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Abstract

We study the dynamics of phenotypically structured populations in environments with fluctua-
tions. In particular, using novel arguments from the theories of Hamilton-Jacobi equations with
constraints and homogenization, we obtain results about the evolution of populations in environ-
ments with time oscillations, the development of concentrations in the form of Dirac masses, the
location of the dominant traits and their evolution in time. Such questions have already been
studied in time homogeneous environments. More precisely we consider the dynamics of a pheno-
typically structured population in a changing environment under mutations and competition for a
single resource. The mathematical model is a non-local parabolic equation with a periodic in time
reaction term. We study the asymptotic behavior of the solutions in the limit of small diffusion
and fast reaction. Under concavity assumptions on the reaction term, we prove that the solution
converges to a Dirac mass whose evolution in time is driven by a Hamilton-Jacobi equation with
constraint and an effective growth/death rate which is derived as a homogenization limit. We
also prove that, after long-time, the population concentrates on a trait where the maximum of an
effective growth rate is attained. Finally we provide an example showing that the time oscillations
may lead to a strict increase of the asymptotic population size.

Key-words: Reaction-diffusion equations, Asymptotic analysis, Hamilton-Jacobi equation, Adaptive
dynamics, Population biology, Homogenization.

AMS Class. No: 35B25, 35K57, 49L25, 92D15

1 Introduction

Phenotypically structured populations can be modeled using non-local Lotka-Volterra equations, which
have the property that, in the small mutations limit, the solutions concentrate on one or several
evolving in time Dirac masses. A recently developed mathematical approach, which uses Hamilton-
Jacobi equations with constraint, allows us to understand the behavior of the solutions in constant
environments [5, 12, 1, 10].
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Since stochastic and periodic modulations are important for the modeling [9, 14, 15, 8, 16], a natural
and relevant question is whether it is possible to further develop the theory to models with time fluc-
tuating environments.

In this note we consider an environment which varies periodically in time in order, for instance, to take
into account the effect of seasonal variations in the dynamics, and we study the asymptotic properties
of the initial value problem





ε nε,t = nε R
(
x, tε , Iε(t)

)
+ ε2∆nε in R

N × (0,∞),

nε(·, 0) = n0,ε in R
N ,

Iε(t) :=
∫
RN ψ(x)nε(x, t)dx,

(1)

where

R : RN × R× [0,∞) → R is smooth and 1-periodic in its second argument. (2)

The population is structured by phenotypical traits x ∈ R
N with density nε(x, t) at time t. It is

assumed that there exists a single type of resource which is consumed by each individual trait x at
a rate ψ(x); Iε(t) is then the total consumption of the population. The mutations and the growth
rate are represented respectively by the Laplacian term and R. The novelty is the periodic in time
dependence of the growth rate R. The small coefficient ε is used to consider only rare mutations and
to rescale time in order to study a time scale much larger than the generation one.

To ensure the survival and the boundedness of the population we assume that R takes positive values
for “small enough populations” and negative values for “large enough populations” , i.e., there exist
a value IM > 0 such that

max
0≤s≤1, x∈RN

R(x, s, IM ) = 0 and X := {x ∈ R
N ,

∫ 1

0
R(x, s, 0)ds > 0} 6= ∅. (3)

In addition the growth rate R satisfies, for some positive constants Ki, i = 1, . . . , 7, and all (x, s, I) ∈
R
N × R× [0, IM ] and A > 0, the following concavity and decay assumptions:

− 2K1 ≤ D2
xR(x, s, I) ≤ −2K2, −K3 −K1|x|2 ≤ R(x, s, I) ≤ K4 −K2|x|2, (4)

−K5 ≤ DIR(x, s, I) ≤ −K6, (5)

D3
xR ∈ L∞

(
R
N × (0, 1) × [0, A]

)
and |D2

x,IR| ≤ K7. (6)

The “uptake coefficient” ψ : RN → R must be regular and bounded from above and below, i.e., there
exist positive constants ψm, ψM and K8 such that

0 < ψm ≤ ψ ≤ ψM and ‖ψ‖C2 ≤ K8. (7)

We also assume that the initial datum is “asymptotically monomorphic”, i.e., it is close to a Dirac
mass in the sense that there exist x0 ∈ X , ρ0 > 0 and a smooth u0ε : R

N → R such that

n0,ε = eu
0
ε/ε and, as ε→ 0, (8)
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nε(·, 0) −→
ε→0

̺0δ(· − x0) weakly in the sense of measures. (9)

In addition there exist constants Li > 0, i = 1, . . . , 4, and a smooth u0 : RN → R such that, for all
x ∈ R

N ,

− 2L1I ≤ D2
xu

0
ε ≤ −2L2I, −L3 − L1|x|2 ≤ u0ε(x) ≤ L4 − L2|x|2, max

x∈RN
u0(x) = 0 = u0(x0) (10)

and, as ε→ 0,

u0ε−→u0 locally uniformly in R
N . (11)

Finally, in order to ensure the same control on D2u as for D2u0, it is necessary to impose the following
compatibility relation on the parameters in the initial data and in the growth rate R:

4L2
2 ≤ K2 ≤ K1 ≤ 4L2

1. (12)

To state our results we first need, as it is the case in homogenization, a cell problem given by the
following Lemma:

Lemma 1.1. Assume (3), (5) and (7). For all x ∈ X , there exists a unique 1-periodic positive solution
I(x, s) : [0, 1] → (0, IM ) to





d
dsI(x, s) = I(x, s) R

(
x, s,I(x, s)

)
,

I(x, 0) = I(x, 1).
(13)

Moreover, as X ∋ x→ x0 ∈ ∂X ,

max
0≤s≤1

I(x, s) → 0. (14)

In view of (14), for x ∈ ∂X , we define, by continuity, I(x, s) = 0. The function I(x, s) helps us
to identify the weak limit of Iε(t) (see Lemma 2.1). It also helps to derive, using a homogenization
process, an effective growth rate R which will replace R (see Theorem 1.2) and is defined, for all
x ∈ RN and y ∈ X (here X stands for the closure of X ), by

R(x, y) :=

∫ 1

0
R(x, s,I(y, s))ds. (15)

Notice that, integrating (15) above in s and using the periodicity, we always have, for x ∈ X ,

R(x, x) ≡ 0. (16)

Moreover, if y ∈ ∂X , then R(x, y) =
∫ 1
0 R(x, s, 0)ds. Finally, it is immediate from (4) and (15), that

R(x, y) is strictly concave in the first variable.

Our first result is about the behavior of the nε’s as ε → 0. It asserts the existence of a fittest trait
x(t) and a total population size ρ(t) at time t and provides a “canonical equation” for the evolution
in time of x in terms of the “effective fitness” R(x, y). In the sequel, D1R denotes the derivative of
R with respect to the first argument.
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Theorem 1.2 (Limit as ε → 0). Assume (2)–(12). There exist a fittest trait x ∈ C1 ([0,∞);X ) and
a total population size ρ ∈ C1 ([0,∞); (0,∞)) such that, along subsequences ε→ 0,

nε(·, t)−⇀̺(t)δ(· − x(t)) weakly in the sense of measures,

Iε−⇀I := ̺ψ(x) in L∞(0,∞) weak-⋆,

and

R(x,
t

ε
, Iε(t))−⇀R (x, x(t)) weakly in the sense of measures in t and strongly in x.

Moreover, x satisfies the canonical equation

ẋ(t) =
(
−D2

xu(x(t), t)
)−1 ·D1R(x(t), x(t)). (17)

We note that, in the language of adaptive dynamics, R(y, x) can be interpreted as the effective fit-
ness of a mutant y in a resident population with a dominant trait x, while D1R is usually called the
selection gradient, since it represents the capability of invasion. The extra term

(
−D2

xu(x(t), t)
)−1

is
an indicator of the diversity around the dominant trait in the resident population.

The second issue is the identification of the long time limit of the fittest trait x . We prove that, in
the limit t → ∞, the population converges to a, so called, Evolutionary Stable Distribution (ESD)
corresponding to a distribution of population which is stable under introduction of small mutations
(see [11, 6, 7] for a more detailed definition). See also [4, 13] for recent studies of the local and global
stability of stationary solutions of integro-differential population models in constant environments.

Theorem 1.3 (Limit as t → ∞). In addition to (2)–(12) assume that either N = 1 or, if N > 1, R
is given, for some smooth b, d,B,D : RN → (0,∞) by

R(x, s, I) = b(x)B(s, I) − d(x)D(s, I). (18)

Then, as t → ∞, the population reaches an Evolutionary Stable Distribution ̺∞δ(· − x∞), i.e.,
̺(t)−→ ̺∞ and x(t)−→x∞, where ̺∞ > 0 and x∞ are characterized by (I is defined in (13))

R(x∞, x∞) = 0 = max
x∈RN

R(x, x∞) and ̺∞ =
1

ψ(x∞)

∫ 1

0
I(x∞, s)ds. (19)

The proof of the above result for a growth rate R given by (18) is based on a Lyapunov functional
defined by

L(t) :=
b(x(t))

d(x(t))
.

Notice that we do not claim the uniqueness of the Evolutionary Stable Distribution. Indeed there may
exist several (ρ∞, x∞) satisfying (19). Here we only prove that there exists (ρ∞, x∞) satisfying (19)
such that, as t→ ∞, the population converges to ̺∞δ(· − x∞).
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The difference between our conclusions and the results for time homogeneous environments in [10] is
that, in the canonical equation (17), the growth rate R is replaced by an effective growth rate R which
is derived after a homogenization process. Moreover, we are only able to prove that the Iε’s converge
in L∞ weak-∗ and not a.e., which is the case for constant environments in [10]. This adds a difficulty
in Theorem 1.3 and it is the reason why we are not able to describe, without additional assumptions,
the long-time limit behavior of the fittest trait x for general growth rate R when N > 1. This remains
an open question.

In Section 3.3, we give an example of R not satisfying the assumptions of Theorem 1.3 for which
x(t) exhibits a periodic behavior. This example fits the structure (22) below with general concavity
properties on R but it is not necessarily derived from a homogenization limit.

The proofs use in a fundamental way the classical Hopf-Cole transformation

uε = ε ln nε, (20)

which yields the following Hamilton-Jacobi equation for uε :




uε,t = R

(
x, tε , Iε(t)

)
+ |Dxuε|2 + ε∆uε in R

N × (0,∞),

uε(·, 0) = u0ε, in R
N .

(21)

The next theorem describes the behavior of the uε’s, as ε→ 0 (recall that R is defined in Section 2).

Theorem 1.4. Assume (2)–(12). Along subsequences ε→ 0, uε → u locally uniformly in R
N×[0,∞),

where u ∈ C(RN × [0,∞)) is a solution of





ut = R(x, x(t)) + |Dxu|2 in R
N × (0,∞),

max
x∈RN

u(x, t) = 0 = u(x(t), t) in (0,∞),

u(·, 0) = u0 in R
N .

(22)

Note that the convergence of the uε’s in Theorem 1.4 and, thus, the convergence of the nε’s in Theorem
1.2 are established only along subsequences. To prove convergence for all ε, we need that (22) has a
unique solution. This is, however, not known even for non oscillatory environments except for some
particular form of growth rate R (see [2, 12]).

When the environment is time homogeneous, it is possible to derive such Hamilton-Jacobi equations
without any concavity assumption on R and u0 (see [12, 1]). However, here we need assumptions (4),
(10) and (12) to ensure a priori that nε goes to a single Dirac mass at the point x(t). This information
is needed in order to write (22). We also point out that, for x ∈ R, R is monotonic with respect to
x and without the concavity assumption, it is possible to show that the nε’s still converge to a single
Dirac mass. This suggests that it may be possible to relax the concavity assumptions in this latter
case or in similar situations where such information is known a priori. Here, however, we concentrate
on the difficulty coming from the time fluctuations and do not try to state a more general result.
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In Section 4 we consider a non-concave rate of the form

R(x, s, I) = b(x)B(s, I) −D(s, I),

and show that the effective growth rate R can be computed independently of x(t) and has the form

R(x, F ) =

∫ 1

0
I(F, s)ds

(
b(x)

F
− 1

)
,

with

F (t) := lim
ε→0

∫
ψ(x) b(x)nε(x, t) dx

Iε(t)
,

in the Hamilton-Jacobi limit. Note that, if the (nε)ε’s converge to a single Dirac mass ρ(t)δ(x− x(t),
then we can compute F (t) = b(x(t)). This example is even more interesting, since it is possible to
compute explicitly the effective growth rate R, while, in general, not much is known about the struc-
ture of R.

In Section 5, we study the particular case

R(x, I) = b(x)−D1(s)D2(I).

We compute the population size at the evolutionary stable state of the oscillatory model and compare
it to the one of a non oscillatory averaged environment. We observe that the time oscillations lead
to a strict increase in the population size. This example emphasizes the importance of including the
time oscillations in population models.

The paper is organized as follows. In Section 2 we study the asymptotic behavior of the solution under
rare mutations (limit ε → 0) and we provide the proofs of Theorems 1.2 and 1.4. In Section 3 we
consider the long time behavior of the dynamics (limit t→ ∞) and we give the proof of Theorem 1.3.
In Section 4 we study a particular form of growth rate R, for which the results can be proved without
any concavity assumptions on R and the effective growth rate R has a natural structure. Finally in
Section 5 we present an example of an oscillatory environment which yields an asymptotic effective
population density that is strictly larger than the averaged one.

2 The behavior as ε → 0 and the proofs of Theorems 1.2 and 1.4

We present the proofs of Theorems 1.2 and 1.4 which are closely related. Since the argument is long,
we next summarize briefly the several steps. First we obtain some a priori bounds on uε and Iε. Then
we identify the equation for the fittest trait x. The limit of the Iε’s is studied in Lemma 1.1. The
last three steps are the identification (and properties) of the effective growth rate R, the effective
Hamilton-Jacobi equation and the canonical equation.

Proofs of Theorems 1.2 and 1.4 . Step 1: a priori bounds. Multiplying (1) by ψ(x), integrating with
respect to x, it and arguing as in [10], we find, that for all t ≥ 0,

0 < Iε(t) ≤ IM +O(ε). (23)
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Next we differentiate (21) twice with respect to x and use (4), (10), (12) and the maximum principle
to get, for some C1, C2 > 0, ε ≤ 1 and all (x, t) ∈ R

N × [0,∞),

− 2L1 ≤ D2
xuε ≤ −2L2 and − L3 − L1|x|2 − C1t ≤ uε(x, t) ≤ L4 − L2|x|2 + C2t. (24)

Note that to obtain the second inequality, we do not need to differentiate with respect to x, but use
directly the maximum principle for (21) and the fact that the lower and upper bounds are respectively
sub- and super-solutions. For a detailed proof of (24) see Appendix A.

It follows from the uniform bounds on uε and D2
xxuε that Dxuε is locally uniformly bounded and,

hence, we obtain, from (21), that, for all balls BR centered at the origin and of radius R, there exists
C3 = C3(R) > 0 such that

‖uε,t(x, t)‖L∞(BR×(0,∞)) ≤ C3. (25)

Finally the regularity properties of the “viscous” Hamilton-Jacobi equations and (6) yield that, for all
T > 0, there exists C4 = C4(R,T ) > 0 such that

‖D3
xuε‖L∞(BR×[0,T ]) ≤ C4. (26)

Hence, after differentiating (21) in x, the previous estimates yield a C5 = C5(R,T ) > 0 such that

‖D2
t,xuε‖L∞(BR×[0,T ]) ≤ C5. (27)

All the above bounds allow us to pass to the limit, along subsequences ε → 0, and to obtain u :
R
N × [0,∞) → R such that, as ε→ 0,

uε−→u in Cloc(R
N × [0,∞)) and, for all T > 0 and (x, t) ∈ R

N × [0, T ],

−2L1 ≤ D2
xu(x, t) ≤ −2L2 and u,D2

t,xu,D
3
xu ∈ L∞(RN × [0, T ]).

For more details on the above arguments see [10].

Step 2. The fittest trait. In view of the strict concavity of uε, for each ε > 0, there exists a unique
xε(t) such that

uε(xε(t), t) = max
x∈RN

uε(x, t) and Dxuε(xε(t), t) = 0.

Differentiating the latter equality with respect to t and using (21) we find

ẋε(t) ·D2
xuε(xε(t), t) = −Dxuε,t(xε(t), t)

= −DxR
(
xε(t),

t

ε
, Iε(t)

)
− 2D2

xuε(xε(t), t) ·Dxuε(xε(t), t)− ε∆Dxuε(xε(t), t)

= −DxR
(
xε(t),

t

ε
, Iε(t)

)
− ε∆Dxuε(xε(t), t).

Since D2
xuε(xε(t), t) is invertible and ‖D3

xu‖L∞(BR×[0,T ]) ≤ C4, it follows that ẋε(t) is bounded in
(0, T ), and, hence, along subsequences ε→ 0, xε→x in Cloc((0,∞)), for some x ∈ C0,1((0,∞)) such
that 




u(x(t), t) = maxx∈RN u(x, t), Dxu(x(t), t) = 0,

and

ẋ(t) =
(
−D2

xu(x(t), t)
)−1 ·Dx

〈
R
(
x(t), tε , Iε(t)

)〉
,

(28)
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where the bracket denotes the weak limit of R
(
x(t), tε , Iε(t)

)
which exists, since R is locally bounded.

Step 3. The weak limit of Iε. To identify the weak limit of the Iε’s, we consider the first exit time
T ∗ > 0 of x from X , i.e., the smallest time T ∗ > 0 such that x(t) ∈ X for all 0 ≤ t < T ∗ and
x(T ∗) ∈ ∂X if T ∗ <∞. Note that T ∗ is well defined since x(0) = x0 ∈ X . The last step of the ongoing
proof is to show that T ∗ = ∞.

The weak limit of the Iε’s for t ∈ (0, T ∗) follows from Lemma 1.1 and the lemma below. Their proofs
are given after the end of the ongoing one.

Lemma 2.1. Assume (3), (5) and (7). Let T ∗
ε be the smallest time T ∗

ε > 0 such that xε(t) ∈ X for
all 0 ≤ t < T ∗

ε and x(T ∗
ε ) ∈ ∂X if T ∗

ε <∞. Then, for all 0 < t < T ∗
ε ,

∣∣∣ ln Iε(t)− ln I(xε(t),
t

ε
)
∣∣∣ ≤

∣∣∣ ln Iε(0)− ln I(xε(0), 0)
∣∣∣e−

K6t
ε + C

√
ε,

where C only depends on the constants Ki. Moreover, as ε→ 0, T ∗
ε → T ∗. Consequently, if x(t) ∈ X

for 0 ≤ t < T ∗ and x(T ∗) ∈ ∂X , then, as ε→ 0 and t→ T ∗, Iε(t)−→0.

It follows that, as ε→ 0,

Iε(·)−⇀I(·) =
∫ 1

0
I(x(·), s)ds > 0 in L∞((0, T ∗)) weak-⋆. (29)

Once I is known, it is possible to compute the weight ̺ of the Dirac mass. Indeed, we show in the
next steps that, as ε→ 0,

Iε(·) =
∫

RN

ψ(x)nε(x, ·)dx−⇀I(·) = ̺(·)ψ(x(·)) in L∞((0, T ∗)) weak-⋆.

Step 4. The effective growth rate. We can now explain the average used to determine the effective
growth rate. Again (5) and Lemma 2.1 yield that, as ε→ 0,

∫ T ∗

0

∣∣∣R
(
x,
t

ε
, Iε(t)

)
−R

(
x,
t

ε
,I(x(t), t

ε
)
)∣∣∣dt ≤ K5

∫ T ∗

0

∣∣Iε(t)− I(x(t), t
ε
)
∣∣dt−→0.

Therefore the weak limit in (28) is computed as the weak limit (in time) of R
(
x, tε ,I(x(t), tε)

)
. It

follows that, for 0 ≤ t ≤ T ∗, 〈
R
(
x,
t

ε
, Iε(t)

)〉
= R(x, x(t)), (30)

where R is defined by (15).

Step 5. The limiting Hamilton-Jacobi equation. It is now possible to pass to the limit ε → 0 in
(21) for (x, t) ∈ R

N × [0, T ∗). To this end, observe that

ϕε(x, t) := uε(x, t)−
∫ t

0
R
(
x,
τ

ε
, Iε(τ)

)
dτ

solves

ϕε,t − ε∆ϕε = ε

∫ t

0
∆R

(
x,
τ

ε
, Iε(τ)

)
dτ + |Dxϕε +

∫ t

0
DxR

(
x,
τ

ε
, Iε(τ)

)
dτ |2.
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Since the uε’s converges locally uniformly from Step 1 and R
(
x, tε , Iε(t)

)
converges weakly in t and

strongly in x to R (x, x(t)) from Step 2, we find that, as ε→ 0,

ϕε(x, t)−→ϕ(x, t) = u(x, t)−
∫ t

0
R (x, x(τ)) dτ in Cloc(R

N × (0, T ∗)).

Moreover, in view of (4), (6) and Lemma 1.1, for any T ∈ (0, T ∗) and R > 0, there exists C =
C(R,T ) > 0 such that, for (x, t) ∈ BR × [0, T ]

∣∣∣∣
∫ t

0
∆R

(
x,
τ

ε
, Iε(τ)

)
dτ

∣∣∣∣ ≤ C,

and, as ε→ 0,
∫ t

0
|DxR

(
x,
τ

ε
, Iε(τ)

)
dτ −DxR

(
x,
τ

ε
,I(x(τ), τ

ε
)
)
|dτ ≤ K7

∫ T

0

∣∣Iε(t)− I(x(t), t
ε
)
∣∣dt −→ 0.

Thus, as ε→ 0 and for all (x, t) ∈ BR × [0, T ],
∫ t

0
DxR

(
x,
τ

ε
, Iε(τ)

)
dτ−→

∫ t

0
D1R (x, x(τ)) dτ.

It follows from the stability of viscosity solutions that ϕ is a viscosity solution to

ϕt =
∣∣Dxϕ+

∫ t

0
D1R (x, x(τ)) dτ

∣∣2 in R
N × (0, T ∗),

which, written in terms of u, reads

ut = R
(
x, x(t)

)
+ |Dxu|2 in R

N × (0, T ∗).

The constraint maxx∈RN u(x, t) = 0 follows from (20) and (23) (see [12, 1]). We then conclude following
[12] that, for all t ∈ (0, T ∗),

nε(·, t)−⇀̺(t)δ(· − x(t)) weakly in the sense of measures.

Step 6. The canonical equation. The canonical equation (17) now follows from (28) and (30).

Step 7. The global time T ∗ = ∞. Assume T ∗ <∞. Then x(T ∗) ∈ ∂X . It follows from the canonical
equation (17) that, for all t ∈ (0, T ∗),

d
dt

∫ 1
0 R(x(t), s, 0)ds = ẋ(t)

∫ 1
0 DxR(x(t), s, 0)ds

= D1R
(
x(t), x(t)

)(
−D2u(x(t), t)

)−1 ∫ 1
0 DxR(x(t), s, 0)ds,

while, when t = T ∗, Lemma 2.1 yields that D1R
(
x(t), x(t)

)
=

∫ 1
0 DxR(x(t), s, 0)ds. Hence

d

dt

∫ 1

0
R(x(T ∗), s, 0)ds > 0,

which is a contradicition because, by the definition of the open set X ,
∫ 1
0 R(x(t), s, 0)ds > 0 for

t ∈ [0, T ∗) and
∫ 1
0 R(x(T

∗), s, 0)ds = 0.
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Proof of Lemma 1.1. First we prove that, for a fixed x ∈ X , there exists a solution I of (13). To this
end observe that J := lnI solves





d
dsJ (x, s) = R

(
x, s, exp(J (x, s)

)
in s ∈ [0, 1],

J (x, 0) = α.
(31)

It turns out that it is possible to choose α ≤ ln IM so that J (x, 0) = J (x, 1). Indeed, the definition
of IM in (3) yields that, if α = ln IM , then J (x, 1) < α. On the other hand, for α very small we claim
that J (x, 1) > α, which is enough to conclude, since J (x, s) been a continuous increasing function of
α, it has a fixed point α∗. Choosing α = α∗ yields a periodic solution.

To prove the claim, we set µ =
∫ 1
0 R(x, s, 0)ds > 0 since x ∈ X . Because R is locally bounded, there

exists a constant C > 0, which is independent of α, such that J (x, s) ≤ α+C and, for α small enough,

J (x, 1) = J (x, 0) +

∫ 1

0
R(x, s, exp(J (x, s)

)
ds ≥ J (x, 0) +

∫ 1

0
R(x, s, 0

)
ds+O(eα) ≥ J (x, 0) +

µ

2
.

This proves the claim and the existence of a periodic solution.

The uniqueness follows from a contraction argument. Indeed let J1 and J2 be two periodic solutions
to (31). Then

d

ds
(J1 − J2) = R

(
x, s, exp(J1(x, s)

)
−R

(
x, s, exp(J2(x, s)

)
.

Multiplying the above equation by sgn (J1 − J2) and using the monotonicity in I according to (5),
we find

d

ds

∣∣J1 − J2

∣∣ ≤ −C|J1 − J2

∣∣,

and, after integration,

C

∫ 1

0
|J1(s)−J2(s)

∣∣ds ≤ −|J1(1) − J2(1)|+ |J1(0) − J2(0)| = 0,

and, hence, J1 = J2.

Finally we prove (14). It follows from (31) that, for x ∈ X ,

0 =

∫ 1

0
R(x, s, eJ (x,s))ds ≤

∫ 1

0
R(x, s, 0)ds −K6e

min0≤s≤1 J (x,s).

If x→ x0 ∈ ∂X , then
∫ 1
0 R(x, s, 0)ds → 0 and, since the variations of J (x, s) are bounded, because R

is locally bounded, the result follows.

Proof of Lemma 2.1. We identify the weak limit of Iε and prove (29). We begin with the observation
that in the “gaussian”- type concentration, x− xε(t) scales as

√
ε.

Indeed multiplying (1) by ψ and integrating with respect to x we find (recall that with Jε := ln Iε),

ε
d

dt
Jε(t) =

∫
RN ψ(x)nε(x, t) R

(
x, tε , Iε(t)

)
dx∫

RN ψ(x)nε(x, t)dx
+ ε2

∫
RN ∆ψ(x) nε(x, t)dx∫

RN ψ(x)nε(x, t)
.
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Note that in order to justify the integration by parts above, we first replace ψ by ψL = χLψ where χL

is a compactly supported smooth function such that χL ≡ 1 in B(0,L) and χL ≡ 0 in R
N\B(0, 2L).

Then we integrate by parts and finally let L → +∞.
Returning to the above equation we find

ε
d

dt
Jε(t) =

∫
RN ψ(x)e

uε(x,t)−uε(xε(t),t)
ε R

(
x, tε , Iε(t)

)
dx

∫
RN ψ(x)e

uε(x,t)−uε(xε(t),t)
ε dx

+O(ε2)

=

∫
RN ψ(x)e

uε(x,t)−uε(xε(t),t)
ε

[
R
(
x, tε , Iε(t)

)
−R

(
xε(t),

t
ε , Iε(t)

)]
dx

∫
RN ψ(x)e

uε(x,t)−uε(xε(t),t)
ε dx

+R
(
xε(t),

t

ε
, Iε(t)

)
+O(ε2).

Using Laplace’s method for approximation of integrals, (24) and (26), we find that the first term is of
order

√
ε and, hence,

ε
d

dt
Jε(t) = R

(
xε(t),

t

ε
, Iε(t)

)
+O(

√
ε).

Next we compute

ε
d

dt
[J (xε(t),

t

ε
)− Jε(t)] = R

(
xε(t),

t

ε
, exp

(
J (xε(t),

t

ε
)
))

−R
(
xε(t),

t

ε
, exp(Jε(t))

)

+O(
√
ε) + εDxJ (xε(t),

t

ε
) ẋε(t).

Multiplying the above equality by sgn(J (xε(t),
t
ε)−Jε(t)), using our previous estimates and employing

the monotonicity property in (5), we get

ε
d

dt

∣∣J (xε(t),
t

ε
)− Jε(t)

∣∣ = −
∣∣R

(
xε(t),

t

ε
, exp(J (xε(t),

t

ε
))
)
−R

(
xε(t),

t

ε
, exp(Jε(t))

)∣∣+O(
√
ε)

≤ −K6

∣∣J (xε(t),
t

ε
)− Jε(t)

∣∣+O(
√
ε).

The first claim of Lemma 2.1 is now immediate. Moreover, since xε(t) → x(t), locally uniformly as
ε→ 0, we obtain that, as ε→ 0,

T ∗
ε → T ∗.

The last claim is a consequence of the previous steps and Lemma 1.1.

3 The long time behavior

3.1 Convergence as t → ∞ when N = 1 (The proof of Theorem 1.3 (i))

Throughout this subsection we assume that N = 1. The goal is to prove the existence of some
x∞ ∈ R

N such that, as t→ ∞, x(t) → x∞ and

R(x∞, x∞) = 0 = max
x∈R

R(x, x∞). (32)

To this end, we consider the map A : R −→ R defined by A(x) = y, where y is the unique maximum
point of R(·, x). We obviously have

DxR(A(x), x) = 0.
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We consider the following three cases depending on the comparison between x(·) and A(x(·)). If
x(t) < A(x(t)), then DxR(x(t), x(t)) > 0 and, if x(t) > A(x(t)), then DxR(x(t), x(t)) < 0. It then
follows using (17) and the concavity of u that, if x(t) < A(x(t)) (resp. x(t) > A(x(t))), then ẋ(t) > 0
(resp. ẋ(t) < 0). If x(t) = A(x(t)), then DxR(x(t), x(t)) = 0 and hence again (17) yields ẋ(t) = 0. We
also notice that, if A(x(0)) = x(0) = x∞, then from the above argument we have that for all t ≥ 0,
x(t) = x∞, with x∞ satisfying (32).

Now we assume that A(x(0)) > x(0) (the case A(x(0)) < x(0) can be treated similarly) and set

t0 := inf {t ∈ R : A(x(t)) ≤ x(t)} .

If t0 < ∞, then A(x(t0)) = x(t0) and, hence, for all t ≥ t0, x(t) = x(t0) = x∞. If t0 = ∞, then
ẋ(t) > 0 for all t ≥ 0, and thus, since the set B = {x(t) : t ∈ [0,∞)} is compact (see below), there
exists x0 ∈ R such that

lim
t→∞

x(t) = x0.

The compactness of B follows from the observation that, in view of (15), (4) and (5),

R(x, x(t)) ≤ K4 −K2|x|2,

and, since R(x(t), x(t)) = 0,
|x(t)| ≤ (K4/K2)

1/2. (33)

We now claim that x0 satisfies (32). Indeed, if there exists z ∈ R
N such that R(z, x0) > 0, then using

(22), we have limt→∞ u(z, t) = +∞, a contradiction to the constraint maxx∈R u(x, t) = 0.

3.2 Convergence for a particular case with N > 1 (The proof of Theorem 1.3 (ii))

We prove Theorem 1.3 in the multi-d case with a growth rate R as in (18). In this case we find

b(x(t))〈B(s, I(t)〉 − d(x(t))〈D(s, I(t)〉 = 0, (34)

and thus (
−D2

xu(x(t), t)
)
ẋ(t) = b′(x(t))〈B(s, I(t)〉 − d′(x(t))〈D(s, I(t)〉

=

[
b′(x(t))

b(x(t))
− d′(x(t))

d(x(t))

]
d(x(t))〈D(s, I(t)〉.

Therefore, after taking inner product with ẋ(t), dividing by d(x(t))〈D(s, I(t)〉 and using the strict
concavity of u, we obtain

|ẋ(t)|2 ≤ C
d

dt
ln

(
b(x(t))

d(x(t))

)
.

This proves that t 7→ L(t) = b(x(t))/d(x(t)) is a Lyapunov functional which is increasing and thus
converges, as t→ ∞, to some constant l. For this we need to show that {x(t) : t ∈ [0,∞)} is bounded,
a fact which follows exactly as in the proof of (33). Finally, in view of (34), we also have

lim
t→∞

〈D(s, I(t)〉
〈B(s, I(t)〉 = l.

We prove next that

l = max
x

b(x)

d(x)
.

12



Arguing by contradiction we assume that l < maxx(b(x)/d(x)). Then there must exist x̃ ∈ R
N such

that l < (b(x̃)/d(x̃)), in which case

0 < lim inf
t→∞

b(x̃)〈B(s, I(t)〉 − d(x̃)〈D(s, I(t)〉.

Finally, since u solves
∂tu = |Dxu|2 + b(x)〈B(s, I(t)〉 − d(x)〈D(s, I(t)〉,

we find
lim
t→∞

u(x̃, t) = ∞,

a contradiction to the constraint maxx∈RN u(x, t) = 0.

3.3 A counterexample in the multi-dimension case

In this subsection we present an example showing that, when N > 1, the x ’s may not converge, as
t→ ∞, at least for the Hamilton-Jacobi problem (22). Indeed we find a strictly concave with respect
to the first variable R : RN ×R

N → R, an 1-periodic map t→ x(t) and a function u : RN × [0,∞] → R

which satisfies 



∂tu− |Dxu|2 = R (x, x(t)) in RN × (0,∞),

maxx∈RN u(x, t) = u (x(t), t) = 0,

u(·, 0) = u0 in R
N .

We choose G : RN → R
N so that the ode ẋ = G(x) has a periodic solution; note that such func-

tion exists only for N > 1. A simple example for N = 2 is G(x1, x2) = (−x2, x1), which admits
(x1(t), x2(t)) = (r cos t, r sin t) as periodic solutions.

Let F : RN → R be an arbitrary smooth function and define R : RN × R
N → R by

R(x, y) = −
(
DF (y)G(y) + 4F (y)2

)
|x− y|2 + 2F (y)G(y)(x − y). (35)

It is immediate that R is a concave function with respect to x and satisfies R(x, x) = 0. It is also
easily verified that

u(x, t) = −F (x(t))|x− x(t)|2 with ẋ(t) = G(x(t)) and x(0) = x0,

is a viscosity solution of (3.3) for R as in (35) and u0(x) = −F (x0)|x − x0|2. Moreover the canonical
equation (28) is written as

ẋ(t) =
(
−D2

xu(x(t), t)
)−1

DxR(x(t), x(t)) = (2F (x(t))−1 (2F (x(t))G(x(t))) = G(x(t)).

Finally we choose x0 ∈ R
N such that t 7→ x(t) with x(t0) = x0 is 1-periodic. Then the limit limt→∞ x(t)

does not exist.

Note that the counterexample presented above is for the Hamilton-Jacobi problem (22). We do not
know if such periodic oscillation can arise in the ε→ 0 limit of the viscous Hamilton-Jacobi equation
(21). When the growth rate independent of time, a result similar to Theorem 1.3 was proved in [10]
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for general R. In that problem, the key point leading to the convergence, as t → ∞, of the x(t)’s is
that I(t), which is the strong limit of the Iε’s as ε→ 0, is increasing in time. In the case at hand, we
can only prove that the Iε’s converge weakly to I. We know nothing about the monotonicity of I. We
remark that numerical computations suggest (see Figure 1) that monotonicity holds, if at all, in the
average.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2
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t

I

Figure 1: Dynamics of the total population Iε(t) for R(x, s, I) = (2 + sin (2πs)) 2−x2

I+.5 − .5, ψ(x) = 1

and ε = 0.01. The Iε’s oscillate with period of order ε around a monotone curve I.

4 A particular case with a natural structure for R
The concavity assumption (4) is very strong. Here we study, using a different method based on BV
estimates, a class of growth rates R which do not satisfy (4). Throughout this section, for several
arguments, we follow [1] which studies a similar problem but without time oscillations.

We consider growth rates of the form

R(x, s, I) = b(x)B(s, I) −D(s, I), (36)

with
B,D : R× [0,∞) → R 1-periodic with respect to the first argument (37)

and we assume that, for all (s, I) ∈ R×
[
Ĩm
2 , 2ĨM

]
and x ∈ R

N ,

0 < B(s, I), 0 < D(s, I) and 0 < bm ≤ b(x) ≤ bM , (38)

where ĨM > Ĩm > 0 are such that

max
0≤s≤1, x∈RN

R(x, s, ĨM ) = 0 and min
0≤s≤1, x∈RN

R(x, s, Ĩm) = 0, (39)

and there exist constants a1 > 0 and a2 > 0 such that, for all (s, I) ∈ R× [0,∞),

DI B(s, I) < −a1 and a2 < DI D(s, I). (40)

As far as nε(·, 0) is concerned, we replace (9)–(11) by

Ĩm ≤
∫
ψ(x)nε(x, 0)dx ≤ ĨM , and

nε(x, 0) ≤ exp
(
−A|x|+B

ε

)
for some A,B > 0 and all x ∈ R

N .
(41)
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Eventhough (36) seems close to (18), no concavity assumption is made and the analysis of Section 3
does not apply here.

Theorem 4.1. Assume (7) and (40)–(41). Along subsequences ε → 0, the uε’s converge locally
uniformly to u ∈ C(RN × R) satisfying the constrained Hamilton-Jacobi equation





ut = R(x, F (t)) + |Dxu|2 in R
N × (0,∞),

max
x∈RN

u(x, t) = 0,

u(·, 0) = u0 in R
N ,

(42)

with

R(x, F ) =

∫ 1

0
I(F, s)ds

(
b(x)

F
− 1

)
and F (t) = lim

ε→0

∫
ψ(x) b(x)nε(x, t) dx

Iε(t)
,

and I defined in (48) below. In particular, along subsequences ε → 0 and in the sense of measures,
nε−⇀n with supp n ⊂ {(x, t) : u(x, t) = 0} ⊂ {(x, t) : R(x, F (t)) = 0}.
As in Theorem 1.3, we can deduce the long time convergence to the Evolutionary Stable Distribution.
To this end we assume that

there exists a unique x∗ ∈ R
N such that b(x∗) = max

x∈RN
b(x). (43)

Theorem 4.2. Assume (7), (40)–(41) and (43) Then, as t → ∞, the population reaches the Evolu-
tionary Stable Distribution ρ∗δ(· − x∗), i.e.,

n(·, t) −⇀
t→∞

ρ∗δ(· − x∗) in the sense of measures, (44)

with

ρ∗ =
1

ψ(x∗)

∫ 1

0
I (b(x∗), s) ds.

Proof of Theorem 4.1. It follows easily from (39), (41) and the arguments in [1] that

Ĩm +O(ε) ≤ Iε(t) ≤ ĨM +O(ε). (45)

Define next

Fε(t) :=

∫
b(x)ψ(x)nε(x, t) dx

Iε(t)
,

and note that
bm ≤ Fε(t) ≤ bM . (46)

We next prove that Fε ∈ BVloc(0,∞) uniformly in ε. Indeed, using (7), (38) and (45), we find

d
dtFε(t) = I−2

ε

(
Iε

∫
nε,t b ψ dx−

∫
nε,t ψ dx

∫
nε b ψ dx

)

= I−2
ε (Iε

∫ (
ε∆nε + ε−1nε

(
bB( tε , Iε)−D( tε , Iε)

))
b ψ dx

−
∫
nε b ψ dx

∫ (
ε∆nε + ε−1nε

(
bB( tε , Iε)−D( tε , Iε)

)
ψ dx)

= O(ε) + (εI2ε )
−1B( tε , Iε)

(∫
nε ψ dx ·

∫
nε b

2 ψ dx− (
∫
nε b ψ dx)

2
)
≥ O(ε).

(47)
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Then (46) and (47) yield that, for each T > 0, there exists C = C(T ) > 0 such that

∫ T

0
| d
dt
Fε|dt ≤ C.

It follows that, along subsequences ε→ 0 , the Fε’s converge a.e. and in L1 to some F .
To conclude we need a result similar to the one of Lemma 1.1

Lemma 4.3. Assume (7) and (40)–(41). For all t ∈ R, there exists a unique, 1-periodic solution
I(t, ·) ∈ C1(R → [Ĩm, ĨM ] to





d
dsI(F (t), s) = I (F (t), s)

(
F (t)B (s,I(F (t), s))−D (s,I(F (t), s))

)
,

I(F (t), 0) = I(F (t), 1).
(48)

Moreover, for all T > 0 and as ε→ 0,
∫ T
0 |Iε(t)− I(F (t), tε)|dt → 0.

The first claim is proved as in Lemma 1.1. We postpone the proof of the second assertion to the end
of this section.

Using (7), (40)–(41) and following [1], we show that the uε’s are bounded and locally Lipschitz con-
tinuous uniformly in ε and, hence, converge along subsequences ε→ 0 to a solution u of

ut = |Dxu|2 +
∫ 1

0
B(s,I(F (t), s))dsb(x) −

∫ 1

0
D (s,I(F (t), s)) ds.

Since I(F, ·) is a periodic solution to (48), we have
∫ 1

0
B(s,I(F (t), s)ds F (t)−

∫ 1

0
D(s,I(F (t), s))ds = 0.

It follows that
ut = |Dxu|2 +R(x, F (t))

with

R(x, F (t)) =

∫ 1

0
D(s,I(F (t), s))ds (

b(x)

F (t)
− 1).

The last claim of Theorem 4.1 can be proved using (20), (42) and following [12].

We conclude with

Proof of Theorem 4.2. It follows from (47) that F is an increasing function. Hence, in view of (46),
there exists F∗ such that, as t→ ∞, F (t) −→ F∗. Moreover

F∗ = max
x∈RN

b(x) = b(x∗). (49)

Indeed, if not, then R(x∗, F∗) > 0 and, hence, from (42), limt→∞ u(x∗, t) = ∞, a contradiction to the
constraint maxx∈RN u(x, t) = 0.
Finally (44) follows from (49) and the observation that

supp n(x, t) ⊂ {(x, t) : R(x, t) = 0} = {(x, t) : b(x) = F (t)}.
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Proof of the second claim of Lemma 4.3. Eventhough we follow the same ideas as in Lemma 1.1, to
prove the second claim, we need to modify the arguments, since, without the concavity assumption
(4), uε may have several maxima.

We use again the log transformations Jε = log Iε and J = log I. Multiplying (1) by ψ(x) and
integrating with respect to x leads to

ε
d

dt
Iε(t) = B(

t

ε
, Iε(t))

∫

RN

ψ(x)nε(x, t) b(x)dx− Iε(t)D(
t

ε
, Iε(t)) + ε2

∫

RN

∆ψ(x) nε(x, t)dx.

It follows from (48) that

ε d
dt

(
Jε(t)− J

(
Fε(t),

t
ε

))
= Fε(t)B

(
t
ε , Iε(t)

)
− F (t)B

(
t
ε ,I

(
Fε(t),

t
ε

))

−D
(
t
ε , Iε(t)

)
+D

(
t
ε ,I

(
Fε(t),

t
ε

))
+O(ε2).

Multiplying the above equality by sgn(Jε(t)− J (Fε(t),
t
ε)) and employing (40), we obtain

ε d
dt

∣∣Jε(t)− J
(
Fε(t),

t
ε

)∣∣ = −
∣∣Fε(t)B

(
t
ε , Iε(t)

)
− Fε(t)B

(
t
ε ,I

(
Fε(t),

t
ε

))∣∣

−
∣∣D

(
t
ε , Iε(t)

)
−D

(
t
ε ,I

(
Fε(t),

t
ε

))∣∣+O(ε2).

Integrating in time over [0, T ], for some fixed T > 0, and using the convergence of the Fε’s we find
that, as ε→ 0,

∫ T

0
|F (t)B(

t

ε
, Iε(t))− F (t)B(

t

ε
,I(F (t), t

ε
))|+ |D(

t

ε
, Iε(t))−D(

t

ε
,I

(
F (t),

t

ε
))|dt −→ 0.

The second claim of Lemma 4.3 follows in view of (40).

5 A qualitative effect: fluctuations may increase the population size

We conclude with an example that shows that the time-oscillations may lead to a strict increase of
the population size at the evolutionary stable state, a conclusion which also holds in the context of
physiologically structured populations [3].

To this end, we consider, along the lines of Section 4, the rate function

R(x, I) = b(x)−D1(s)D2(I) (50)

with b and D(s, I) = D1(s)D2(I) satisfying (37)–(40) and (43) and, for simplicity, we take ψ ≡ 1 in
(1). The goal is to compare the size of the ESD in Theorem 4.2 to the one obtained from the model
with the “averaged rate”

Rav(x, I) = b(x)−D1,avD2(I) with D1,av =

∫ 1

0
D1(s)ds.

Later, we write fav for the average of the 1-periodic map f : R → R, i.e., fav =
∫ 1
0 f(s)ds.
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Let I be the 1-periodic solution of (48) with F (t) ≡ b(x⋆) according to (49). With the above simpli-
fications, the magnitude ρ⋆ of the Evolutionary Stable Distribution obtained in (4.2) is

ρ⋆ =

∫ 1

0
I(s)ds.

Since we can multiply equation (48) by any function of I(s), elementary maipulations lead to the
identities

b(x⋆) =

∫ 1

0
D1(s)D2(I(s))ds and

∫ 1

0
D2(I(s))ds b(x⋆) =

∫ 1

0
D1(s)D

2
2(I(s))ds. (51)

A straightforward application of the Cauchy-Schwarz inequality in (51) yields

b(x⋆)
2 ≤ D1,av D2(I)avb(x⋆)

and thus

b(x⋆) ≤ D1,av

∫ 1

0
D2(I(s))ds. (52)

Consider next the “averaged” version of (1), i.e., the equation




εnε,av,t = nε,av Rav(x, Iε,av(t)) + ε2∆nε,av in R

N × (0,∞),

Iε,av(t) =
∫
RN nε,av(x, t)dx.

(53)

It follows from the earlier results [10] that the magnitude ρav of the Evolutionary Stable Distribution
corresponding to (53) satisfies the identity

b(x⋆) = D1,avD2(ρav), (54)

and, therefore, unless D1 is constant, in which case (52) must be an equality, we conclude

D2(ρav) <

∫ 1

0
D2(I(s)ds. (55)

If, in addition to above hypotheses, we also assume that

I → D2(I) is concave, (56)

then (55) yields

ρav < ρ⋆,

which substantiates our claim about the possible effect of the time oscillations.

A The proof of (24)

In this section, for the convenience of the reader we recall the proof of (24) given in [10].
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A.1 Quadratic estimates on uε

We prove that, for C2 a large enough constant, uε(x, t) := L4−L2|x|2+C2t is a supersolution of (21).
To this end we compute, using (4) and (12),

∂tuε − |Duε|2 −R(x,
t

ε
, Iε)− ε∆uε ≥ C2 − 4L2

2|x|2 −K4 +K2|x|2 − 2dεL2 ≥ 0,

for C2 large enough. It then follows from the comparison principle and (10) that

uε(x, t) ≤ L4 − L2|x|2 + C2t.

Next for the lower bound, we define uε(x, t) := −L3 − L1|x|2 − C1t and prove that uε(x, t) is a
subsolution of (21) for C1 large enough. We again compute, using (4) and (12),

∂tuε − |Duε|2 −R(x,
t

ε
, Iε)− ε∆uε ≤ −C1 − 4L2

1|x|2 +K3 +K1|x|2 − 2dεL1 ≤ 0,

for C1 large enough. It then follows from the comparison principle and (10) that

uε(x, t) ≥ −L3 − L1|x|2 − C1t.

A.2 Bounds on D
2
uε

For a unit vector ξ, we use the notation uξ := Dξuε and uξξ := D2
ξξuε to obtain

uξt = Rξ(x,
t

ε
, I) + 2Du ·Duξ + ε∆uξ,

uξξt = Rξξ(x,
t

ε
, I) + 2Duξ ·Duξ + 2Du ·Duξξ + ε∆uξξ.

We first give a lower bound on D2uε. To this end, we define w(t, x) := minξ uξξ(t, x) and using
|Duξ| ≥ |uξξ| and (4) we obtain

∂tw ≥ −2K1 + 2w2 + 2Du ·Dw + ε∆w.

By a comparison principle and assumptions (10) and (12), we obtain

w ≥ −2L1. (57)

At every point (x, t) ∈ R
N ×R

+, we can choose an orthonormal basis such that D2uε(x, t) is diagonal
because it is a symmetric matrix. Therefore it follows from (57) that

D2uε(x, t) ≥ −2L1I, for all (x, t) ∈ R
N × R

+.

We can also estimate the mixed second derivatives in terms of uξξ. In particular, for each element ξ
of the latter basis, we have Duξ = uξξξ and |Duξ| = |uξξ|. This enables us to show concavity in the
next step.

To prove the upper bound we define again w(t, x) := maxξ uξξ(t, x) and using |Duξ| = |uξξ| and (4)
we obtain

∂tw ≤ −2K2 + 2w2 + 2Du ·Dw + ε∆w.

By a comparison principle and assumptions (10) and (12), we obtain

w ≤ −2L2, (58)

and hence
D2uε(x, t) ≤ −2L2I, for all (x, t) ∈ R

N × R
+.
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