as evolutionary stable distribution of the model. In
adaptive dynamics, evolutionary stable distribution (ESD) corresponds to a distribution that remains
stable after introduction of small mutants (see [21, 13, 17] for a more detailed definition). See also
[10, 28] for related works on stability and convergence to ESD for trait-structured integro-differential
models.

The set of assumptions in Theorem 1.2 allows us to describe the asymptotics of the stationary so-
lutions, in the limit of rare or small mutations. In Section 5 we provide some examples where based
on this information we can describe the asymptotics. In particular, we notice that the introduction
of a new environment can lead to dimorphic situations. We refer to [8] for a related work using the
Hamilton-Jacobi approach, where polymorphic situations can also appear in a model with multiple
resources.

The paper is organized as follows. In Section 2 we prove some bounds on Iε and some regularity
properties on uε that allow us to pass to the limit as ε→ 0 and derive the Hamilton-Jacobi equation
with constraint. Theorem (1.1) is proved in Section 3. Using the results obtained on the asymptotic
behavior of (uiε)ε we prove Theorem 1.2 in Section 4. In Section 5 we provide some examples where the
information given by Theorem 1.1 and Theorem 1.2 allows us to describe the limit. The asymptotic
behavior of the stationary solutions in a more general framework, where more than two habitable
zones are considered, is given in Section 6. Finally in Section 7 we present some numerical simulations
for the time-dependent problem and compare them with the behavior of stationary solutions.

2 Regularity results

Lemma 2.1 Under assumptions (4) and (5) we have, for ε ≤ ε0 chosen small enough,

Im ≤ Iiε ≤ IM , for i = 1, 2. (18)

In particular, along subsequences, (I1ε , I
2
ε )ε converges to (I1, I2), with Im ≤ I1, I2 ≤ IM .

Remark 2.2 This is the only part, where we use Assumption (4). If (n1ε, n
2
ε) is a solution of (3) such

that (18) is satisfied, then the results of Theorems 1.1 and 1.2 hold true without necessarily assuming
(4). In particular, one can take ψ1 6≡ ψ2.

Proof. We prove the result by contradiction. We suppose that I1ε > IM (the case with I2ε > IM ,
and the inequalities from below can be treated following similar arguments). We multiply the first
equation in (3) by ψ(x), integrate, and use (4) to obtain

−ε2 A
am

I1ε ≤
∫
ψ(x)n1ε(x)R

1(x, I1ε )dx+ ν2I2ε − ν1I1ε .

Using now (5) and the fact that I1ε > IM we deduce that, for ε ≤ ε0 small enough,

0 ≤
(
δ − ε2

A

am

)
I1ε ≤ ν2I2ε − ν1I1ε ,

and thus
ν1

ν2
IM ≤ I2ε .
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Now we multiply the equations in (3) by ψ(x), integrate and add them and use (4) to obtain

−ε2 A
am

(I1ε + I2ε ) ≤
∫
ψ(x)n1ε(x)R

1(x, I1ε )dx+

∫
ψ(x)n2ε(x)R

2(x, I2ε )dx.

From (5) and the above bounds on I1ε and I2ε it follows that

−ε2 A
am

(I1ε + I2ε ) ≤ −δ(I1ε + I2ε ),

which is not possible if ε is small enough. We conclude that I1ε ≤ IM .

Theorem 2.3 Assume (4) and (5). Then
(i) there exists a positive constant D, such that for ε ≤ ε0,

|uiε(x)− ujε(y)| ≤ Dε, for all x, y ∈ BL(0), |x− y| ≤ ε and i, j ∈ {1, 2}. (19)

(ii) For i = 1, 2 and all ε ≤ ε0, the family (uε)ε is uniformly Lipschitz and uniformly bounded from
below.
(iii) For all a > 0, there exists ε1 = ε1(a) such that for all ε ≤ ε1,

uiε(x) ≤ a, for x ∈ BL(0) and i = 1, 2. (20)

Proof. (i) We define
ñiε(y) = niε(εy), for i = 1, 2.

From (3) we have {
−∆ñ1ε = ñ1εR

1(εx, I1ε ) + ν2ñ2ε − ν1ñ1ε in BL
ε

(0),

−∆ñ2ε = ñ2εR
2(εx, I2ε ) + ν1ñ1ε − ν2ñ2ε in BL

ε

(0),
(21)

Moreover, from (5) and (18) we have, for ε ≤ ε0,

δ − C(IM − Im) ≤ R(εx, Iε) ≤ −δ + C(IM − Im).

Therefore the coefficients of the linear elliptic system (21) are bounded uniformly in ε. It fol-
lows from the classical Harnack inequality ([3], Theorem 8.2) that there exists a constant D =
D(C, Im, IM , δ, ν

1, ν2) such that for all y0 ∈ BL
ε
(0) such that B1(y0) ⊂ BL

ε
(0) and for i, j = 1, 2,

sup
z∈B1(y0)

ñiε(z) ≤ D inf
z∈B1(y0)

ñjε(z).

Rewriting the latter in terms of n1ε and n2ε and replacing (y0, z) by (x
ε
, z

′

ε
) we obtain

sup
z′∈Bε(x)

niε(z
′) ≤ D inf

z′∈Bε(y0)
njε(z

′),

and thus from (7) we deduce (19).

(ii) To prove the Lipschitz bounds, we use the Bernstein method (see [9]). We assume that

max
x∈BL(0)

(|∇u1ε(x)|, |∇u2ε(x)|) = |∇u1ε(xε)|, (22)
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that is the maximum is achieved at a point xε ∈ BL(0) and for i = 1 (the case where the maximum is
achieved for i = 2 can be treated by similar arguments). From the Neumann boundary condition in
(8) we know that xε is an interior point of BL(0). We define p = |∇u1ε|2 and notice that

∆p = 2Tr (Hess u1ε)
2 + 2∇(∆u1ε) · ∇u1ε.

We now differentiate the first equation in (8) with respect to x and multiply it by ∇u1ε to obtain

−ε∇(∆u1ε) · ∇u1ε = ∇p · ∇u1ε +∇R1 · ∇u1ε + ν2
(∇u2ε −∇u1ε

ε

)
· ∇u1ε exp(

u2ε − u1ε
ε

).

From (22) we have (
∇u2ε(xε)−∇u1ε(xε)

)
· ∇u1ε(xε) ≤ 0,

and thus

−ε
2
∆p(xε) + εTr (Hess u1ε(xε))

2 ≤ ∇p(xε) · ∇u1ε(xε) +∇R1(xε) · ∇u1ε(xε).

Moreover from (22) we have ∇p(xε) = 0 and ∆p ≤ 0. It follows that

ε
(
∆u1ε(xε)

)2 ≤ εdTr (Hess u1ε(xε))
2 ≤ d∇R1(xε) · ∇u1ε(xε).

Using again (8) we obtain

(
|∇u1ε|2 +R1(xε, I

1
ε ) + ν2 exp

(
u2ε − u1ε

ε

)
− ν1

)2

≤ εd∇R1(xε, I
1
ε ) · ∇u1ε(xε).

From (5) and (18) we find that (R1(x, I1ε ))ε is uniformly bounded for ε ≤ ε0. We conclude that (u1ε)ε
is uniformly Lipschitz for ε ≤ ε0.

To prove uniform bounds from below, we notice from (4) and (18) that, for i = 1, 2, there exists a
point xi ∈ BL(0) such that

ε ln

(
Im

aM |BL(0)|

)
≤ uiε(xi).

From the latter and the Lipschitz bounds we obtain that

−2LC1 + ε ln

(
Im

aM |BL(0)|

)
≤ uiε, in BL(0) and for i = 1, 2.

It follows that the families (uiε)ε are bounded from below for ε ≤ ε0 and i = 1, 2.

(iii) We prove (20) for i = 1 by contradiction. The proof for i = 2 follows the same arguments. We
assume that there exists a sequence (εk, xk) such that εk → 0 as k → ∞, xk ∈ BL(0) and u

1
εk
(xk) > a.

Using the uniform Lipschitz bounds obtained in (ii) we have

n1εk(x) > exp

(
a

2εk

)
, in [xk −

a

2C1
, xk +

a

2C1
] ∩BL(0).

This is in contradiction with the bound from above in (18), for εk small enough. Therefore (20) holds.
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3 Convergence to the Hamilton-Jacobi equation

In this section we prove Theorem 1.1.

Proof. Convergence to the Hamilton-Jacobi equation: From (ii) and (iii) in Theorem 2.3 we
have that for i = 1, 2, the families (uiε)ε are uniformly bounded and Lipschitz. Therefore, from the
Arzela-Ascoli Theorem we obtain that, along subsequences, (u1ε)ε and (u2ε)ε converge locally uniformly
to some continuous functions ui ∈ C(BL(0);R), with i = 1, 2. Moreover, from (i) in Theorem 2.3 we
deduce that u1 = u2. Here we consider a subsequence of (I1ε , I

2
ε , u

1
ε, u

2
ε)ε that converges to (I1, I2, u, u).

Let H(x, I1ε , I
2
ε ), be the largest eigenvalue of the matrix

Aε =

(
R1(x, I1ε )− ν1 ν2

ν1 R2(x, I2ε )− ν2

)
,

and

(
χ1
ε(x)
χ2
ε(x)

)
be the corresponding eigenvector. Since the non-diagonal terms in Aε are strictly

positive, using the Perron-Frobinius Theorem, we know that such eigenvalue exist and that χ1
ε and χ2

ε

are strictly positive. We write

φiε(x) = lnχi
ε(x), for i = 1, 2.

We prove that u is a viscosity solution of

−|∇u|2 = H(x, I1, I2), in BL(0).

To this aim, suppose that u − ϕ has a maximum in x ∈ BL(0). Then, we consider a sequence
xε ∈ BL(0), such that as ε→ 0, xε → x and

u1ε(xε)− ϕ(xε)− εφ1ε(xε) = max
x∈BL(0)

i=1,2

uiε(x)− ϕ(x)− εφiε(x)

is attained at the point xε and for i = 1 (The case with i = 2 can be treated similarly). In this case,
we have in particular that

u2ε(xε)− u1ε(xε) ≤ ε
(
φ2ε(xε)− φ1ε(xε)

)
.

Using the latter and the viscosity criterion for the first equation in (8) we obtain that

−ε(∆ϕ(xε)+ε∆φ1ε(xε))−|∇ϕ(xε)+ε∇φ1ε(xε)|2−R1(x, I1ε )−ν2 exp
(
φ2ε(xε)− φ1ε(xε)

)
+ν1 ≤ 0. (23)

We notice that, by definition of φ1ε and φ2ε, we have

−R1(x, I1ε )− ν2 exp
(
φ2ε(xε)− φ1ε(xε)

)
+ ν1 = −H(x, I1ε , I

2
ε ).

From the latter and by letting ε→ 0 in (23) we deduce that

−|∇ϕ(x)|2 ≤ H(x, I1, I2),

and thus u is a subsolution of (9) in the viscosity sense. The supersolution criterion can be proved in
a similar way.

The constraint on the limit (maxx∈BL(0) u(x) = 0): From (20) we obtain that u(x) ≤ 0. To
prove that 0 ≤ maxx∈BL(0) u(x), we use the lower bounds on Iiε in (18). The proof of this property is
classical and we refer to [2, 20] for a detailed proof.
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4 Asymptotic behavior of stationary solutions

In this section we prove Theorem 1.2.

Proof. Support of ni: From (18), we deduce that, along subsequences and for i = 1, 2, (niε)ε
converges weakly to a measure ni. The fact that supp ni ⊂ Ω, for i = 1, 2, is a consequence of the
Hopf-Cole transformation (7). To prove (11) it is enough to prove Ω ⊂ Γ. To this aim following the
idea in [25] we first prove that, for i = 1, 2, uiε are uniformly semi-convex. Recall that the smooth
function v is semiconvex with constant C, if we have

vξξ ≥ −C, for all |ξ| = 1.

Let

min{uiε,ξξ(x) |x ∈ BL(0), i = 1, 2, ξ ∈ R
d, |ξ| = 1} = u1ε,ηη(xε). (24)

The case where the minimum is achieved for i = 2 can be treated similarly. We differentiate twice the
first equation in (8) with respect to η and obtain

−ε∆u1ε,ηη = 2∇u1ε · ∇u1ε,ηη + 2|∇u1ε,η|2 +R1
ηη + ν2



(
u2ε,η − u1ε,η

ε

)2

+
u2ε,ηη − u1ε,ηη

ε


 exp

(
u2ε − u1ε

ε

)
.

From (24) we obtain that ∆u1ε,ηη(xε) ≥ 0, ∇u1ε,ηη(xε) = 0 and u2ε,ηη(xε) − u1ε,ηη(xε) ≥ 0. Using (6) It
follows that

|∇u1ε,η(xε)|2 ≤ D

2
.

Since u1ε,ηη = ∇u1ε,η · η, we have |u1ε,ηη| ≤ |∇u1ε,η|. We deduce that

|u1ε,ηη(xε)|2 ≤ D

2
,

and thus

min{uiε,ξξ(x) |x ∈ BL(0), i = 1, 2, ξ ∈ R
d, |ξ| = 1} ≥ −

√
D

2
.

This proves that uiε, for i = 1, 2 are semiconvex functions with constant −
√

D
2 . By passing to the

limit in ε→ 0 we obtain that u is also semiconvex with the same constant.

A semiconvex function is differentiable at its maximum points. Therefore u is differentiable with
∇u = 0 in the set Ω. From (9), we deduce, that for all x ∈ Ω, H(x, I1, I2) = 0, and thus
Ω ⊂ {x ∈ BL(0) |H(x, I1, I2) = 0}. The fact that maxx∈BL(0)H(x, I1, I2) = 0 is immediate from
(9) and the facts that u is almost everywhere differentiable and H(x, I1, I2) is a continuous function.

Value of ni on the support: Let ξ ∈ C∞

c (BL(0)), i.e. ξ is a smooth function with compact
support in BL(0). We multiply (3) by ξ and integrate with respect to x in BL(0) to obtain, for
{i, j} = {1, 2},

−ε2
∫
BL(0)

niε(x)∆ξ(x)dx =
∫
BL(0)

ξ(x)niε(x)R
i(x, Iiε)dx

−νi
∫
BL(0)

ξ(x)niε(x)dx+ νj
∫
BL(0)

ξ(x)njε(x)dx.
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Since nlε −−⇀ nl weakly and I lε → I l, for l = 1, 2, as ε→ 0, we obtain that, for {i, j} = {1, 2},
∫

BL(0)
ξ(x)ni(x)Ri(x, Ii)dx− νi

∫

BL(0)
ξ(x)ni(x)dx+ νj

∫

BL(0)
ξ(x)nj(x)dx = 0,

and thus (13). Finally, (14) follows from (2).

5 Examples of application

In (15)–(17) we give a description of (n1, n2), assuming that the support of ni, for i = 1, 2, is a
set of distinct points, i.e. ni is a sum of Dirac masses and does not have a continuous distribution.
This is what we expect naturally in the models based on darwinian evolution. More precisely, from
Volterra-Gauses competitive exclusion principle (see [18, 29]) it is known in theoretical biology that
in a model with K limiting factors (as nutrients or geographic parameters) at most K distinct species
can generally survive. Here we have two limiting factors, represented by I1 and I2, that correspond
to the environmental pressures in the two patches. We thus expect to observe only monomorphic or
dimorphic situations. This is also the case in the numerical simulations represented in Section 7.
From (11) we know that the support of ni is included in the set of maximum points of H(x, I1, I2),

Γ, with (I1, I2) limits of (I1ε , I
2
ε ). If now H is such that, for fixed (I1, I2), the corresponding set Γ

consists of isolated points, it follows that the supports of n1 and n2 consist also of isolated points. We
give an example below where H has clearly this property.

Example 5.1 (monomorphism towards dimorphism) Consider a case with the following values
for the parameters of the system

R1(x, I) = a1x2 + b1x+ c1 − d1I, R2(x, I) = a2x2 + b2x+ c2 − d2I, (25)

with
ai, bi, ci, di ∈ R, ai < 0 < di, for i = 1, 2.

Then the supports of n1 and n2 consist at most of two single points.

We first notice that in the case where there is no migration between patches (ν1 = ν2 = 0), from the
results in [20], we know that in patch i, the population concentrates in large time on the maximum
points of Ri(·, Ii) with Ii the limit of Iiε. Since Ri is a quadratic function in x, it has a unique
maximum and thus ni is a single Dirac mass on this maximum point. However, allowing migration
by taking positive values for ν1 and ν2 the population can become dimorphic. In Section 7 we give a
numerical example where a dimorphic situation appears (see Figure (2)). This is in accordance with
the competitive exclusion principle since we have introduced a new limiting factor, which is the choice
of habitable zones.
Next, we prove the result:

Proof of Example 5.1. From (11) we have that the stationary solutions concentrate asymptoti-
cally on the maximum points of H defined as below

H(x, I1, I2) = 1
2F + 1

2

√
F 2 − 4G,
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with

F (x, I1, I2) := R1(x, I1)−ν1+R2(x, I2)−ν2, G(x, I1, I2) := (R1(x, I1)−ν1)(R2(x, I2)−ν2)−ν1ν2,
(26)

Since maxx∈BL(0)H(x, I1, I2) = 0, we deduce that

min
x∈BL(0)

G(x, I1, I2) = 0, (27)

and
Γ = {x ∈ BL(0) |H(x, I1, I2) = 0} = {x ∈ BL(0) |G(x, I1 , I2) = 0}. (28)

For fixed (I1, I2), G(x, I1, I2) is a polynomial of order 4. Therefore it has at most two maximum
points. It follows that Γ consists of one or two distinct points.

Example 5.2 (An asymmetric case) We assume that the parameters are such that the support of
ni, for i = 1, 2, consists of isolated points, and we have

Ri(x, I) = Ri(x)− cI, for i = 1, 2, R1(x) = R2(τ(x)), for all x ∈ BL(0) and ν1 = ν2 = ν,

(29)
with τ : BL(0) → BL(0) such that τ ◦ τ = Id. Let (I1, I2) be a limit point of (I1ε , I

2
ε ). We have

I1 = I2 = I, where I is such that

max
x

H(x, I, I) = min
x
G(x, I, I) = 0,

with Hand G defined respectively in (10) and (26). In particular, if x̄ ∈ Γ then we have τ(x̄) ∈ Γ,
with Γ defined in (12).

Assumption (29) covers the case where the growth terms have the following forms

R1(x) = f(|x− a|), R2(x) = f(|x+ a|),

with f : BL(0) → R a function and a constant (we consider the application τ(x) = −x). In this case
the competition terms in the patches have a simple form: the fitness, in absence of migration, has a
shift in traits from one zone to another, for instance due to a difference in the temperature. We can
thus characterize the limit in this case. If moreover, we suppose that the growth terms satisfy (25),
we conclude that in the limit while ε→ 0, the population, is either monomorphic with a single Dirac
mass at the origin, or it is dimorphic with two Dirac masses located on two symmetric points, one
of the winning traits being more favorable for zone 1 and the other one being more favorable for zone 2.

Proof of Example 5.2. We prove the claim by contradiction and we assume that I1 6= I2. Without
loss of generality we suppose that I1 < I2. Let x̄j ∈ supp n1. From (11) and (28), we have that G has
a minimum in x̄j and in particular, G(x̄j) ≤ G(τ(x̄j)), namely,

(R1(x̄j)− I1 − ν)(R2(x̄j)− I2 − ν) ≤ (R1(τ(x̄j))− I1 − ν)(R2(τ(x̄j))− I2 − ν).

It follows that

(R1(x̄j)− I1 − ν)(R2(x̄j)− I2 − ν) ≤ (R2(x̄j)− I1 − ν)(R1(x̄j)− I2 − ν).

11



We deduce that

0 ≤ (I1 − I2)
(
R2(x̄j)−R1(x̄j)

)
,

and thus

R2(x̄j) ≤ R1(x̄j).

From the latter, I1 < I2 and (16) we obtain that

ρ2j < ρ1j .

Since this is true for all x̄j ∈ supp n1 = supp n2, we obtain from (17) that I2 < I1. This is a
contradiction and thus I1 = I2.

6 The case with several patches

The result can be extended to the case with more than two patches. The model for K patches is
written as

{
−ε2∆niε = niεR

i(x, Iiε) +
∑

j ν
ijn

j
ε − νiiniε in BL(0) and for i ∈ {1, · · · ,K},

∇niε · ~n = 0 in ∂BL(0) and for i ∈ {1, · · · ,K}, (30)

with

Iiε =

∫
ψi(x)niε(x)dx, for i ∈ {1, · · · ,K}. (31)

We suppose that (n1ε, · · · , nKε ) is a solution of (30)–(31) such that

min(I1ε , · · · , IKε ) ≤ IM , Im ≤ max(I1ε , · · · , IKε ), (I1ε , · · · , IKε ) −→
ε→0

(I1, · · · , IK). (32)

We also replace assumption (6) by

|Ri(x, I)| ≤ C, −D ≤ Ri
ξξ(x, I), for x ∈ BL(0), 0 ≤ I, ξ ∈ R

d, |ξ| = 1 and i = 1, · · · ,K, (33)

and we use again the Hopf-Cole transformation

niε = exp(
uiε
ε
), for i = 1, · · · ,K.

To present the result we also introduce the following matrix

B =




R1(x, I1)− ν11 · · · ν1K

...
. . .

...
νK1 · · · RK(x, IK)− νKK


 ,

and as in the case with two patches we define

Ω = {x ∈ BL(0) |u(x) = 0}, Γ = {x ∈ BL(0) |H(x, I1, · · · , IK) = max
x∈BL(0)

H(x, I1, · · · , IK) = 0}.

We have
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Theorem 6.1 We assume that (n1ε, · · · , nKε ) is a solution of (30)–(31) with (4), (32) and (33). Then,
after extraction of a subsequence, the sequences (uiε)ε, for i = 1, · · · ,K, converge to a continuous
function u ∈ C(BL(0)) that is a viscosity solution to the following equation





−|∇u|2 = H(x, I1, · · · , IK), in BL(0),

maxx∈BL(0) u(x) = 0,

with H(x, I1, I2) the largest eigenvalue of the matrix B. Let ni, for i = 1, · · · ,K, be a weak limit of
niε along this subsequence. We have

supp ni ⊂ Ω ∩ Γ, for i = 1, · · · ,K

Moreover, if the support of ni, for i = 1, · · · ,K, is a set of distinct points: suppni ⊂ {x1, x2, · · · , xl},
we then have

ni =

l∑

j=1

ρijδ(x− xj), for i = 1, · · · ,K,

with




ρ1j
...
ρKj


 the eigenvector corresponding to the largest eigenvalue of B at the point xj , which is 0,

coupled by ∑

j

ρijψ
i(xj) = Ii.

Proof. The proof of Theorem 6.1 follows along the same lines as the one of Theorem 1.1 and Theorem
1.2. The only difference is in the proof of lower and upper bounds on uε which are obtained using the
uniform bounds on Iiε. Indeed Assumption (32) is slightly weaker than (18). To prove uniform bounds
on uiε, with i = 1, · · · ,K, using (32) we first prove that for an index j ∈ {1, · · · ,K} which is such that
the minimum (respectively the maximum) of (I1, · · · , IK) is attained for Ij , ujε is uniformly bounded
from above (respectively from below), then we use an estimate of type (19) to obtain a uniform bound
from above (respectively from below) on uiε for all i ∈ {1, · · · ,K}.

7 Time dependent problem and numerics

How well the asymptotics of the solutions of (3) (that are stationary solutions of (1)) approximate
the large time behavior of the solution of the time-dependent problem (1), while ε vanishes ? In
this section, using numerical simulations we try to answer to this question. Theoretical study of the
time-dependent problem, which requires appropriate regularity estimates, is beyond the scope of the
present paper and is left for future work.
The numerical simulations for (1) have been performed in Matlab using the following parameters

R1(x, I) = 3− (x+ 1)2 − I, R2(x, I) = 3− (x− 1)2 − I, ψ1(x) = ψ2(x) = 1,
ν1 = ν2 = 2.5, ε = .001, L = 2.

(34)

We notice that these parameters verify the properties in both examples 5.1 and 5.2. Therefore, we
expect that the stationary solutions are concentrated on one or two Dirac masses that are symmetric
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with respect to the origin. As we observe in Figure 1, n1ε and n2ε, with (n1ε, n
2
ε) solution of the time-

dependent problem (1) with the above parameters, concentrate in large time on a single Dirac mass at
the origin, which is the mean value of the favorable traits in each zone in absence of migration. In this
simulation, initially n1ε is concentrated on x = −0.3 and n2ε is concentrated on x = 0.3. Depending on
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Figure 1: Dynamics of the time-dependent problem (1) with parameters given in (34). In both
figures, horizontally is time t and vertically is trait x. The gray layers represent the value of n1ε(left)
and n2ε(right). Initially n1ε is concentrated on x = −0.3 and n2ε is concentrated on x = 0.3. Due to
migration both traits appear rapidly in the two patches, but in large time only one dominant trait
persists. This point is the mean value of favorable traits in each patch in absence of migration.

the parameters of the model, one can also observe stability in large time of dimorphic situations. For
instance, if we vary the values of ν1 and ν2 in (34) as follows

R1(x, I) = 3− (x+ 1)2 − I, R2(x, I) = 3− (x− 1)2 − I, ψ1(x) = ψ2(x) = 1
ν1 = ν2 = 1, ε = .001, L = 2,

(35)

then n1ε and n
2
ε, with (n1ε, n

2
ε) solution of the time-dependent problem (1), concentrate in large time on

two distinct Dirac masses, one of them more favorable to patch 1 and the second one more favorable
to patch 2 (see Figure 2). We note indeed that, in absence of migration, the local optimal trait in
patch 1 is x = −1 and in patch 2 is x = 1. In presence of migration, the two initial traits appear
immediately in the two patches and evolve to two points, one close to x = −0.86 and the other close
to x = 0.86.

Does the above numerical solution converge in long time to the solution described by the algebraic
constraints given in Theorem 1.2? The values of I1ε and I2ε are depicted in Figure 3 showing that both
these quantities converge in long time to 2.25. We can also compute the value of H at the final time
step. As we observe in Figure 4, maxxH = 0 and the maximum is attained at the points x = −.86
and x = .86 which correspond to the positions of the Dirac masses in Figure 2. We can also compute
numerically the weights of the Dirac masses at the final time step, to obtain

n1ε(t = 5) ≈ 1.77 δ(x + .86) + .48 δ(x − .86), n2ε(t = 5) ≈ .48 δ(x + .86) + 1.77 δ(x − .86).

One can verify that the above weights satisfy (16)–(17).

14



x

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2: Dynamics of the time-dependent problem (1) with parameters given in (35). In both
figures, horizontally is time t and vertically is trait x. The gray layers represent the value of n1ε(left)
and n2ε(right). In absence of migration, the local optimal trait in patch 1 is x = −1 and in patch 2 is
x = 1. Initially n1ε is concentrated on x = −0.3 and n2ε is concentrated on x = 0.3. Due to migration
both traits appear rapidly in the two patches, and evolve to two points close to −0.86 and 0.86.
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