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Abstract

We study sexual populations structured by a phenotypic trait and a space variable, in
a non-homogeneous environment. Departing from an infinitesimal model, we perform an
asymptotic limit to derive the model introduced in [25]. We then perform a further simpli-
fication to obtain a simple model. Thanks to this simpler model, we can describe rigorously
the dynamics of the population. We can then provide an explicit estimate of the invasion
speed, or extinction speed of the species. Numerical computations show that this simple
model provides a good approximation of the original infinitesimal model, and in particular
describes quite well the evolution of the species’ range.

Key-words: gene flow, biological invasions, structured populations

1 Introduction

Biological invasion processes play an important role in ecology [18, 34, 46]. Those invasions can
for instance be due to an introduction [22] or to a climate change [20]. Theoretical models, and
in particular partial differential models have proven to be useful to study biological invasions
as consequences of migration and reproduction [16, 34, 46]. Those models however do not take
into account evolutionary processes that can appear during the invasion.
It is known experimentally that biological invasions can involve evolutionary processes [27,

19, 45, 17], which can have an impact on the speed, or even on the success of the invasion. For
instance, evolutionary changes in dispersal [22, 38, 19, 47, 5] can speed up the invasion process.
It is also the case if the environment to invade is inhomogeneous [22, 43, 35, 23]. In this article,
we will consider this second case, in the case of sexual populations.
To study biological invasions in heterogeneous environments, one should consider migration

and reproduction, but also mutation and gene flow. It is thus a complicated phenomenon, that
has been investigated in numerous articles. In [36], it was shown that the gene flow, from the
center of the population’s range to the edge can prevent the expansion of the species habitat,
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and then explain the limited range of some species. In [25], a model with density regulation was
introduced, which showed that a simple environment clime could lead a population to either
go extinct, survive in a limited range, or invade the whole environment. This model was later
generalized in [9] to several interacting species. In [4], three more detailed models were proposed,
describing more accurately the local diversity of the population: A continuum of allelic effect
model, a model with two alleles by locus, and an infinitesimal model. The result of this study
was surprising, since the various models showed qualitatively different dynamics. In particular,
no populations with limited range were obtained with the continuum of allelic effect model, or
the model with two alleles by locus, while for the infinitesimal model, a limited range equilibrium
and populations invading the whole environment could exist at the same time. Finally, those
models have been used successfully to study the effect of global warming on populations’ ranges
[36, 40, 1, 26].

Most of the studies presented above focus on the cases where limited range is observed. Those
cases are indeed of particular interest, since they explain globally the repartition of species. In
this article, we will study with equal interest the cases where the population succeeds to invades
the whole territory, since we believe it can provide a good description of the dynamics of the
population close to the edge of an invasion (even if globally, the range of the population will
ultimately remain limited).

In this paper, we first consider an infinitesimal model, where the population is structured by
both a phenotypic trait and a space variable. We show that the model of [25] can be obtained
from the infinitesimal model through an asymptotic limit (similar to the hydrodynamic limits
existing in physics or chemistry [51]). This asymptotic analysis allows us to clarify the derivation
of the model, and in particular to highlight the importance of the ratio between the birth rate
and the maximal growth rate of the population for the validity of the model of [25]. Then,
we simplify the model of [25], thanks to a weak selection limit, to obtain a simple model that
is able to describe populations living in a limited range, or populations invading the whole
environment. Thanks to that simple model, we are able to describe rigorously the dynamics of
the population, and then clarify the relation between propagative fronts (invasions or extinctions)
and limited range scenario. This simple model also provides an estimate of the invasion speed of
the population, if invasion happens, or of the extinction front if the population dose not succeed
to invade. Finally, we illustrate the results with numerical computations, and in particular
present comparisons with the dynamics of the initial infinitesimal model.

2 Derivation of simplified models from a structured population

model

2.1 The structured population model

We start our analysis from a classical infinitesimal model describing the evolution of a population
structured by a phenotypic trait only (see e.g. [8, 14, 32], and [13, 12, 28] for mathematical
properties of this kind of models). Let n(t, v) be the population at time t ≥ 0, with a phenotypic
trait v ∈ R. We assume that the fitness depends on the square of the distance between v and an
optimal adaptation trait θ, and is altered by the population size. If we do not take into account
the effect of sexual reproduction, the fitness s[n(t, ·)](v) of an individual of phenotypic trait v,
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living among a resident population n(t, ·), is given by:

s[n(t, ·)](v) = rmax −
1

2Vs
(v − θ)2 − rmax

K

∫
n(t, w) dw, (1)

Here rmax > 0 denotes the maximal growth rate of the population, 1
Vs

is a measure of the
strength of the selection toward the optimal value of the phenotypic trait θ, and K is the
carrying capacity of the environment.

The fitness is well-defined in the case of asexual populations: it is the rate of births of offsprings
of trait x minus the rate of deaths. In the case of sexual populations however, the situation is
more complicated, since reproduction requires two parents, of traits v∗ and v′∗, that give birth
to an offspring of trait v, usually different from v∗ or v′∗. This has two consequences (see [6]):

• We need to define Q(·, v∗, v′∗), the distribution function of the trait of the offspring. We
will analyze briefly the properties of Q in Subsection 2.2.

• We have to define the birth rate and the death rate separately. We will assume in this
article that the birth rate is a constant, denoted by η > rmax.

In this model, we do not distinguish between males and females (for instance because they have
the same distribution) and assume that mating is random and uniform among the population.
We also assume that the number of offsprings is proportional to the local population, the idea
being that the number of births is proportional to the number of females. Then the evolution
of the well-mixed population, structured by a phenotypic trait only, is described by (see [14]):

∂tn(t, v) =

[
−(η − rmax)−

1

2Vs
(v − θ)2 − rmax

K

∫
n(t, w) dw

]
n(t, v)

+η

∫ ∫
n(t, v∗)n(t, v

′
∗)∫

n(t, w) dw
Q(v, v∗, v

′
∗) dv∗ dv

′
∗. (2)

Here η is the birth rate (η ≥ rmax), that we assume constant within the population (the selection
occurs due to the death term).

We next consider populations that are structured by a phenotypic trait v as above, but also
by a space variable x ∈ R. We assume that the selection-mutation process described above
occurs locally in space, but that individuals move randomly in space. We model this random
movement by a diffusion of rate σ. We additionally assume that the local optimal trait changes
linearly in space:

θ(x) = bx. (3)

We finally obtain the following model for sexual populations (close to the numerical model used
in [15, 1]):

∂tn(t, x, v) −
σ2

2
∆xn(t, x, v)

=

[
−(η − rmax)−

1

2Vs
(v − bx)2 − rmax

K

∫
n(t, x, w) dw

]
n(t, x, v)

+ η

∫ ∫
n(t, x, v∗)n(t, x, v

′
∗)∫

n(t, x, w) dw
Q(v, v∗, v

′
∗) dv∗ dv

′
∗, (4)
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where −σ2

2 ∆xn(t, x, v) models individuals dispersal.

The existence and uniqueness of solutions of (4) has been shown in [41]. Notice that in this
article, we do not distinguish the breeding value and the phenotypic trait of an individual,
neglecting the effect of the environment. In Subsection 6.1 of the Appendix, under the classical
assumption that probability law of the phenotypic trait of an individual is a Gaussian centered
in its breeding value, we obtain a model similar to (4), where only the constant −(η − rmax) is
modified (see e.g. [7]). Our analysis can then be generalized to this more realistic assumption.

2.2 Properties of the sexual reproduction kernel Q

In this subsection, we describe some properties of the sexual reproduction that will be useful
in Subsection 2.4. As in e.g. [6, 14], we consider the infinitesimal model, where the trait is
affected by an infinite number of loci with infinitesimal and additive effects. For more on the
infinitesimal model and discussion of more realistic models, see [50, 49]. If the parents have
traits v∗, v

′
∗, the distribution function Q(·, v∗, v′∗) of the offspring traits is given by the Gaussian

distribution

Q(v, v∗, v
′
∗) :=

1√
πVLE

e
−

(

v−
v∗+v′∗

2

)2

VLE , (5)

where VLE/2 > 0 is the genetic variance of the genotypic values at linkage equilibrium (see
[50, 49, 6]), and is assumed to be constant. We consider, in this subsection only, a pure sexual
reproduction model, i.e. a well mixed population structured by a phenotypic trait v only, with
a constant population size, and without selection:

∂tn(t, v) = C

[∫ ∫
n(t, v∗)n(t, v

′
∗)∫

n(t, w) dw
Q(v, v∗, v

′
∗) dv∗ dv

′
∗ − n(t, v)

]
, (6)

for some constant C > 0. One can check that the total population size
∫
n(t, v) dv and the

mean phenotypic trait of the population
∫
v n(t,v)
N(t,x) dv are invariant by the equation (6). On the

contrary, the second moment of the population phenotypic distribution converges exponentially
fast to the trait genetic variance G2 = VLE , and the third moment of the population phenotypic
distribution converges to 0: for any initial population (see Theorem 5 in the Appendix),

∣∣∣∣∣

∫ (
v −

∫
w n(t, w) dw

)2 n(t, v)∫
n(t, w) dw

dv −G2

∣∣∣∣∣

≤ e−Ct/2

∣∣∣∣∣

∫ (
v −

∫
wn(0, w) dw

)2 n(0, v)∫
n(0, w) dw

dv −G2

∣∣∣∣∣ , (7)

∣∣∣∣∣

∫ (
v −

∫
w n(t, w) dw

)3 n(t, v)∫
n(t, w) dw

dv

∣∣∣∣∣

≤ e−3Ct/4

∣∣∣∣∣

∫ (
v −

∫
w n(0, w) dw

)3 n(0, v)∫
n(0, w) dw

dv

∣∣∣∣∣ , (8)
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It has been shown in [6, 50] that (6) has a unique steady-state, that is the Gaussian distribution
of variance G2 = VLE . It can indeed be shown (see [29]) that the whole distribution n(t, ·)
converges exponentially fast to a Gaussian distribution (in the sense of Wasserstein distances,
see e.g. [52]).

In Subsection 2.4, estimates (7) and (8) will allow us to close a system of equations describing
the evolution of two first moments of the phenotypic distribution of the population n(t, x, ·) in
(4), and recover the model of [25]. They show that for sexual populations, when C is large
(in Subsection 2.4, C will be defined as the ratio between the birth rate and the maximal
growth rate of the population), the second and the third moment of the population depend only
on Q. They are in particular independent of the fitness landscape and the spatial structure.
For asexual populations, the situation would be very different: the phenotypic variance of a
asexual population in a mutation-selection equilibrium depends on the fitness landscape (and
the mutation model), see e.g. [24, 6, 53, 10].

2.3 Rescaling of the structured population model

Since this term will appear often in this subsection, we write r∗ the maximal fitness decreased
by the load of the phenotypic variance of the population:

r∗ := rmax −
G2

2Vs
,

where G2 = VLE is the trait genetic variance.

To simplify (4), we perform the following rescaling introduced in [25] (up to a minor modifi-
cation):

a1 = r∗, a2 =

√
2r∗

σ
, a3 = (r∗Vs)

− 1
2 ,

ñ(t̃, x̃, ṽ) =
rmax

K

√
Vs

r∗
n

(
t̃

a1
,
x̃

a2
,
ṽ

a3

)
,

Q̃(v, v∗, v
′
∗) :=

1

a3
Q

(
v

a3
,
v∗
a3

,
v′∗
a3

)
.

We notice that the rescaled reproduction kernel Q̃ satisfies (7) and (8) with G̃2 = (a3)
2G2 = G2

r∗Vs
,

that is the solution of (6) with Q̃ satisfies:

∫ (
v −

∫
wn(t, w) dw

)2 n(t, v)∫
n(t, w) dw

dv → G2

r∗Vs
(9)

With the above rescaling, (4) becomes, if we omit the tildes:

∂tn(t, x, v)−∆xn(t, x, v) = −
[
(C − (1 +A/2)) + 1

2(v −Bx)2 +
∫
n(t, x, w) dw

]
n(t, x, v)

+C
∫ ∫ n(t,x,v∗)n(t,x,v′∗)∫

n(t,x,w)dw
Q(v, v∗, v

′
∗) dv∗ dv

′
∗, (10)

with

A :=
G2

r∗Vs
, B :=

bσ

r∗
√
2Vs

, (11)
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A measures the strength of the potential for adaptation to the local optimal trait.

B indicates how rapidly the environment changes over space.

C measures the ratio between the birth rate and the maximal growth rate of the population.

Table 1: The interpretation of parameters A, B and C.

C :=
η

r∗
,

and Q satisfying (7) and (8) with G̃2 = A.
We recall the interpretation of parameters A, B and C in Table 1. Notice that in the case

of a population that can only procreate through sexual reproduction, η ≥ rmax and thus C ∈
[1,∞). On the contrary, for asexual populations (which we do not consider here), C = 0. The
parameter C characterizes indeed the strength of the phenotypic traits mixing caused by the
sexual reproduction.

2.4 Derivation of the model (15)

In this subsection, we show that when C is large, the phenotypic variance of the population
converges to the constant A, whereas the third moment of the phenotypic distribution of the
population converges to 0. The structured population model (10) then reduces to the model
(15).

We denote by N, Z, the two first moments of the distribution n(t, x, ·):

N(t, x) :=

∫
n(t, x, v) dv, Z(t, x) :=

∫
v
n(t, x, v)

N(t, x)
dv,

Then (see Theorem 2 in Subsection 6.3 of the Appendix), N and Z satisfy the following
unclosed equations:

∂tN(t, x)−∆xN(t, x)

=

[
1 +

1

2

(
A−

∫
(v − Z(t, x))2

n(t, x, v)

N(t, x)
dv

)
− 1

2
(Z(t, x)−Bx)2 −N(t, x)

]
N(t, x). (12)

∂tZ(t, x)−∆xZ(t, x) = 2∂x(logN(t, x))∂xZ(t, x) + (Bx− Z(t, x))

∫
(v − Z(t, x))2

n(t, x, v)

N(t, x)
dv

−
∫

(v − Z)3
n(t, x, v)

N(t, x)
dv. (13)

The term 2∂x(logN)∂xZ is referred to as the swamping, or asymmetric gene flow term (see
[31] and [36, 25, 40, 42]). This term models the fact that the mean phenotype of low density
areas are greatly influenced by the phenotypes of neighboring high density areas. It is interesting
to notice that this term does not come from the sexual reproduction term, but from the diffusion
term:

∆xZ(t, x) =

∫
v
∆xn(t, x, v)

N(t, x)
dv − Z(t, x)

N(t, x)
∆xN(t, x) + 2∂x(logN(t, x))∂xZ(t, x).
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Equations (12) and (13) can also be obtained for asexual populations. However, the moment
closure that we will present next, and that will allow us to derive the model of [25] from (12)
and (13) does not apply to asexual populations. This is fortunate, since the cases where the
population survives in a limited range, obtained in [25] only make sense for sexual populations.

To close the equations (12) and (13), we notice that (10) can be written:

∂tn(t, x, v) −∆xn(t, x, v) = C

[∫ ∫
n(t, x, v∗)n(t, x, v

′
∗)∫

n(t, x, w) dw
Q(v, v∗, v

′
∗) dv∗ dv

′
∗ − n(t, x, v)

]

+

[
1 +

A

2
− 1

2
(v −Bx)2 −

∫
n(t, x, w) dw

]
n(t, x, v)

Therefore if C is very large, the first term dominates the dynamics of the population. This first
term corresponds to the ”pure” sexual reproduction equation (6). It does not affect the total
population N(t, x) or the mean phenotypic trait Z(t, x), but it acts on the second and the third
moments of the phenotypic distribution of the population, as described in Subsection 2.2. The
recalled reproduction kernel Q̃ (denoted by Q here) satisfies (7) and (8) with G̃2 = G2

r∗Vs
= A

(see (9)). If C is large, it is then natural to assume that at all time t > 0 and all locations x ∈ R,

∫
(v − Z(t, x))2

n(t, x, v)

N(t, x)
dv ∼ A,

∫
(v − Z(t, x))3

n(t, x, v)

N(t, x)
dv ∼ 0. (14)

We can then use the estimates (14) to close the system of equations (12) and (13) and to obtain
the model (15) of [25]:

{
∂tN(t, x)−∆xN(t, x) =

(
1− 1

2(Z(t, x)−Bx)2 −N(t, x)
)
N(t, x),

∂tZ(t, x)−∆xZ(t, x) = 2∂x(logN(t, x))∂xZ(t, x) +A(Bx− Z(t, x)),
(15)

Our derivation shows that the model (15) is valid (in the sense that it is the formal asymptotic
limit of the infinitesimal (4)) if:

• The reproduction is sexual,

• The reproduction kernel satisfies (7) and (8),

• C is large.

With the asymptotic that we consider in this article (C large), the phenotypic variance of the
population depends only on the phenotypic variance of the offsprings (G2 = VLE , see Subsection
2.3), and neglects the effect of migration on the phenotypic variance. If C ≥ 1 is small, numerical
computations in Subsection 4.3 show that this simplification may not be very accurate, away
from the edge of the propagating front.

Unfortunately, there is no existence and uniqueness theory for (15). The difficulty comes from

the term ∂x(logN(t, x)) = ∂xN(t,x)
N(t,x) , which is not defined when N is not bounded away from 0.

One possibility to avoid this difficulty is to multiply the second equation of (15) by N . But even
in this case, the equation on Z is not defined when N(t, x) = 0. This problem will persist in the
simplified model that we will derive in the next subsection, where we will discuss the problem of
the definition of solutions in more details (see Example 1, and Subsection 6.4 in the Appendix).
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2.5 Derivation of the model (18)

In this subsection, we show that when A and B are small, the model (15) simplifies further. To
do so, we first apply the following change of variable:

N̆
(
t̆, x̆
)
:= N

(
t̆

A
,

x̆√
A

)
, Z̆

(
t̆, x̆
)
:=

1√
2
Z

(
t̆

A
,

x̆√
A

)
.

To simplify the notations, we omit the breves in the new unknown functions. The rescaled model
becomes

{
∂tN(t, x)−∆xN(t, x) = 1

A

[
1− (Z(t, x)−Dx)2 −N(t, x)

]
N(t, x),

∂tZ(t, x)−∆xZ(t, x) = 2∂x(logN(t, x))∂xZ(t, x) + (Dx− Z(t, x)),
(16)

where D = B√
2A

. Now, if we assume that A and B are small, while D remains constant, N and

Z are related by the simple relation:

N(t, x) ∼ 1− (Z(t, x)−Dx)2. (17)

Notice that D = bσ
2
√
r∗G

. If 1
Vs

→ 0, then A, B → 0 while D remains constant. The model (18)

can then be seen as a weak selection limit of (15). This is however not the only case where this
model applies: it would also apply, for instance, if G = σ → 0. In [25], the range of A that has
been considered is A ∈ [0.001, 1], and the range of B when the population does not go extinct
is B ∈ [0.01, 1]. Thus our approximation, assuming that A and B ∼

√
A are small, is coherent

with [25]. As we will see in Section 3, this model will provide relevant approximations of the
dynamics of the population, even when A is not very small.
Then, we obtain the simpler model (18), on Z only:

∂tZ(t, x)−∆xZ(t, x) = −4
(∂xZ(t, x)−D)(Z(t, x)−Dx)

1− (Z(t, x)−Dx)2
∂xZ(t, x)

+(Dx− Z(t, x)). (18)

Notice that N ≥ 0 implies that this approximation makes sense only if |Z(t, x) − Dx| ≤ 1.
Therefore we consider only solutions of (18) such that Z(t, x) ∈ [Dx− 1,Dx+ 1].
As we can see in (16), the limit that we performed corresponds to an infinitely fast reaction

term. This model is thus inadequate to capture the extinction phenomenon that occurs at the
infinitesimal level (see Section 4). This simple model is however able to capture the two other
possible behaviors of the population: propagation to the entire environment and survival in a
limited range.

Remark 1 Another simplification had been proposed in [25], where the equation on N was
replaced by

N := k exp
(
β
(
1−A(Z −Bx)2

))
. (19)

With this ansatz, the model (15) simplifies considerably:

∂tZ(t, x)−∆xZ(t, x) = A(Bx− Z(t, x)) [1− 4β∂xZ(t, x)(B − ∂xZ(t, x))] .

However, the simplification (19) seems independent of (15). Our simplification has the advan-
tage to rely on a clearer assumption: (18) is the formal limit of (15) when A is small.
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The equation (18) has a singularity for Z = Dx±1. The existence of singularities is an obsta-
cle to have a well-defined problem. However, as we will see in Subsection 3.1, the singularities
are fundamental to produce propagating fronts. We have not been able to find a good notion
of solution, that is a definition of solutions that would imply both the existence of solution for
general initial data, and the uniqueness of those solutions. Nevertheless we are able to show in
Subsection 6.4 of the Appendix (Theorem 3) that (18) admits viscosity solutions (see Subsection
6.4 in the Appendix for the definition of viscosity solutions and [11, 2] for general introduction
to the theory of viscosity solutions). Unfortunately the viscosity criterion is not enough to select
a unique solution. We give a counter-example below:

Example 1 Non-uniqueness for equation (18): We have the two following solutions to
equation (18):

Z1(t, x) = Dx− 1, for all (t, x) ∈ R+ × R,

Z2(t, x) = Dx− e−t, for all (t, x) ∈ R+ × R.

The first solution corresponds to N(t, x) = 0, while the second corresponds to N(t, x) =
1−e−2t, that is to a the spontaneous apparition of a population. The biologically relevant solution
is thus first one: if initially Z(0, x) = Dx − 1 for all x ∈ R, we expect that W (t, ·) ≡ −1, for
all t ∈ R+. However, an existence theory able to select the biologically relevant solution for any
initial population doesn’t exist yet (see also Subsection 6.4 in the Appendix).

3 Dynamics of the population, and propagating fronts

3.1 Theoretical study of the simplified model (18)

In this subsection, we study the existence of propagating fronts and steady states for equation
(18). Since the optimal trait at the point x of space is Dx, we expect a propagating front Z,
with Z a solution of (18), to be of the following form

Z(t, x) = Dx+ U(x− νt).

Using the above notation, the equation (18) becomes

−νU ′ − U ′′ = −4
U ′U

1− U2
(U ′ +D)− U,

with U : R 7→ [−1, 1]. If we denote by V := U ′ the derivative of U , finding a propagating front
is equivalent to finding a solution defined on R to the ODE

d

dt
(U, V )(t) = (FU (U, V ), FV (U, V )) ,

where the vector field (FU , FV ) is given by:

{
FU (U, V ) = V,

FV (U, V ) = −νV + 4 UV
1−U2 (V +D) + U.

(20)
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Using this new formulation of the problem, we show in Subsection 6.5 of the Appendix (Theo-
rem 5) that for any D > 0, there exists a minimal speed νD ∈ R such that (18) has a propagating
front of speed ν, Z(t, x) = Dx+ U(x− νt), satisfying

U(x) → 0 as x → −∞, U(x) → −1 as x → +∞,

if and only if ν ≥ νD. Just as for classical invasion models (like the Fisher-KPP model, see
[34, 46]), only the front of minimal speed is biologically relevant: the fronts of speed ν > νD
can be obtained only with very particular initial populations. One can then consider that the
propagation speed of the population is νD. The corresponding propagating front has a sharp
edge: there exists x(t) = x0 + νDt such that N(t, x) = 1 − (Bx − Z(t, x))2 6= 0 for x < x(t),
and N(t, x) = 0 for x ≥ x(t). Moreover, ∂xZ(t, x) → 0 as x → x(t), x < x(t), that is the mean
phenotypic trait of the population is almost constant close to the edge of the population’s range.
We represent some propagating fronts in Figure 1.

In Subsection 6.5 of the Appendix, we show that (18) is also able to describe the situations
where the population survives in a limited range, but does not succeed to invade the whole
space. More precisely, we show that (18) has a non-trivial steady-state (that is the population
has a limited range) if and only if νD < 0 (that corresponds to the case where the propagating
front described above is indeed an extinction front). Those steady-states Z(t, x) = Dx+ U(x)
satisfy

U(x) → 1 as x → −∞, U(x) → −1 as x → +∞.

Similarly to the propagating fronts that we described above, provided that νD < 0, there
exists a whole family of steady-states (parameterized by V (0) = U ′(0) ∈ [−KD, 0)), only one
of which being biologically relevant (the one satisfying V (0) = U ′(0) = −KD). Those steady
states also have sharp edges: there exist xmin, xmax such that the population is present on the
interval [xmin, xmax] only, and close to the edges of the population’s range, the mean phenotypic
trait of the population is almost constant. We represent some steady populations in Figure 2.
As we can see numerically in Figure 2 (or theoretically thanks to (20)), the mean phenotypic
trait of the population is almost constant as soon as D is large (D & 4).

3.2 Estimation of the speed of the propagating fronts

The correspondence between propagating fronts of (18) and solutions of (20) provides a simple
way to determine numerically the minimal speed and shape of the propagating fronts of (18).
As we show in Subsection 6.6 of the Appendix, it also provides a way to estimate analytically
the speed of the propagating fronts: for D > 0,

νD ∼ 1

20


7

(
2

D
− 9D

)
+ 3

√(
2

D
− 9D

)2

+ 40


 . (21)

In Figure 9, we see that this analytical approximation of νD is remarkably close to the values of
νD obtained numerically. If we come back to the scaling of (15) or (10), the population described
by n or (N,Z) would then propagate at a speed νA,B ∼ 1√

A
νB/

√
2A.

We notice that (21) provides an estimate Dcrit ∼ 2
3 for the critical value of D such that

νD = 0, which corresponds to the limit between cases where the species invade the whole
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Figure 1: Propagating fronts. We represent the mean phenotypic trait x 7→ Z(x − νDt) and
the corresponding population size x 7→ N(x − νDt), for D = 0.1 in the first line and D = 5 in
the second. For D = 0.1, the front is an invasion front, ν0.1 ∼ 9.7 > 0, whereas for D = 5,
it is a depopulation front, ν5 ∼ −9.25 < 0. On the graphs representing the mean phenotypic
traits, we also represent the optimal trait Z = Dx (in black), and the two lines Z −Dx = ±1
(in blue), which correspond to the limits of the domain where Z has a meaning (we recall that
Z(t, x) ∈ [Dx− 1,Dx+ 1]).

territory (D < Dcrit), or remain in a limited range (D > Dcrit). We can also derive from this
estimate an approximation of the shape of the propagating fronts:

Dx+ UνD(x) ∼ Dx−
((

1− β

D + β

)
e−

D+β
2

x +
β

D + β

)−2

, x ∈ R−,

where β = 1
2

(√
ν2D + 4− νD

)
− D, and Dx + UνD(x) = Dx − 1 on R+. Finally, NνD can be

estimated thanks to the formula NνD(x) = 1− U2
νD

.
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Figure 2: Population at equilibrium with a limited range. We represent the mean phenotypic
trait Z(x) and the corresponding population size N(x), for D = 0.7 in the first line and D = 5
in the second. On the graphs representing the mean phenotypic traits, we also represent the
optimal trait Z = Dx (in black), and the two lines Z −Dx = ±1 (in blue), which correspond to
the limits of the domain where Z has a meaning (we recall that Z(t, x) ∈ [Dx− 1,Dx+ 1]).

4 Numerics

In this section, we analyze numerically the dynamics of the structured population model (10),
and compare it with the propagating fronts and steady-states obtained from the simplified model
(18).

4.1 Numerical scheme

The difficulty for the numerical resolution of (10) is that a direct discretization of the birth term
leads to a very slow algorithm (of order k3, where k is the number of nodes in the v variable).
Fortunately, with the classical sexual reproduction kernel (5), we can write the reproduction
term as a double convolution, as noticed in [50]:
∫ ∫

n(t, x, v∗)n(t, x, v
′
∗)∫

n(t, x, w) dw
Q(v, v∗, v

′
∗) dv∗ dv

′
∗ =

1∫
n(t, x, w) dw

(
Q̃ ∗v f(t, x, ·) ∗v f(t, x, ·)

)
(2v),

12



Figure 3: Comparison of the minimal speed νD of propagating waves of the simplified model
(18) (in blue), with the approximated speed (21) (in green).

where Q is defined by (5) with γ2 = A, and Q̃(v) := 1
A
√
2π
e−

v2

8A2 . This formula allows us, as

described in [50] to use a spectral method to compute the reproduction term, and the compu-
tational cost of the birth term then becomes of the order of a Fast Fourier Transform, that is
k log k. Coupled to a classical finite difference scheme for the rest of the equation, this produces
an algorithm reasonably fast.

For the simplified model (18), we can use the phase plane (U, V ) described in Subsection 3.1
to compute numerically the steady-states and propagating fronts of (18). We can in partic-
ular estimate numerically νD (see Theorem 5), and obtain a numerical approximation of the
corresponding front.

4.2 Dynamics of the population

By performing a numerical resolution of (10), we can observe the three possible behaviors de-
scribed in [25]: For given A and C, we observe extinction if B is large (see Figure 4), convergence
to a steady-state for intermediate values of B (see Figure 5), and propagation if B is small (see
Figure 6).
For C = 20, Figure 7 describes the dynamics of populations depending on A and B. The

dots come from the numerical resolution of (10) and they determine the limit between the zones
where populations propagate, remain in a limited range or get extinct. We can also use the
simplified model (18) to determine the border between the zones where populations succeed
to propagate (if D = B√

2A
< Dcrit ∼ 2

3 ), and where populations remain in a limited range (if

D = B√
2A

> Dcrit ∼ 2
3). This border is represented by a continuous line in Figure 7. We notice

that the agreement between the theoretical border and the numerical results is good.
As explained in Subsection 2.5, the simplified model (18) is unable to describe the extinction

phenomena. However, we can still obtain formally the border between the zones of extinction,
and limited range. Indeed, numerically we observe that when a steady population is small, it
tends to have a constant mean trait, that is Z is constant. Using this purely formal ansatz, we
can use (15) to get a criterion for extinction or survival of populations: it depends on the sign

13
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Figure 4: Extinction for A = 0.01, B = 1.3, C = 20. The graph represents the total population
x 7→ N =

∫
n(t, x, v) dv for four successive times.
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Figure 5: Limited range, for A = 0.01, B = 0.3, C = 20. The three graphs represent respectively
the population (x, v) 7→ n(t, x, v), the total population at each location x 7→ N =

∫
n(t, x, v) dv,

and the mean phenotypic trait of the population, x 7→ Z =
∫
v n(t,x,v)

N(t,x) dv.
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Figure 6: Propagation for A = 0.01, B = 0.1, C = 20. The three graphs represent respec-
tively the population (x, v) 7→ n(t, x, v), the total population at each location x 7→ N(t, x) =∫
n(t, x, v) dv, and the mean phenotypic trait of the population, x 7→ Z(t, x) =

∫
v n(t,x,v)

N(t,x) dv.

of the principal eigenvalue of the linear operator

L(N)(x) = ∆N(x) +

(
1− B2

2
x2
)
N(x),

that is the sign of 1 − B√
2
(the corresponding eigenfunction being N(x) = e

−Bx2

2
√

2 ). Following

this formal argument, extinction would occur if B >
√
2. In Figure 7 we also represent the line

B =
√
2, that appears to be close to the border obtained by numerical resolution of (10).

4.3 Comparison between the structured population model (10) and the sim-

plified model (18)

In Section 2, we showed that the structured population model (10) converges formally to the
simplified model (18) when C is large and A, B are small. Then, in Subsection 3.1, we have
described the steady-states and traveling waves of the simplified model (18) using a phase plane
analysis. In Figure (8), we compare the numerical resolution of the structured population model
(10) with the propagating fronts of the simplified model (18) for A = 0.01, B = 0.1 and C = 20.
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Figure 7: Dynamics of the structured population model (10). The dots come from the numerical
resolution of (10) with C = 20. The continuous lines come from the approximations presented
in Subsection 4.2.
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Figure 8: Comparison of propagating wave profiles of the structured population model (10) with
the propagating wave of minimal speed νD for the simplified model (18). We depict the total
population N for both models (left) and the mean phenotypic trait Z for both models (right),
using the following parameters: A = 0.01, B = 0.1, and C = 20.

We can compare numerically the propagation speed for models (15) and (18) for A = 0.01
small. As we can see in Figure 9, the speed νD obtained from the simplified model seems a good
approximation of the speed of propagating fronts from the structured population model (10)
when C is large (C = 20 on figure 9). When C is small (C = 1, which is the minimal possible
value of C for a sexual population), the approximation is much less accurate. The assumption
that C is large, which we used to derive the model (15) from (4) in Subsection 2.4 thus seems
necessary for the simpler models (15) and (18) to be relevant.

To investigate further the influence of C on the properties of the population, we consider
the case where A = 0.01, B = 0.5 and C = 1 or C = 20. We observe in Figure 10 that the
values of the total population N(t, x) =

∫
n(t, x, v) dv and the mean phenotypic trait Z(t, x) =∫

v n(t,x,v)
N(t,x) dv for the propagating fronts obtained numerically for C = 1 and C = 20 are close.
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However, in the case C = 1, the value of the phenotypic variance of the population is far from
the value

∫
(v − Z(t, x))2 n(t,x,v)

N(t,x) dv = A used in our asymptotic analysis (see Subsection 2.4).

This is because in our asymptotic analysis (Subsection 2.4), we have neglected the phenotypic
variance produced by the migration, which probably explains the dependence of the population’s
propagation speed in the coefficient C.
Notice however that close to the edge of the propagating front, the assumption that the

phenotypic variance of the population is A seems accurate. This is probably due to the fact that
in this region, the mean phenotype Z is almost constant in x (see Subsection 3.1), migration
has then little effect on the phenotypic variance of the population. Our approximation that C
is large thus fails to reproduce the phenotypic variance of a population far from the edge of the
habitat (for C ≥ 1 small), but describes it quite well at the edge of the habitat (even for C = 1,
see Fig. 10).

Figure 9: Comparison of the propagating wave speed of the structured population model (10)
for C = 1 (in black), C = 20 (in red) and the minimal speed νD of propagating waves of the
simplified model (18) (in blue).

5 Discussion

The study of populations living in heterogeneous environments is challenging, since many biolog-
ical processes are combined: migration, mutation, gene flow... Understanding the dynamics of
such populations is however crucial to study the repartition area of species, or the effect of global
warming on a species’ range. Several models have been proposed to study such populations.
In [36], a model describing the evolution of the mean phenotypic trait and the size of the

population was introduced (the model also allowed the optimal phenotypic trait to evolve in
time). This model had an exact solution, which is very useful in practice (see e.g. [26]).
The model however does not allow for any density dependence in the fitness function, which
is problematic, since the population’s size can grow indefinitely, and the absence of density
regulation leads to a strong gene flow from the center of the habitat to the edge, which prevents
any species to invade the whole environment.
A density dependence was then introduced in [25], which leads to a model able to capture three

possible outcomes: the population can either go extinct, survive in a limited area, or spread to
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Figure 10: Comparison of propagating wave profiles of the structured population model (10) for
C = 1 (in red) and C = 20 (in blue). The other parameters are A = 0.01, B = 0.5, and the
speeds of propagation are respectively 0.237 and 0.792. We depict the total population N (left),
the mean phenotypic trait Z (right), and the phenotypic variance (bottom) of the population.
Notice the different scales for the phenotypic trait axis in those two last plots. The variance of
the population when C is very large is G2 = A = 0.01.

the entire environment. No exact solution is known for this more realistic model (except for
a population that is perfectly adapted everywhere), and simplifications are then necessary to
understand its dynamics.

In [25], the phenotypic variance of the population was assumed constant, which may not be
realistic. More detailed models where thus introduced in [4]: a continuum of alleles model, a
model for two alleles per locus, and an infinitesimal model. Surprisingly, the conclusion was
then very different from [25]: no stationary populations were observed for the two first models,
whereas both convergence to a steady population with limited range or invasion to the whole
space were possible for the infinitesimal model. In Figure 10, numerical resolutions of the
infinitesimal model suggest that the phenotypic variance in the population is minimal at the
edge of the population range. This result is quite different from the results of [4], where it is
explained that gene flow can inflate the genetic variance at the edge of the population’s range,
enabling its propagation.
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In this article, we have shown that the model of [25] can be obtained from the infinitesimal
model through an asymptotic limit (see Subsection 2.4). This asymptotic analysis shows an
explicit link between those two models, which enabled us to compare them numerically. Nu-
merically, we observe no qualitative difference between the dynamics of the infinitesimal model
and the model of [25]. In particular, the existence of steady populations seems equivalent to
the existence of extinction fronts, just as for the simplified model (18). Our analysis emphasizes
the importance of the parameter C (the birth rate divided by the maximal growth rate of the
population): the model of [25] is the asymptotic limit of the infinitesimal model when C is
large. Notice that the cases where C ≤ 1 may be interesting, since it allows the investigation of
populations that do not only reproduce sexually.
In our asymptotic analysis, we have assumed (as a consequence of our asymptotic limit C large)

that the phenotypic variance of the population is constant, and is not affected by migration. As
we showed, this assumption is quite rough when C is small, but it remains accurate close to the
edge of the invasion front for any C ≥ 1. This result is quite different from the result obtained in
[4] with the continuum of alleles model and the model for two alleles per locus. It was observed
there that close to the edge of the species’ range, mutations increase the phenotypic variance of
the population ultimately allowing the population to invade the whole environment under any
circumstance. A natural continuation of our work would be to modify our asymptotic limit to
allow the phenotypic variance of the population to evolve. Numerically, an approximation of
the type

∫
(v − Z(t, x)2 n(t,x,v)

N(t,x) dv ∼ A+ ε(A,B,C)∂xZ(t, x)2 (where ε(A,B,C) → 0 as C → 0)
seems to be very close to the numerical resolution of the infinitesimal model. This would be the
next step to understand the connections between the infinitesimal model and the continuum of
alleles model proposed in [4].

From the model of [25], we have derived the simplified model (18). This new model can
be seen as a weak selection limit of [25], and is interesting because its simplicity allows a
good understanding of its dynamics, as well as a good approximation of the invasion speed or
extinction speed. If a steady population with limited range exists (for a given set of parameters of
the equation (4)), we have shown using the simplified model (18) that depopulation fronts exist.
A perfectly adapted population occupying the entire space may be stable, but as soon as the
population has a bounded range (N(0, x) = 0 outside a bounded interval, that is Z(0, x) = Dx+1
when x < −C, Z(0, x) = Dx− 1 when x > C for some C > 0), a depopulation front will shrink
that range, and finally the population will converge to the limited range steady population.

Following [36], the models proposed in [36, 25, 4] are mostly used in the case of limited range.
We believe however that those models can also be interesting to study invasion or extinction
processes, as an extension of classical invasion models (see [16, 34, 46]) including evolutionary
effects. In particular, the mathematical tools presented here may be useful to study the evolution
of species’ range under the effect of global warming. The idea would not be to model the whole
population, but simply a part of it, close to an edge of its range. In the context of global
warming (where this type of model have been widely used in the case of limited range [1, 26])
those models could be used to understand how fast the species will invade towards the north (if
we consider a population living in the northern hemisphere), or how fast it will go extinct on the
southern edge of its range. Our explicit approximation of those speeds, provided in Subsection
3.2 can then be useful (after a modification to include the effect of global warming, that we did
not consider here).

As noticed in Subsections 2.4 and 2.5, a good definition of solutions of (15) and (18) is still
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missing, when the population N(t, x) is not initially bounded away from 0. This case is of
particular importance, since those models can be used to study invasions of new environments.
This theoretical problem has the concrete implication that classical finite difference schemes, for
(18) at least, fail to select the biologically relevant solutions of the model (see Example 1). An
investigation of the existence and uniqueness theory would then be interesting. It seems that the
approximation scheme (25) (or a similar approximation for (15)) could be a good intermediate
step.
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6 Appendix

6.1 Case of a population structured by a Breeding value

The phenotypic trait is produced by a combination of the breeding trait, determined by the
genotype of the individual, and by environmental factors. A common assumption is to consider
that the probability distribution of the phenotype v of an individual is given by a Gaussian
distribution centered around its breeding value p, with variance VE. The fitness of a population
of breeding value p is then given by the average fitness of the Gaussian distribution. If n(t, x, p)
is a population at time t ≥ 0 structured by a space variable x and a breeding value p, (4) then
becomes:

∂tn(t, x, p)−
σ2

2
∆xn(t, x, p)

=

[
−
(
η +

1

2Vs
VE − rmax

)
− 1

2Vs
(p− bx)2 − rmax

K

∫
n(t, x, q) dq

]
n(t, x, p)

+ η

∫ ∫
n(t, x, p∗)n(t, x, p

′
∗)∫

n(t, x, q) dq
Q(p, p∗, p

′
∗) dp∗ dp

′
∗,

since
∫

− 1

2Vs
(v − bx)2

e
−(v−p)2

2VE

√
2πVE

dv = − 1

2Vs
(p − bx)2 − 1

2Vs
VE.

6.2 Evolution of the moments of the population density for the pure selection

model (6)

Theorem 1 If Q is defined by (5), any solution of (6) satisfies (7) and (8).

Proof of Theorem 1:

We assume, without loss of generality, that
∫
n(0, v) dv = 1,

∫
v n(0, v) = 0, and C = 1 (all

cases can be deduced through a change of variables). Then for all times t ≥ 0,
∫

v n(t, v) dv = 0.
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We multiply equation (6) by v2 and integrate to obtain

d

dt

∫
v2n(t, v) dv =

∫ ∫ (∫
v2Q(v, v∗, v

′
∗) dv

)
n(t, v′∗)n(t, v∗) dv∗ dv

′
∗ −

∫
v2n(t, v)dv

=

∫ ∫ (
γ2 +

(
v∗ + v′∗

2

)2
)
n(t, v′∗)n(t, v∗) dv∗ dv

′
∗ −

∫
v2n(t, v)dv

= γ2 − 1

2

∫
v2n(t, v)dv.

We deduce that the variance of n converges exponentially fast to G2 = 2γ2 for any initial
condition n0: ∣∣∣∣

∫
v2n(t, v) dv − 2γ2

∣∣∣∣ ≤ e−t/2

∣∣∣∣
∫

v2n(0, v) dv − 2γ2
∣∣∣∣ .

Similarly we have

d

dt

∫
v3n(t, v) dv =

∫ ∫ (∫
v3Q(v, v∗, v

′
∗) dv

)
n(t, v∗)n(t, v

′
∗) dv∗ dv

′
∗ −

∫
v3n(t, v)dv

=

∫ ∫ (
v∗ + v′∗

2

)3

n(t, v∗)n(t, v
′
∗) dv∗ dv

′
∗ −

∫
v3n(t, v)dv

= −3

4

∫
v3n(t, v)dv.

It follows that
∣∣∫ v3n(t, v) dv

∣∣ ≤ e−3t/4
∣∣∫ v3n(0, v) dv

∣∣.

�

6.3 Unclosed equations on the moments of the population distribution mo-

ments

Theorem 2 If n is a solution of (10), then the moments of the phenotypic distribution of n
satisfy:

∂tN(t, x)−∆xN(t, x)

=

[
1 +

1

2

(
A−

∫
(v − Z(t, x))2

n(t, x, v)

N(t, x)
dv

)
− 1

2
(Z(t, x)−Bx)2 −N(t, x)

]
N(t, x). (22)

∂tZ(t, x)−∆xZ(t, x) = 2∂x(logN(t, x))∂xZ(t, x) + (Bx− Z(t, x))

∫
(v − Z(t, x))2

n(t, x, v)

N(t, x)
dv

− 1

2

∫
(v − Z)3

n(t, x, v)

N(t, x)
dv. (23)
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Proof of Theorem 2: To obtain (22), we integrate (10) along v:

∂tN(t, x)−∆xN(t, x) =

∫
∂tn(t, x, v)−∆xn(t, x, v) dv

=

[
1 +

A

2
−N(t, x)

]
N(t, x)− 1

2

∫
(v −Bx)2n(t, x, v) dv

=

[
1 +

1

2

(
A−

∫
(v − Z(t, x))2

n(t, x, v)

N(t, x)
dv

)

− 1

2
(Z(t, x)−Bx)2 −N(t, x)

]
N(t, x).

The second equation, (23), is obtained as follows:

∂tZ(t, x)−∆xZ(t, x) = ∂t

∫
v
n(t, x, v)

N(t, x)
dv −∆x

∫
v
n(t, x, v)

N(t, x)
dv

=

∫
v

N(t, x)
(∂tn(t, x, v)−∆xn(t, x, v)) dv

− (∂tN(t, x)−∆xN(t, x))
Z(t, x)

N(t, x)

+ 2∂x(logN(t, x))∂xZ(t, x),

and thus,

∂tZ(t, x)−∆xZ(t, x)

= −
∫

v

N(t, x)

((
C −

(
1 +

A

2

))
+

1

2
(v −Bx)2 +

∫
n(t, w) dw

)
n(t, x, v) dv

+ C

∫
v

N(t, x)

(∫ ∫
n(t, x, v∗)n(t, x, v

′
∗)∫

n(t, x, w) dw
Q(v, v∗, v

′
∗) dv∗ dv

′
∗

)
dv

−
(
1− 1

2
(Z(t, x)−Bx)2 −N +

1

2

(
A−

∫
(v − Z(t, x))2

n(t, x, v)

N(t, x)
dv

))
N(t, x)

Z(t, x)

N(t, x)

+ 2∂x(logN(t, x))∂xZ(t, x)

= 2∂x(logN(t, x))∂xZ(t, x) + (Bx− Z(t, x))

∫
(v − Z(t, x))2

n(t, x, v)

N(t, x)
dv

− 1

2

∫
(v − Z)3

n(t, x, v)

N(t, x)
dv.

Here we use the fact that the reproduction kernel does not affect the mean phenotypic trait:∫
vQ(v, v′, v′∗) dv = v′+v′∗

2 .

�

6.4 Existence theory for the simplified model

We introduce W = Z −Dx in (18) to obtain the following equation

∂tW −∆xW = −4
∂xWW

1−W 2
(∂xW +D)−W, (24)
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with −1 ≤ W ≤ 1. This equation has a singularity for W = ±1.

The existence of singularities is an obstacle to have a well-defined problem. However, as we
will see in Subsection 3.1, the singularities are fundamental to produce propagating fronts.

Similarly, we introduce Wδ := Zδ −Dx. Then, (24) becomes

∂tWδ −∆xWδ = −4
∂xWδWδ

1−W 2
δ + δ

(∂xWδ +D)− (1−W 2
δ )Wδ

1−W 2
δ + δ

, (25)

with

Wδ(t = 0, ·) = W 0
δ (·).

With this choice of approximation we avoid the singularities and transform the singularity in
−1 into a stable steady state (the stability is for the ODE formulation presented in Subsection
3.1).

Under the assumption

−1 ≤ W 0
δ ≤ 1, (26)

equation (25) has a smooth solution that stays between −1 and 1 by the maximum principle
(see e.g. [2]). We prove a regularizing effect for equation (25) and we deduce that the Wδ’s
converge to a viscosity solution of a variant of equation (24). Before stating the result, we first
give the definition of viscosity solutions (see also [11, 2] for general introduction to this theory).

Definition 1 Viscosity solution: The function u ∈ C([0,∞) × R) is a viscosity solution of the
equation

L
(
∂2
xxu, ∂xu, ∂tu, t, x

)
= 0, (t, x) ∈ (0,∞) × R,

if and only if for all φ ∈ C∞((0,∞) ×R), we have

1. if u− φ has a local maximum at a point (t0, x0) ∈ (0,∞) × R then

L
(
∂2
xxφ(t0, x0), ∂xφ(t0, x0), ∂tφ(t0, x0), u(t0, x0), t0, x0

)
≤ 0.

2. if u− φ has a local minimum at a point (t0, x0) ∈ (0,∞)× R then

L
(
∂2
xxφ(t0, x0), ∂xφ(t0, x0), ∂tφ(t0, x0), u(t0, x0), t0, x0

)
≥ 0.

Theorem 3 Under assumption (26), Wδ the solution of (25) verifies, for all (t, x) ∈ R+ × R,

−1 ≤ Wδ(t, x) ≤ 1, |∂xWδ(t, x)| ≤ min(L2 ,
1

2
√
t
+ L1), (27)

with

L2 = max ( sup
x∈R

|∂xWδ(x, 0)| , L1) ∈ R+ ∪+∞,

and L1 a positive constant independent of δ. Moreover, after extraction of a subsequence, the
Wδ’s converge to a continuous function W that is a viscosity solution of

(1−W 2)∂tW − (1−W 2)∆xW = −4∂xWW (∂xW +D)− (1−W 2)W. (28)
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We can easily verify that if the initial solution is as in Example 1, i.e. Wδ(t = 0, ·) ≡ −1, then
we have Wδ(t, ·) ≡ −1 for all t > 0. Therefore our approximation chooses the biological solution.

Proof of Theorem 3: We differentiate equation (24) with respect to x and obtain

∂t∂xWδ −∆x∂xWδ = −4 Wδ

1−W 2
δ +δ

(2∂xWδ +D)∂x(∂xWδ)

−4∂xW
2
δ (∂xWδ +D)

1+W 2
δ +δ

(1−W 2
δ +δ)2

−∂xWδ

(
1− δ

1+W 2
δ +δ

(1−W 2
δ +δ)2

)
,

(29)

where the last term comes from

∂x

(
Wδ(1−W 2

δ )

1−W 2
δ + δ

)
= ∂x

(
Wδ −

δWδ

1−W 2
δ + δ

)
= ∂xWδ

(
1− δ

1 −W 2
δ + δ + 2W 2

δ

(1−W 2
δ + δ)2

)
.

We multiply (29) by ∂xWδ and divide by |∂xWδ| and obtain

∂t|∂xWδ| −∆x|∂xWδ| ≤ −4 Wδ

1−W 2
δ +δ

(2∂xWδ +D)∂x(|∂xWδ|)
−4∂xW

2
δ (∂xWδ +D)

(
1+W 2

δ +δ

(1−W 2
δ +δ)2

)
sgn(∂xWδ)

−
(
1− δ

1+W 2
δ +δ

(1−W 2
δ +δ)2

)
|∂xWδ|.

It follows that, for δ < 1,

∂t|∂xWδ| −∆x|∂xWδ| ≤ α(t, x)∂x|∂xWδ|+
(

1+W 2
δ +δ

(1−W 2
δ +δ)2

)
·

(
−4|∂xWδ|3 + 4D|∂xWδ|2 + |∂xWδ|

)
,

with

α(t, x) = −4
Wδ

1−W 2
δ + δ

(2∂xWδ +D).

Therefore for L1 large enough and for δ < 1, we have that |∂xWδ| is a subsolution of the following
equation

∂tg −∆xg = α(t, x)∂xg − 4
(

1+W 2
δ +δ

(1−W 2
δ +δ)2

)
(g − L1)

3, (30)

One can easily verify that, for δ < 1, the functions g1(t, x) := L2 and g2(t, x) :=
1

2
√
t
+ L1 are

supersolutions to equation (30) and they satisfy

|∂xWδ(0, x)| ≤ g1(0, x), |∂xWδ(0, x)| ≤ g2(0, x).

It follows that, for δ < 1,

|∂xWδ(t, x)| ≤ min(g1(t, x), g2(t, x)),

and thus (27).

Now we define

Tδ := F (Wδ) = (1 + δ)Wδ −
W 3

δ

3
.
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We first consider the case with L2 < +∞. From (27), we deduce that the Tδ’s are uniformly
bounded and Lipschitz in [0,+∞)× R. Moreover we have

∂tTδ −∆Tδ = (1−W 2
δ + δ)∂tWδ − (1−W 2

δ + δ)∆Wδ + 2Wδ|∇Wδ|2.

From the above equation, (25) and (27) we deduce that ∂tTδ − ∆Tδ is uniformly bounded in
[0,+∞)× R. It follows that the Tδ’s are uniformly continuous in time in [0,+∞) × R (see [3]).
Using the Arzela Ascoli Theorem we conclude that, after extraction of a subsequence, the Tδ’s
converge locally uniformly to a continuous function T in [0,+∞)× R.
In the case with L2 = +∞, following the arguments above we obtain that the Tδ’s are uniformly

bounded and locally uniformly Lipschitz in (0,+∞) × R. The locally uniform convergence of
the Tδ’s, along subsequences, is also hold in (0,+∞) × R.
Finally from the fact that

F ′(Wδ) = 1 + δ −W 2
δ > 0, for − 1 ≤ Wδ ≤ 1,

we obtain that F is an invertible function. We write

Wδ = F−1(Tδ),

with F−1 continuous. Therefore the Wδ’s converge locally uniformly to the continuous function
W = F−1(T ) along subsequences. The convergence takes place in [0,+∞)×R, if L2 < +∞ and
in (0,+∞)× R if L2 = +∞.
By the stability of viscosity solutions (see [11, 2]), we conclude that W is a viscosity solution

of (28).

�

In Subsection 3.1 we study the propagating fronts for this model. To be able to compare the
solutions with the propagating fronts and to show the propagation of the density in space, we
need a comparison principle. Unfortunately as we saw above, the equation (28) does not have
a unique viscosity solution and therefore it does not admit a comparison principle. However we
can prove a comparison principle for the approached model. We first recall its definition:

Definition 2 Comparison principle: Equation L(∂2
xxu, ∂xu, u, x, t) = 0 verifies a comparison

principle, if for any subsolution w1, that is

L(∂2
xxw

1, ∂xw
1, w1, x, t) ≤ 0,

and supersolution w2 of L, that is

L(∂2
xxw

2, ∂xw
2, w2, x, t) ≥ 0,

such that w1(0, x) ≤ w2(0, x), we have

w1(t, x) ≤ w2(t, x), for all (t, x) ∈ R+ × R.

We prove that there is a comparison property for (25). In particular (25) has a unique solution.

Theorem 4 Equation (25) admits a comparison principle in the set of solutions {−1 ≤ W ≤ 1}.
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Proof of Theorem 4: We suppose that W1 and W2 are respectively subsolution and superso-
lution of (25) and

W1(t = 0, ·) ≤ W2(t = 0, ·).
We prove that W1 ≤ W2 for all (t, x) ∈ R+ × R. Let (t̄, x̄) be a maximum point of W1 − W2.
Since it is a maximum point we have ∂xW1(t̄, x̄) = ∂xW2(t̄, x̄) = p. Therefore we have

∂t(W1 −W2)(t̄, x̄)−∆(W1 −W2)(t̄, x̄)

≤ −4p (p +D)
(1 +W1W2 + δ)

(1−W 2
1 + δ)(1 −W 2

2 + δ)
(W1 −W2)(t̄, x̄)

− (1 + δ)(1 −W 2
1 −W1W2 −W 2

2 ) +W1W2 +W 2
1W

2
2

(1−W 2
1 + δ)(1 −W 2

2 + δ)
(W1 −W2)(t̄, x̄).

In the previous section we proved that |∂xW | is bounded. Thus p(p+D) is bounded. Moreover
W1 and W2 are bounded and

1−W 2
i + δ ≥ δ, for i = 1, 2.

Therefore the coefficient of W1 −W2 is bounded. Following the classical maximum principle we
deduce that equation (25) admits a comparison principle.

�

6.5 Existence of propagating fronts

Theorem 5 For any D > 0, there exists νD ∈ R such that (24) has a propagating front of speed
ν, Z(t, x) = Dx+ U(x− νt), satisfying

U(x) → 0 as x → −∞, U(x) → −1 as x → +∞,

if and only if ν > νD.
The propagating front with speed ν is unique (up to a translation), and νD is a decreasing

function of D.

Theorem 6 The equation (18) has a non-trivial steady-state if and only if νD < 0. Those
steady-states Z(t, x) = Dx+ U(x) satisfy

U(x) → 1 as x → −∞, U(x) → −1 as x → +∞.

To prove Theorems 5 and 6, we will use the two following Lemma:

Lemma 1 Let ν ∈ R. There exist only two, up to a shift in the t variable, solutions (u, v) to
the ODE defined by the vector field (20) such that (u, v)(t) → (0, 0) as t → −∞. At most one
of them is globally defined, which satisfies:

(u, v)(t) ∼ −C−e

√
ν2+4−ν

2
t(1,

√
ν2 + 4− ν

2
).

Moreover, for this solution, u is strictly decreasing.
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Figure 11: Solutions of the ODE defined by the vector field (20), on the left for D := 0.7 and
ν = 0.5, 0.73141, 1 (the vector field represented corresponds to ν = 0.73141). A propagating
front then exists for ν ≥ 0.73141 only, and the biologically relevant solution is obtained for
ν = νD ∼ 0.73141. On the right, we represent solutions of the ODE defined by the vector field
(20), with ν = 0 and D = 0.7.

Lemma 2 Let ν1 ≤ ν2, and (uν1 , vν1), (uν1 , vν1) be the corresponding solutions given by Lemma
1. If for t1, t2 ∈ R, {

uν1(t1) = uν2(t2)
vν1(t1) ≤ vν2(t2),

(31)

then, for any t′1 > t1, t
′
2 > t2 such that uν1(t

′
1) = uν2(t

′
2), we have vν1(t

′
1) ≤ vν2(t

′
2), and this

inequality is strict if ν1 < ν2.

Proof of Lemma 1: The Differential of the vector field F in (0, 0) is

DF(0,0) =

(
0 1
1 −ν

)
.

Therefore (0, 0) is a hyperbolic equilibrium point (detDF(0,0) < 0). The Hartman-Grobman The-
orem applies, and thus there exist only two (non-trivial) solutions (u, v) satisfying (u, v)(t) →t→−∞
(0, 0). Since the eigenvector associated to the positive eigenvalue of DF(0,0) is (1,

√
ν2+4−ν

2 ), the
corresponding solutions are equivalent to

(u, v)(t) ∼t→−∞ ±C± e

√
ν2+4−ν

2
t

(
1,

√
ν2 + 4− ν

2

)
,

for some C−, C+ > 0.

The solution such that (u, v)(t) ∼t→−∞ C+e

√
ν2+4−ν

2
t
(
1,

√
ν2+4−ν

2

)
satisfies u(t̄) > 0, v(t̄) > 0

for some t̄. Since FU (u(t̄), V ) > 0 for V ≥ v(t̄) and FV (U, v(t̄)) ≥ FV (u(t̄), v(t̄)) > 0 for
U ∈ [u(t̄), 1), the solution cannot escape [u(t̄), 1) × [v(t̄),∞). In particular, for t ≥ t̄, u′(t) =
v(t) ≥ v(t̄) > 0 and since the vector field is not defined for U = 1, the solution cannot be global.

27



The other solution satisfies u(t̄) < 0, v(t̄) < 0 for some t̄ arbitrarily small. Since FU (0, V ) ≤ 0
for V ≤ 0 and FV (U, 0) ≤ 0 for U ≤ 0, the solution cannot escape R

2
−. In particular, we have

u′(t) = v(t) ≤ 0, which shows that u is strictly decreasing with respect to t.

�

Proof of Lemma 2: Since uν is strictly decreasing, we can define the graph of (uν1 , vν1).
We assume that t̄1, t̄2 are the smallest points respectively in (t1,∞) and in (t2,∞) such that

(uν2 , vν2)(t̄2) = (uν1 , vν1)(t̄1). We have,

v′ν1(t̄1) = −ν1vν1(t̄1) + 4
uν1(t̄1)vν1(t̄1)

1− uν1(t̄1)
2

(vν1(t̄1) +D) + uν1(t̄1)

= v′ν2(t̄2) + (ν2 − ν1)vν1(t̄1)

≤ v′ν2(t̄2),

this inequality being strict if ν1 < ν2. It follows that
v′ν1 (t̄1)

u′
ν1

(t̄1)
>

v′ν2 (t̄2)

u′
ν2

(t̄2)
. The graph of (uν2 , vν2)

can thus only cross the graph of (uν1 , vν1) from below to above, when t increases. This is enough
to conclude that vν1(t

′
1) ≤ vν2(t

′
2), for all t

′
1 > t1 and t′2 > t2. Moreover, the latter inequality is

strict if ν1 < ν2. This completes the proof of Lemma 2.

�

Proof of Theorem 5: Step 1: We show that the solution (u, v) given by Lemma 1 satisfies
either v(t̄) = −D for some t̄, or (u, v)(t) → (−1, 0) as t → +∞. Moreover, the solution is global
in this last case only.

Since u is strictly decreasing and FV (−1, V ) = +∞ for V ∈ (−D, 0), only two situations are
possible: either v(t̄) = −D for some t̄ < +∞, or (u, v)(t) → (−1, 0) as t → t̄ ∈ R ∪ {+∞}.
If v(t̄) = −D, then v(t) < −D for all t ≥ t̄. This is because

FV (U,−D) = νD + U ≤ FV (u(t̄),−D) ≤ 0

for U ∈ (−1, u(t̄)) and since u is decreasing. Therefore, u′(t) = v(t) ≤ −D for all t ≥ t̄. From
the latter, together with FV (−1, V ) = −∞ for V < −D, we obtain that the solution cannot be
globally defined.

Now let (u, v)(t) → (−1, 0) as t → t̄ ∈ R ∪ {∞}. We prove that t̄ = ∞. For (U, V ) close to
(−1, 0), we have FV (U, V ) ∼ −2D V

1+U − 1. We deduce that,

d

dt

(
v

1 + u

)
(t) =

FV (u(t), v(t))(1 + u(t))− v(t)FU (u(t), v(t))

(1 + u(t))2

∼ 1

(1 + u(t))2

[(
−2D

v(t)

1 + u(t)
− 1

)
(1 + u(t))− v(t)2

]

∼ 1

(1 + u(t))2
[
−2Dv(t)− v(t)2 − (1 + u(t))

]

≥ 0,
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if v(t) ≤ −1
3D (1 + u(t)) and (u(t), v(t)) is close to (−1, 0).

We assume that t̃ is such that (u, v)(t) is close to (−1, 0) for t ≥ t̃. We then have, v(t)
1+u(t) ≥

min
(

v(t̃)

1+u(t̃)
, −1
3D

)
for all t ≥ t̃. It follows that u′(t) = v(t) ≥ −C(u(t) + 1), which implies the

estimate
u(t) ≥ −1 + (u(t̃ ) + 1)e−C(t−t̃ ).

Since (u, v)(t) → (−1, 0) as t → t̄, we deduce that t̄ = +∞, and (u, v) is indeed globally defined.

Step 2: We next prove that there exists a constant νD such that, there exists a propagating
front if and only if ν > νD.
If ν > 1

D , we have FV (U,−D) = νD − U > 0 for U ∈ (−1, 1). Therefore, the solution given
by Lemma 1 cannot cross the line V = −D, and thus it defines a propagating front thanks to
Step 1. We deduce that, there exists a propagating front if ν is large enough.

In [−1/
√
2, 0]× [−D, 0] and for ν ≤ −(4

√
2 + 1)D, we have

FV (U, V ) ≤ −νV − 4
√
2V (V +D) ≤ DV ≤ DFU (U, V ).

It follows that the solution given by Lemma 1 necessarily crosses the line V = −D, and thus it
does not define a propagating front according to Step 1. We deduce that the model does not
admit a propagating front if −ν is large enough.

We consider a solution (uν1 , vν1)(t) given by Lemma 1 for some ν1, that converges to (−1, 0)

as t → +∞, and ν2 > ν1. Since
√
ν2+4−ν

2 is a decreasing function of ν and

(uνi , vνi)(t) ∼ −C−e

√
ν2νi

+4−ννi
2


1,

√
ν2νi + 4− ννi

2


 ,

the graph of (uν1 , vν1)(t) is below the graph of (uν2 , vν2)(t) for t << 0. Thanks to Lemma 2,
this implies that the whole graph of (uν1 , vν1) is below the graph of (uν2 , vν2). Using the latter
and Step 1 we obtain that (uν2 , vν2) defines a propagating front.

Finally, we show that νD is a decreasing function of D. Firstly we notice that, for D1 ≤ D2,
we have FD1

U = FD2
U , and FD1

V ≤ FD2
V in (−1, 0] × R−. We deduce that, using Step 1, if the

solution given by Lemma 1 for D1 converges to (−1, 0) as t → ∞, so does the one associated to
D2. This proves that νD is a decreasing function of D.

�

Proof of Theorem 6: We assume that νD < 0. Then, for ν = νD
2 , the solution (uνD/2, vνD/2)

given by Lemma 1, is globally defined, and it satisfies (uνD/2, vνD/2)(t) → (−1, 0) as t → +∞.
Moreover we have

(uνD/2, vνD/2)(t) ∼t→−∞ −C−e

√
(νD/2)2+4−νD/2

2
t

(
1,

√
(νD/2)2 + 4− νD/2

2

)
,

and

√
(νD/2)2+4−νD/2

2 > 1.
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Consider now the vector field (20) for ν = 0. Since (u0, v0)(t) ∼t→−∞ −C ′
−e

t(1, 1), for t̄ small
enough, (u0, v0)(t̄ ) is strictly above the graph of (uνD/2, vνD/2). Let ṽ be such that (u0(t̄), ṽ ) is
strictly between (u0, v0)(t̄ ) and the graph of (uνD/2, vνD/2). We define (ū, v̄) to be the solution
of the ODE given by the vector fields (20) such that (ū, v̄)(0) = (u0(t̄ ), ṽ) and ν = 0. Then,
according to Lemma 2, (ū, v̄ ) is defined in R+. Moreover, since (u0, v0)(t) → (0, 0) as t → −∞
and (0, 0) is a hyperbolic equilibrium point, there exists t̃ > 0 such that ū(t̃ ) = 0.
By symmetry, we have (ū, v̄)(t̃+t) = (−ū, v̄)(t̃−t). Thus, (ū, v̄) is globally defined and satisfies

(ū, v̄)(t) → (±1, 0) as t → ±∞. This completes the proof of Theorem 6.

�

6.6 Approximation of the propagating fronts

In this subsection, we will study in more detail the propagating fronts of (18). As mentioned in
Subsection 3.1, for each D > 0, there exists a one-parameter family of propagating fronts: for
any ν ≥ νD, there exists a unique propagating front of speed νD. By analogy to the KPP-Fisher
equation (see e.g. [34, 46]), one can expect that there is only one stable propagating front, the
one with the least speed ν = νD. In Section 4, numerical computations have confirmed the idea
that the minimal speed νD is the natural speed to consider here.
For ν > νD, the propagating front Dx+ Uν is smooth (see Subsection 6.5), and corresponds

to a solution (U,U ′) of (20) such that (U,U ′)(x) →x→−∞ (0, 0) and (U,U ′)(x) →x→∞ (−1, 0).
The front with the minimal speed is slightly different: it is the uniform limit of the fronts
Dx + Uν as ν → νD (see Figure 11). The limit front Dx + UνD has a singularity and cannot
be a classical solution of (18). It is however a viscosity solution of (18). In the phase plane,
this minimal speed front corresponds to a solution (U, V )|R− of (20), defined on R−, such that
(U, V )(x) →x→−∞ (0, 0), (U, V )(x) →x→0− (−1,−D), and Dx+ UνD(x) = Dx− 1 for x > 0.

Our aim is to approach the particular solutions (U, V ) of (20) that joint (0, 0) to (−1,−D).
To do this, we introduce the ansatz that for x ∈ (−∞, 0],

V = αU + β|U |3/2. (32)

To estimate α and β, we proceed as follows:

• Since (U, V )(0) = (−1,−D), necessarily, α = D + β.

• Since (0, 0) is a saddle point of the vector field (20), (U, V ) must be tangent to the eigen-
vector (1, (

√
ν2 + 4− ν)/2) close to (0, 0) (see Subsection 6.5 in the appendix). Then,

β =
1

2

(√
ν2D + 4− νD

)
−D. (33)

• Finally, close to (−1,−D),
{

FU (U, V ) ∼ −D

FV (U, V ) ∼ νDD + 2DV +D
U+1 − 1

∂V
∂U (x = 0) should then satisfy

∂V

∂U
(x = 0) =

−1

D

(
νDD + 2D

∂V

∂U
(x = 0)− 1

)
,

and our ansatz yields ∂V
∂U (x = 0) = D − β/2.
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If we combine the estimates above, we obtain

0 =
1

D
− 9D

2
− 7

4
νD +

3

4

√
ν2D + 4,

and thus, νD satisfies:

νD ∼ 1

20


7

(
2

D
− 9D

)
+ 3

√(
2

D
− 9D

)2

+ 40


 .

This approximation of νD is not rigorous, but it is however very close to the numerical estimations
of νD, as shown in Figure 3. This speed can be positive (the population then invades the empty
territory), or negative (the population disappears).

We can go further and give an approximation of the propagating front with minimal speed,
which satisfies

U ′(x) = (D + β)U(x) + β|U(x)|3/2, (34)

for x ∈ R−, and U(x) = −1 for x > 0. We recall that β is given by (33), with νD estimated
by (21). To solve (34), we use the change of variable U(x) = −φ−2. Replacing this in (34) we

obtain that φ′ = −D+β
2 + 2β on R−, and thus φ(x) = Ce−

D+β
2

x + β
D+β . We can then compute

U , recalling that U(0) = −1:

U(x) = −
((

1− β

D + β

)
e−

D+β
2

x +
β

D + β

)−2

, x ∈ R−,

and U(x) = −1 on R+.
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