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Abstract. We study several Fokker-Planck equations arising from a stochas-
tic chemical kinetic system modeling a gene regulatory network in biology. The
densities solving the Fokker-Planck equations describe the joint distribution of
the mRNA and µRNA content in a cell. We provide theoretical and numerical
evidence that the robustness of the gene expression is increased in the presence
of µRNA. At the mathematical level, increased robustness shows in a smaller
coefficient of variation of the marginal density of the mRNA in the presence
of µRNA. These results follow from explicit formulas for solutions. Moreover,
thanks to dimensional analyses and numerical simulations we provide qualita-
tive insight into the role of each parameter in the model. As the increase of
gene expression level comes from the underlying stochasticity in the models,
we eventually discuss the choice of noise in our models and its influence on our
results.
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1. Introduction

This paper is concerned with a mathematical model for a gene regulatory net-
work involved in the regulation of DNA transcription. DNA transcription is part
of the mechanism by which a sequence of the nuclear DNA is translated into the
corresponding protein. The transcription is initiated by the binding of a transcrip-
tion factor, which is usually another protein, onto the gene’s DNA-binding domain.
Once bound, the transcription factor promotes the transcription of the nuclear DNA
into a messenger RNA (further denoted by mRNA), which, once released, is trans-
lated into the corresponding protein by the ribosomes. This process is subject to a
high level of noise due to the large variability of the conditions that prevail in the
cell and the nucleus at the moment of the transcription. Yet, a rather stable amount
of the final protein is needed for the good operation of the cell. The processes that
regulate noise levels and maintain cell homeostasis have been scrutinized for a long
time. Recently, micro RNAs (further referred to as µRNAs) have occupied the front
of the scene. These are very short RNAs which do not code for proteins. Many
different sorts of µRNAs are involved in various epigenetic processes. But one of
their roles seems precisely the reduction of noise level in DNA transcription. In this
scenario, the µRNAs are synthesized together with the mRNAs. Then, some of the
synthesized µRNAs bind to the mRNAs and de-activate them. These µRNA-bound
mRNA become unavailable for protein synthesis. It has been proposed that this
paradoxical mechanism which seems to reduce the efficiency of DNA transcription
may indeed have a role in noise regulation (see [9, 19, 10] and the review [24]). The
goal of the present contribution is to propose a mathematical model of the µRNA-
mRNA interaction and to use it to investigate the role of µRNAs as potential noise
regulators.

Specifically, in this paper, we propose a stochastic chemical kinetic model for the
mRNA and µRNA content in a cell. The production of mRNAs by the transcription
factor and their inactivation through µRNA binding are taken into account. More
precisely, our model is a simplified version of the circuit used in [30, Fig. 2A and
2A’]. We consider a ligand involved in the production of both an mRNA and a
µRNA, the µRNA having the possibility to bind to the mRNA and deactivate it.
By contrast to [30], we disregard the way the ligand is produced and consider that
the ligand is such that there is a constant production rate of both mRNA and
µRNA. A second difference to [30] is that we disregard the transcription step of
the mRNA into proteins. While [30] proposes to model the µRNA as acting on
translation, we assume that the µRNA directly influences the number of mRNA
available for transcription. Therefore, we directly relate the gene expression level
to the number of µRNA-free mRNA also referred to as the number of unbound
mRNA. In order to model the stochastic variability in the production of the RNAs,
a multiplicative noise is added to the production rate at all time. From the resulting
system of stochastic differential equations, we introduce the joint probability density
for mRNA and µRNA which solves a deterministic Fokker-Planck equation. The
mathematical object of interest is the stationary density solving the Fokker-Planck
equation and more precisely the marginal density of the mRNA. The coefficient
of variation (also called cell-to-cell variation) of this mRNA density, which is its
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standard deviation divided by its the expectation, is often considered as the relevant
criterion for measuring the robustness of gene expression (see for instance [30]).

Our main goal in this contribution is to provide theoretical and numerical ev-
idence that the robustness of the gene expression is increased in the presence of
µRNA. At the theoretical level we derive a number of analytical formulas either for
particular subsets of parameters of the model or under some time-scale separation
hypotheses. From these formulas we can easily compute the cell to cell variation nu-
merically and verify the increased robustness of gene expression when binding with
µRNA happens in the model. For general sets of parameters, the solution cannot
be computed analytically. However we can prove well-posedness of the model and
solve the PDE with a specifically designed numerical scheme. From the approxi-
mate solution, we compute the coefficient of variation and verify the hypothesis of
increased gene expression.

Another classical approach to the study of noise in gene regulatory networks is
through the chemical master equation [32] which is solved numerically by means of
Gillespie’s algorithm [21], see e.g. [13, 30]. Here, we use a stochastic chemical ki-
netic model through its associated Kolmogorov-Fokker-Planck equation. Chemical
kinetics is a good approximation of the chemical master equation when the number
of copies of each molecule is large. This is not the case in a cell where sometimes
as few as a 100 copies of some molecules are available. Specifically, including a
stochastic term in the chemical kinetic approach is a way to retain some of the
randomness of the process while keeping the model complexity tractable. This ul-
timately leads to a Fokker-Planck model for the joint distribution of mRNAs and
µRNAs. In [18], a similar chemical kinetic model is introduced with a different
modelling of stochasticity. The effect of the noise is taken into account by adding
some uncertainty in the (steady) source term and the initial data. The authors
are interested in looking at how this uncertainty propagates to the mRNA content
and in comparing this uncertainty between situations including µRNA production
or not. The uncertainty is modeled by random variables with given probability
density functions. Compared to [18], the Fokker-Planck approach has the advan-
tage that the random perturbations do not only affect the initial condition and
the source term, but are present at all times and vary through time. We believe
that this is coherent with how stochasticity in a cell arises through time-varying
ecological or biological factors.

While Fokker-Planck equations are widely used models in mathematical biology
[31], their use for the study of gene regulatory network is, up to our knowledge,
scarce (see e.g. [27]). Compared to other approaches, the Fokker-Planck model
enables us to derive analytical formulas for solutions in certain cases. This is
particularly handy for understanding the role of each parameter in the model,
calibrating them from real-world data and perform fast numerical computations.
Nevertheless, in the general case, the theoretical study and the numerical simulation
of the model remains challenging because of the unboundedness of the drift and
diffusion coefficients. We believe that we give below all the tools for handling
these difficulties, and that our simple model provides a convincing mathematical
interpretation of the increase of gene expression in the presence of µRNAs.

The paper is organized as follows. In Section 2, we introduce the system of
SDEs and the corresponding Fokker-Planck models. In Section 3, we discuss the
well-posedness of the Fokker-Planck equations and derive analytical formulas for
solutions under some simplifying hypotheses. In Section 4, we use the analytical
formulas for solutions to give mathematical and numerical proofs of the decrease of
cell-to-cell variation in the presence of µRNA. In Section 5, we propose a numerical
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scheme for solving the main Fokker-Planck model and gather further evidence con-
firming the hypothesis of increased gene expression from the simulations. Finally, in
Section 6 we discuss the particular choice of multiplicative noise (i.e. the diffusion
coefficient in the Fokker-Planck equation) in our model. In the appendix, we derive
weighted Poincaré inequalities for gamma and inverse-gamma distributions which
are useful in the analysis of Section 3. The code used for numerical simulations in
this paper is publicly available on GitLab [17].

2. Presentation of the models

In this section, we introduce three steady Fokker-Planck models whose solutions
describe the distribution of unbound mRNA and µRNA within a cell. The solutions
to these equations can be interpreted as the probability density functions associ-
ated with the steady states of stochastic chemical kinetic systems describing the
production and destruction of mRNA and µRNA. In Section 2.1 we introduce the
main model for which the consumption of RNAs is either due to external factors
in the cell (translation, etc.) or to binding between the two types of mRNA and
µRNA. Then, for comparison, in Section 2.2 we introduce the same model without
binding between RNAs. Finally in Section 2.3, we derive an approximate version of
the first model, by considering that reactions involving µRNAs are infinitely faster
than those involving mRNAs, which amplifies the binding phenomenon and math-
ematically allows for the derivation of analytical formulas for solutions. The latter
will be made explicit in Section 3.

2.1. Dynamics of mRNA and µRNA with binding. We denote by rt the
number of unbound mRNA and µt the number of unbound µRNA of a given cell at
time t. The kinetics of unbound mRNA and µRNA is then given by the following
stochastic differential equations

(1)

 drt = (cr − c rt µt − kr rt) dt +
√

2σr rt dB1
t ,

dµt = (cµ − c rt µt − kµ µt) dt +
√

2σµ µt dB2
t ,

with cr, cµ, kr, kµ, σr, σµ being some given positive constants and c being a given
non-negative constant. Let us detail the meaning of each term in the modeling.
The first term of each equation models the constant production of mRNA (resp.
µRNA) by the ligand at a rate cr (resp. cµ). The second term models the binding
of the µRNA to the mRNA. Unbound mRNA and µRNA are consumed by this
process at the same rate. The rate increases with both the number of mRNA and
µRNA. In the third term, the parameters kr and kµ are the rates of consumption
of the unbound mRNA or µRNA by various decay mechanisms. The last term in
both equations represents stochastic fluctuations in the production and destruction
mechanisms of each species. It relies on a white noise dBt/dt where Bt = (B1

t , B
2
t )

is a two-dimensional standard Brownian motion. The intensity of the stochastic
noise is quantified by the parameters

√
2σr rt and

√
2σµ µt. Such a choice of mul-

tiplicative noise ensures that rt and µt remain non-negative along the dynamics.
The Brownian motions B1

t and B2
t are uncorrelated. The study of correlated noises

or the introduction of extrinsic noise sources would be interesting, but will be dis-
carded here.

In this paper we are interested in the invariant measure of (1) rather than the
time dynamics described by the above SDEs. From the modelling point of view,
we are considering a large number of identical cells and we assume that mRNA
and µRNA numbers evolve according to (1). Then we measure the distribution of
both RNAs among the population, when it has reached a steady state f ≡ f(r, µ).
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According to Itô’s formula, the steady state should satisfy the following steady
Fokker-Planck equation

(2)


Lf(r, µ) = 0 , (r, µ) ∈ Ω = (0,∞)2 ,∫

Ω
f(r, µ) dr dµ = 1 , f(r, µ) ≥ 0 .

where the Fokker-Planck operator is given by

(3) Lf(r, µ) := ∂r
[
∂r(σrr2f)− (cr − c r µ− kr r)f

]
+ ∂µ

[
∂µ(σµµ2f)− (cµ − c r µ− kµ µ)f

]
.

Since we do not model the protein production stage, we assume that the observed
distribution of gene expression level is proportional to the marginal distribution of
mRNA, i.e.

ρ(r) =
∫ ∞

0
f(r, µ) dµ .

By integration of (2) in the µ variable, ρ satisfies the equation

(4) ∂r
[
∂r(σr r2 ρ)− ( cr − c r jµ(r)− kr r)ρ

]
= 0.

The quantity jµ(r) is the conditional expectation of the number of µRNA within
the population in the presence of r molecules of mRNA and it is given by

(5) jµ(r) = 1
ρ(r)

∫
µ f(r, µ) dµ .

Before ending this paragraph, we note an alternate way to derive the Fokker-Planck
equation (2) from the chemical master equation through the chemical Langevin
equation. We refer the interested reader to [22].

2.2. Dynamics of free mRNA without binding. In the case where there is no
µRNA binding, namely when c = 0, the variables r and µ are independent. Thus,
the densitites of the invariant measures satisfying (2) are of the form

f0(r, µ) = ρ0(r)λ(µ) ,

where λ(µ) is the density of the marginal distrubution of µRNA. From the modelling
point of view, it corresponds to the case where there is no feed-forward loop from
µRNA. Therefore, only the dynamics on mRNA, and thus ρ0, is of interest in our
study. It satisfies the following steady Fokker-Planck equation obtained directly
from (4),

(6)


∂r
[
σr∂r(r2ρ0)− (cr − kr r)ρ0

]
= 0 ,∫ ∞

0
ρ0(r) dr = 1 , ρ0(r) ≥ 0 .

It can be solved explicitly as we will discuss in Section 3.2.

2.3. Dynamics with binding and fast µRNA. The Fokker-Planck equation (2)
cannot be solved explicitly. However, one can make some additional assumptions in
order to get an explicit invariant measure providing some insight into the influence
of the binding mechanism with µRNA. This is the purpose of the model considered
hereafter.

Let us assume the µRNA-mRNA binding rate, the µRNA decay and the noise
on µRNA are large. Since the sink term of the µRNA equation is large, it is also
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natural to assume that the µRNA content is small. Mathematically, we assume the
following scaling

c = c̃

ε
, kµ = k̃µ

ε
, σµ = σ̃µ

ε
, µt = εµ̃t ,

for some small constant ε > 0. Then (rt, µ̃t) satisfies drt = (cr − c̃ rt µ̃t − k̃r rt) dt +
√

2σr rt dB1
t ,

ε d µ̃t = (cµ − c̃ rt µ̃t − k̃µ µ̃t) dt +
√

2 ε σ̃µ µ̃t dB2
t ,

whose corresponding steady Fokker-Planck equation for the invariant measure then
writes, dropping the tilde,

∂r
[
∂r(σrr2fε)− (cr − c r µ− kr r)fε

]
+ 1
ε
∂µ
[
∂µ(σµµ2fε)− (cµ − c r µ− kµ µ)fε

]
= 0

In the limit case where ε → 0, one may expect that at least formally, the density
fε converges to a limit density ffast satisfying

∂µ
[
∂µ(σµµ2ffast)− (cµ − c r µ− kµ µ)ffast

]
= 0 .

As r is only a parameter in the previous equation and since the first marginal of fε
still satisfies (4) for all ε, one should have (formally)

(7)



ffast(r, µ) = ρfast(r)M(r, µ) ≥ 0 ,

∂µ
[
∂µ(σµµ2M)− (cµ − c r µ− kµ µ)M

]
= 0 ,

∂r
[
∂r(σr r2 ρfast)− ( cr − c r jfast(r)− kr r)ρfast

]
= 0 ,∫ ∞

0
ρfast(r) dr = 1 ,

∫ ∞
0

M(r, µ) dµ = 1 ,

jfast(r) =
∫ ∞

0
µ M(r, µ) dµ .

3. Well-posedness of the models and analytical formulas for
solutions

In this section, we show that the three previous models are well-posed. For the
Fokker-Planck equations (6) and (7), we explicitly compute the solutions. They
involve inverse gamma distributions.

3.1. Gamma and inverse gamma distributions. The expressions of the gamma
and inverse gamma probability densities are respectively
(8) γα,β(x) = Cα,β x

α−1 exp (−βx) ,

and

(9) gα,β(y) = Cα,β
y1+α exp

(
−β
y

)
,

for x, y ∈ (0,∞). The normalization constant is given by Cα,β = βα/Γ(α) where Γ
is the Gamma function. Observe that by the change of variable y = 1/x one has

gα,β(y) dy = γα,β(x) dx
which justifies the terminology. Let us also recall that the first and second moments
of the inverse gamma distribution are

(10)
∫ ∞

0
y gα,β(y) dy = β

α− 1 , if α > 1 , β > 0 ,
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(11)
∫ ∞

0
y2 gα,β(y) dy = β2

(α− 1)(α− 2) , if α > 2 , β > 0 ,

Interestingly enough, we can show (see Appendix A.1 for details and additional
results) that inverse gamma distributions with finite first moment (α > 1) satisfy
a (weighted) Poincaré inequality. The proof of the following proposition is done in
Appendix A.1 among more general considerations.

Proposition 3.1. Let α > 1 and β > 0. Then, for any function v such that the
integrals make sense, one has

(12)
∫ ∞

0
|v(y)− 〈 v 〉gα,β |

2 gα,β(y) dy ≤ 1
α− 1

∫ ∞
0
|v′(y)|2 gα,β(y) y2 dy ,

where for any probability density ν and any function u on (0,∞), the notation 〈u 〉ν
denotes

∫
uν.

3.2. Explicit mRNA distribution without binding. In the case of free mR-
NAs, a solution to (6) can be computed explicitely and takes the form of an inverse
gamma distribution.

Lemma 3.2. The following inverse gamma distribution

(13) ρ0(r) = g1+ kr
σr
, crσr

(r) = C1+ kr
σr
, crσr

1
r2+ kr

σr

exp
(
− cr
σr r

)
is the only classical solution to (6).

Proof. First observe that

∂r
[
σr∂r(r2ρ0)− (cr − kr r)ρ0

]
= ∂r

[
σr r

2 g1+ kr
σr
, crσr

∂r

(
ρ0 g

−1
1+ kr

σr
, crσr

)]
.

Therefore a solution of (8) must be of the form

ρ0(r) = C1 g1+ kr
σr
, crσr

∫ r

1
σ−1
r r−2g−1

1+ kr
σr
, crσr

(r) dr + C2 g1+ kr
σr
, crσr

,

for some constants C1, C2. The first term decays like 1/r at infinity, thus the only
probability density ρ0 of this form is obtained for C1 = 0 and C2 = 1.

�

The Poincaré inequality (12) tells us that the solution of Lemma 3.2 is also the
only (variational) solution in the appropriate weighted Sobolev space. Indeed, we
may introduce the natural Hilbert space associated with Equation (6),

Xα,β = {v : (0,∞)→ R , ‖v‖Xα,β <∞}

with a squared norm given by

‖v‖2Xα,β =
∫ ∞

0

(
[(v/gα,β) (y)]2 + [(v/gα,β)′(y)]2 y2

)
gα,β(y) dy .

Then the following uniqueness result holds.

Lemma 3.3. The classical solution ρ0 = g1+ kr
σr
, crσr

is the only solution of (6) in
X1+ kr

σr
, crσr

.

Proof. If ρ0 and ρ̃0 are two solutions of (6), a straightforward consequence of (12) is
that ‖ρ0− ρ̃0‖X

1+ kr
σr

,
cr
σr

= 0. This is obtained by integrating the difference between

the equation on ρ0 and ρ̃0 against (ρ0 − ρ̃0)g−1
1+ kr

σr
, crσr

. �
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Another consequence of the Poincaré inequality is that if we consider the time
evolution associated with the equation (6) then solutions converge exponentially fast
towards the steady state ρ0. This justifies our focus on the stationary equations.
The transient regime is very short and equilibrium is reached quickly. We can
quantify the rate of convergence in terms of the parameters.

Proposition 3.4. Let ξ solve the Fokker-Planck equation

∂tξ(t, r) = ∂r
[
σr∂r(r2ξ(t, r))− (cr − kr r)ξ(t, r)

]
,

starting from the probability density ξ(0, r, µ) = ξin(r, µ). Then for all t ≥ 0,∫ ∞
0

(ξ(t, r)− ρ0(r))2 g−1
1+ kr

σr
, crσr

(r) dr

≤ e−
kr
σr

t

∫ ∞
0

(ξin(r)− ρ0(r))2 g−1
1+ kr

σr
, crσr

(r) dr .

Proof. Observe that ξ− ρ0 solves the unsteady Fokker-Planck equation, so that by
multiplying the equation by (ξ − ρ0) g−1

1+ kr
σr
, crσr

and integrating in r one gets

d
dt

∫ ∞
0

(ξ(t, r)− ρ0(r))2 g−1
1+ kr

σr
, crσr

(r) dr

+
∫ ∞

0

∣∣∣∣∣∂r
(
ξ(t, ·)− ρ0

g1+ kr
σr
, crσr

)
(r)

∣∣∣∣∣
2

g1+ kr
σr
, crσr

(r) r2 dr = 0 .

Then by using the Poincaré inequality (12) and a Gronwall type argument, one gets
the result. �

3.3. Explicit mRNA distribution in the presence of fast µRNA. Now we
focus on the solution of (7). The same arguments as those establishing Lemma 3.3
show that the only function M satisfying (7) is the following inverse gamma distri-
bution

(14) M(r, µ) = g1+ kµ
σµ

+ c
σµ
r,
cµ
σµ

(µ) .

Then an application of (10) yields

(15) jfast(r) = cµ
kµ + cr

.

It remains to find ρfast which is a probability density solving the Fokker-Planck
equation

∂r

[
∂r(σr r2 ρfast)− ( cr −

cµ c r

kµ + cr
− kr r)ρfast

]
= 0 .

Arguing as in the proof of Lemma 3.2, one observe that integrability properties
force ρfast to actually solve

∂r(σr r2 ρfast)− ( cr −
cµ c r

kµ + cr
− kr r)ρfast = 0 .

which yields

(16) ρfast(r) = C

(
1 + kµ

cr

) c cµ
σr kµ 1

r2+ kr
σr

exp
(
− cr
σrr

)
where C ≡ C(cr, cµ, kr, kµ, σr, σµ, c) is a normalizing constant making ρfast a prob-
ability density function.
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3.4. Well-posedness of the main Fokker-Planck model. Now we are inter-
ested in the well-posedness of (2), for which we cannot derive explicit formulas
anymore. Despite the convenient functional framework introduced in Section 3.2,
classical arguments from elliptic partial differential equation theory do not seem to
be adaptable to the case c > 0. The main obstruction comes from an incompatibil-
ity between the natural decay of functions in the space Xα,β and the rapid growth
of the term c r µ when |(r, µ)| → ∞.

However, thanks to the results of [26] focused specifically on Fokker-Planck equa-
tions, we are able to prove well-posedness of the steady Fokker-Planck equation (2).
The method is based on finding a Lyapunov function for the adjoint of the Fokker-
Planck operator and relies on an integral identity proved by the same authors in
[25]. The interested reader may also find additional material and a comprehensive
exposition concerning the analysis of general Fokker-Planck equations for measures
in [12].

First of all let us specify the notion of solution. A weak solution to (2) is an
integrable function f such that

(17)


∫

Ω
f(r, µ)Lϕ(r, µ) = 0 , for all ϕ ∈ C∞c (Ω) ,∫

Ω
f(r, µ) = 1 , f(r, µ) ≥ 0 ,

where the adjoint operator is given by

(18) Lϕ(r, µ) := σrr
2∂2
rrϕ+ (cr − c r µ− kr r)∂rϕ

+ σµµ
2∂2
µµϕ+ (cµ − c r µ− kµ µ)∂µϕ .

A reformulation and combination of [26, Theorem A and Proposition 2.1] pro-
vides the following result.
Proposition 3.5 ([26]). Assume that there is a smooth function U : Ω→ [0,+∞),
called Lyapunov function with respect to L, such that
(19) lim

(r,µ)→∂Ω
U(r, µ) = +∞ ,

and
(20) lim

(r,µ)→∂Ω
LU(r, µ) = −∞ ,

where ∂Ω = ∂Ω∪({+∞}×R+)∪(R+×{+∞}). Then there is a unique f satisfying
(17). Moreover f ∈W 1,∞

loc (Ω).

Remark 3.6. The method of Lyapunov functions is a standard tool for proving
well-posedness of many problems in the theory of ordinary differential equations,
dynamical systems... For diffusion processes and Fokker-Planck equations its use
dates back to Has’minskii [23]. We refer to [12, Chapter 2], [26] and references
therein for further comments on the topic. Let us stress however that Lyapunov
functions are not related (at least directly) to the Lyapunov (or entropy) method
for evolution PDEs in which one shows the monotony of a functional to quantify
long-time behavior.

Remark 3.7. Thanks of the degeneracy of the diffusivities at r = 0 and µ = 0
and the Lyapunov function condition, one doesn’t need supplementary boundary
conditions in (17) for the problem to have a unique solution. This is different from
standard elliptic theory where boundary conditions are necessary to define a unique
solution when the domain and the coefficients are bounded with uniformly elliptic
diffusivities. Further comments may be found in [26].
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Lemma 3.8. Choose any two constants br > c
kµ

and bµ > c
kr
. Then, the function

U : Ω→ R defined by
U(r, µ) = brr − ln(brr) + bµµ− ln(bµµ)

is a Lyapunov function with respect to L ( i.e. it is positive on Ω and it satisfies
(19) and (20)).

Proof. First observe that condition (19) is clearly satisfied. Also, U is minimal at
(b−1
r , b−1

µ ) where it takes the value 2 and thus it is positive on Ω. Finally a direct
computation yields

LU(r, µ) = (σr + σµ + brcr + bµcµ + kr + kµ)

− cr
r
− cµ

µ
− (brkr − c)r − (bµkµ − c)µ− crµ(br + bµ) ,

and (20) follows. �

Now we state our well-posedness result for the Fokker-Planck equation (17).

Proposition 3.9. There is a unique weak solution f to the steady Fokker-Planck
equation (2). Moreover, f is indefinitely differentiable in Ω.

Proof. The existence and uniqueness of a solution f ∈ W 1,∞
loc (Ω) is a combination

of Proposition 3.5 and Lemma 3.8. From there in any smooth compact subdomain
K ⊂⊂ Ω, we get from standard elliptic theory [20] that f ∈ C∞(K), since the
coefficents are smooth and the operator is uniformly elliptic. �

4. Noise reduction by binding : the case of fast µRNA

In this section we focus on the comparison between the explicit distributions (13)
and (16). We are providing theoretical and numerical evidence that the coefficient
of variation (which is a normalized standard deviation) of (16) is less than that
of (13). This quantity called cell to cell variation in the biological literature [30]
characterizes the robustness of the gene expression level (the lower the better). We
start by performing a rescaling in order to extract the dimensionless parameters
which characterize the distributions.

4.1. Dimensional analysis. In order to identify the parameters of importance in
the models, we rescale the variables r and µ around characteristic values r̄ and µ̄
chosen to be
(21) r̄ = cr

kr
and µ̄ = cµ

kµ
.

These choices are natural in the sense that they correspond to the steady states
of the mRNA and µRNA dynamics without binding nor stochastic effects, that is
respectively drt = (cr − kr rt) dt and dµt = (cµ − kµ µt) dt . When the noise term
is added, it still corresponds to the expectation of the invariant distribution, that
is the first moment of ρ0 in the case of mRNA. We introduce fad such that for all
(r, µ) ∈ Ω one has

1
r̄µ̄

fad
(
r

r̄
,
µ

µ̄

)
= f(r, µ) .

After some computations one obtains that the Fokker-Planck equation (2)-(3) can
be rewritten in terms of fad as

(22) ∂r
[
δ (1− γ p r µ− r)fad − ∂r(r2fad)

]
+ ∂µ

[
δκ(1− γ r µ− µ)fad − ν ∂µ(µ2fad)

]
= 0 ,
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The marginal distributions ρ0 and ρfast are rescaled into dimensionless densities

ρδ0(r) = g1+δ,δ(r) = Cad
0

1
r2+δ exp

(
−δ
r

)
(23)

ρδ,γ,pfast (r) = Cad
fast

(
1 + 1

γr

)γ p δ 1
r2+δ exp

(
−δ
r

)
(24)

where Cad
0 and Cad

fast are normalizing constants depending on the parameters of the
model and δ, p and γ are dimensionless parameters. The first parameter

(25) δ = kr
σr
,

only depends on constants that are independent of the dynamics of µRNAs. The two
other dimensionless parameters appearing in the marginal distribution of mRNA
in the presence of fast µRNA are

(26) p = cµ
cr
,

and

(27) γ = c r̄

kµ
= c cr

kµ kr
.

Let us give some insight into the biological meaning of these parameters. The
parameter γ measures the relative importance of the two mechanisms of destruc-
tion of µRNAs, namely the binding with mRNAs versus the natural destruc-
tion/consumption. A large γ means that the binding effect is strong and con-
versely. The parameter p compares the production rate of µRNAs with that of
mRNAs. Large values of p mean that there are much more µRNAs than mRNAs
produced per unit of time.

Finally, in the Fokker-Planck model (22), there are also two other parameters
which are

(28) κ = kµ
kr
,

and

(29) ν = σµ
σr

.

The parameter κ compares consumption of µRNA versus that of mRNA by mecha-
nisms which are not the binding between the two RNAs. The parameter ν compares
the amplitude of the noise in the dynamics of µRNA versus that of the mRNA.

Remark 4.1. Observe that the approximation of fast µRNA leading to the model
discussed in Section 2.3 in its dimensionless form amounts to taking ν = κ = 1/ε
and letting ε tend to 0.

4.2. Cell to cell variation (CV). For any suitably integrable non-negative func-
tion ν, let us denote by

mk(ν) =
∫
yk ν(y) dy

its k-th moment. The coefficient of variation or cell to cell variation (CV) is defined
by

(30) CV(ν) = Var(ν/m0(ν))1/2

Exp(ν/m0(ν)) =
(
m2(ν)m0(ν)
m1(ν)2 − 1

)1/2
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where Exp(·) and Var(·) denote the expectation and variance. Let us state a first
lemma concerning some cases where the coefficient of variation can be computed
exactly.

Lemma 4.2. Consider the dimensionless distributions defined in (23) and (24).
Then one has that

(31) Exp(ρδ0) = 1 , Var(ρδ0) = 1
δ − 1 , CV(ρδ0) = 1√

δ − 1
,

where the variance and coefficient of variation are well-defined only for δ > 1. Then
for any δ > 1, the following limits holds

lim
γ→0

CV(ρδ,γ,pfast ) = CV(ρδ0) , ∀p > 0 ,

lim
p→0

CV(ρδ,γ,pfast ) = CV(ρδ0) , ∀γ > 0 ,

lim
γ→∞

CV(ρδ,γ,pfast ) = CV(ρδ0) , ∀p ∈ [0, 1) .

Proof. The formulas for the moments follow from (10) and (11). Then observe that
for all r, one has

lim
γ→0

ρδ,γ,pfast (r) = lim
p→0

ρδ,γ,pfast (r) = ρδ0(r)

and
lim

γ→+∞
ρδ,γ,pfast (r) = g1+δ,(1−p)δ(r)

and one can then take limits in integrals by dominated convergence. �

Let us give a biological interpretation of the previous lemma. When γ = 0
or p = 0, which respectively corresponds to the cases where there is no binding
between mRNA and µRNA or there is no production of µRNA, the coefficient of
variation is unchanged from the case of free mRNAs. The last limit states that if
the µRNA production is weaker than the mRNA production, then in the regime
where all µRNA is consumed by binding with mRNA, the coefficient of variation
is also unchanged.

Outside of these asymptotic regimes, the theoretical result one would like to have
is the following.

Conjecture 4.3. For any δ > 1, γ, p > 0 and one has CV(ρδ,γ,pfast ) ≤ CV(ρδ0).

At the moment, we are able to obtain the following uniform in γ and p bound

(32) CV(ρδ,γ,pfast ) ≤ Cδ :=
((

δ

δ − 1

)2(
1− 1

(δ − 1)2

)δ−2
− 1
) 1

2

,

which holds for all δ > 2, γ > 0 and p ≥ 0. The result is proved in Proposition A.6
in the Appendix. Observe that Cδ ≥ CV(ρδ0) but asymptotically

Cδ ∼δ→∞ CV(ρδ0) = 1√
δ − 1

,

so that Cδ is fairly close to CV(ρδ0) for large δ. In the next section we provide
numerical evidence that it should be possible to improve the right-hand side of
(32) and prove Conjecture 4.3. Let us also mention that using integration by parts
formulas it is possible to establish a recurrence relation between moments. From
there one can infer the inequality of Conjecture 4.3 for subsets of parameters (γ, p).
As the limitation to these subsets is purely technical and do not have any particular
biological interpretation we do not report these results here.
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δ = 2 δ = 20

Figure 1. Exploration of the parameter space. Relative cell
to cell variation CV(ρδ,γ,pfast )/CV(ρδ0) for various parameters p, γ
and δ. On the horizontal axis, left means more production of
mRNA and right means more production of µRNA; On the vertical
axis, top means more destruction of mRNA by binding and bottom
means more destruction/consumption of mRNA by other mecha-
nisms

4.3. Exploration of the parameter space. Now, we explore the space of pa-
rameters (δ, γ, p) in order to compare the cell to cell variation in the case of fast
µRNA and in the case of free mRNA.

In order to evaluate numerically the cell to cell variation we need to compute
mk(ρδ,γ,pfast ), for k = 0, 1, 2. Observe that after a change of variable these quantities
can be rewritten (up to an explicit multiplicative constant depending on parame-
ters)

Ik =
∫ ∞

0
fk(s) sδ−2e−s ds ,

with fk(s) = s2−k(1+s/(γδ))pγδ. For the numerical computation of these integrals,
we use a Gauss-Laguerre quadrature

Ik ≈
N∑
i=1

ωNi fk(xNi ) .

which is natural and efficient as we are dealing with functions integrated against
a gamma distribution. We refer to [29] and references therein for the definition of
the coefficients ωNi and quadrature points xNi . The truncation order N is chosen
such that the numerical error between the approximation at order N and N + 1 is
inferior to the given precision 10−8 when p ≤ 1. For p ≥ 1, the function fk may take
large values and it is harder to get the same numerical precision. In the numerical
results below the mean error for the chosen sets of parameters with large values of
p is around 10−4 and the maximal error is 10−2. This is good enough to comment
on qualitative behavior. The code used for these numerical simulations is publicly
available on GitLab [17].

We plot the relative cell to cell variation CV(ρδ,γ,pfast )/CV(ρδ0) with respect to γ
and p for two different values of δ. The results are displayed on Figure 1. Then,
on Figure 2, we draw the explicit distributions ρδ,γ,pfast for various sets of parameters
and compare it with ρδ0.
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Figure 2. Marginal distributions of mRNAs ρδ,γ,pfast for fast µRNAs
compared to the free mRNA distribution ρδ0 (black solid curve) for
different parameters p and γ. Left: δ = 2, p = 1.5 and γ varies.
Right: δ = 2, γ = 1 and p varies.

The numerical simulations of Figure 1 suggest that the bound (32) is non-
optimal and Conjecture 4.3 should be satisfied. Observe also that the asymptotics
of Lemma 4.2 are illustrated.

From a modeling point of view, these simulations confirm that for any choice of
parameter, the presence of (fast) µRNA makes the cell to cell variation decrease
compared to the case without µRNA. Moreover, the qualitative behavior with re-
spect to the parameters makes sense. Indeed we observe that whenever enough
µRNA is produced (p ≥ 1), the increase of the binding phenomenon (γ → ∞)
makes the cell to cell variation decay drastically.

5. Noise reduction by binding for the main Fokker-Planck model:
numerical evidence

In this section, we compute the gene expression level of the main model described
by equation (2). In this case, as there is no explicit formula for the solution, we
will compute an approximation of it using a discretization of the Fokker-Planck
equation. In order to compute the solution in practice, we restrict the domain to
the bounded domain Ωb = [rmin, rmax] × [µmin, µmax]. Because of the truncation,
we add zero-flux boundary conditions in order to keep a conservative equation. It
leads to the problem

(33)



∂r
[
(cr − c r µ− kr r)f − ∂r(σrr2f)

]
+ ∂µ

[
(cµ − c r µ− kµ µ)f − ∂µ(σµµ2f)

]
= 0 , in Ωb

∂r(σrr2f)− (cr − c r µ− kr r)f = 0 , if r = rmin or rmax ,

∂µ(σµµ2f)− (cµ − c r µ− kµ µ)f = 0 , if µ = µmin or µmax ,∫
Ωb
f dr dµ = 1 .

5.1. Reformulation of the equation. In order for the numerical scheme to be
more robust with respect to the size of the parameters, we discretize the equation
in dimensionless version (22). It will also allow for comparisons with numerical
experiments of the previous sections.

As the coefficients in the advection and diffusion parts of (22) grow rapidly in r,
µ and degenerate when r = 0 and µ = 0, the design of an efficient numerical solver
for (22) is not straightforward. Moreover a desirable feature of the scheme would be
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a preservation of the analytically known solution corresponding to γ = 0. Because
of these considerations we will discretize a reformulated version of the equation in
which the underlying inverse gamma distributions explicitly appear. It will allow
for a better numerical approximation when r and µ are either close to 0 or large.
The reformulation is the following
(34)

− ∂r
[
r2 h(1)(r, µ)∂r

(
fad

h(1)(r, µ)

)]
− ∂µ

[
ν µ2 h(2)(r, µ)∂µ

(
fad

h(2)(r, µ)

)]
= 0 ,

with the associated no-flux boundary conditions and where the functions h(1) and
h(2) are given by

(35) h(1)(r, µ) = r−(1+pµγ)δ−2 exp
(
−δ
r

)
,

and

(36) h(2)(r, µ) = µ−(1+rγ)δ κν−2 exp
(
−δκ
νr

)
.

5.2. Presentation of the numerical scheme. We use a discretization based on
the reformulation (34). It is inspired by [8] and is fairly close to the so-called
Chang-Cooper scheme [16].

We use a finite-volume scheme. The rectangle Ωb is discretized with a structured
regular mesh of size ∆r and ∆µ in each respective direction. The centers of the
control volumes are the points (ri, µj) with ri = ∆r/2+ i∆r and µj = ∆µ/2+ j∆µ
for i ∈ {0, . . . , Nr−1} and j ∈ {0, . . . , Nµ−1}. We also introduce the intermediate
points ri+1/2 with i ∈ {−1, . . . , Nr − 1} and µj+1/2 with j ∈ {−1, . . . , Nµ − 1}
defined with the same formula as before. The approximation of the solution on the
cell (i, j) is denoted by

fij ≈
1

∆r∆µ

∫ ri+1/2

ri−1/2

∫ µj+1/2

µj−1/2

fad(r, µ) dr dµ.

The scheme reads, for all i ∈ {0, . . . , Nr − 1} and j ∈ {0, . . . , Nµ − 1},

(37)


Fi+1/2,j − Fi−1/2,j +Gi,j+1/2 −Gi,j−1/2 = 0,
FNr−1/2,j = F−1/2,j = Gi,Nµ−1/2 = Gi,−1/2 = 0∑
i,j

fij∆r∆µ = 1

where the fluxes are given by a centered discretization of the reformulation (34),
namely

(38) Fi+1/2,j = −∆µ
∆r r

2
i+1/2

(
h(1)(ri+1/2, µj)
h(1)(ri+1, µj)

fi+1,j −
h(1)(ri+1/2, µj)
h(1)(ri, µj)

fij

)
,

and

(39) Gi,j+1/2 = −ν ∆r
∆µ µ

2
j+1/2

(
h(2)(ri, µj+1/2)
h(2)(ri, µj+1)

fi,j+1 −
h(2)(ri, µj+1/2)
h(2)(ri, µj)

fij

)
.

One can show that the scheme (37) possesses a unique solution which is non-negative
by following, for instance, the arguments of [15, Proposition 3.1]. Moreover, by
construction, the scheme is exact in the case γ = 0.

Remark 5.1 (Choice of rmin, rmax, µmin, µmax). Clearly f decays faster at infinity
than ρ0 since the convection term coming from the binding phenomenon brings
mass closer to the origin. Therefore an appropriate choice for rmax and µmax,
coming from the decay of the involved inverse gamma distributions, should be (say)
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r−δmax ≤ 10−8 and µ
−δκ/ν
max ≤ 10−8 so that the error coming from the tails of the

distributions in the computation of moments is negligible. Similarly, near the origin
the distributions decay very quickly to 0 (as exp(−1/·)). Therefore µmin, rmin can be
taken not too small without influencing the precision in the computation of moments
of the solution. In practice, we chose µmin = rmin = 0.06. Observe that even if
nothing prevents the choice µmin = rmin = 0 on paper, one experiences in practice
a bad conditioning of the matrix which has to be inverted for solving the scheme.

Remark 5.2 (Implementation). Observe that the matrix which has to be inverted
in order to solve the scheme is not a square matrix because of the mass con-
straint (which is necessary to ensure uniqueness of the solution). In practice, in
order to solve the corresponding linear system MF = B where F = (fij)ij and
B = (0, . . . , 0, 1) ∈ RNrNµ+1 and M ∈ R(NrNµ+1)×NrNµ we use the pseudo-inverse
yielding F = (M tM)−1M tB. Finally the use of a sparse matrix routine greatly
improves the computation time. Our implementation was made using Matlab. The
code is publicly available on GitLab [17].

5.3. Numerical results. In our test cases we use the following parameters: rmin =
0.06, rmax = 5, µmin = 0.05, µmax = 5, δ = 8, Nr = 70, Nµ = 200, κ = 1, ν = 1.

On Figure 3 we compare the distribution functions f(r, µ) obtained for various
sets of parameters (p, γ). We also draw the corresponding marginal ρ(r) as well as
ρ0 and ρfast. We observe that for small values of p, ρfast is a good approximation
of ρ. For larger values it tends to amplify the phenomenon of variance reduction.

In order to confirm that the main Fokker-Planck model reduces the coefficient
of variation as soon as γ > 0 we draw on Figure 4 the coefficient of variation for
each distribution ρ, ρfast relatively to that of ρ0 for several values of p. We observe
that indeed, the coefficient of variation is reduced. As in the case of fast µRNA,
the decay is more pronounced when the production of µRNA is higher than that
of mRNA, namely when p > 1. Interestingly enough, one also notices that the
approximation ρfast increases the reduction of CV when p > 1 and diminishes it
when p < 1. A transition at the special value p = 1 was already observed on
Figure 1.

6. Comments on the choice of noise

In this section, we discuss the influence of the type of noise in the Fokker-Planck
models. Let us go back to the system of stochastic differential equations considered
at the beginning and generalize it as follows drt = (cr − c rt µt − kr rt) dt +

√
2σrD(rt) dB1

t ,

dµt = (cµ − c rt µt − kµ µt) dt +
√

2σµD(µt) dB2
t ,

with D some given function. In the models of the previous sections we chose
D(x) = x2. On the one hand it is natural to impose that D(x) vanishes when
x→ 0 in order to preserve the non-negativity of rt and µt. On the other hand it is
clear that the growth at infinity influences the tail of the equilibrium distribution
which solves the corresponding Fokker-Planck equation. With a quadratic D we
obtained algebraically decaying distributions. Nevertheless one may wonder if the
decay of cell to cell variation due to µRNA would still be observed if D is changed
so that it involves distributions with faster decay at infinity. In order to answer
this question, we choose a simple enough function D so that we can still derive
analytical formulas for distributions of mRNA without binding and mRNA in the
presence of “fast” µRNA. Let us assume that

D(r) = r .
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γ = 0

γ = 1
p = 0.5

γ = 1
p = 1

γ = 1
p = 2

γ = 2
p = 2

Figure 3. Numerical results. Numerical solution of the main
Fokker-Planck model for various sets of parameters (γ, p). Left:
Surface and contour plot of the distribution function f(r, µ). The
truncation at r = 2 and µ = 2 is only for visualization purposes.
Right: Corresponding marginal density ρ compared with ρfast and
ρ0.
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p = 0.5 p = 2

p = 1

Figure 4. Numerical results. Relative coefficient of variation
versus γ for various values of p.

6.1. Explicit formulas for distribution of mRNAs. In terms of modeling we
may argue as in Section 2 and Section 3 in order to introduce the stationary prob-
ability distribution of mRNA without binding ρ̃0 which solves

∂r [σr∂r(rρ̃0)− (cr − kr r)ρ̃0] = 0 .
It may still be solved analytically and one finds a gamma distribution

(40) ρ̃0(r) = γ cr
σr
, krσr

(r) = C cr
σr
, krσr

r
cr
σr
−1e−

kr
σr
r

instead of an inverse gamma distribution in the quadratic case. The normalization
constant is given in Section 3.1.

In the case of fast µRNA, we may once again follow the method of Section 2 and
Section 3 and introduce ρ̃fast solving

∂r
[
∂r(σr r ρ̃fast)− ( cr − c r j̃fast(r)− kr r)ρ̃fast

]
= 0

where the conditional expectation of the number of µRNA within the population
with r mRNA is given by

j̃fast(r) =
∫ ∞

0
µγ cµ

σµ
,
kµ+c r
σµ

(µ) dµ = cµ
kµ + c r

.

A direct computation then yields

(41) ρ̃fast(r) = C
(

1 + c
kµ
r
)− cµσr

r
cr
σr
−1e−

kr
σr
r ,

with C ≡ C(cr, cµ, c, kr, kµ, σr, σµ) a normalizing constant.

Remark 6.1. Observe that the conditional expectation of the number of µRNA
within the population with r mRNA is unchanged, namely j̃fast(r) = jfast(r). More
generally, the expectation of a univariate process (Xt)t satisfying an SDE with linear



FOKKER-PLANCK MODELING OF GENE EXPRESSION 19

η = 1 η = 8

Figure 5. Numerical computation of the cell to cell varia-
tion. Relative cell to cell variation CV(ρ̃η,γ,pfast )/CV(ρη0) for various
parameters p, γ and η. On the horizontal axis, left means more pro-
duction of mRNA and right means more production of µRNA; On
the vertical axis, top means more destruction of mRNA by bind-
ing and bottom means more destruction/consumption of mRNA
by other mechanisms.

drift dXt = (a+bXt) dt+
√

2σ(Xt) dBt does not depend on the diffusion coefficient
σ as its density g satisfy ∂tg(t, x)+∂x((a+bx)g(t, x))−∂2

xx(σ(x)g(t, x)) = 0 , so that
multiplying by x and integrating yields dE[Xt] = (a+ bE[Xt]) dt on its expectation
E[Xt]. The argument also holds for multivariate processes.

6.2. Dimensional analysis. Once again we seek the parameters of importance
among the many parameters of the model by a dimensional analysis. The charac-
teristic value of r remains r̄ = cr/kr as it is the expectation of ρ̃0. After rescaling
we find the new distribution
(42) ρ̃η0(r) = γη,η(r) = Cη,η r

η−1e−ηr ,

and

(43) ρ̃η,γ,pfast (r) = Cad
fast

rη−1

(1 + γr)pη
e−ηr .

where the parameters p and γ are given by (27) and (26) respectively and still
quantify the intensity of the binding and the respective production of µRNA versus
mRNA. The new parameter η is given by

(44) η = cr
σr
.

In the context of a dimensional analysis, let us mention that it would be inaccurate
to compare η and δ as the σr (and σµ) do not represent the same quantity depending
on the choice of D. For D(r) = r2 it has the same dimension as kr so δ = kr/σr
is the right dimensionless parameter. Here it has the same dimension as cr, which
justifies the introduction of η.

6.3. Numerical computation of the cell to cell variation. The expectation,
variance and coefficient of variation of ρ̃0 are explicitly given by

(45) Exp(ρ̃η0) = 1 , Var(ρ̃η0) = 1
η
, CV(ρ̃η0) = 1

√
η
,

As there is no explicit formula for the coefficient of variation of ρ̃η,γ,pfast we eval-
uate it numerically as in Section 4.3. The results are displayed on Figure 5. We
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observe that unlike the case of a quadratic diffusion coefficient the relative cell to
cell variation, i.e. the cell to cell variation in the presence of µRNA relative to cell
to cell variations of the free case, is not unconditionally less than 1. For a large
enough production of µRNA, it eventually decays when the binding effect is very
strong. However for smaller production of µRNA or when the binding is weak, the
effect is the opposite as the relative cell to cell variation is greater than 1. This is
not satisfactory from the modeling point of view.

In conclusion the choice of noise is important in this model. An unconditional
cell to cell variation decay in the presence of µRNA is observed for quadratic noise
only. While other choices of noise may still lead to similar qualitative results,
the choice D(r) = r2 allowed us to derive explicit formulas for the approximate
density ρfast which, as numerical simulations show, is fairly close to the marginal ρ
corresponding to the solution of the main Fokker-Planck model.

7. Concluding remarks and perspectives

In this paper, we introduced a new model describing the joint probability density
of the number of mRNA and µRNA in a cell. It is based on a Fokker-Planck
equation arising from a system of chemical kinetic equations for the number of two
RNAs. The purpose of this simple model was to provide a mathematical framework
to investigate how robustness in gene expression in a cell is affected by the presence
of a regulatory feed-forward loop due to production of µRNAs which bind to and
deactivate mRNAs.

Thanks to the combined use of analytical formulas and numerical simulations,
we showed that robustness of gene expression is indeed affected by the presence of
a feed-forward loop involving µRNA production. However, whether the effect is
regulatory or de-regulatory strongly depends on the assumptions made on the type
of noise affecting both mRNA and µRNAs production. In the case of geometric
noise (the diffusivity being quadratic in the solution itself), the effect is to reduce
the spread of the distribution as the reduction of the coefficient of variation shows.
In the case of sub-geometric noise (the diffusivity being only linear in the solution
itself), the effect increases the spread as shown by the increase of the coefficient of
variation. We may attempt an explanation by comparing the mRNA distribution
in the absence of µRNA and in the limit of fast µRNA in the two cases. In the
quadratic diffusivity case, both distributions are fat-tailed (i.e. they decay polyno-
mially with the number of unbound mRNA molecules r, see (13) and (16)) but the
rate of decay at infinity is modified by the presence of µRNAs. On the other hand,
in the linear diffusivity case, both decay exponentially fast (see (40) and (41)) and
the exponential rate of decay is the same with or without µRNAs. We propose
that this might be the reason of the difference: in the quadratic diffusivity case, the
change in polynomial decay allows to greatly reduce the standard deviation with-
out affecting too much the mean, which results in a reduction of the coefficient of
variation. In the linear diffusivity case, the exponential tail is not modified, which
implies that the core of the distribution must be globally translated towards the
origin, which affects the mean and the standard deviation in a similar way and does
not systematically reduce the coefficient of variation. Which type of noise corre-
sponds to the actual data is unknown at this stage. While quadratic diffusivity
seems a fairly reasonable assumption (it is used in a number of contexts such as
finance), it would require further experimental investigations to be fully justified
in the present context. This discussion shows that the effect of µRNA on noise
regulation of mRNA translation is subtle and not easily predictable.
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Along the way we provided theoretical tools for the analysis of the Fokker Planck
equation at play and robust numerical methods for simulations. As the main bio-
logical hypothesis for the usefulness of µRNA in the regulation of gene expression
is based on their ability to reduce external noise, we also discussed the particular
choice of stochasticity in the model.

There are several perspectives to this work. A first one would be the calibration
of the parameters of the model from real-world data. This would allow to quantify
more precisely the amount of cell-to-cell variation reduction due to µRNA, thanks
to the thorough numerical investigation done in this contribution of the effects of the
parameters of the model. Besides, another perspective would be an improvement
of Inequality (32) to the Conjecture (4.3). This would bring a definitive theoretical
answer to the hypothesis of increased gene expression level in the simplified model
of “fast” µRNAs. One may also look into establishing a similar inequality for the
general model. Finally, the gene regulatory network in a cell is considerably more
complex than the simple, yet enlightening in our opinion, dynamics proposed in
this paper. A natural improvement would be the consideration of more effects in
the model, such as the production of the transcription factor, or the translation of
mRNA into proteins, among many others.

Appendix A. Complementary results

A.1. Poincaré inequalities for gamma and inverse gamma distributions.
In this section we give a elementary proof of the 1D version of the Brascamp and
Lieb inequality (see [14, Theorem 4.1], [11]), which is an extension of the Gaussian
Poincaré inequality in the case of log-concave measures. This allows us to derive a
weighted Poincaré inequality for the gamma distribution and deduce, by a change
of variable, a similar functional inequality for the inverse gamma distribution.

Proposition A.1. Let I ⊂ R be an open non-empty interval and V : I → R a
function of class C2. Assume that

(i) V is strictly convex;
(ii) e−V is a probability density on I;
(iii) V tends to +∞ at the extremities of I.

Then, for any suitably integrable function u, one has

(46)
∫
I

|u(x)− 〈u 〉e−V |2 e−V (x) dx ≤
∫
I

|u′(x)|2 e−V (x) (V ′′(x))−1 dx ,

where for a density ν the notation 〈u 〉ν denotes
∫
uν.

Proof. Without loss of generality, as one may replace u with u−〈u 〉e−V , we assume
that 〈u 〉e−V = 0. We also assume that u is of class C1 and compactly supported
in I and one can then extend a posteriori the class of admissible function by a
standard density argument. Then, using (ii) one has∫

I

|u(x)|2 e−V (x) dx = 1
2

∫∫
I×I
|u(x)− u(y)|2 e−(V (x)+V (y)) dx dy

= 1
2

∫∫
I×I

∣∣∣∣∫ y

x

u′(z) dz
∣∣∣∣2 e−(V (x)+V (y)) dx dy .

Now using the Cauchy-Schwarz inequality and assumption (i) one has∫
I

|u(x)|2 e−V (x) dx ≤

1
2

∫∫
I×I

(∫ y

x

|u′(z)|2(V ′′(z))−1 dz
)(∫ y

x

V ′′(z) dz
)
e−(V (x)+V (y)) dx dy .
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Then take any point x0 ∈ I and define

U(x) =
∫ x

x0

|u′(z)|2 (V ′′(z))−1 dz ,

so that the inequality rewrites∫
I

|u(x)|2 e−V (x) dx

≤ 1
2

∫∫
I×I

(U(y)− U(x)) (V ′(y)− V ′(x)) e−(V (x)+V (y)) dx dy .

Now just expand the right-hand side and use Fubini’s theorem on each term as well
as assumptions (ii) and (iii) to obtain∫

I

|u(x)|2 e−V (x) dx ≤
∫
I

U(x)V ′(x) e−V (x) dx .

One concludes by integrating the right-hand side by parts and observing that
boundary terms vanish again by assumption (iii). �

Remark A.2. The proof is an adaptation of the original proof of the (flat) Poincaré-
Wirtinger inequality by Poincaré.

Observe that for I = R and V (x) = x2/2, one recovers the classical Gaussian
Poincaré inequality.

Remark A.3. The inequality is sharp. It is an equality for functions of the form
u(x) = aV ′(x) + b, with a, b ∈ R if V is such that V ′(x)e−V (x) tends to 0 at the
boundaries, and only for constant functions otherwise ( i.e. a = 0 and b ∈ R).

From the Brascamp-Lieb inequality, we now infer Poincaré inequalities for gamma
and inverse gamma distributions.

Proposition A.4. Let α > 1 and β > 0. Then, for any functions u, v such that
the integrals make sense, one has

(47)
∫ ∞

0
|u(x)− 〈u 〉γα,β |

2 γα,β(x) dx ≤ 1
α− 1

∫ ∞
0
|u′(x)|2 γα,β(x)x2 dx ,

and

(48)
∫ ∞

0
|v(y)− 〈 v 〉gα,β |

2 gα,β(y) dy ≤ 1
α− 1

∫ ∞
0
|v′(y)|2 gα,β(y) y2 dy ,

where for a probability density ν the notation 〈u 〉ν denotes
∫
uν.

Proof. The first inequality is an application of (46) with V (x) = βx−(α−1) ln(x)−
ln(Cα,β), where Cα,β = βα/Γ(α). Then take v(y) = u(1/y) and make the change
of variable y = 1/x in all the integrals of (47) to get the result. �

Remark A.5. To the best of our knowledge the classical Bakry and Emery method
does not seem to apply to show directly the functional inequalities of Proposition A.4.
Let us give some details. In order to show a Poincaré inequality of the type∫

I

|u(x)− 〈u 〉e−V |2 e−V (x) dx ≤
∫
I

|u′(x)|2 e−V (x)D(x) dx ,

for V as in Proposition A.1, it is sufficient that D and V satisfy the following
curvature-dimension inequality

(49) R(x) := 1
4(D′(x))2 − 1

2D
′′(x)D(x) +D(x)2V ′′(x)

+ 1
2D
′(x)D(x)V ′(x) ≥ λ1D(x) ,
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for some positive constant λ1 > 0. We refer to [5, 6] for the general form of
the latter Bakry-Emery condition (for multidimensional anisotropic inhomogeneous
diffusions) and to [2] or [1] for the simpler expression in the case of isotropic in-
homogeneous diffusion, as discussed here. In the case of the inequalities (47) and
(48), one has respectively D(x) = x2/(α− 1), V (x) = βx− (α− 1) ln(x)− ln(Cα,β)
and D(y) = y2/(α− 1), V (y) = β/y+ (α+ 1) ln(y)− ln(Cα,β), which yields respec-
tively R(x) = β x3/(α − 1)2 and R(y) = β y/(α − 1)2. As claimed above, neither
(47) nor (48) satisfy the condition (49). One also observes that in both cases the
curvature-dimension inequality fails because of a degeneracy at one end of the in-
terval.

Let us finally mention that there are in the literature other occurrences of Poincaré
and more generally convex Sobolev inequalities for gamma distributions [4, 28, 7, 3].
However, we found out that the diffusion coefficient is always taken of the form
D(x) = 4x/β. This weight, associated with the gamma invariant measure, corre-
sponds to the Laguerre diffusion Lα,βf(x) = βx f ′′(βx) − (α − βx)f ′(βx). This
operator differs from the adjoint of the one appearing in our model (6). In this
case, one can check that the curvature-dimension condition of Bakry and Emery is
satisfied as soon as α ≥ 1/2.

A.2. An upper bound for the relative cell to cell variation.

Proposition A.6. One has the bound

CV(ρδ,γ,pfast ) ≤ Cδ :=
((

δ

δ − 1

)2(
1− 1

(δ − 1)2

)δ−2
− 1
) 1

2

,

which holds for all δ > 2, γ > 0 and p ≥ 0.

Proof. The bound is a consequence of the Prékopa-Leindler inequality (see [14] and
references therein) which states that if f, g, h : Rd → [0,+∞) are three functions
satisfying for some λ ∈ (0, 1) and for all x, y,
(50) h((1− λ)x+ λy) ≥ f(x)1−λ g(y)λ ,
then
(51) ‖h‖L1(Rd) ≥ ‖f‖1−λL1(Rd) ‖g‖

λ
L1(Rd) .

We use it with λ = 1/2, f(x) = (1 +x)γpδxδ−2e−δγx if x ≥ 0 and f(x) = 0 if x < 0,
g(x) = x2f(x) and h(x) = (1 +C2

δ )1/2xf(x). The condition (50) is then equivalent
to

(1 + C2
δ )−1/2 ≤

[ (
1 + x+y

2
)

(1 + x)(1 + y)

] γpδ
2 (y

x

) 1
2


(
y
x

) 1
2 +

(
x
y

) 1
2

2


δ−1

which is satisfied as the term between brackets is always greater than 1 and the
function z 7→ z[(z + z−1)/2]δ−1, z > 0 is bounded from below by (1 + C2

δ )−1/2,
where Cδ is given in (32). Then with the change of variable x′ = 1/(γx) in the
integrals of (51), one recovers (32). �
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