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Abstract

To understand the evolution of diverse species, theoretical studies using a Lotka-Volterra type
direct competition model had shown that concentrated distributions of species in continuous trait
space often occurs. However, a more mechanistic approach is preferred because the competitive
interaction of species usually occurs not directly but through competition for resource. We consider
a chemostat-type model where species consume resource that are constantly supplied. Continu-
ous traits in both consumer species and resource are incorporated. Consumers utilize resource
whose trait values are similar with their own. We show that, even when resource-supply has a
continuous distribution in trait space, a positive continous distribution of consumer trait is impos-
sible. Self-organized generation of distinct species occurs. We also prove global convergence to the
evolutionarily stable distribution.
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1 Introduction

Evolutionary origin of species diversity has been one of the most important problems in evolution-
ary ecology. Individuals with similar traits (e.g. body size or shape) face strong competition, which
might lead to the adaptive radiation. As a model of such competition-driven speciation, several the-
oretical studies have shown that the species distribution in continuous trait space will often evolve
toward single peak or multiple peaks that are distinct from each other (see [22, 7, 4, 18, 12]). This
provides a mechanism of evolution of diverse but distinct species in nature. These studies strengthen
the theory of speciation by Adaptive Dynamics that usually assumes distinct species a priori [10, 9, 16].

Most of the previous results are derived from a simple model that assumes direct species competition
of Lotka-Volterra type. On the other hand, competitive interaction among species generally occurs
in competition for resource such as prey or nutrient. For example, birds with similar beak shapes
are in competition because they utilize similar food resource. Another example is found in ecolog-
ical stoichiometry where consumer species with similar C:N:P (carbon: nitrogen: phosphorus ratio)
requirements experience competition for nutrient supply with their optimal C:N:P ratio (see [24]).
Thus, the competitive interaction should be modeled not directly but implicitly through the resource
competition. Here we study a model of evolution of traits based on this approach. Mathematically,
this corresponds to assuming a resource-consumption kernel, instead of a direct competition kernel.

From Volterra-Gause’s competitive exclusion principle (see [13, 23] and the references therein), it
is well established that in a model with N limiting factors (e.g. nutrients) at most N species can
generically survive. In the context of continuous traits N species is represented by the sum of at
most N Dirac masses. For N small (1, 2, ...), these states are stable. Is this true asymptotically as N
becomes large? A way to answer this question is to study also the case of a continuous distribution of
resource according to a parameter related to the predation ability of the population.

In this paper, we first describe our model of species competition through resource dynamics (section
2). Both consumer trait and resource trait take continuous values. First we study the condition for
the survival of population (section 3) and the forms of steady states (section 4). In section 5, we
introduce the notion of Evolutionary Stable Distribution and show nonlinear stability for large times.
Our method is based on Lyapunov functionals and in particular our result covers the convergence to
polymorphic ESD. To illustrate our results, we show an example case where we choose specific function
form. In sections 6 and 7 we give details on the transient to polymorphic states.

2 Model

Our model is denoted as





∂tn(x, t) = n(x, t)
(
−m1(x) + r(x)

∫
K(x, y)R(y, t)dy

)
+ ε∆n(x, t),

∂tR(y, t) = −m2(y)R(y, t) +Rin(y) −R(y, t)
∫
r(x)K(x, y)n(x, t)dx.

(1)

and with initial data

n(0, x) = n0(x) ≥ 0, R(0, y) = R0(y) ≥ 0,
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x Consumer species trait (evolving)

y Resource trait

n(x, t) Consumer species distribution

r(x) Trait dependent growth rate

R(y, t) Resource distribution

Rin(y) Trait dependent resource-supply rate

m1(x) Mortality of consumer species

m2(y) Decay rate of resource

K(x, y) Consumption rate of resource y by individuals of trait x

ε Mutation rate

Table 1: The notations used for the chemostat models (1) and (2).

for x ∈ R and y ∈ R. Here n(x, t) ≥ 0 is consumer species density with trait x and R(y, t) ≥ 0
is resource density with trait y. Resource is constantly supplied at rate Rin(y) > 0 which drives
the system (a chemostat type model). Trait-dependent mortalities (or chemostat outflow rate or
resource decay rate) are denoted by m1(x) and m2(y). Consumption of resource is denoted by a trait
dependent efficiency r(x) and by a resource-consumption kernel K(x, y) that defines how species with
trait x depends on resource with trait y. Without loss of generality, we normalize K(x, .) so that r(x)
represents a net growth rate

K(x, y) ≥ 0,

∫
K(x, y)dy = 1.

We consider the evolution of a consumer trait, x. The mutation rate is denoted by ε in (1). Our system
is a generalized MacArthur’s model for species packing in niche space (see [15]). It can also be viewed
as a model of population dynamics in spatially heterogeneous environment where resource-supply rate,
resource decay rate, and consumer mortality are function of spatial position, x (see [21]).

Our system consists of two species; consumer and resource. In general, two species reaction-diffusion
equations are difficult to analyze. Nevertheless, our results in sections 3, 4 and 5 are valid for the full
system (1) with unspecified functional forms. To obtain even stronger results in sections 6 and 7, we
will later focus on a reduced system by taking the quasi-static approximation of resource dynamics as
follows 




∂tn(x, t) = n(x, t)
(
−m1(x) + r(x)

∫
K(x, y)R(y, t)dy

)
+ ε∆n(x, t),

R(y, t) = Rin(y)
m2(y)+

R

r(x)K(x,y)n(x,t)dx
.

(2)

The basic idea comes from the assumption that changes in species composition occur slower in con-
sumer population than in resource population. This is because the reproduction and death of consumer
species has, in many cases, slower time scale than those of prey species or resource dynamics of nutri-
ent particles.

Finally we introduce a particular case that we will use throughout the paper to illustrate more
intuitively the results; this is when r(x), m1(x) and m2(y) are constant and when the resource-supply
distribution and the resource-consumption kernel are gaussians:

K(x, y) = 1
σK

√
2π

exp(− |x−y|2
2σ2

K

), Rin(y) = Min

σin

√
2π

exp(− y2

2σ2
in

),

m1(x) ≡ m1, m2(y) ≡ m2, m0 = min(m1,m2) r(x) ≡ r.

(3)
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We assume the data are smooth enough, Lipschitz continuous and we use the following notations
and assumptions

m1 = inf
x
m1(x) > 0, m2 = inf

x
m2(y) > 0, m0 = min(m1,m2), rM = sup

x
r(x), (4)

r0 = inf
x
r(x) > 0, r2 = sup

x
|rx(x)|, (5)

M1 = sup
x

|m1,x(x)|, M2 = sup
x

|m2,x(x)|, (6)

M0 =

∫
n0(x)dx+

∫
R0(y)dy, (7)

R1 = sup
y
Rin(y), R2 = sup

y
|∇Rin(y)|, (8)

KM = max
x,y

K(x, y), Min =

∫
Rin(y)dy, Rin ∈ L2(R), (9)

K1 =

∫
r(x)

∫
K(x, y)

Rin(y)

m2(y)
dydx, (10)

K2 = sup
x,y

|Kx(x, y)|, K3 = sup
x,y

|Ky(x, y)|, (11)

K4 = sup
x,y

|∆x (r(x)K(x, y)) |. (12)

We call the population is ’(strictly) monomorphic’ at x = x̄ if n(x) = 0 for any x 6= x̄ and ’(strictly)
polymorphic’ if n(x) = 0 for any x except for x = x̄1, x̄2, .... On the other hand, we call the population
is ’approximately monomorphic’ if the distribution has single peak with tails. Similarly, ’approximately
polymorphic’ population consists of multiple peaks in its trait distribution (multimodal), see Figure 1.
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Figure 1: Left: a strictly monomorphic population. Right: an approximately monomorphic popula-
tion.

3 Survival condition

We study whether consumer species can survive on a given rate of resource-supply in models (1) and
(2). We begin with two preliminary observations: a balance law for the total flow holds which implies
estimates on the total population. Next, we prove the necessary condition for survival, which implies
the existence of the threshold level of resource-supply below which species go extinct, that is they
reach the consumer-free steady state

n(x) := 0, R(y) :=
Rin(y)

m2(y)
. (13)

We also prove that the population does not grow up to infinity; there is an upper bound.
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3.1 Fundamental balance laws

Integrating and summing the two lines in the full system (1), we obtain the following balance law for
the total flow

d

dt

[∫
n(x, t)dx+

∫
R(y, t)dy

]
=

∫
Rin(y)dy −

[∫
m1(x)n(x, t)dx +

∫
m2(y)R(y, t)dy

]
. (14)

This indicates that the total biomass is finite and positive. Therefore competition for resource is
indeed at work.

In the case of system (2) the biomass balance becomes

d

dt

∫
n(x, t)dx =

∫
Rin(y)dy −

[∫
m1(x)n(x, t)dx+

∫
m2(y)R(y, t)dy

]
. (15)

3.2 Boundedness of the total population

These balance laws have the consequence that the population remains bounded.

Theorem 3.1 We define ρ(t) =
∫
n(x, t)dx. Then we have, for both systems (1) and (2)

ρ(t) ≤ max(M0,
Min

m0

) := ρM , (16)

with M0, Min and m0 defined in (7), (9) and (4). Moreover we have, with the notation (13),

R(y, t) ≤ max
(
R(y, 0), R(y)

)
. (17)

Proof. Proof of (16): For the full system (1), using the total biomass relation (14),

d

dt

[∫
n(x, t)dx+

∫
R(y, t)dy

]
≤Min −m0

[∫
n(x, t)dx+

∫
R(y, t)dy

]
.

Thus we obtain that

d

dt

(∫
n(t, x)dx+

∫
R(t, y)dy

)
≤ 0, if

Min

m0

≤
∫
n(t, x)dx+

∫
R(t, y)dy.

We deduce that
∫
n(t, x)dx+

∫
R(t, y)dy ≤ max(M0, Min

m0
). Hence (16).

In the case of system (2), using (15) we obtain that

d

dt

∫
n(t, x)dx ≤Min −m1

∫
n(t, x)dx.

It follows that ρ(t) ≤ max(
∫
n0(x)dx, Min

m1
) ≤ max(M0, Min

m0
).

Proof of (17): For the full system (1), we have d
dtR(y, t) ≤ 0 if R(y, t) ≤ Rin(y)

m2(y) . Thus (17). In the

case of the system (2) the proof is immediate.
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3.3 Necessary condition for survival

We prove that the system gets extinct if the mortality/decay rates m1 and m2 are too large, see Figure
2. This is the regime

Theorem 3.2 (Condition for survival) We assume (4), (7), the first part of (8), (9) and (12).

For the solutions to systems (1) or (2), if
∫
R(y)| lnR0(y)|dy <∞ and

m1(x) ≥ r(x)

∫
K(x, y)R(y)dy, for all x ∈ R, (18)

then the solution gets extinct, that is
∫
n(x, t)dx vanishes and R(y, t) converges a.e. to R(y) in (13).

Otherwise the system survives, i.e.
∫
n(x, t)dx does not vanish, at least when there are no mutations

and the initial data n0 is positive everywhere.

This condition can be made explicit for the gaussian case (3) and gives

m1m2 ≥ rMin√
2π(σ2

K + σ2
in)
. (19)
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Figure 2: Here the horizontal axis is time and the vertical axis is ρ the total mass. The model studied
here is the one given in (2) in the particular case of (3) with ε = 0.001, σK = 0.6, σin = 1, r = 1,
Min = 3. Left: the mortality rates m1 = m2 = 1.1 are too large such that the non-extinction condition
(19) is not respected and we observe extinction in finite time. Right: the mortality terms m1 = m2 = 1
are small enough such that the non-extinction condition (19) is respected and this avoids extinction.
This is in accordance with the results in Theorem 3.2.

Proof. (i) We assume that the assumption (18) is satisfied and prove extinction.

For the system (1): We first prove that as t goes to +∞, R(y, t) converges to R(y) using the following
Lyapunov functional

S(t) = −
∫
R(y) lnR(y, t)dy +

∫
n(x, t)dx+

∫
R(y, t)dy.

We differentiate S and obtain

dS

dt
(t) = −

∫
m2(y)

R(y, t)

(
R(y) −R(y, t)

)2
dy −

∫
n(x, t)

(
m1(x) − r(x)

∫
K(x, y)R(y)dy

)
dx. (20)
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Thanks to assumption (18), we obtain that dS
dt is always negative and thus S is a decreasing function

with respect to t. Using Theorem 3.1 we deduce that S(t) is bounded from below so that

∫ ∞

0

∫
m2(y)

R(y, t)

(
R(y) −R(y, t)

)2
dydt < +∞. (21)

Because R is bounded from above thanks to Theorem 3.1, we conclude that

Q(t) :=

∫ (
R(y) −R(y, t)

)2
dy satisfies

∫ ∞

0
Q(t)dt <∞.

But we can estimate, with the notation K ∗ n(y) =
∫
r(x)K(x, y)n(x, t)dx

1
2Q

′(t) = −
∫ (

R(y) −R(y, t)
)

∂R(y)
∂t dy

= −
∫ (

(R(y) −R(y, t)
) (

m2R(y) −m2R(y, t) −RK ∗ n(y)
)
dy

= −
∫ (

(R(y) −R(y, t)
)2

(m2 +K ∗ n(y)) dy −
∫ (

(R(y) −R(y, t)
)
R(y)K ∗ n(y)dy.

Because 0 ≤ K ∗ n(y) ≤ KMρM , we conclude that

|Q′(t)| ≤ C

∫ (
(R(y) −R(y, t)

)2
+

∫
R(y)2dy ∈ L1 + L∞(0,+∞).

With the fact that Q ∈ L1(R+), this is enough to conclude that Q(t) → 0 as t→ ∞ and thus that

lim
t→∞

R(y, t) = R(y), a.e. and in L1 ∩ L2(R).

Notice that R(t) is ’regularized’ since initially it needs not be square integrable.

It remains to prove that n vanishes. We first conclude from the previous step that ∂R(y,t)
∂t converges

to 0 in the distribution sense. Therefore, as t→ ∞,

R(y, t)

∫
r(x)K(x, y)n(x, t)dx → 0 weakly.

From assumptions (4), (7), (9) and (12) we notice that | d
dt

∫
r(x)K(x, y)n(x, t) dx| is bounded. There-

fore, using the above convergence, we find that
∫
R(y)

∫
r(x)K(x, y)n(x, t)dxdy → 0 pointwise.

Because K and R(y) are positive, this means that n vanishes locally not necessariliy in L1(R). To
conclude, we notice that the dissipation term in the right hand side of (20) also vanishes (weakly but
also strongly by regularity as before). Therefore we conclude that

∫
m1(x)n(x, t)dx vanishes and the

result is proved.

For the system (2): We integrate the first equation, use (18) and arrive at

d

dt

∫
n(x, t)dx =

∫
n(x, t)

(
−m1(x) + r(x)

∫
K(x, y)R(y, t)dy

)
dx ≤ 0.
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Therefore
∫
n(x, t)dx is decreasing and

0 ≤
∫ ∞

0

∫
n(x, t)

(
m1(x) − r(x)

∫
K(x, y)R(y, t)dy

)
dx dt < +∞.

Using (18) it follows that

0 ≤
∫ ∞

0

∫ (∫
r(x)n(x, t)K(x, y)dx

) (
Rin(y)

m2(y)
− Rin(y)

m2(y) +
∫
r(x)n(x, t)K(x, y)dx

)
dy dt < +∞.

Since
∫
r(x)n(x, t)K(x, y)dx is bounded, convexity implies that

∫ ∞

0

∫ (∫
r(x)n(x, t)K(x, y)dx

)2

Rin(y)dydt <∞.

Since | d
dt

∫
r(x)K(x, y)n(x, t) dx| is bounded, following the arguments for the case of the system (1)

we obtain successively that

lim
t→∞

R(y, t) = R(y) a.e., and

∫
n(x, t)dx −→

t→∞
0.

(ii) Now we assume that the assumption (18) is not satisfied, i.e. for some x̄ ∈ R we have

m1(x̄) < r(x̄)

∫
K(x̄, y)

Rin(y)

m2(y)
dy. (22)

We prove that if there is no mutation, i.e. ε = 0, the solutions to systems (1) and (2) do not get
extinct.

For system (1): We assume that
∫
n(x, t)dx −→

t→∞
0. Therefore

∫
r(x)n(x, t)K(x, y)dx −→

t→∞
0. (23)

It follows that
∂tR(y, t) = −m2(y)R(y, t) +Rin(y) + β(t),

with β(t) −→
t→∞

0. We deduce that

R(y, t) −→
t→∞

R(y).

Using the dominated convergence Theorem and the boundedness ofK(·, ·) we obtain that
∫
K(x, y)R(y, t)dy

converges to
∫
K(x, y)R(y)dy, locally uniformly in x as t → +∞. Therefore for x in a neighborhood

of x̄ for t > t0 with t0 large enough, using system (1) with ε = 0 and using (22), we have

∂tn(x, t) = n(x, t)
(
−m1(x) + r(x)

∫
K(x, y)R(y, t)dy

)

≈ n(x, t)
(
−m1(x) + r(x)

∫
K(x, y)R(y)dy

)

> an(x, t),

with a a positive constant. We deduce that n(x, t) blows up when t → ∞ in a neighborhood of x̄.
This is in contradiction with

∫
n(x, t)dx→ 0.

For system (2): In this case we deduce directly from (23) that R(y, t) −→
t→∞

R(y), using the definition

of R(y, t). The other steps are as above.
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4 Steady states

Next question we address concerns the possible shapes of stationary solutions for the model (1) but
neglecting the mutation term. Firstly, in section 4.1 we show that under some general assumptions,
there is no positive continuous steady solution. This distinguishes this model from that of Lotka-
Volterra with direct competition where positive steady states can generally occur depending on the
model coefficients (see [8, 4, 12, 22]). Secondly, in Section 4.2 we show that there may exist steady
solutions in the form of Dirac masses. This confirms that the model is convenient to observe the high
population concentrations as Dirac deltas. It means that one or several specific traits can survive
while the other traits disappear.

In this section, we always consider the model without mutations that is system (1) with ε = 0. Then
a steady state (n,R) satisfies

∫
R(y)K(x, y)dy =

m1(x)

r(x)
∀x ∈ Supp n, R(y)

(
m2(y) +

∫
r(x)K(x, y)n(x)dx

)
= Rin(y).

(24)

4.1 Positive steady states

We say that the population is at positive steady state, if consumer species density n(x) is positive for
all trait values.

To analyse possible solutions, we use assumptions (10), (4) and the second part of (9). In the one
hand we have, from the second equality in (24) and these assumptions

r(x)

∫
K(x, y)R(y)dydx ≤ r(x)

∫
K(x, y)

Rin(y)

m2(y)
dydx := K1 < +∞.

In the other hand we have from the first equality in (24) and (4),

r(x)

∫
K(x, y)R(y)dy = m1(x) ≥ m1.

The latter relations are in contradiction. Thus we have proved the

Theorem 4.1 (Non-existence of non-vanishing steady state with finite biomass) We assume
(10), (4) and the second part of (9). Then there are no positive steady state to system (1) with ε = 0.

These results suggest that steady state solutions must satisfy n(x) = 0 for some values of x; then
the first equation in (24) and the above argument shows that the measure of the persistence set is
small; more precisely

∣∣{x; n(x) > 0}
∣∣ ≤ K1

m1

.

When outflow rate is fast enough, species are wiped out and extinction occurs as we saw it in
section 3; this is the regime

m0m2
rM

large enough. But for
m0m2

rM
small compared to Rin, we may expect

persistence and concentration on the fittest traits. We state later further conditions, still with finite
biomass, which imply that whatever is the initial data, the solution behaves as a sum of Dirac masses.
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4.2 Dirac masses (monomorphic states)

Indeed, as always in Lotka-Volterra equations, there are many possible Dirac steady states. Most of
them are unstable and the issue of stability is studied later in section 5.3 and the present result serves
as a preliminary calculation. For general coefficients r(x), m1(x) and m2(y), the monomorphic steady
states are characterized in the

Theorem 4.2 (Monomorphic steady states) Consider system (1) with ε = 0. For all x̄ such that

m1(x̄) < r(x̄)

∫
K(x̄, y)Rin(y)

m2(y)
dy, (25)

there exists a unique monomorphic steady state n̄ = ρδx̄ with ρ > 0.

The biological interpretation is the following. When only one species exists (and when mutation
is neglected), it can survive at a certain equilibrium density ρ if the non-extinction condition (25) is
satisfied; this is in accordance with the condition for survival in section 3. Moreover, the equilibrium
density is uniquely determined by the trait value of the species.

In the particular case given in (3), where the resource-supply distribution and the competition kernel
are gaussians and m and r are constants, the condition (25) becomes

m1m2

r
<

Min√
2π(σ2

in + σ2
K)

e−x̄2/2(σ2
in+σ2

K). (26)

We repeat that not all these steady states are stable under regularization of the Dirac mass or under
mutations. This question will be studied later on.
Proof. Let n̄ = ρδx̄, with ρ to be determined later. For n̄ to be a steady state we must have

−m1(x̄) + r(x̄)

∫
K(x̄, y)R(y, t)dy = 0, R(y) =

Rin(y)

m2(y) + r(x̄)ρK(x̄, y)
.

This is equivalent to write

G(ρ, x̄) :=

∫
K(x̄, y)Rin(y)

m2(y) + r(x̄)ρK(x̄, y)
dy =

m1(x̄)

r(x̄)
. (27)

The function G is continuous and decreasing in ρ. Using assumption (25) we have

lim
ρ→∞

G(ρ, x̄) = 0, lim
ρ→0

G(ρ, x̄) =

∫
K(x̄, y)Rin(y)

m2(y)
dy >

m1(x̄)

r(x̄)
.

We conclude that there exists ρ > 0 such that G(ρ, x̄) = m1(x̄)
r(x̄) and consequently n̄ := ρδx̄ is a steady

state.

4.3 Dirac masses (dimorphic states)

The problem (1) with ε = 0 also admits polymorphic steady states. Here we consider only the case
where all the functions are symmetric with respect to the origin:

Rin(y) = Rin(−y), m1(x) = m1(−x), m2(y) = m2(−y),
r(x) = r(−x), K(x, y) = K(−x,−y), (28)

and we show that dimorphic steady states exist:
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Theorem 4.3 (Dimorphic steady states) With the symmetry assumption (28), for all x̄ satisfying
(25) there exists a unique dimorphic steady state to system (1) with ε = 0 in the form of

n̄ = ρ (δx̄ + δ−x̄) .

We notice that the gaussian case (3) satisfies assumption (28). We deduce that, in the Gaussian
case, for all x̄ such that (26) is hold, there exists a unique ρ such that ρ (δx̄ + δ−x̄) is a steady state.
In this case indeed both monomorphic and dimorphic steady states exist (see Section 4.2). But we
insist that we do not know yet wether these states are stable under smoothing or under mutations.

Proof. We determine ρ such that n̄ = ρ (δx̄ + δ−x̄) is a steady state. We need

−m1(x̄) + r(x̄)

∫
K(x̄, y)

Rin(y)

m2(y) + r(x̄)ρK(x̄, y) + r(−x̄)ρK(−x̄, y)dy = 0,

−m1(−x̄) + r(−x̄)
∫
K(−x̄, y) Rin(y)

m2(y) + r(x̄)ρK(x̄, y) + r(−x̄)ρK(−x̄, y)dy = 0.

Thanks to assumption (28), these two relations are equivalent. Therefore it is sufficient to find ρ such
that the first relation holds. Following the arguments in section 4.2, this is equivalent to write

H(ρ, x̄) :=

∫
K(x̄, y)Rin(y)

m2(y) + ρ r(x̄)[K(x̄, y) +K(−x̄, y)]dy =
m1(x̄)

r(x̄)
.

The function H is continuous and decreasing in ρ. Using assumption (25) we have

lim
ρ→∞

H(ρ, x̄) = 0, lim
ρ→0

H(ρ, x̄) =

∫
K(x̄, y)Rin(y)

m2(y)
dy >

m1(x̄)

r(x̄)
.

We conclude that there exists a unique ρ > 0 such that H(ρ, x̄) = m1(x̄)
r(x̄) and consequently n̄ :=

ρ (δx̄ + δ−x̄) is a steady state.

5 Stability of steady states

We continue with the case without mutations, ε = 0. So far we have described possible steady states
and proved that not all traits can be present; continuous distributions with small supports can exist
as well as Dirac deltas. We now address the question of stability in these two classes. We recall the

Definition 5.1 (Evolutionary Stable Distribution, [12]) For a nonnegative bounded measure n
(that is

∫
n <∞), the steady state characterized by (24) is called an Evolutionary Stable Distribution

(ESD) for the equation (1) if

−m1(x) + r(x)

∫
K(x, y)R(y)dy ≤ 0, for all x ∈ Supp n0 \ Supp n. (29)

11



5.1 Lyapunov functional and convergence to an ESD

Here we consider a non-vanishing bounded steady state (n,R). We use the same techniques as in
Section 3.3, based on Lyapunov functionals to prove that it is nonlinearly globally attractive.

In standard analysis of adaptive dynamics, one shows the convergence and evolutionarily stability by
calculating invasion fitness of rare mutants with strategy xm when resident population is monomorphic
at strategy xr. Our theorem extends the situation so that population consists of any (discrete or
continuous) combination of strategies. The theorem strongly suggests that, if any ESD exists, any
reasonable (see above) distribution of traits evolves toward the ESD. Thus, the theorem shows the
convergence and evolutionarily stability of the ESD in our model against the invasion of any (discrete
or continuous) combination of non-rare mutant strategies (with any densities). This is the reason we
call the theorem as global convergence. In terms of the evolution of consumer trait in our chemostat
model, the evolutionarily outcome is always the ESD which is determined by ecological parameters of
the model (e.g., resource-supply rate, resource consumption rate) irrespective of the initial state.

Theorem 5.2 (Global convergence to ESD) Consider systems (1) or (2) with ε = 0. We assume
that (n,R) is a bounded ESD and that

∫
n(x)| ln n0(x)|dx and

∫
R(y)| lnR0(y)|dy are well-defined.

Then R(y, t) → R(y) a. e. as t→ +∞. In particular this holds true if supp n0 = Supp n.

We would like to point out that it is fundamental to assume that
∫
n(x)| ln n0(x)|dx is well-defined;

this implies that n0 is a function and does not vanish where n is positive (see section 5.2 for n0 a
Dirac measure). Otherwise, not only the method collapses but it is easy to build counterexamples to
the result (as monomorphic cases).

Our method is closely related to the proof in [12] for direct competition. The case of discrete ESD,
that is n is a measure, can be treated as well but to the expense of technical controls which are beyond
the scope of the present paper.

As we will see it in the proof, convergence of n(t) to n does not always follow with our mere
assumptions but is true for large class of data (r and K). Then the uniqueness of the ESD follows and
also the convergence of the population to the ESD. This shows that the systems under consideration
are very particular because, in general, ESD are not always Convergence Stable Distributions (see
[6, 20] and the references therein).

Proof. For system (1). With our assumptions we can define the Lyapunov functional

S(t) = −
∫
n(x) lnn(x, t)dx−

∫
R(y) lnR(y, t)dy +

∫
n(x, t)dx+

∫
R(y, t)dy,

and S is bounded from below (because we assume that n is bounded). Using (24), we compute

dS

dt
(t) = −

∫
Rin(y)

R(y) R(y, t)

(
R(y) −R(y, t)

)2
dy +

∫
n(x, t)

(
r(x)

∫
K(x, y)R(y)dy −m1(x)

)
dx.

(30)
Since Supp n(t, ·) ⊆ Supp n0, assumption (29) shows that S is a decreasing function. It follows that
as t→ ∞, S(t) converges to a finite value S. We deduce that

∫ ∞

0

∫
Rin(y)

R(y) R(y, t)

(
R(y) −R(y, t)

)2
dy dt < +∞. (31)

Following the arguments in the proof of Theorem 3.2, we conclude that

lim
t→∞

R(y, t) = R(y), a.e.

12



Furthurmore, since subsequences n(tk) converges weakly in the sense of measures to ñ, following the
proof of Theorem 3.2, we have

R(y) =
Rin(y)

m2(y) +
∫
r(x)K(x, y)ñ(x, t)dx

.

This implies that for all y,
∫
r(x)K(x, y)ñ(x, t)dx =

∫
r(x)K(x, y)n(x)dx. However, our assumptions

are not strong enough to conclude that ñ(x, t) ≡ n(x); some operator invertibility is needed as in [12].

For system (2). We use the Lyapunov functional

S(t) = −
∫
n(x) lnn(x, t)dx+

∫
n(x, t)dx.

It still satisfies (30) and we can apply the same method as before.

5.2 Population dynamics of monomorphic states

With a variant of this method we can also study the solutions of the form n(x, t) = ρ(t)δ(x − x̄)
corresponding to an initial data n0 = ρ0δ(x− x̄); indeed such a data does not satisfy the assumptions
of Theorem 5.2 because lnn0 is not well defined.

Theorem 5.3 For the solutions of the form n(t) = ρ(t)δ(x− x̄) with x̄ satisfying (25), the population
converges to the unique monomorphic steady state in Theorem 4.2, i.e. ρ(t) → ρ and R(y, t) → R(y)

as t→ ∞, with R(y) = Rin(y)
m2(y)+r(x̄)ρK(x̄,y) .

Proof. We treat only the case of system (1) and use the Lyapunov functional

S(t) = −ρ ln ρ(t) −
∫
R(y) ln (R(y, t)) dy + ρ(t) +

∫
R(y, t)dy,

dS

dt
(t) = −

∫
Rin(y)

R(y) R(y, t)

(
R(y) −R(y, t)

)2
dy.

With similar arguments as above we obtain that R(y, t) −→
t→∞

R(y). Since there exists a unique constant

ρ such that R(y) = Rin(y)
m2(y)+r(x̄)ρK(x̄,y) , following again the arguments in the proof of Theorem 5.2 we

obtain that ρ(t) −→
t→0

ρ.

5.3 Condition for a monomorphic state to be an ESD

With the extension in [12], we may expect that Theorem 5.2 applies in particular for monomorphic
steady states. We consider such a monomorphic distribution n = ρδ(x), restricting ourselves to a
population concentrated in the origin and give a condition implying that it is evolutionary stable.
Here, to simplify the analysis, we consider only the ’gaussian’ case given in (3).

Along with section 4.2, we need the non-extinction condition (26) with x̄ = 0, that is

m1m2

rMin

√
2π <

1√
σ2

in + σ2
K

. (32)

To check that the ESD condition holds locally, it is enough to check the sign of the second derivative
of the fitness function (see Appendix A). The exact condition is given by formula (60) which is not
tractable. That is why we compute an easier sufficient condition given by the

13



Theorem 5.4 (Sufficient condition for ESD) Consider the gaussian case (3) with the condition
(32). Let n = ρδ with ρ as in (27) be a steady state. We additionally assume that

σ2
in

(σ2
in + σ2

K)
3
2

<
m1m2

rMin

√
2π. (33)

Then the monomorphic state n = ρδ0 is a local ESD to system (1) with ε = 0, in other words for
Supp n0 ⊃ {0} small enough then (29) holds.

This Theorem involves technical calculations and we prove it in Appendix A.
In conclusion for n = ρδ0 to be an ESD, using (32), it is enough that

σ2
in

(σ2
in + σ2

K)
3
2

<
m1m2

rMin

√
2π <

1√
σ2

in + σ2
K

. (34)

Roughly, it means that σK is large enough compared to σin. In biological words, when the outflow rate
is not too big and the resource supply distribution has a sharper peak than the competition kernel,
then the species distribution is isolated.

The condition (34) is not a necessary condition for an ESD. We give an example where the condition
is not satisfied but the origin is nevertheless an ESD. We consider the following parameter values

σK = 1, σin = 1, m1 = 0.5, m2 = 0.5, Min = 3, r = 1.

We can easily verify that the condition (34) is not satisfied with these parameters. However as we
see in Figure 3 the population goes to the origin and remains there. This is due to the estimations
that we have used in our calculations. In this particular case we can compute numerically the second
derivative of the fitness function using (60) in Appendix A

D2F0(0) = −m1

σ2
K

+
rMin

2πσ5
Kσin

∫
x2 e

−x2

2
( 1

σ2
K

+ 1

σ2
in

)

m2 + ρK(−x)dx ≈ −0.16,

where we estimate numerically ρ ≈ 3.9. This confirms that the origin is an ESD.
If we decrease σK to 0.5 the origin is not ESD anymore and we observe a branching. In this case

not only the condition (34) is satisfied but the exact amount of D2F0(0) ≈ 0.59 is also positive and
we estimate numerically ρ ≈ 3.2. This is in accordance with numerical results in Figure 3.

6 Dynamics of the fittest traits: an asymptotic point of view

We have shown that the model has monomorphic or polymorphic steady states and derived the suf-
ficient condition for a monomorphic distribution (Dirac mass) to be evolutionarily stable. To obtain
a stronger result than merely local stability, here we consider a case when a population is initially
concentrated around one or several points in trait space. We establish that it stays concentrated and,
using asymptotic analysis, that the fittest traits follow a form of canonical equation. We also give
conditions implying that the population becomes monomorphic.

We are interested in the dynamics with an initial data ’close’ to a monomorphic or polymorphic
state

nε(x, 0) ≈
∑

i=1,...,I

ρ0
i δ(x− x̄0

i ).
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Figure 3: Dynamics of dominant traits begining with an initial data concentrated in −0.3. We present
the dynamics of the model given in (2) in the particular case of (3) with ε = 0.001, σin = 1, r = 1,
m1 = m2 = 0.5, Min = 3. Left σK = 1. Right σK = .5. We observe that for σin large comparing to
σK the monomorphic case is no more evolutionary attractor and we observe branching.
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Figure 4: The parameter ε in (36) measures how close is the distribution from the Dirac distribution,
possibly due to mutations or, as considered here, initial variations.

To track the movements of x̄i (i.e., evolutionary dynamics of traits), the initial data are chosen as
a sum of concentrations with tails (non-zero variances in trait values). A parameter ε denotes a
small deviation of the initial data from the corresponding strictly monomorphic/polymorphic states
(Dirac masses), see Figure 4. We also perform a change of variable τ = εt in order to accelerate
time and observe the dynamics. Note that the scaling parameter ε here is no longer a mutation
rate. Mathematically, however, the existence of continuously positive distribution is sufficient to track
evolutionary dynamics. With this new time, the quasi-static model becomes





∂
∂τ nε = nε

ε

(
−m1(x) + r(x)

∫
K(x, y)Rε(y, τ)dy

)
,

Rε(y, τ) = Rin(y)
m2(y)+

R

r(x)K(x,y)n(x,τ)dx
.

(35)

Starting from these approximately monomorphic/polymorphic populations, we show that under
some assumptions the number of concentrated peaks does not change in time and no evolutionary
branching can happen. However the dominant traits can evolve in time and we can describe the
motion of these dominant traits with a Hamilton-Jacobi equation. We also obtain a minimum distance
between the dominant traits. In section 6.2 we give a form of a canonical equation of the dominant
traits. These results correspond to the convergence stability in Adaptive Dynamics, and the biological
implications are discussed in section 6.3.
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6.1 Polymorophic dynamics: mathematical results

According to the usual approximation of Dirac masses by gaussians, we describe it by the properties
of the population potential ϕ0

ε(x) in

nε(x, 0) = e
ϕ0

ε(x)

ε . (36)

The theory developed from [7] for the Lotka-Volterra equations shows that the representation ϕε(x, t) :=
ε ln

(
nε(x, t)

)
makes sense for all times because it satisfies the simple equation

∂

∂τ
ϕε(x, τ) = −m1(x) + r(x)

∫
K(x, y)Rε(y, τ)dy. (37)

Of course there is a shortcoming in this point of view because the scaling parameter ε > 0 is defined
through the initial data which seems arbitrary. The real motivation is from modeling of mutations
which we know induces this type of smoothing of the population density. See [7, 1, 18, 2]. It has
been widely proved that the method may handle these mutations as well in self-contained population
models as (1), (2).

Our main characterization of the population density goes through the function ϕε and we assume
that initially

|ϕ0
ε(x)| ≤ C0(R), |∇ϕ0

ε(x)| ≤ C1(R), ∀|x| ≤ R. (38)

As a preliminary result, we prove in Appendix C the following

Proposition 6.1 (Convergence) With the assumptions (4), (6), (9), (8), (11) and (38), after suc-
cessive extractions of subsequences, the family ϕε converges locally uniformly to a continuous function
ϕ ≤ 0, the family Rε converges locally uniformly in space and weakly in time to a limit R(y, τ).
Furthermore, we have the relation

ϕ(x, τ) = ϕ0(x) −m1(x)τ + r(x)

∫ τ

0

∫
K(x, y)R(y, s)dyds, ϕ(x, τ) ≤ 0. (39)

With these assumptions, the conclusion of Theorem 3.1 holds and we may extract a subsequence
such that the nε’s converge weakly in the sense of measures to a limit n(x, τ). The support of n is
included in the set {(τ, x)|ϕ(x, τ) = 0} (see [7, 18, 4, 14] for several uses of this property). We show
below that the zeros of ϕ(τ) are isolated points, and thus the model leads to Dirac concentrations.

Theorem 6.2 (Concentration effects) We assume that, for some positive constant a0 and µ1 ∈ R,

ϕ0
ε,xx(x) − µ1 ϕ

0
ε(x) ≤ a0, (40)

(i) and that there is a1 > 0 and µ2 ≥ 0 such that

m′′
1(x) −m1(x)µ1 −

∫
µ2(y)

m2(y)
Rin(y)dy ≥ a1, (r(x)K(x, y))xx ≤ µ1r(x)K(x, y) + µ2(y). (41)

Then we have

ϕxx − µ1 ϕ ≤ a0 − a1τ, (42)
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in the distributional sense and a.e. In particular if a0 ≤ 0, then we have ϕxx − µ1ϕ ≤ 0 and thus,
after extraction of a subsequence, the nε’s converge in the weak sense of measures to a sum of Dirac
masses:

nε(x, τ) ⇀ n(x, τ) =
∑

i

ρi(τ)δi(x− x̄i(τ)). (43)

(ii) If (41) is hold with µ1 ≥ 0 then, the population, when it persists, is asymptotically monomorphic:

nε(x, τ) ⇀ n(x, τ) = ρ(τ)δ(x − x̄(τ)), (44)

and the pair (x̄(τ), ρ(τ)) also satisfies

ρ(τ)

(
−m1

(
x̄(τ)

)
+ r(x̄(τ))

∫
K

(
x̄(τ), y

)
R(y, τ)dy

)
≥ 0. (45)

Also, the equation for R(y, τ) can be reduced to

R(y, τ) =
Rin(y)

m2(y) +
∑

i ρi(τ)r(x̄i(τ))K(x̄i(τ), y)
(polymorphic case), (46)

R(y, τ) =
Rin(y)

m2(y) + ρ(τ)r(x̄(τ))K(x̄(τ), y)
(monomorphic case). (47)

In order to illustrate our assumptions, we may consider the case when

r(x) = r0, m1(x) = m̃0 + m̃1
|x|2
2 , m̃2(y) ≥ m2,

Rin = Min

σin

√
2π

exp(− y2

2σ2
in

), K(z) = 1
σK

√
2π

exp(− z2

2σ2
K

)

and K(x, y) = K(x− y). We compute

Kxx =

[
− 1

σ2
K

+
|z|2
σ4

K

]
K, µ1 = 0, µ2 =

C

σ3
K

.

Therefore m̃1m̃2 large enough compared to Min

σ3
K

implies monomorphism.

We can also take m̃1 = 0, i.e., m1 constant, µ1 = − 1
σ2

K

. Then, em0

σ2
K

large enough compared to Min

σ3
K

em2

implies polymorphism but not continuous distribution.
Proof. We differentiate twice equation (37) and using (41) we obtain

∂

∂τ
ϕε,xx = −m′′

1(x) +

∫
(r(x)K(x, y))xxRε(y, τ)dy

≤ −m′′
1(x) + µ1

∫
r(x)K(x, y)Rε(y, τ)dy +

∫
µ2(y)Rε(y, τ)dy

≤ −m′′
1(x) + µ1m1(x) + µ1

∂

∂τ
ϕε(x, τ) +

∫
µ2(y)

m2(y)
Rin(y)dy.

We deduce that, using again (41),

∂

∂τ

(
ϕxx − µ1ϕ

)
≤ −m′′

1(x) + µ1m1(x) +

∫
µ2(y)

m2(y)
Rin(y)dy ≤ −a1.
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Therefore, using (40), we have
ϕxx − µ1ϕ ≤ a0 − a1τ.

In particular, if a0 ≤ 0, we deduce that ϕxx < 0 in the set {(t, x)|ϕ(τ, x) = 0}. Therefore the zeros
of ϕ are isolated. Since the support of n is included in this set, we conclude that n is a sum of Dirac
masses as stated in (43).

Furthermore if µ1 ≥ 0 then we deduce that ϕ ≤ 0 is a strictly concave function with respect to
x. Thus it has a unique maximum. We conclude that the population, if it does not go extinct, is
monomorphic as stated in (44).

Finally, we integrate (35) and obtain

ε
d

dτ
ρ(τ) = −

∫
nε(τ, x)m1(x)dx+

∫ ∫
nε(τ, x)r(x)K(x, y)

Rin(y)

m2(y) +
∫
r(x′)K(x′, y)nε(τ, x′)dx′

dydx.

Passing to the weak limit we obtain that

0 = −ρ(τ)m1(x̄(τ)) + w- lim

∫ ∫
nε(τ, x)r(x)K(x, y)

Rin(y)

m2(y) +
∫
r(x′)K(x′, y)nε(τ, x′)dx′

dydx

≤ ρ(τ)

(
−m1(x̄(τ)) +

∫
r (x̄(τ))K(x̄(τ), y)

Rin(y)

m2(y) + ρ(τ)r (x̄(τ))K(x̄(τ), y)
dy

)
.

Hence (45).

6.2 A form of canonical equation

Within the framework of Section 6.1 we can go further and obtain several informations on the dynamics
of the fittest trait, including a form of canonical equation as proposed initially in [5]. For this, we
need some additional regularity which relies on the assumptions

|D3ϕ0(x)| ≤ D1, |D3m(x)| ≤ D2, |D3
xK(x, y)| ≤ D3, |D3r(x)| ≤ D4. (48)

This implies that ϕ and R also have bounded third derivatives in x. We also need the following
additional assumption on the initial data

−m1(x̄(0)) + r(x̄(0))

∫
K(x̄(0), y)

Rin(y)

m2(y)
dy > 0. (49)

Within the framework of Theorem 6.2 and in the monomorphic case we prove the following

Theorem 6.3 (Form of canonical equation) We assume (48), (49) and (41) with µ1 ≥ 0, (40)
with a0 ≤ 0 and thus (44). Then, x̄ ∈ W 1,∞ and the following form of canonical equation for the
fittest trait holds

˙̄x(τ) =
(
−D2ϕ(x̄(τ), τ)

)−1
(
−∇m1(x̄(τ)) + r (x̄(τ))

∫
∇xK(x̄(τ), y)R(y, τ)dy

+∇r (x̄(τ))

∫
K(x̄(τ), y)R(y, τ)dy

)
.

(50)

Moreover, the family ρε converges a.e. to ρ ∈W 1,∞, and we have

−m1(x̄(τ)) +

∫
K(x̄(τ), y)R(y, τ)dy = 0, R(y, τ) =

Rin(y)

m2(y) + ρ(τ)r(x̄(τ))K(x̄(τ), y)
, (51)
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ρ(t) ≥ ρ0e−Kτ . (52)

In particular, we deduce that the population does not get extinct.

This Theorem is proved in Appendix D.

We notice that for any (τ, x̄(τ)) there exists a unique ρ(τ) such that (51) is satisfied. Therefore by
eliminating ρ(τ) from the canonical equation (50) we obtain an equation that depends only on the
parameter x̄(τ). However, we cannot write the canonical equation explicitly because the formula for
ρ(τ) is implicit.

We may also write canonical equations for dominant traits for the case with polymorphic populations
within the framework of Section 6.1 when there are only a finite number of traits. We obtain the set
of constraints and, with R(y, t) given in (46), the canonical equation

˙̄xi(τ) =
(
−D2ϕ(x̄i(τ), τ)

)−1
(
−∇m1(x̄i(τ)) + r (x̄i(τ))

∫
∇xK(x̄i(τ), y)R(y, τ)dy

+∇r (x̄i(τ))

∫
K(x̄i(τ), y)R(y, τ)dy

)
.

(53)

6.3 Biological implications: Generation of species

We now give the biological implications of our mathematical result and focus on the following two
points.

(i) The interpretation of the trait concentration in terms of the function ϕ is

nε(x, τ) ≈
∑

i=1,...,I

ρi(τ)δ(x − x̄i(τ)) ⇐⇒ max
x

ϕ(x, τ) = 0 = ϕ
(
x̄i(τ), τ

)
. (54)

But at the points such that ϕ
(
x̄i(τ), τ

)
= 0 for τ > τ0 := a0

a1
, using Theorem 6.2, we have

ϕxx

(
x̄i(τ), τ

)
≤ −a1(τ − τ0) < 0.

We deduce that for τ > τ0, the zeros of ϕ are isolated. Therefore n(τ, x) is in the form of a sum of
Dirac masses after τ > τ0 (to be rigorous we need to complement our assumptions to ensure that ϕ
has three derivatives in x; this follows when data have three derivatives).

(ii) We can also give a minimal distance between two Dirac masses after time τ0, using the uniform
Lipschitz bound on ϕ, see Appendix C. Let ϕ

(
τ, xi(τ)

)
= 0. We have

ϕxx(τ, x) ≤ a0 − a1τ + µ1 ϕ(τ, x)

≤ a0 − a1τ +
(C1 +B1τ)

µ1
|x− xi(τ)|.

We deduce that ϕxx(τ, x) < 0 for

|x− xi(τ)| <
a1τ − a0

B1τ + C1
.
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Therefore the minimal distance between two Dirac masses at time t is

|xi(τ) − xi+1(τ)| ≤ 2
a1τ − a0

B1τ + C1
. (55)

Biologically, these two results mean that distinct species remain distinct after the finite time τ0. We
can not observe any continuous branching or merging for τ > τ0, because at the point where branching
(or merging) happens the two new (or previous) Dirac masses will be (have been) very near each other
for a while. But according to (ii) this cannot happen. Thus, the number of species does not increase
(but can decrease because extinction is still possible) after this threshold time (although their trait
values might keep moving). Evolutionary diversification (generation of new species) must finish until
this time, so τ0 can be considered as a time scale of evolution.

Note that τ0 is measured in a slower time-scale than t in the full model. This is necessary as we
take ε → 0, corresponding to no mutation limit, otherwise evolution requires infinitely long time.
Interestingly, we still observe the dynamics in finite time in this evolutionary time scale. What is
unique to the present study is that we have shown the finite threshold time after which no structual
change occurs in evolutionary dynamics. This is a non-trivial result because any quantity (especially
selection gradient) does not depend explicitly on time except initial data, that are chosen infinitesimally
close to Dirac masses.

In some individual-based simulations of evolution of species traits (see [11]), we observe endlessly-
repeated extinctions and generations of species, i.e. recurrent adaptive radiations. This has been
considered as a stochastic effect, but in principle this could be possible in deterministic system as well.
Our result shows that such recurrent adaptive radiation never occurs in our system.

7 Transient from continuous distribution to Dirac mass

Here we extand the analysis in section 6 to more general initial distribution. We give details on how
an initially continuous population becomes approximately monomorphic/polymorphic in large time.
Once this stage is reached, all the results and biological implications in the previous section are valid.
Hence, this section is a natural extension of our results to relax our assumption of approximately
monomorphic/polymorphic initial data.

We come back to the quasi-static model




∂n(x,t)
∂t = n(x, t)

(
−m1(x) + r(x)

∫
K(x, y)R(y, t)dy

)
,

R(y, t) = Rin(y)
m2(y)+

R

r(x′)K(x′,y)n(x′,t)dx′ .
(56)

We aim to show that for large times, the population density behaves like a highly concentrated
gaussian around an unknow fittest trait x̄(t), by example

n(x, t) ≈ ρ(t)√
2πt

exp

(
−|x− x̄(t)|2

2t

)
.

The model does not impose such a quadratic type of concentration to a Dirac mass and we have to
generalize the approximation as

n(x, t) ≈ eϕ(x,t), with ϕ a uniformly concave function in x.

Then x̄(t) is the point where maxx ϕ(x, t) = ϕ
(
x̄(t), t

)
.
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7.1 Pointwise estimate on the population density

We continue our analysis and prove an upper bound on pointwise growth of the population.To do so,
we use the population potential

ϕ(x, t) = ln
(
n(x, t)

)
. (57)

Here, as in (38), we use the following assumptions initially

ϕ(x, 0) ≤ C0, |ϕx(x, 0)| ≤ C1, |ϕxx(x, 0)| ≤ C2. (58)

Proposition 7.1 (Pointwise esimate) Under assumptions (4), (9), (5), (58) and the first parts of
(6) and (11), there is a constant A > 0 (depending on m2, M1, rM , r0, r2, K2, KM , Min, C0, C1)
such that at all points x,

n(x, t) ≤ (2 + t)A, ϕ(x, t) ≤ A ln(2 + t).

It turns out that polynomial growth on n(t) is indeed true under some additional assumption that
we mention later. This is a first indication that concentration on the population should indeed occur.

This Theorem is proved in Appendix E.

7.2 Towards monomorphism or polymorphism

We are now ready to establish the result showing strong convergence to a monomorphic or polymorphic
population.

Theorem 7.2 (Sufficient condition for convergence to well-separated traits) With the above
assumptions (5)–(11), (58) and
(i) If (41) holds with µ1 ≥ 0, then ϕ is concave for t large enough and the population, if it persists, is
asymptotically monomorphic, namely

lim sup
t→∞

ϕxx(x, t)

t
≤ −a1.

(ii) If (41) holds with µ1 < 0, then

lim sup
t→∞

ϕxx(x, t) − µ1ϕ(x, t)

t
≤ −a1.

Consequently, the population is concentrated on well separated traits and the distribution cannot be
continuous.

The unique maximum point x̄(t) of ϕ(·, t) defines the fittest (highest represented) trait. It might be
that x̄(t) escapes to infinity for large times, as in the cannibalism model (see [6, 17] for instance).

Proof. We write
∂

∂t
ϕ(x, t) = −m1(x) + r(x)

∫
K(x, y)R(y, t)dy.
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We differentiate twice this equation and, using (41), we find

∂

∂t
ϕxx(x, t) = −m′′

1(x) +

∫
(r(x)K(x, y))xxR(y, t)dy

≤ −m′′
1(x) + µ1

∫
r(x)K(x, y)R(y, t)dy +

∫
µ2(y)R(y, t)dy

≤ −m′′
1(x) + µ1m1(x) + µ1

∂

∂t
ϕ(x, t) +

∫
µ2(y)

m2(y)
Rin(y)dy

≤ −a1 + µ1
∂

∂t
ϕ(x, t)

Integrating in time, we obtain

ϕxx(x, t) ≤ ϕ0
xx(x) − a1t+ µ1[ϕ(t, x) − ϕ0(x)].

With the help of assumptions (58) and Theorem 7.1, we conclude the first case (monomorphism).
In the case µ1 < 0, we use the same computation and arrive at

∂

∂t
[ϕxx(x, t) − µ1ϕ(x, t)] ≤ −m′′

1(x) + µ1m1(x) +

∫
µ2(y)

m2(y)
Rin(y)dy ≤ −a1.

The conclusion follows as before.
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A Proof of Theorem 5.4

With the terminology in [6, 19], we define the fitness function as

F0(x) = −m1 + r

∫
K(x− z)

Rin(z)

m2 + rρK(−z)dz. (59)

Ii measures the invasion ability of a mutant x when the residents are all at the origin. For an ESD
concentrated at the origin, the fitness function must satisfy DF0(0) = F0(0) = 0 and D2F0(0) < 0.

As we computed it in section 4.2, the condition F0(0) = 0 follows from the choice of the weight ρ of
the Dirac mass n = ρδ, which can also be written

m1 = rK ∗R(0) = r

∫
K(y)

Rin(y)

m2 + rρK(y)
dy.

We also have, since DK is odd and K and Rin are even,

DF (0) = r

∫
DK(−y) Rin(y)

m2 + rρK(−y)dy = 0.

Finally, we analyse the sign of
D2F = rD2K ∗R.
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Next, we perform some preliminary calculation

m1 =
rMin

2πσKσin

∫
e

−x2

2
( 1

σ2
K

+ 1

σ2
in

)

m2 + ρK(x)
dx,

D2K(x) =
1

σ3
R

√
2π

(−1 +
x2

σ2
R

) exp(− x2

2σ2
R

).

Therefore, the condition for a local ESD is

D2F0(0) = −m1

σ2
K

+
rMin

2πσ5
Kσin

∫
x2 e

−x2

2
( 1

σ2
K

+ 1

σ2
in

)

m2 + ρK(−x)dx < 0. (60)

Define σ′ = σKσin√
σ2

K
+σ2

in

. We have

D2F0(0) ≤ −m1

σ2
K

+
rMin

2πσ5
Kσinm2

∫
x2 e

−x2

2σ′2 dx

= −m1

σ2
K

+
rMinσ

′3
√

2πσ5
Kσinm2

= −m1

σ2
K

+
rMin√

2πσ2
Km2

· σ2
in

(σ2
in + σ2

K)
3
2

.

We deduce from this inequality that D2F0(0) < 0 under the condition (33). This condition is however
not sharp because we neglected the helping term ρK(−x).

B Lipschitz bounds on ϕ

Several steps in our estimates use Lipschitz bounds on the function ϕ or ϕε defined through the
logarithmic transform.

First we show that |∇ϕ|(x, t) ≤ C1 +B1t, for all x, and for B1 a constant that we determine later.
We replace n = eϕ in (56) and find

∂

∂t
ϕ = −m1(x) + r(x)

∫
K(x, y)R(y, t)dy. (61)

Differentiating this equation we obtain

∂

∂t
ϕx = −m1,x(x) + r(x)

∫
Kx(x, y)R(y, t)dy + rx(x)

∫
K(x, y)R(y, t)dy.

Using (4), (9), (6), the second part of (5) and the first part of (11) we have

| ∂
∂t
ϕx| ≤M1 +

rMK2Min

m2

+
r2KMMin

m2

.

From this and (58) we deduce that

|ϕx(x, t)| ≤ C1 +B1t, B1 = M1 +
rMK2Min

m2

+
r2KMMin

m2

. (62)
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C Proof of Theorem 6.1

(i) (Lipschitz bound in space for ϕε) We recall the inequality (62) proved earlier |∇ϕε(x, τ)| ≤
C1 +B1τ .

(ii) (Lipschitz bound in time for ϕε) Using (4), the first part of (8) and (37) we have

−m1(x) ≤
∂

∂τ
ϕε = −m1(x) + r(x)

∫
K(x, y)Rε(y, τ)dy ≤ rMR1

m2

. (63)

Since m1(x) is locally bounded, we obtain that ∂
∂τϕε is locally uniformly bounded.

(iii) (Convergence of ϕε) Using (63) and (58) we deduce that ϕε are locally uniformly bounded
and its derivatives also. Thanks to the Arzela-Ascoli Theorem, we can extract a subsequence that
converges locally uniformly to a continuous function ϕ.

Moreover ϕ can not take positive values. Otherwise ρε =
∫
nεdx blows up in the limit as ε vanishes

and this is in contradiction with Theorem 3.1 that states ρε is uniformly bounded.

(iv) (Lipschitz bound in space for Rε) We differentiate the second line of (56) with respect to x
and we obtain

∇Rε(y, τ) =
∇Rin(y)

m2(y) +
∫
r(x)K(x, y)nε(x, τ)dy

− Rin(y)
(
∇m2(y) +

∫
r(x)Ky(x, y)nε(x, τ)dx

)
(
m2(y) +

∫
r(x)K(x, y)nε(x, τ)dx

)2 .

Using this equality, (4), (6), (8), the second part of (11) and (16) we have

|∇Rε(y, τ)| ≤
|∇Rin(y)|

m2

+
|Rin|

(
|∇m2(y)| + rM supx,y |Ky|ρε(τ)

)

m2
2

≤ R2

m2

+
R1

m2
2

(M2 + rMK3ρM ).

Therefore Rε is uniformly Lipschitz continuous in space.

It is difficult to obtain time regularity and even in the case of two nutrients, the proof is extremely
technical, see [3].

(v) (Convergence of Rε and identification of the limit) The first parts of (8) and (4) show that
Rε is uniformly bounded. Using this property together with Lipschitz bound in space we obtain that,
after extraction of a subsequence, the Rε’s converge weakly in time and strongly in space.

Now using the strong convergence of ϕε and the weak convergence of Rε together with (37) we
obtain (39).

D Proof of Theorem 6.3

We follow the arguments in [14].

Using (37) and (48) we obtain that D3ϕε(τ, x) is bounded. Therefore, after extraction of subse-
quence, the D2ϕε(τ, x)’s converge locally uniformly to D2ϕ(τ, x). Using (42) with µ1 ≥ 0, we obtain
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that ϕε is concave and thus it has a unique maximum. Now we denote by x̄ε(τ) the maximum point
of ϕε. We have ∇ϕε(x̄ε(τ), τ) = 0 at a maximum point and thus (using the chain rule)

d

dτ
∇ϕε(x̄ε(τ), τ) = 0 =

∂

∂τ
∇ϕε(x̄ε(τ), τ) +D2ϕε(x̄ε(τ), τ) ˙̄xε(τ).

From (42) we conclude that D2ϕε(x̄(τ), τ) is invertible. Therefore, combining the above equality and
(37) we obtain

d
dτ x̄ε(τ) =

(
−D2ϕε(x̄ε(τ), τ)

)−1( −∇m1(x̄ε(τ)) + r(x̄ε(τ))
∫
∇xK(x̄ε(τ), y)Rε(y, τ)dy

+∇r(x̄(τ))
∫
K(x̄ε(τ), y)Rε(y, τ)dy

)
.

It remains to pass to the limit as ε vanishes. Firstly, from the strong convexity of m1 (from assumption
(41) with µ1 > 0) and (37) we conclude that x̄ε(τ) is uniformly bounded. Then, from the local bounds
on R, we deduce that d

dτ x̄ε(τ) is also uniformly bounded. It follows again from Arzela-Ascoli Theorem
that we may extract a subsequence of x̄ε(·) that converges uniformly to a Lipschitz continuous function
x̄(·). Moreover using that the D2ϕε’s converge locally uniformly to D2ϕ, and the Rε’s converge weakly
to R we obtain that

d
dτ x̄(τ) =

(
−D2ϕ(x̄(τ), τ)

)−1( −∇m1

(
x̄(τ)

)
+ r(x̄(τ))

∫
∇xK(x̄(τ), y)R(y, τ)dy

+∇r(x̄(τ))
∫
K(x̄(τ), y)R(y, τ)dy

)
.

Now we prove that ϕ(x̄(τ), τ) = 0 for all τ ≥ 0 and that ρ(τ) > ρ(0)e−Kτ for all τ ≥ 0 and a positive
constant K. We cannot obtain this directly and thus we begin with proving l(τ) ≥ 0, with

l(τ) := −m1(x̄(τ)) + r (x̄(τ))

∫
K(x̄(τ), y)

Rin(y)

m2(y)
dy.

We define

τ0 := inf
s≥0

{l(s) = 0}.

Since l(τ) is continuous, and l(0) > 0 according to assumption (49), we have τ0 > 0. Assume now
that τ0 is finite. We have l(τ) ≥ 0 in [0, τ0]. Now we write

d

dτ
ϕ(x̄(τ), τ) =

∂

∂τ
ϕ(x̄(τ), τ) = −m1(x̄(τ))+r (x̄(τ))

∫
K(x̄(τ), y)

Rin(y)

m2(y) + ρ(τ)r (x̄(τ))K(x̄(τ), y)
dy.

The latter is positive if ρ is positive, according to (45). Otherwise it is equal to l(τ) that is also
positive in [0, τ0]. We obtain that

d

dτ
ϕ(x̄(τ), τ) ≥ 0, for τ ∈ [0, τ0].

Starting with ϕ(x̄(0), 0) = 0, we deduce that

ϕ(x̄(τ), τ) = 0, for τ ∈ [0, τ0].

This also shows that the constraint (51) is satisfied and (45) is hold as an equality in (0, τ0). Conse-
quently we obtain that ρ is in fact a strong limit of ρε in (0, τ0).
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To gain time regularity, we use (51) and because x̄(τ) is Lipschitz continuous, we conclude that ρ(τ)
and consequently R(y, τ) are also Lipschitz continuous in (0, τ0). Therefore we can differentiate (51)
a.e. with respect to τ and obtain, for all τ ∈ [0, τ0),

0 =
(
−∇m1(x̄(τ) + r (x̄(τ))

∫
∇xK(x̄(τ), y)

Rin(y)

m2(y) + ρ(t)r(x̄(τ))K(x̄(τ), y)
dy

)
˙̄x(τ)

+ ∇r (x̄(τ))

∫
K(x̄(τ), y)

Rin(y)

m2(y) + ρ(t)r(x̄(t))K(x̄(t), y)
dy

)
˙̄x(τ)

− ρ(τ)r(x̄(τ))
( ∫

K(x̄(τ), y)
Rin(y)

(
r(x̄(τ))∇xK(x̄(τ), y) + ∇r(x̄(τ))K(x̄(τ), y)

)
(
m2(y) + ρ(τ)r(x̄(τ))K(x̄(τ), y)

)2 dy
)
˙̄x(τ)

−
(
r(x̄(τ))2

∫
K(x̄(τ), y)2

Rin(y)
(
m2(y) + ρ(τ)r(x̄(τ))K(x̄(τ), y)

)2dy
)
ρ̇(τ).

We deduce that, for a.e. τ ∈ (0, τ0),

˙̄x(τ)
(
−D2ϕ(x̄(τ), τ

)
˙̄x(τ) = −ρ̇(τ) r(x̄(τ))2

∫
K(x̄(τ), y)2 Rin(y)(

m2(y)+ρ(τ)r(x̄(τ))K(x̄(τ),y)
)2 dy

−ρ(τ)r(x̄(τ))
( ∫

K(x̄(τ), y)
Rin(y)

(
r(x̄(τ))∇xK(x̄(τ),y)+∇r(x̄(τ))K(x̄(τ),y)

)
(
m2(y)+ρ(τ)r(x̄(τ))K(x̄(τ),y)

)2 dy
)
˙̄x(τ).

It follows that for some constant K
ρ(0)e−Kτ ≤ ρ(τ).

We deduce that ρ(s) ≥ ρ1 > 0, for s ∈ (0, τ0). Using the constraint and the latter we obtain that, for
all s ∈ [0, τ0),

l(s) ≥ l(s) −
(
−m1(x̄(s)) + r(x̄(s))

∫
K(x̄(s), y)R(s, y)dy

)

= ρ(s)r(x̄(s))2
∫
K(x̄(s), y)2

Rin(y)

m2(y)
(
m2(y) + ρ(s)r(x̄(s)K(x̄(s), y)

)dy

≥ ρ1

∫
K(x̄(s), y)2

Rin(y)

C
dy.

The latter is bounded from below by a positive constant because x̄(s) is bounded. Using the continuity
of l we deduce that l(τ0) > 0. This is impossible and thus contradicts that τ0 is finite.

E Proof of Theorem 7.1

Firstly we recall the Lipschitz bound (62) proved in Appendix B.
Next, our proof of Theorem 7.1 uses again the equation (61) that we write

∂

∂t
ϕ(x, t) = −m1(x) +

∫
r(x)K(x, y)Rin(y)

m2(y) +
∫
r(z)K(z, y)eϕ(z,t)dz

dy.

And we introduce two sets for evaluating the integral in y, where B is a constant given later on,

E< = {y; K(x, y) ≤ B

2 + t
}, E> = {y; K(x, y) ≥ B

2 + t
}.
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On E< we have
r(x)K(x, y)Rin(y)

m2(y) +
∫
K(z, y)eϕ(z,t)dz

≤ rMB

m2(2 + t)
Rin(y).

On E> we have for some constant B2, B3,

r(x)K(x, y)Rin(y)

m2(y) +
∫
r(z)K(z, y)eϕ(z,t)dz

≤ e−ϕ(x,t) rMK(x, y)Rin(y)

r0
∫
K(z, y)eϕ(z,t)−ϕ(x,t)dz

≤ e−ϕ(x,t) rMK(x, y)Rin(y)

r0
∫
K(z, y)e−|x−z|(C1+B1t)dz

≤ e−ϕ(x,t) rMK(x, y)Rin(y)

r0
∫
[K(x, y) −K2|x− z|]e−|x−z|(C1+B1t)dz

≤ e−ϕ(x,t) K(x, y)Rin(y)

2B2
K(x,y)

2+t − B3
(2+t)2

≤ e−ϕ(x,t)K(x, y)Rin(y)

B2
K(x,y)

2+t

and this leads our choice of B = B3/B2.
Altogether, these two controls give

∂

∂t
ϕ(x, t) ≤Min[

B

m2(2 + t)
+

2 + t

B2
e−ϕ(x,t)].

A supersolution to this differential equation is ψ(t) = A ln(2 + t) because for A large enough

∂

∂t
ψ(t) =

A

2 + t
≥Min

[
B

m2(2 + t)
+

1

B2(2 + t)(A−1)

]
, ψ(0) ≥ ϕ0(x).

Therefore for for A large enough, we have ϕ(x, t) ≤ A ln(t+ 2). Written in terms on n = eϕ we obtain
the conclusion of Theorem 7.1.
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