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Abstract

Adaptation in spatially heterogeneous environments results from the balance between local

selection, mutation and migration. We study the interplay among these different evolutionary

forces and demography in a classical two-habitat scenario with asexual reproduction. We develop

a new theoretical approach that goes beyond the Adaptive Dynamics framework and allows us to

explore the effect of high mutation rates on the stationary phenotypic distribution. We show that

this approach improves the classical Gaussian approximation and captures accurately the shape

of this equilibrium phenotypic distribution in one and two-population scenarios. We examine

the evolutionary equilibrium under general conditions where demography and selection may be

non-symmetric between the two habitats. In particular, we show how migration may increase

differentiation in a source-sink scenario. We discuss the implications of these analytic results for

the adaptation of organisms with large mutation rates such as RNA viruses.

Key-Words: local adaptation, migration-selection balance, gene flow, Adaptive Dynam-

ics, Quantitative Genetics, skew.

Introduction

Spatially heterogeneous selection is ubiquitous and constitutes a potent evolutionary force that pro-

motes the emergence and the maintenance of biodiversity. Spatial variation in selection can yield

adaptation to local environmental conditions, however, other evolutionary forces like migration and
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Cedex 9, France
†CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
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mutation tend to homogenize the spatial patterns of differentiation and thus to impede the build up of

local adaptation. Understanding the balance between these contrasted evolutionary forces is a major

objective of evolutionary biology theory Slatkin 1978; Whitlock 2015; Savolainen et al. 2013) and could

lead to a better understanding of the speciation process and the evolutionary response to global change

Doebeli and Dieckmann 2003; Leimar et al. 2008. In this article, we consider a two-habitat model

with explicit demographic dynamics as in Meszéna et al. 1997; Day 2000; Ronce and Kirkpatrick 2001;

Débarre et al. 2013. We assume that adaptation is governed by a single quantitative trait where indi-

viduals reproduce asexually. Maladapted populations have a reduced growth rate and, consequently,

lower population size. In other words, selection is assumed to be ’hard’ Christiansen 1975; Débarre and

Gandon 2010 as the population size in each habitat is affected by selection, mutation and migration.

These effects are complex because, for instance, non-symmetric population sizes affect gene flow and

adaptation feeds back on demography and population sizes Nagylaki 1978; Lenormand 2002; Meszéna

et al. 1997; Day 2000; Ronce and Kirkpatrick 2001; Débarre et al. 2013. To capture the complexity of

these feed backs it is essential to keep track of both the local densities and the distributions of phe-

notypes in each habitat. Note that this complexity often led to the analysis of the simplest ecological

scenarios where the strength of selection, migration and demographic constraints are assumed to be

the same in the two habitats (we will refer to such situations as symmetric scenarios). See however

Holt and Gaines 1992; Garćıa-Ramos and Kirkpatrick 1997; Gomulkiewicz et al. 1999; Holt et al. 2003

for the analysis of the effect of asymmetric migration from a source habitat on the dynamics of adap-

tation in a peripheral (i.e. sink) habitat. Three different approaches have been used to analyze these

two-population models. Each of these approaches rely on a set of restrictive assumptions regarding

the relative influence of the different evolutionary forces acting on the evolution of the population.

First, under the assumption that the rate of mutation is weak relative to selection, it is possible to use

the Adaptive Dynamics framework (see Meszéna et al. 1997; Day 2000; Szilágyi and Meszéna 2009;

Débarre et al. 2013; Fabre et al. 2012 but also the Results section for a presentation of this framework).

This analysis captures the effect of migration and selection on the long-term evolutionary equilibrium.

In particular, this approach shows that weak migration relative to selection promotes the coexistence

of two specialist strategies (locally adapted on each habitat). In contrast, when migration is strong
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relative to selection, a single generalist strategy is favored. The main limit of this approach is that

it relies on the assumption that mutation rate is vanishingly small which results in a very limited

amount of genetic variability. At most, 2 genotypes can coexist in this two-habitat model.

Second, Quantitative Genetics formalism, based on the computation of the moments of the phenotypic

distribution, has been used to track evolutionary dynamics in heterogeneous habitats when there is

substantial level of phenotypic diversity in each population Ronce and Kirkpatrick 2001. This model

considers sexual reproduction with a quantitative trait (considering multiple loci with small effects

Fisher 1919). However, similar types of equations, describing the dynamics of the moments of the

phenotypic distribution, can also be derived in the case of asexual reproduction considering large mu-

tation rates (see Débarre et al. 2013 and Section ). This formalism allows to recover classical migration

thresholds below which specialization is feasible. But the analysis of Ronce and Kirkpatrick 2001 also

reveals the existence of evolutionary bistability where transient perturbations of the demography can

have long term evolutionary consequences on specialization. Yet, the assumption on the shape of the

phenotypic distribution (assumed to be Gaussian in each habitat) is a major limit of this formalism.

Third, attempts to account for other shapes of the phenotypic distributions in heterogeneous environ-

ments have been developed recently Yeaman and Guillaume 2009; Débarre et al. 2013, 2015. These

models highlight that calculations based on the Gaussian approximation which neglects the skewness

of the equilibrium phenotypic distribution under-estimates the level of phenotypic divergence and local

adaptation. Yet, there is currently no model able to accurately describe the build up of non-Gaussian

distributions. The only attempt to model this distribution is to describe the phenotypic distributions

in each habitat as the sum of two Gaussian distributions Yeaman and Guillaume 2009; Débarre et al.

2013. These models, however, only yield approximate predictions on long-term evolutionary equilibria.

Here we develop an alternative formalism that yields the population size and the phenotypic distribu-

tion in each habitat at the equilibrium between selection, mutation and migration. In the Materials

and Methods section we present our two-population model. For heuristic reasons, we next provide the

analysis of the equilibrium between selection and mutation in a single population. This provides an il-

lustration of our approach in a simple scenario and shows how this analysis can go beyond the classical

Gaussian approximation. Next, we extend this approach to a two-population scenario where migration
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can also influence the phenotypic distribution, and we derive approximations for the level of adap-

tation under a migration-selection-mutation balance. We also explore the effects of non-symmetric

constraints on selection, migration or demography between the two habitats. We evaluate the accuracy

of these approximations by comparing them to numerical solutions of our deterministic model and we

show that our approach improves previous attempts to study the interplay between adaptation and

demography in heterogeneous environments. We contend that our results are particularly relevant for

organisms with high mutation rates and may help to understand the within-host dynamics of chronic

infections by RNA viruses Drake and Holland 1999; Sanjuán et al. 2010.

The present work has been prepared in parallel to the mathematical article Mirrahimi 2017 where we

provide the mathematical basis and proofs for the method used here. See also Gandon and Mirrahimi

2016 where those mathematical results were announced. The aim of the present paper is to show how

this approach can help to understand the balance between different evolutionary forces. We present

several new biological scenarios and we derive new results that help grasp the interplay between

different evolutionary forces and demography.

Materials and Methods

We model an environment containing two habitats that we label 1 and 2 (Figure 1). The population

is structured by a quantitative trait z. In each habitat i there is stabilizing selection on the trait z

for an optimal value θi (for habitat i = 1, 2). The growth rate in habitat i is denoted by ri(z) which

has its maximum rmax,i when z = θi. In the following we will mainly focus on the following quadratic

stabilizing selection function (Bürger 2000– pages 117-121 and chapter VI):

ri(z) = rmax,i − si (z − θi)2 . (1)

We denote by si the selection pressure in habitat i. Without loss of generality we assume that

θ1 = −θ2 = −θ. But our approach could be used with other stabilizing selection functions (see (12)

below where another selection function is studied in the case of one population).
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Figure 1 – Schematic representation of the 2 habitat model. The top figure shows the growth
rate (fitness) in each habitat as a function of the phenotypic trait z. In habitat i the growth rate
is assumed to be maximized at z = θi and the strength of selection is governed by si (see equation
(1)). Here we illustrate a scenario with non-symmetric fitness functions. The bottom figure shows
the phenotypic density in each habitat (light blue and light red in habitats 1 and 2, respectively).
Migration from population i is governed by the parameter mi and tends to reduce the differentiation
(i.e. the difference between the mean phenotypes) between populations.

Reproduction is assumed to be asexual. Offspring inherit the phenotype of their parent (i.e. no envi-

ronmental variance) and we consider a continuum of alleles model Kimura 1965. Mutations occur with

a constant rate U (i.e. mutations are not associated with reproduction) and add an increment y to

the parents’ phenotype; we assume that the distribution of these mutational effects is given by K(y),

with mean 0 and variance equal to 2Vm. We also assume that individuals disperse out of habitat i

with rate mi. Rates of migration are assumed to be independent of individuals’ phenotypes.

Let ni(t, z) be the phenotypic density in habitat i at time t. The dynamics of this density in each
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habitat is given by (for i = 1, 2 and j = 2, 1):

∂ni(t,z)
∂t = U

( ∫ +∞

−∞
ni(t, z − y)K(y)dy − ni(t, z)

)
︸ ︷︷ ︸

mutation

+ni(t, z)

(
ri(z)− κi

∫ +∞

−∞
ni(t, y)dy

)
︸ ︷︷ ︸

growth

+mjnj(t, z)−mini(t, z)︸ ︷︷ ︸
migration

.
(2)

The first term in the right hand side of the above equation corresponds to the effect of mutations. The

second term corresponds to logistic growth that results from the balance between reproduction given

by (1) and density dependance where κi measures the intensity of competition within each habitat.

The last term corresponds to the dispersal of individuals between habitats.

If we assume that the variance of the mutation distribution is small relative to the mutation rate U ,

we can consider an approximate model where we replace the mutation term in (2) by a diffusion (see

Kimura 1965; Lande 1975 and the more recent article Champagnat et al. 2008 where the diffusion

term has been derived directly from a stochastic individual based model). See also Bürger 2000–pages

239-241 for a discussion on the domain of the validity of such model. Our model then becomes:

∂ni(t, z)

∂t
= UVm

∂2ni(t, z)

∂z2
+ ni(t, z)

(
ri(z)− κi

∫ +∞

−∞
ni(t, y)dy

)
+mjnj(t, z)−mini(t, z). (3)

The total population sizes in each habitat is given by:

Ni(t) =

∫ +∞

−∞
ni(t, z)dz, for i = 1, 2. (4)

In other words, ni(t, z) refers to the density of individuals with phenotype z in habitat i, while Ni

refers to the total density of the polymorphic population in habitat i.

Data Availability Statement

No biological data is provided in this article.
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Results

One population: the selection-mutation equilibrium

In this section we start by a simple scenario with no migration. This one-population example provides

a good introduction to our method. The dynamics of the phenotypic density in a single habitat is

given by:

∂n0(t, z)

∂t
= UVm

∂2n0(t, z)

∂z2
+ n0(t, z) (r0(z)− κN0(t)) , (5)

where N0 is the total population size:

N0(t) =

∫ +∞

−∞
n0(t, y)dy.

For this scenario we consider a more general form of growth rate r0(z) than (1). We only suppose

that r0(z) is maximized for an optimal trait z0. In the following we present our two-step approach.

First, we analyse the evolutionary equilibria of the problem when the rate of mutation is small and we

identify the evolutionary stable strategy (ESS). Second, we use this ESS to derive an approximation

for the stationary solution of (5) when mutation is more frequent and maintains a standing variance

at equilibrium.

Adaptive dynamics and evolutionary stable strategies

In this section, we assume that the mutations are very rare such that a mutation is fixed or goes extinct

before a new mutation arises in the population. The phenotypic distribution results from a collection

of spikes. Such spikes are gradually replaced by others with the arrival of new mutations and through

a competitive procedure. The theory of Adaptive Dynamics Geritz et al. 1998 is based on the study

of the stable equilibrium distribution and the localization of the spikes of such equilibrium, known

as evolutionary stable strategies (ESS). Note that in this first step we do not make any assumption

regarding the effects of these mutations on the phenotype. We are interested in the identification of

the global ESSs, i.e. when the resident population cannot be invaded by any mutation no matter its

effect.
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In absence of migration, the phenotype z0 constitutes a globally stable evolutionary strategy. Indeed,

when such monomorphic population reaches its demographic equilibrium, the total population size is

given by N∗0 = r(z0)
κ . The fate of a mutant with phenotype zm introduced in such a resident population

is determined by its fitness given by (i.e. per capita growth rate minus density dependence):

w(zm;N∗0 ) = r0(zm)− κ0N∗0 < w(z0;N
∗
0 ) = 0. (6)

No mutant trait zm can indeed invade the population since r0(z) takes its maximum at z0.

Equilibrium distribution with mutation

The ESS z0 corresponds to the long-term evolutionary outcome in a scenario where all phenotypic

strategies are present initially but where mutation is absent. In the following we study the impact of

mutation on the ultimate evolutionary equilibrium of the population.

We introduce a new parameter ε =
√
Vm. Hence we replace Vm by ε2 and we approximate the phe-

notypic density n∗ε,0(z), the equilibrium of (5), in terms of ε (where the subscript ε in n∗ε,0 indicates

the dependence of the phenotypic density on the parameter ε). Our objective is to provide an ap-

proximation of the phenotypic density when the effect of mutation (measured by ε) is small while the

mutation rate can be large.

To study n∗ε,0(z) we will use a method based on Hamilton-Jacobi equations (see equation (A.5)) which

has been developed by the mathematical community during the last decade to study selection-mutation

models, when the effect of mutations is vanishingly small. This method was first suggested by Diek-

mann et al. 2005 and was developed for the case of homogeneous environments in Perthame and Barles

2008; Barles et al. 2009. However those works, which are addressed to the mathematical community,

were mainly focused on the limit case where the effect of mutations ε is vanishingly small. Here, we go

further than previous studies and characterize the phenotypic distribution when the mutations have

non-negligible effects.

The method is based on the following transformation:

n∗ε,0(z) =
1√
2πε

exp
(uε,0(z)

ε

)
. (7)
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The introduction of the function uε,0(z) is a mathematical trick. It is indeed easier to provide first an

approximation of uε,0(z) rather than directly studying n∗ε,0(z).

Note that a first approximation of the population’s phenotypic density which is commonly used in the

theory of Quantitative Genetics is a Gaussian approximation of the following form around z∗:

n∗ε,0(z) ≈ N∗ε,0N (z∗, ε σ2). (8)

The Gaussian approximation, is as if we had imposed uε,0(z) to be a quadratic function of z, that

is uε,0(z) = ε log(
N∗ε,0
σ )− (z−z∗)2

2σ2 . Our objective, however, is to obtain more accurate results than (8)

and to approximate uε,0 without making an a priori Gaussian assumption. To this end we postulate

an expansion for uε,0(z) in terms of ε:

uε,0(z) = u0(z) + εv0(z) +O(ε2), (9)

and we try to compute the coefficients u0(z) and v0(z). These terms can indeed be explicitly computed

and they lead to an approximation of the total population size N∗ε and the phenotypic density n∗ε(z)

that we will call henceforth our first approximation (see the supplementary information A.1.1 for these

derivations).

In order to provide more explicit formula for the moments of order k ≥ 1 of the population’s distri-

bution in terms of the parameters of the model, we also provide a second approximation. This second

approximation, instead of using the values of u0 and v0 in the whole domain, is based on the Taylor

expansions of u0 and v0 around the ESS points (see the supplementary information, Section A.1.2).

Our second approximation is by definition less accurate than the first one. We illustrate below the

quality of these different approximations under two different scenarios.

Quadratic growth rate: We first consider a quadratic growth rate as in (1):

r0(z) = rmax,0 − s0(z − θ0)2. (10)
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In this case our first approximation yields the Gaussian distribution (8) with:

N∗ε,0 ≈
1

κ0
(rmax,0 − ε

√
s0U), σ2 ≈

√
U
√
s0
. (11)

Note that this Gaussian distribution is actually an exact equilibrium of (3) and the above ≈ signs can

indeed be replaced by equalities (see Kimura 1965 and Bürger 2000–Chapter IV). For the derivation

of this result see the supplementary information–Section A.1.1.

An asymmetric growth rate: We next consider a growth rate which is not symmetric:

r0(z) = rmax,0 − s0(z − θ0)2
(
a+ (z − θ0 − b)2

)
. (12)

In this case the phenotypic distribution does not have a Gaussian profile and our approximation yields:

N∗ε,0 ≈
1

κ0
(rmax,0 −

√
s0U(a+ b2) ε), n∗ε,0(z) ≈

1√
2πε

exp
(u0(z) + εv0(z)

ε

)
,

where the values of u0 and v0 can be computed explicitly (see the supplementary information–Section

A.1.1). In Figure 2 we plot this first approximation and compare it with the exact distribution that

we derived numerically.

We can also use our second approximation to obtain analytic expressions for the mean phenotypic

trait (see the supplementary information-Section A.1.2 for the derivation):

µ∗ε,0 =
1

N∗ε,0

∫
zn∗ε,0(z)dz = θ0 +

2b
√
Uε

√
s0(a+ b2)3/2

+O(ε2),

the mean variance:

σ∗2ε,0 =
1

N∗ε,0

∫
(z − µ∗ε,0)2n∗ε,0(z)dz =

√
Uε√

s0(a+ b2)
+O(ε2),
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and the third central moment:

ψ∗ε,0 =
1

N∗ε,0

∫
(z − µ∗ε,0)3n∗ε,0(z)dz =

2bUε2

s0(a+ b2)2
+O(ε3).

In Table 1 we show that our two approximations capture accurately the first three moments of the

equilibrium distribution using the parameters that we used in Figure 2. As expected, the first approx-

imation is more accurate, but the analytic expressions of the second approximation given above allow

us to capture the influence of the parameters of the model.
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Figure 2 – The selection-mutation equilibrium of the phenotypic density nε,0(z) in a
single population. We plot the exact phenotypic density at equilibrium obtained from numerical
computations of the equilibrium of (5) (blue dots) together with our first approximation (full black
line) with the growth rate given in (12). The vertical dotted line indicates the mean of the phenotypic
distribution. Note the skewness of the equilibrium distribution that is accurately captured with our
approximation (see also Table 1). In this figure, to compute numerically the equilibrium, we have
solved numerically the dynamic problem (5) and kept the solution obtained after long time when the
equilibrium has been reached. Parameter values: rmax = 3, s0 = 1; θ = −0.5, κ = 1, a = 0.2, b = 1,
U = 1, ε = 0.1.

Two populations: the selection-mutation-migration equilibrium

Next we return to the analysis of the stationary solution of (3), which results from the equilibrium

between selection, mutation and migration in each habitat. Using (1) and (3) one can derive dynamical
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Exact value First approximation Second approximation

Mean: µ∗
ε,0 -0.29 -0.29 -0.35

Variance: σ∗2
ε,0 0.13 0.14 0.09

Third central moment: ψ∗
ε,0 0.02 0.02 0.01

Table 1 – First three moments of the phenotypic distribution at mutation-selection equi-
librium in a single population. We compare the values from the exact numerical resolution of (5)
and our two approximations using the growth rate given in (12) (see also Figure 2). Parameter values:
rmax = 3, s0 = 1; θ = −0.5, κ = 1, a = 0.2, b = 1, U = 1, ε = 0.1.

equations for the size of the population and the mean phenotype (µi = 1
Ni

∫
zni(t, z)dz):

d

dt
Ni = Ni(rmax,i − κiNi)− siNi

(
(µi − θi)2 + σ2i

)
+mjNj −miNi,

d

dt
µi = −si

(
2(µi − θi)σ2i + ψi

)
+mj

Nj

Ni
(µj − µi),

where σ2i and ψi are the variance and the third central moment of the phenotypic distribution, respec-

tively. These two quantities are also dynamical variables and their dynamics are governed by higher

moments of the phenotypic distribution. But this dynamical system is not closed and these higher

moments are also dynamical variables that depend on additional moments. Various approximations,

however, have been used to capture its behavior. Typically, many results are based on the Gaussian

approximation that focuses on the dynamics of the mean and the variance and discards all higher

cumulants of the distribution Bürger 2000; Rice 2004. Yet several authors pointed out that neglecting

the skewness of the distribution can underestimate the amount of differentiation and local adaptation

Yeaman and Guillaume 2009; Débarre et al. 2013, 2015. Indeed, in the case of symmetric habitats,

that is when m1 = m2 = m,κ1 = κ2 = κ, s1 = s2 = s, rmax,1 = rmax,2 = rmax, one can readily

obtain the size and the mean trait of the population at equilibrium (the equilibrium is indicated by a

superscript ∗). Using the fact that N∗1 = N∗2 = N∗, µ∗1 = −µ∗2, σ∗1 = σ∗2 = σ∗ and ψ∗1 = −ψ∗2 = ψ∗, we

obtain:

N∗ =
1

κ

(
rmax − s

((2mθ − sψ∗)2

4(m+ gσ∗ 2)2
+ σ∗ 2

))
,
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µ∗1 =
−s(ψ∗ + 2θσ∗ 2)

2(m+ sσ∗ 2)
.

The differentiation between the two habitats is thus (Figure 1):

µ∗2 − µ∗1 =
s(ψ∗ + 2θσ∗ 2)

m+ sσ∗ 2
. (13)

There is, however, no analytic predictions on the magnitude of the different moments of the phenotypic

distribution except in the limit when the mutation rate is extremely low Débarre et al. 2013.

Next, we follow the two-step approach we used to obtain the stationary phenotypic distribution in

a single population. First, we analyse the evolutionary equilibria of the system when mutations are

rare using the Adaptive Dynamics framework. We identify monomorphic or dimorphic globally evolu-

tionary stable strategies (ESS). Second, we use these ESSs to derive approximations of the stationary

solution of (3) when mutation is more frequent and maintains a standing variance at equilibrium.

Adaptive dynamics and evolutionary stable strategies

We consider a resident population at a demographic equilibrium set by the phenotypic densities of the

resident in both habitats (see the supplementary information, Section A.2.1). We want to determine

the fate of a mutant with phenotype zm introduced in this resident population. The ability of the

mutant to invade is determined by its fitness given by:

wi(zm;Ni) = ri(zm)− κiNi, for i = 1, 2. (14)

To take into account migration between habitats we introduce an effective fitness which corresponds to

the growth rate of a trait in the whole environment (see Caswell 1989; Metz et al. 1992; Meszéna et al.

1997). The effective fitness W (zm;N1, N2), which corresponds to the effective growth rate associated
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with trait zm in the resident population (n1, n2), is the largest eigenvalue of the following matrix:

A(zm;N1, N2) =

 w1(zm;N1)−m1 m2

m1 w2(zm;N2)−m2

 . (15)

After some time, the dynamical system will reach a globally stable demographic equilibrium. Because

there are two habitats, we expect that at most two distinct traits can coexist. With an analysis of the

effective fitness W , we characterize such equilibrium corresponding to the evolutionary stable strategy

(see the supplementary information, Section A.2.1.1). This equilibrium is indeed either monomorphic

(with phenotype zM∗ and the total population size NM∗
i ) or dimorphic (with phenotypes zD∗I and zD∗II

and the total population sizes ND∗
i , where the subscripts I and II indicate that the phenotype is best

adapted to habitat 1 and 2, respectively).

Equilibrium distribution with mutation

In the following we allow mutation rate to increase and we study the impact of mutations on the

ultimate evolutionary equilibrium of the phenotypic densities, i.e. the stationary solution of (3). We

present below the general principle of the approach before examining specific case studies.

As above we introduce the parameter ε =
√
Vm and we approximate the phenotypic density n∗ε,i(z),

the equilibrium of (3) with Vm = ε2, in terms of ε. Our objective is to provide an approximation of

the phenotypic density in each habitat when the effect of mutation (measured by ε) is small while the

mutation rate can be large.

We use analogous transformation to (7):

n∗ε,i(z) =
1√
2πε

exp
(uε,i(z)

ε

)
. (16)

Our objective is then to estimate uε,i(z). We proceed as in the one population scenario and we

14



postulate an expansion for uε,i in terms of ε:

uε,i(z) = ui(z) + εvi(z) +O(ε2), (17)

and we try to compute the coefficients ui(z) and vi(z) . First we can show that, when there is migra-

tion in both directions (i.e. mi > 0 for i = 1, 2), the zero order terms are the same in both habitats:

u1(z) = u2(z) = u(z) (see the supplementary information, Section A.2.1.2). We can indeed compute

explicitly u(z) which is given by (A.23) in the monomorphic case and by (A.24) in the dimorphic case.

As we observe in the formula (A.23) and (A.24), u(z) attains its maximum (which is equal to 0) at

the ESS points identified in the previous subsection. This means that the peaks of the population’s

distribution are around the ESS points (zM∗ in the case of the monomorphic ESS and (zD∗I , zD∗II )

for the dimorphic ESS). Note that the fact that u1(z) = u2(z) = u(z) means that the peaks of the

population distribution are placed approximately at the same points (ESS points) in both habitats.

However, the size of the peaks may be different since v1(z) is not necessarily equal to v2(z).

We are also able to compute the first order term vi(z) (see the supplementary information, Section

A.2.1.2). This allows us to obtain a first approximation of the phenotypic density n∗ε,i(z). This ap-

proximation of the stationary distribution is very accurate (see for instance Figure 4).

As in the one population scenario we derive more explicit formula for the moments of order k ≥ 1

of the stationary phenotypic distribution. This second approximation, instead of using the values of

u(z) and vi(z) in the whole domain, is based on the computation of the Taylor expansions of u(z) and

vi(z) around the ESS points (see the supplementary information, Section A.2.1.3).

Case studies

Symmetric fitness landscapes

We focus first on a symmetric scenario where, apart from the position of the optimum, the two habi-

tats are identical: m1 = m2 = m,κ1 = κ2 = κ, s1 = s2 = s, rmax,1 = rmax,2 = rmax. In this special
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case it is possible to fully characterize the evolutionary equilibrium.

When migration rate is higher than critical migration threshold:

m > mc = 2sθ2 (18)

migration prevents the differentiation of the trait between the two habitats (see the supplementary

information- Subsection A.2.1.1). The only evolutionary equilibrium, when the mutation rate is van-

ishingly small, is monomorphic and satisfies zM∗ = 0 and nM∗1 (z) = nM∗2 (z) = NM∗δ(z), where δ(.) is

the dirac delta function and NM∗ = 1
κ

(
rmax − sθ2

)
.

Monomorphic case: Let’s suppose that mc = 2sθ2 ≤ m. Then zM∗ = 0 is the only ESS and

NM∗ = 1
κ

(
rmax − sθ2

)
. Then, we can provide our first approximation of the phenotypic density

nε,i(z) following the method introduced above (Figure 3). Moreover, defining φ =
√

1− 2sθ2/m, we

can use the second approximation to obtain analytic formula for the moments of the stationary state:



NM∗
ε,1 = NM∗

ε,2 =
∫
nM∗ε,i (z)dz = 1

κ

(
rmax − sθ2

)
− ε

√
Usφ
κ +O(ε2),

µM∗ε,1 = 1
NM∗

ε,1

∫
znM∗ε,1 (z)dz = −ε

√
Us θ
mφ +O(ε2),

µM∗ε,2 = 1
NM∗

ε,2

∫
znM∗ε,2 (z)dz = ε

√
Us θ
mφ +O(ε2),

σM∗ 2ε,1 = σM∗ 2ε,2 = 1
NM∗

ε,i

∫
(z − µM∗ε,i )2nM∗ε,i (z)dz = ε

√
U√
sφ

+O(ε2),

ψM∗ε,i = 1
NM∗

ε,i

∫
(z − µM∗ε,i )3nM∗ε,i (z)dz = O(ε3).

(19)

These results are consistent with (13). Note that the equilibrium variance in each habitat σM∗2ε,i ≈ ε
√
U√
sφ

is larger than the equilibrium variance maintained in the absence of heterogeneity between the habitats

(compare with (11)). This increase in the equilibrium variance comes from φ which depends on

dispersion and the heterogeneity between the two habitats. The variance of the distribution increases

as φ decreases. When φ = 0 the approximation for the variance becomes infinitely large. Indeed,

this corresponds to the threshold value of migration below which the above approximation collapses
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because the distribution becomes bimodal. In this case we have to switch to the analysis of the

dimorphic case. Note that the differentiation between habitats depends also on φ. Some differentiation

emerges even when the migration rate is above the critical migration rate, mc (Figures 3 and 4). In

Figure 4 we provide a comparison of the results from the first and the second approximations. Our

second approximation yields convincing results when the parameters are such that we are far from the

transition zone from monomorphic to dimorphic distribution. This approximation is indeed based on

an integral approximation which is relevant only when the population’s distribution is relatively sharp

around the ESS points. This is not the case in the transition zone unless the effect of the mutations,

i.e. ε, is very small.

Dimorphic case: Whenm < mc, the only globally stable evolutionary equilibrium is dimorphic which

yields the following ESS: {zD∗I , zD∗II } with zD∗I = −zD∗II = −zD∗ and zD∗ =
√
4s2θ4−m2

2sθ . When ε = 0

this yields the following phenotypic densities at equilibrium : nD∗i (z) = νI,iδ(z−zD∗I )+νII,i δ(z−zD∗II )

(analytic expressions for νI,j and νII,j are given in the supplementary information, Section B.1). When

ε > 0 we can use our first and second approximations to obtain convincing approximations of the phe-

notypic distribution and its moments (see Figure 4). Our first approximation improves the Adaptive

Dynamics predictions in a broad range of the parameter space and, as pointed above, our second

approximation is pertinent when the parameters are such that we are far from the transition zone

from dimorphic to monomorphic distribution. The analytic expressions for the local moments of the

stationary distribution in each habitat, obtained from our second approximation, are given in the

supplementary information, Section B.3.

Non-symmetric scenarios

A general non-symmetric scenario: In a non-symmetric scenario, there is also a unique glob-

ally stable evolutionary strategy which is either monomorphic or dimorphic. There is still a thresh-

old value of migration above which the maintenance of a dimorphic polymorphism is impossible:

∆ = m1m2
4s1s2θ4

≥ 1. Note that this condition generalizes the condition in the symmetric case (i.e. when

m1 = m2 and s1 = s2). However, for the ESS to be dimorphic, the condition ∆ < 1 is not enough
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Figure 3 – Selection-mutation-migration equilibrium of the phenotypic densities nε,i(z) in
the two habitats in a symmetric scenario. We plot the exact phenotypic densities at equilibrium
obtained from numerical computations of the equilibrium of (3) (blue dots) together with our first
approximation (full black line) in a case where the distribution is unimodal in each habitat. We also
plot the approximation given in Débarre et al. 2013 (red dashed line). Note that our approximation
captures the emergence of some differentiation even though we are above the critical migration rate
leading to the evolution of a dimorphic population. In the presence of large mutation rates, the
population’s distribution is indeed shifted to the left(respectively right) in the first(respectively second)
habitat, while Débarre et al. 2013 provided the same approximation for both habitats. Our calculation
yields also better approximations for the variance of the distribution in each habitat (Débarre et al.
2013 underestimates this variance). In this figure and in the following ones, to compute numerically
the equilibrium, we have solved numerically the dynamic problem (3) and kept the solution obtained
after long time when the equilibrium has been reached. Parameter values: m = 1.5, rmax = 3, s = 2;
θ = 0.5, κ = 1, U = 1, ε = 0.1.

and two other conditions should also be satisfied. These conditions (i.e. η1 < β2rmax,2 − α1rmax,1 and

η2 < β1rmax,1 − α2rmax,2 with the constants αi,βi and ηi depending on the parameters m1, m2, s1,

s2, κ1, κ2 and θ, see the supplementary information, Section B.2), guarantee that the qualities of the

habitats are not very different. Indeed, if one habitat has a higher quality it is likely to overwhelm

the dynamics of adaptation in the other habitat. This will yield a monomorphic equilibrium biased

toward the high-quality habitat. Figure 5 illustrates that a polymorphism is only maintained in a

range of parameter values where the two habitats are relatively similar. Interestingly, in spite of the

asymmetry of the two habitats, the locations of the two peaks of the phenotypic distribution are al-
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Figure 4 – Effects of migration in a symmetric scenario on (A) the total population
size (N∗ε,1) in habitat 1, (B) the differentiation between habitats (µ∗ε,2 − µ∗ε,1), (C) the

variance (σ∗2ε,1) and (D) the third central moment of the phenotypic distribution (ψ∗ε,1) in
habitat 1 (see (19) and Section B.3 for the definition of these quantities and the analytic formula
obtained from our second approximation). The dots refer to the numerical resolutions of the problem
with ε = 0.05, the red line indicates the case where ε = 0, while the lines in black refer to our
two approximations when ε = 0.05 (the dashed line for the first approximation and the full line for
the second approximation). The vertical gray line indicates the critical migration rate below which
dimorphism can evolve in the Adaptive Dynamics scenario. Note that both approximations predict
the same total population size. Other parameter values: rmax = 1, s = 2, θ = 0.5, κ = 1, U = 1.

ways symmetric and consequently: zD∗1 = −zD∗2 = −zD∗ where: zD∗ =
√
θ2(1−∆). The symmetric

locations of the peaks is indeed a consequence of the choice of the quadratic stabilizing selection (1).

See the supplementary information, Section B.1 for the expressions of the densities in each habitat

and Section A.2.1.1 for the conditions leading to this stable equilibrium.

A source-sink scenario: An extreme case of asymmetry occurs when one population (the source)
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Figure 5 – Maintenance of polymorphism and non-symmetric adaptation as a function of
the maximal growth rates rmax,1 and rmax,2 in the two habitats. In (A) we examine a symmetric
situation where all the parameters are identical in the two habitats: m1 = m2 = 0.5, s1 = s2 = 2,
κ1 = κ2 = 1. In (B) we show a non-symmetric case with the same parameters as in (A) except
m1 = 0.5 and m2 = 0.7. The black area indicates the parameter space where the population is driven
to extinction because the maximal growth rates are too low. In the grey area some polymorphism can
be maintained in the two-habitat population as long as the difference in the maximal growth rates
are not too high. When this difference reaches a threshold polymorphism cannot be maintained and
the single type that is maintained is more adapted to the good-quality habitat (the habitat with the
highest maximal growth rate).

does not receive any migrant from the second population (the sink). For instance, when m1 > 0 and

m2 = 0 there is no immigration in habitat 1. Note that this is a degenerate case. In contrast with the

above analysis where both m1 and m2 are positive, we have to provide an analysis of ESS for each

habitat separately. Moreover, the computation of the equilibrium in presence of mutations is slightly

different because of this degeneracy (see the supplementary information Section A.2.2).

The evolutionary outcome in the first habitat is obvious because it depends only on selection acting

in habitat 1: the ESS is −θ and

N∗1 =
rmax,1 −m1

κ1
. (20)

Moreover, the population’s phenotypic density n∗ε,1 can be computed explicitly: n∗ε,1 = N∗ε,1fε, where

N∗ε,1 =
rmax,1−m1−ε

√
Us1

κ1
and fε is the probability density of a normal distribution N (−θ, ε

√
U√
s1

).
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In habitat 2, the evolutionary outcome results from the balance between migration from habitat

1 and local selection. Interestingly, migration has a non-monotonic effect on adaptation in the sink

(See Figure 6). Indeed, Figure 6A shows that the population size in the sink is maximized for interme-

diate values of migration. More migration from the source has a beneficial effect on the demography

of the sink but it prevents local adaptation. Yet, when migration from the source becomes very large

it limits the size of the population in the source (see (20)). This limits the influence of the source on

the sink and can even promote adaptation to the sink. In fact, it is worth noting that differentiation

between the two habitats can actually increase with migration (Figure 6B). The level of migration

from the source that prevents local adaptation in the sink is given by the condition:

4s2θ
2rmax,2

κ2
≤ m1(rmax,1 −m1)

κ1
. (21)

Indeed, when condition (21) is verified, the migration from the source overwhelms local selection and

the evolutionary stable strategy in the sink is z∗ = −θ. In contrast, when condition (21) does not hold,

the effective growth rate of the optimal trait θ in the sink habitat is high enough to compete with the

trait −θ coming from the source, allowing coexistence between the two strategies. Note again that

our two approximations (see supplementary information sections A.2.2.2 for the derivation of the first

approximation and B.4 for the analytic formula for the moments of the phenotypic distribution derived

from our second approximation) provide very good predictions for the moments of the phenotypic

distribution in the sink (Figure 6).

Discussion

The balance between selection, migration and mutation drives the dynamics of local adaptation in

heterogeneous environments. Here we present a new theoretical approach to obtain accurate approx-

imations for the equilibrium phenotypic densities in a two-habitat environment. This analysis goes

beyond the Adaptive Dynamics framework because it allows us to account for the effect of large

mutation rates. This analysis does not rely on the Gaussian approximation which underlies many

21



0 0.4 0.8 1.2 1.6 2 2.4 2.8
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
T

ot
al

 p
op

ul
at

io
n 

in
 th

e 
si

nk
A

0 0.4 0.8 1.2 1.6 2 2.4 2.8
0

0.2

0.4

0.6

0.8

1

1.2

D
iff

er
en

tia
tio

n

B

0 21 30.5 1.5 2.5
0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

V
ar

ia
nc

e 
in

 th
e 

si
nk

C

0 0.4 0.8 1.2 1.6 2 2.4 2.8
−0.1

−0.06

−0.02

0.02

0.06

0.1

0.14

T
hi

rd
 m

om
en

t i
n 

th
e 

si
nk

D

Figure 6 – Effects of migration in a source-sink scenario on (A) the total population size
in the sink habitat, (B) the differentiation between habitats, (C) the variance and (D)
the third central moment of the phenotypic distribution in sink. The dots refer to exact
numerical computations when ε = 0.05, the red line indicates the case where ε = 0 while the lines
in black refer to our two approximations when ε = 0.05 (dashed line for the first approximation and
the full line for the second approximation). The vertical gray lines, at m1 = 1 and m1 = 2, indicate
the critical migration rates where transition occurs between monomorphism and dimorphism in the
Adaptive Dynamics framework (see condition (21)). Note that both approximations predict the same
total population size. Other parameter values: rmax,1 = 3, rmax,2 = 1, s1 = 3, s2 = 2, κ1 = κ2 = 1,
θ = 0.5, U = 1.

Quantitative Genetics models. Our analysis yields analytic approximations that help provide a good

understanding of the balance between the different evolutionary forces in both symmetric and non-

symmetric scenarios.

In the symmetric scenario we recover the classical results from Quantitative Genetics in a single pop-

ulation Lande 1975; Bürger 2000; Rice 2004 but expand this to spatially heterogeneous scenarios.

In particular, we capture the emergence of differentiation between habitats when the migration rate
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decreases. When migration is strong relative to selection, the stationary phenotypic density is uni-

modal in each habitat but heterogeneous selection increases phenotypic variance and differentiation

(see (19) and Figure 4). When migration is close to the critical migration rate mc (see condition (18))

we observe a shift between the phenotypic distributions of the two habitats. This pattern was not

detected in previous studies but our method captures this shift and improves the approximation of the

variance of the phenotypic distributions (see Débarre et al. 2013 and Figure 3). When the migration

rate is much smaller than mc and selection is sufficiently strong between habitats, the equilibrium

distribution in each habitat can be well approximated as the sum of two distributions. But unlike

previous approximations Yeaman and Guillaume 2009; Débarre et al. 2013 these two distributions are

non-gaussian. We derive approximations for the moments of these distributions. In other words, this

work generalises previous attempts to derive the distribution of a phenotypic trait at the mutation-

selection-migration equilibrium. Our results confirm the importance of the skewness in the phenotypic

distribution and improve predictions of measures of local adaptation in a heterogeneous environment.

In the non-symmetric scenario we show that the condition for the maintenance of two specialized

strategies are more restrictive (Figure 5). Indeed, asymmetries promote a single strategy that is more

locally adapted to the habitat with larger population size and/or lower immigration rate. The impact

of biased migration rates from a source population into the adaptation of peripheral populations has

been discussed before Holt and Gaines 1992; Garćıa-Ramos and Kirkpatrick 1997; Gomulkiewicz et al.

1999; Holt et al. 2003; Akerman and Bürger 2014. Our approach, however, yields a quantitative de-

scription of the shape of the phenotypic distributions in both the source and the sink habitats. These

accurate predictions are key to understand the effect of different evolutionary forces on the level of

adaptation in the two habitats. For instance, the analysis of an extreme case with source-sink dynamics

reveals the complex interplay between migration, demography and local selection. The maintenance

of a polymorphic equilibrium is possible when migration from the source is either very weak or very

strong. This result challenges the classical prediction where migration is always an homogenizing force

reducing the differentiation among populations (Figure 6).
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Our work illustrates the potential of a new mathematical tool in the field of evolutionary biology.

In this work, we use an approach based on Hamilton-Jacobi equations (see (A.22)) which has been

developed, mostly by the mathematical community, during the last decade to describe the asymptotic

solutions of the selection-mutation models, as the effect of mutation vanishes. We refer to Diekmann

et al. 2005; Perthame and Barles 2008; Mirrahimi 2011 for the establishment of the basis of this ap-

proach. Note, however, that previous studies were mainly focused on the limit case where the effects of

mutations are vanishingly small. In particular, they do not provide approximations of the phenotypic

density and its moments when the effect of mutations, ε, is nonzero. In the present work we go further

than the previous studies and characterize the phenotypic distributions when the influx of mutations

can alter significantly the shape of the stationary distribution. Understanding the build up of this dis-

tribution is particularly important to study the effect of mutation on adaptation. Although mutation

is the ultimate source of adaptive variation, the accumulation of deleterious mutations generates a

load on the average fitness of populations. This is particularly relevant in organisms like RNA viruses

which are characterized by very large mutation rates Drake and Holland 1999; Sanjuán et al. 2010. In

fact, the mutation loads of RNA virus is so high that it may even lead some populations to extinction

Bull et al. 2007; Martin and Gandon 2010. Our model can be used to accurately capture the effect of

increasing mutation rates on the mutation load of a population living in a heterogeneous environment

(Figure 7). This heterogeneity may be particularly relevant in chronic infections by pathogenic virus

that can adapt to different organs Kemal et al. 2003; Sanjuán et al. 2004; Ducoulombier et al. 2004;

Jridi et al. 2006. A better understanding of the phenotypic distribution at equilibrium in heteroge-

neous environments may thus provide more accurate prediction on the critical mutation rates that

can ultimately lead within-host dynamics to pathogen extinction.

Our analysis of the equilibrium between selection, migration and mutation could be extended in several

new directions. More than 2 habitats could be considered, or different growth rates and/or mutation

kernels could be used (see Mirrahimi 2013 and the supplementary information, Section (A.3)). The

approach could also be used to analyze situations away from the equilibrium. For instance, it would

be possible to track the dynamics of the distribution as the population adapts to a new environment
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Figure 7 – Effect of increasing the mutation rate U on the total population size in the
symmetric scenario used in Figure 3 with m = 0.5. The full line indicates the approximation and
the dots are the results of exact numerical computations. This figure illustrates that our approximation
given by the first line of (19) captures reasonably well the effect of large mutation rates on the mutation
load in a two-habitat scenario where there is differentiation and some local adaptation.

or to a time-varying environment Lande and Shannon 1996. Hamilton-Jacobi equations have indeed

also been used to study time-varying (but space homogeneous) environments (see for instance Mir-

rahimi et al. 2015; Figueroa Iglesias and Mirrahimi 2018). Finally, it is interesting to note that the

generalization of the present ecological scenario to model the adaptation of sexual species in hetero-

geneous environments remains to be carried out. Our method could be extended to allow for sexual

reproduction within the framework of the infinitesimal model (see Fisher 1919; Calvez et al. 2019).

But this analysis falls beyond the scope of the present paper.
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Meszéna, G., I. Czibula, and S. Geritz, 1997 Adaptive dynamics in a 2-patch environment: a toy

model for allopatric and parapatric speciation. Journal of Biological Systems, 5:265–284.

28



Metz, J.A.J., R. M. Nisbet and S. A. H. Geritz, 1992 How should we define ’fitness’ for general

ecological scenarios? Trends Ecol Evol, 7:198–202.

Mirrahimi, S., 2011 Concentration phenomena in PDEs from biology. PhD thesis, Univeristy of Pierre

et Marie Curie (Paris 6).

Mirrahimi, S., 2013 Migration and adaptation of a population between patches. Discrete Contin.

Dyn. Syst. Ser. B, 18:753–768.

Mirrahimi, S., 2017 A Hamilton-Jacobi approach to characterize the evolutionary equilibria in het-

erogeneous environments. Math. Models Methods Appl. Sci., 27:2425–2460.

Mirrahimi, S., B. Perthame and P. E. Souganidis, 2015 Time fluctuations in a population model of

adaptive dynamics. Annales de l’I.H.P. Analyse non linéaire, 32:41–58.
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