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Abstract. To describe population dynamics, it is crucial to take into ac-

count jointly evolution mechanisms and spatial motion. However, the models

which include these both aspects, are not still well-understood. Can we extend
the existing results on type structured populations, to models of populations

structured by type and space, considering diffusion and nonlocal competition
between individuals?

We study a nonlocal competitive Lotka-Volterra type system, describing a spa-

tially structured population which can be either monomorphic or dimorphic.
Considering spatial diffusion, intrinsic death and birth rates, together with

death rates due to intraspecific and interspecific competition between the in-

dividuals, leading to some integral terms, we analyze the long time behavior
of the solutions. We first prove existence of steady states and next determine

the long time limits, depending on the competition rates and the principal ei-

genvalues of some operators, corresponding somehow to the strength of traits.
Numerical computations illustrate that the introduction of a new mutant pop-

ulation can lead to the long time evolution of the spatial niche.

Introduction. The spatial aspect of populations is an important ecological issue
which has been extensively studied (see [17], [18], [23], [25], [28]). The interplay
between space and evolution is particularly crucial in the emergence of polymor-
phism and spatial patterns and the heterogeneity of the environment is considered
as essential ([21], [22]). The combination of spatial motion and mutation-selection
processes is also known for a long time to have important effects on population dy-
namics ([19], [24]). Recently biological studies observed that classical models could
underestimate the invasion speed and suggested that invasion and evolution are
closely related. The ecological parameters can have a strong effect on the expansion
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of invading species and conversely, the evolution can be conditioned by the spatial
behavior of individuals related to the resources available. The paper by Philipps
and Co [26] shows the strong impact of the morphologic parameters of the cane
toads on the expansion of their invasion.

In this context, the study of space-related traits, such as dispersal speed or sen-
sibility to heterogeneously distributed resources, is fundamental and has been the
object of mathematical developments. In Champagnat-Méléard [12], a stochastic
individual-based model is introduced where individuals are characterized both by
their location and one or several phenotypic and heritable traits. The individu-
als move, reproduce with possible mutation and die of natural death or because
of competition for resources. The spatial motion is modeled as a diffusion and
the spatial interaction between individuals is modeled by a convolution kernel in
some spatial range. In a large population scale, it is shown that this microscopic
stochastic model can be approximated by a nonlinear nonlocal reaction-diffusion
equation defined on the space of traits and space. The latter has been studied in
Ferrière-Desvillettes-Prévost [16] and Arnold-Desvillettes-Prévost [2] and existence
and uniqueness of the solution, numerical simulations and steady states are studied.
Propagation phenomena and existence of traveling waves are explored numerically
and theoretically for different variants of such models in [1], [3], [4], [6]. This prob-
lem has also been studied from an asymptotic point of view using Hamilton-Jacobi
equations [7], [8].

Despite several recent attempts to study such models, dynamics of populations
structured by trait and space are not completely understood and several interesting
and challenging questions remain to be resolved in this field (see for instance [7]).
In particular, the works quoted above concentrate on the case where the mutations
are frequent such that the diffusion in space and the mutations are modeled in
the same time scale. Our objective is to understand the framework of adaptive
dynamics where the mutations are rare enough such that between two mutations
the dynamics is driven by a system of nonlocal reaction-diffusion equations, each of
them describing the dynamics and the spatial distribution of one trait. We study
the steady states and the long time behavior of such systems. Note that although
the existence of steady states for a model with continuous trait and space is pro-
vided in [2], the long time behavior of solutions is not known, to our knowledge, for
discrete or continuous traits. However, in the case of a single trait and considering
only homogeneous environments, [5] provides a study of steady states and traveling
waves.

1. Models and main results. In this paper we focus on this problem for the
simplest case where the population is dimorphic (the population is composed of
two-type subpopulations). We will also study the monomorphic case (a single type
is involved).

Let us first introduce some notation: The space set X is an open bounded subset
of Rd with a boundary of class C3. We will denote by Lk the Lebesgue space on X
of order k ∈ N∗ and by Hk the Sobolev space on X of order k ∈ N∗. We denote by
C0,1 the space of Lipschitz continuous functions on X .
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For all x ∈ ∂X , we denote by n(x) the outward normal to the boundary ∂X at
point x. For a sufficiently smooth function u and x ∈ ∂X , we denote by ∂nu(x) the
scalar product ∇u(x).n(x).

In the dimorphic case, the spatial density of the population is modeled by the system
of nonlinear partial differential equations of parabolic type



∂tg1(t, x) = m1∆xg1(t, x) +
(
a1(x)−

∫
X
I11(y)g1(t, y)dy

−
∫
X
I12(y)g2(t, y)dy

)
g1(t, x),

∂ng1(t, x) = 0, ∀(t, x) ∈ R+ × ∂X ,
g1(0, x) = g0

1(x), ∀x ∈ X ,

∂tg2(t, x) = m2∆xg2(t, x) +
(
a2(x)−

∫
X
I21(y)g1(t, y)dy

−
∫
X
I22(y)g2(t, y)dy

)
g2(t, x),

∂ng2(t, x) = 0, ∀(t, x) ∈ R+ × ∂X ,
g2(0, x) = g0

2(x), ∀x ∈ X .

(1)

where g1(t, x) (respectively g2(t, x)) denotes the density of individuals of type 1
(resp. of type 2), in position x at time t. The density dynamics is driven by
growth rates a1 and a2 which depend on the spatial position of individuals and
on their type. Laplacian terms describe the diffusion of individuals in space with
infinitesimal variances m1 and m2. The competition is modeled by nonlocal death
rates depending on the environment heterogeneity through the kernels Iij , i, j = 1, 2.
We make the following assumptions on the coefficients: for i, j ∈ {1, 2},

ai ∈ C0,1(X ), and |ai(x)| ≤ a∞, for all x ∈ X , (2){
‖Iij‖L2 < +∞, for i, j ∈ {1, 2},
∃I− > 0/ ∀x ∈ X , Iii(x) ≥ I−, for i = 1, 2.

(3)

We also assume that the initial condition satisfies

g0
i ∈ L2, for i = 1, 2. (4)

We will show that this system admits 4 non-negative steady states depending on
the ecological parameters. The stability of these states is based on the sign of the
principal eigenvalues

H1 = − min
u∈H1

u6≡0

1

‖u‖2L2

[∫
X
m1|∇u|2dx−

∫
X
a1(x)u2(x)dx

]
,

H2 = − min
u∈H1

u6≡0

1

‖u‖2L2

[∫
X
m2|∇u|2dx−

∫
X
a2(x)u2(x)dx

]
.

(5)

We also denote by A1
1 (resp. A2

1) the positive eigenfunction associated with the
eigenvalue H1 (resp. H2) such that

∫
X A

i
1(x)dx = 1 and for i, j ∈ {1, 2},

µij =

∫
X
Iij(x)Aj1(x)dx. (6)
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From (3), we notice that µ11 6= 0 and µ22 6= 0. Finally, we make the following
assumption on the variables µij to exclude the degenerate case

µ11µ22 − µ12µ21 6= 0. (7)

We identify now the steady states of Equation (1).

Lemma 1.1. Assume (2), (3) and (7). Then, the only non-negative steady states
of Equation (1) are

• the trivial steady state (0, 0),
• the state (ḡ1, 0) with ḡ1 = H1

µ11
A1

1, which is non-negative and non-trivial if and

only if H1 > 0,
• the state (0, ḡ2) with ḡ2 = H2

µ22
A2

1, which is non-negative and non-trivial if and

only if H2 > 0,
• the state (ĝ1, ĝ2) where ĝ1 = r1A

1
1 and ĝ2 = r2A

2
1, with r1 and r2 positive

constants satisfying(
H1

H2

)
=

(
µ11 µ12

µ21 µ22

)(
r1

r2

)
. (8)

This steady state exists if and only if (H2µ11 −H1µ21)(H1µ22 −H2µ12) > 0,
H1 > 0 and H2 > 0.

The first steady state is the trivial one (0, 0) describing the population extinction.
The second and third ones describe the long term specialization of the population
on a single type : one subpopulation has a non trivial long time behavior and the
subpopulation with the other type goes to extinction. The last case describes the
co-existence case where individuals with two types exist in a long time scale.

Our main results concern the long time behavior of solutions of (1). We give explicit
conditions determining whether or not the population goes extinct or whether or
not there is co-existence of the two types at equilibrium. The first theorem shows
the convergence of the solution when time goes to infinity and gives sufficient con-
ditions for convergence to the globally asymptotically stable states. The second
theorem explores the more delicate cases, where there are several stable equilibria
and different basins of attraction.

Theorem 1.2. Assume (2), (3), (4) and (7).

1. For any initial condition, as t → ∞, the unique solution of the parabolic
system (1) tends to one of the steady states described in Lemma 1.1.

2. If H1 ≤ 0 and H2 ≤ 0 then for any initial condition and as t → ∞, the
solution of (1) tends to (0, 0), i.e. the population goes extinct.

3. If

H1 > 0, H2µ11 −H1µ21 ≤ 0 and H1µ22 −H2µ12 > 0,

then for any initial condition such that g0
1 is not identically zero and as t →

∞, the solution converges to (ḡ1, 0). We thus have fixation of type 1 in the
population.

4. If

H2 > 0, H2µ11 −H1µ21 > 0 and H1µ22 −H2µ12 ≤ 0,

then for any initial condition such that g0
2 is not identically zero and as t →

∞, the solution converges to (0, ḡ2). We thus have fixation of type 2 in the
population.
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5. If

H1 > 0, H2 > 0, H2µ11 −H1µ21 > 0 and H1µ22 −H2µ12 > 0,

then for any initial condition such that g0
1 and g0

2 are not identically zero and
as t→∞, the solution converges to (ĝ1, ĝ2), i.e. we have co-existence of types
1 and 2.

Next, to give a complete picture of the long time behavior of the solution, let us
study the last cases where several equilibria can be reached.

Theorem 1.3. Assume (2), (3), (4) and (7).

1. If

H1 > 0 , H2 > 0, H2µ11 −H1µ21 < 0 and H1µ22 −H2µ12 < 0,

then the steady states (ḡ1, 0) and (0, ḡ2) are both asymptotically stable and
(ĝ1, ĝ2) is unstable. Nevertheless some solutions will converge to the latter.

2. If

H1 > 0 , H2 > 0, H2µ11 −H1µ21 < 0 and H1µ22 −H2µ12 = 0,

then the steady state (ḡ1, 0) is asymptotically stable and (0, ḡ2) is unstable.
Nevertheless some solutions will converge to the latter.

3. If

H1 > 0 , H2 > 0, H2µ11 −H1µ21 = 0 and H1µ22 −H2µ12 < 0,

then the steady state (ḡ2, 0) is asymptotically stable and (0, ḡ1) is unstable.
Nevertheless some solutions will converge to the latter.

Remark 1. One can check that, excluding the degenerate case (7), all the possible
values of (H1, H2) ∈ R2 are covered by the statements of Theorems 1.2 and 1.3.

These results are new and interesting by themselves but they will also be the first
step in an adaptive dynamics framework, if we want to understand how mutant
individuals invade the population at an evolutive scale (see [11], [13]).
The above theorems provide assumptions based on spectral parameters and com-
petitive kernels under which the solutions of the system (1) converge to one of the
steady states, as time goes to infinity. Equilibria of System (1) and their stability
are characterized by the parameters (Hi)i=1,2 and (µij)i,j=1,2 even if these param-
eters are not sufficient to understand the complete dynamics. As Ai1, which defines
the density landscape of steady states on space X , Hi is a spectral parameter de-
pending only on the diffusion part and the intrinsic growth rate of population i.
The competitive parameter µij can be seen as the mean of the competitive kernel

Iij under the specific spectral measure Aj1(x)dx. Thus, µij times the mass of pop-
ulation j is the competitive pressure that population j, in the case of a stationary
density, puts on an individual i. Note that here Hi corresponds somehow to the
strength of trait i. To determine which trait would persist in long time, one should
compare the trait strength values Hi weighted by the competition parameters µi,j ,
as stated in Theorems 1.2 and 1.3.
Furthermore, the conditions presented in Theorems 1.2, 1.3 can be compared with
survival and extinction conditions of the following Lotka-Volterra system (see for
example p.186 of [10] or part 3.5 of [25]):{

r′1(t) = r1(t) (H1 − µ11r1(t)− µ12r2(t)) ,

r′2(t) = r2(t) (H2 − µ21r1(t)− µ22r2(t)) .
(9)
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Indeed, by integrating the equations of System (1) over X , we will prove that the
masses of the two populations satisfy a slightly perturbed system close to (9) and
with similar conditions for survival and extinction. The system satisfied by the
masses is not a closed system in the general case. But it is closed in the case
where functions (ai)i=1,2 and (Iij)i,j=1,2 are constant (homogeneous environment),
ai ≡ āi, Iij ≡ Īij , for i, j = 1, 2. Thanks to Definition (5), notice that in this case,
Hi is equal to āi. Moreover, µij = Īij . Thus, the masses satisfy exactly System (9).

Before proving those theorems, we need to consider the case of a monomorphic
population where all individuals have the same type.
As above, the density dynamics is driven by a nonlinear partial differential equation
of parabolic type with a non-local competition term.

∂tg(t, x) = m∆xg(t, x) + a(x)g(t, x)−
(∫
X
I(y)g(t, y)dy

)
g(t, x), ∀x ∈ X

∂ng(t, x) = 0, ∀x ∈ ∂X , ∀t ∈ R,
g(0, x) = g0(x), ∀x ∈ X .

(10)

Here g(t, x) denotes the density of individuals in position x and at time t. As be-
fore, the Laplacian term models the spatial behaviour of individuals and m is the
diffusion coefficient. The intrinsic growth rate is given by a function a(x), which de-
pends on the position x of the individuals. Finally, the last term corresponds to the
mortality induced by competition where the function I(y) is the competition kernel.

We prove that there exists at most one steady state for (10) to which the solution
converges in long time. To this end, we make the following assumptions on the
coefficients:

a ∈ C0,1(X ), and |a(x)| ≤ a∞, for all x ∈ X , (11)

I ∈ L2 and there exists I− > 0, for all y ∈ X , I(y) ≥ I−. (12)

We also assume that the initial condition satisfies

g0 ∈ L2. (13)

To state our result we also need to define the principal eigenvalue of the problem

H = − min
u∈H1

u6≡0

1

‖u‖2L2

[∫
X
m|∇u|2dx−

∫
X
a(x)u2(x)dx

]
. (14)

We are now ready to state the result:

Theorem 1.4. Assume (11), (12) and (13). If H > 0, any positive C2-solution to
(10) tends in L∞ to the unique positive solution to −m∆ḡ(x) = a(x)ḡ(x)−

(∫
X
I(y)ḡ(y)dy

)
ḡ(x), ∀x ∈ X

∂nḡ(x) = 0, ∀x ∈ ∂X , ∀t ∈ R.
(15)

Moreover, if H ≤ 0, g(t, ·) L∞−→
t→+∞

0.

Notice that H > 0 is a necessary and sufficient condition to obtain a positive limit
as t → ∞. Hence, only the diffusion parameter and the growth rate a(x) have an
influence on the non-extinction of the population in long time. The competition
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rate affects the total population size at the limit, but not its persistence.
We can explicit a simple example where the assumption H > 0 is satisfied : if the
growth rate a(x) is a positive function, that is, if the birth rate is greater than
the death rate everywhere, then H is positive. Theorem 1.4 allows us to conclude
that the population will survive, which corresponds to the intuition. Conversely,
if a(x) is a negative function, it is easy to deduce that H is negative and that the
population goes to extinction.

Remark 2. In [14], the steady states and the long time behavior of the solution of
a similar model are studied using different techniques, specific for the monomorphic
case. However, we provide a shorter result for the long time convergence of solutions
to (10), which is easily generalizable to dimension 2.

The first step of our proof is to study the steady states of Equation (10). In fact,
we can prove the existence of a steady state in the case of a more heterogeneous
competition term I.
In the end of this section, the function I is a function on X × X and for all x, y ∈
X × X , I(x, y) denotes the competition rate between individuals with respective
positions x and y. The dynamics is so the following, on R+ ×X , ∂tg(t, x) = m∆g(t, x) + a(x)g(t, x)−

(∫
X
I(x, y)g(t, y)dy

)
g(t, x),

∂ng(t, x) = 0, ∀(t, x) ∈ R+ × ∂X .
(16)

Unfortunately, the long-time behavior of the solution of (16) with this general com-
petition kernel I(x, y) is not yet understood to our knowledge. Here we prove the
existence of a positive steady state. Let us assume that I satisfies

I(·, ·) ∈ C(X̄ × X̄ ) is nonnegative

and Lipschitz continuous with respect to the first variable,{
if d = 1 : ∃I− > 0/ ∀x ∈ X , I(x, x) ≥ I−,
if d > 1 : ∃I− > 0/ ∀(x, y) ∈ X × X , I(x, y) ≥ I−.

(17)

Theorem 1.5 (Existence of a steady state). Assume (11), (17).
(i) If H ≤ 0, then there is no non-trivial nonnegative steady solution for (16).
(ii) If H > 0, then (16) has a strictly positive steady solution ḡ ∈ C2(X ), i.e. ḡ

solves  −m∆ḡ(x) =

(
a(x)−

∫
X
I(x, y)ḡ(y)dy

)
ḡ(x), ∀x ∈ X

∂nḡ(x) = 0, ∀x ∈ ∂X .
(18)

The proofs of the theorems rely on the spectral decomposition of compact opera-
tors, fixed point arguments and the study of perturbed Lotka-Volterra type systems.

The rest of the paper is organized as follows. In Section 2 we provide the proofs
of our results in the case of a monomorphic population. Section 3 is devoted to
the two-type case of dimorphic population. We provide the proofs of our main
Theorems 1.2 and 1.3. Finally in Section 4, we present some numerical results
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which are linked with evolution. The appearance of a mutant population within a
well-established population can dramatically affect the landscape of that resident
population, leading to coexistence or extinction. We will study an example with
evolution of spatial niches.

2. Monomorphic population.

2.1. Existence of a steady state. In this section, we prove Theorem 1.5 and give
a necessary and sufficient condition for (16) to have a steady solution.
We need the following lemma which can be derived easily from Krein-Rutman’s
Theorem (see for instance the chapter 6 of [20]) and its proof is left to the reader.

Lemma 2.1 (Eigenvalue problem). There exists a principal eigenvalue H to the
following eigenvalue problem:{

m∆u(x) + a(x)u = Hu, ∀x ∈ X ,
∂nu(x) = 0, ∀x ∈ ∂X .

(19)

This eigenvalue is simple and the corresponding eigenfunction u is the only eigen-
function which is strictly positive in X . Moreover, H can be computed from the
following variational problem given by (14):

H = − min
u∈H1

u6≡0

1

‖u‖2L2

[∫
X
m|∇u|2dx−

∫
X
a(x)u2(x)dx

]
.

(i) Let H ≤ 0. We prove by contradiction that there is no nonnegative solution
to (18). To this end, we suppose that 0 ≤ g ∈ C2(X ) solves (18). Supposing that g
is non-trivial, from the maximum principle we obtain that g is strictly positive and
in particular ∫

X×X
I(x, y)g(y)g(x)u(x)dxdy > 0.

We now multiply (18) by u and integrate with respect to x to obtain from (19),

H

∫
X
ugdx =

∫
X×X

I(x, y)g(y)g(x)u(x)dxdy > 0.

This is in contradiction with the assumption H ≤ 0.

(ii) We now suppose that H > 0. To prove that (18) has a steady solution, we
construct a mapping

Υ :

(
L2 → L2

h 7→ g

)
,

such that any fixed point of this mapping will be a steady state of our problem, as
follows.
Thanks to (11), we can choose δ > 0 small enough such that 1 − δa(x) > 0 for all
x ∈ X . Let h ∈ L2. We define ψ(h) = h

(
1− δ

∫
I(·, y)h(y)dy

)
, and Υ(h) = g,

where g ∈ H1 is the unique solution of the following equation{
−mδ∆g(x)− δa(x)g(x) + g(x) = ψ(h)(x), in X ,

∂ng(x) = 0, on ∂X .
(20)

Notice that fixed points of the mapping Υ are steady solutions of our problem and
conversely. So the last step is to show that Υ has a fixed point. We establish this
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result thanks to Schauder’s fixed point Theorem (see for instance Theorem (4.1) in
[15]).
We first notice from the choice of δ that (−mδ∆ + (1 − δa)Id)−1 is a continuous
and compact mapping. As ψ : L2 → L2 is a well-defined continuous mapping, we
deduce the continuity and compactness of Υ.

We will split the rest of the proof into two cases depending on the dimension d of
the domain X .
But, first, let us remark that, consequently to Assumptions (17), there exists a
positive constant I+ such that

I(x, y) ≤ I+, for all x, y ∈ X . (21)

• If d > 1, using Lemma 2.1, there exists a positive eigenfunction u associated
with the positive eigenvalue H. We denote by u+ and u− its maximum and mini-
mum values on X . Then we define

λ+ =
Hu+

I−
and λ− =

Hu−
I+

(22)

and choose δ > 0 small enough such that

λ+ ≤ u−
2δI+

and 1− δH > 0. (23)

Let us now introduce the convex closed subset of L2

Y =

{
g ∈ L2|g ≥ 0, λ− ≤

∫
X
gu ≤ λ+

}
.

We now prove that Υ maps Y into itself.
Let h be in Y, and g = Υ(h), they satisfy

−mδ∆g(x)− δa(x)g(x) + g(x) = h(x)

(
1− δ

∫
X
I(x, y)h(y)dy

)
, on X . (24)

As h is a positive function in Y, and using (23),

ψ(h) ≥ h
(

1− δ
∫
X

I(., y)

u(y)
h(y)u(y)dy

)
≥ h(1− δ I

+

u−
λ+) ≥ h

2
≥ 0.

We deduce that g is positive on X thanks to the maximum principle.
Then we multiply (24) by u and integrate it over X ,∫
X

(−mδ∆g − δag)u+

∫
X
gu =

∫
X
hu− δ

∫
X×X

I(x, y)

u(y)
h(y)u(y)h(x)u(x)dydx.

From an integration by parts, (19), (21) and (17), we find the following inequalities:∫
X
hu

(
1− δ I−

u+

∫
X
hu

)
≥ (1− δH)

∫
X
gu ≥

∫
X
hu

(
1− δ I

+

u−

∫
X
hu

)
.

Thanks to (23), the two polynomial functions r 7→ r(1−δ I−
u+ r) and r 7→ r(1−δ I

+

u−
r)

are increasing on interval [λ−, λ
+], and, as

∫
X hu ∈ [λ−, λ

+],

λ+

(
1− δ I−

u+λ
+

)
≥ (1− δH)

∫
X
gu ≥ λ−

(
1− δ I

+

u−
λ−

)
.



10 H. LEMAN, S. MÉLÉARD AND S. MIRRAHIMI

Finally we obtain from (22) and (23) that λ+ ≥
∫
X gu ≥ λ−, thus g ∈ Y.

We conclude from the Schauder’s fixed point theorem that Υ has a positive fixed
point.

• For d = 1, the previous proof is valid if I is strictly positive in X but we can
relax this assumption to the one in (17) thanks to the following method. We first
prove the following lemma

Lemma 2.2. Assume (11) and (17). There exists R > 0 such that for all positive
function g ∈ L2 and t ∈ [0, 1[ satisfying g = tΥ(g), we have ‖g‖L2 < R.

Proof. We use an argument which is similar to the one presented in [5]. Let g ∈
L2, positive and t ∈]0, 1[ such that g = tΥ(g). g attain its maximum value at
a point x0 ∈ X . As g satisfies Neumann boundary conditions, we have g′(x0) =
0 and g′′(x0) ≤ 0. Using g = tΥ(g) at the point x0 and since t < 1 and (1 −
δa(x0))g(x0) > 0, we get ∫

X
I(x0, y)g(y)dy ≤ a∞. (25)

We then use Taylor-Lagrange’s formula for the function g at point x0. For all y ∈ X ,
there exists ξ ∈]x0, y[ or ]y, x0[ such that

g(y) = ‖g‖∞ + (y − x0)2g′′(ξ)/2.

Additionally, using again g = tΥ(g) and that 1 − 1/t < 0, we obtain, for all ξ ∈

X , g′′(ξ) ≥ −(‖g‖∞a∞)/m. We deduce that g(y) ≥ ‖g‖∞
(

1− a∞
(y − x0)2

2m

)
+

.

Therefore (25) implies

‖g‖∞ ≤ a∞

(∫
X
I(x0, y)

(
1− a∞

(y − x0)2

2m

)
+

dy

)−1

< +∞,

which is bounded since I(x0, .) is positive in a neighborhood of x0 from (17) and
we conclude easily.

Thanks to this lemma, we choose δ satisfying

δ < min

(
u−

2RI+‖u‖L2

,
1

I+R
√
|X |

)
. (26)

Then we define the convex closed subset

Y = {h ∈ L2|h ≥ 0, ‖h‖L2 ≤ R,
∫
X
hu ≥ λ−},

where λ− is defined as before by (22). For h ∈ Y, we have
∫
X I(x, y)h(y)dy ≤

I+R
√
|X | < 1

δ which implies that ψ(h) and g = Υ(h) are positive functions. More-
over, following similar arguments as in the case d > 1, and noticing that Assumption

(26) guarantees that
∫
X hu dx ∈ [λ−,

u−
2δI+ ], we obtain that

∫
X gu ≥ λ−.

As we are not sure that ‖Υ(h)‖L2 ≤ R, we use the following method inspired by the

proof of Schaefer’s fixed point theorem: we introduce a new function Υ̃ : L2 → L2,

Υ̃(h) =

{
Υ(h), if ‖Υ(h)‖L2 ≤ R

R
‖Υ(h)‖L2

·Υ(h), if ‖Υ(h)‖L2 > R.
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Thus Υ̃ is a continuous and compact function mapping Y into itself. From the
Schauder’s fixed point theorem, we deduce that it has a fixed point ḡ. Suppose
that ‖Υ(ḡ)‖L2 > R, then Υ̃(ḡ) = R

‖Υ(ḡ)‖L2
Υ(ḡ) = ḡ and ‖Υ̃(ḡ)‖L2 = ‖ḡ‖L2 = R.

However, since ḡ = tΥ(ḡ) with t = R
‖Υ(ḡ)‖L2

< 1, this is in contradiction with Lemma

2.2. Hence ‖Υ(ḡ)‖L2 ≤ R and ḡ is a fixed point of Υ.
That ends the proof of Theorem 1.5.

2.2. Convergence to steady state solution. We now prove Theorem 1.4, i.e.
we study the long time behavior of the solution to (16) for the particular case, where
I(x, y) ≡ I(x).

We first check that there exists only one positive steady state in the case H > 0.
Let ḡ, h̄ ∈ H1 be two positive solutions to (15). Hence ḡ, h̄ are positive eigenvectors
of the operator L = m∆(.) + a. which is compact and continuous. As Lemma 2.1
implies the uniqueness of a positive eigenvector up to a multiplicative constant,
ḡ = s · h̄ with s ∈ R+. Moreover, from (15), we deduce that the principal eigenvalue
H is equal to

(∫
X I(y)ḡ(y)dy

)
and the same result holds for h̄. It follows that ḡ = h̄.

We now denote by ḡ the unique solution of (15).

The next step is to show the convergence in L∞ towards the positive steady state
if H > 0 and towards 0 if H ≤ 0. Let us make the following change of variable
function

∀(t, x) ∈ R×X , v(t, x) = g(t, x) exp

(∫ t

0

(∫
X
I(y)g(s, y)dy

)
ds

)
.

Thus v is a solution of the equation
∂tv(t, x)−m∆v(t, x) = a(x)v(t, x), ∀(t, x) ∈ R×X ,
∂nv(t, x) = 0, ∀(t, x) ∈ R× ∂X ,
v(0, x) = g0(x), ∀x ∈ ∂X .

(27)

It is well-known from the spectral decomposition of the operator L and the regu-
larizing property of the Laplace operator that v(t, ·)e−Ht tends uniformly to βḡ, a
principal eigenvector of the operator L, that is, for some positive constant β,

g(t, x) exp

(∫ t

0

(∫
X
I(y)g(s, y)dy

)
ds−Ht

)
L∞−→

t→+∞
βḡ. (28)

We divide this limit by an integrated version of it to obtain

g(t, ·)
ρ(t)

L∞−→
t→+∞

ḡ(·)∫
X ḡdx

> 0, (29)

where ρ(t) =
∫
X g(t, y)dy, and the r.h.s. is positive since ḡ is a principal eigenvector

of L.
It remains to show that ρ(t) has a finite limit when t tends to infinity. Integrating
(10), we find that ρ is a solution to

d

dt
ρ(t) =

(∫
X
a(y)

g(t, y)

ρ(t)
dy −

∫
X
I(y)

g(t, y)

ρ(t)
dy · ρ(t)

)
ρ(t), ∀t ∈ R.
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Moreover, using definitions of H and ḡ, −m∆ḡ = aḡ − Hḡ holds, that leads to∫
X a(x)ḡ(x)dx = H

∫
X ḡ(x)dx. Therefore (29) implies∫
X
a(y)

g(t, y)

ρ(t)
dy −→

t→+∞

∫
X
a(y)

ḡ(y)∫
X ḡ

dy = H

and ∫
X
I(y)

g(t, y)

ρ(t)
dx −→

t→+∞
µ :=

∫
X

I(y)ḡ(y)∫
X ḡ

dy.

Thus, ρ is solution to the equation d
dtρ(t) = ρ(t)(H +D(t)− µρ(t)), where

D(t) =

∫
X
a(y)

g(t, y)

ρ(t)
dy −H +

(∫
X
I(y)

g(t, y)

ρ(t)
dy − µ

)
ρ(t) −→

t→+∞
0

Indeed, since I is positive, we have d
dtρ(t) ≤ (a∞ − I−ρ(t))ρ(t), that is sufficient to

conclude that supt∈R+ ρ(t) < +∞, and D(t) −→ 0, as t→ +∞.
Next, we show that ρ(t) tends to H/µ if H > 0 and to 0 if H ≤ 0 thanks to the
following lemma.

Lemma 2.3. Let µ ∈ R+
∗ , and ρ be a positive solution on R to d

dtρ(t) = ρ(t)(r +
E(t)− µρ(t)), where E(t) −→

t→+∞
0, then ρ(t) tends to r

µ if r ≥ 0 or to 0 if r < 0 as

t tends to +∞.

Finally, we conclude from (29) and the above lemma that, for H > 0,

g(t, ·) L∞−→
t→+∞

H

µ

ḡ∫
X ḡ dx

= ḡ, since

∫
X
ḡ dx =

H

µ
,

and for H ≤ 0,

g(t, ·) L∞−→
t→+∞

0.

Proof of Lemma 2.3. We split this proof into two parts, depending on the value of
r.

• If r < 0, there exists t0 ∈ R+ such that for all t ≤ t0, r + E(t) − µρ(t) < r
2 ,

i.e. ∂tρ(t) ≤ r
2ρ(t) and we conclude with Gronwall’s lemma.

• If r ≥ 0, fix ε0 > 0. there exists t0 such that for all t ≥ t0, |E(t)| ≤ ε0, that is

ρ(t) (r − ε0 − µρ(t)) ≤ ∂tρ(t) ≤ ρ(t) (r + ε0 − µρ(t)) .

That means

r − ε0

µ
≤ lim inf

t→+∞
ρ(t) ≤ lim sup

t→+∞
ρ(t) ≤ r + ε0

µ
.

As this is true for all ε0 > 0, we can conclude.

3. Dimorphic population. In this section we present the proof of the main The-
orems 1.2 and 1.3.
Similarly to the case of a monomorphic population, the long time behavior depends
on the values of spectral parameters. To this end we use the spectral decomposition
of compact operators:
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Lemma 3.1 (Spectral decomposition of compact operators (see chapter VI.4 of
[9])). For i ∈ {1, 2}, there exists a spectral basis (λik, A

i
k)k≥1, for the operator

Li(u) = mi∆u+ aiu with Neumann boundary condition, that is,
(i) λik is a nondecreasing sequence with Hi := λi1 > λi2 ≥ λi3 ≥ · · · ≥ λik ≥ · · · and
λik → −∞ as t→∞.
(ii) (λik, A

i
k) are eigenpairs, that is for all k ≥ 1 and i = 1, 2,{

mi∆A
i
k(x) + ai(x)Aik = λikA

i
k, ∀x ∈ X ,

∂nA
i
k(x) = 0, ∀x ∈ ∂X .

(30)

(iii) (Aik)k≥1 is an orthogonal basis of L2.We normalize them by∫
X
|Aik(x)|dx = 1.

(iv) The first eigenvalue Hi is simple and is given by

Hi = − min
u∈H1

u6≡0

1

‖u‖2L2

[∫
X
mi|∇u|2dx−

∫
X
ai(x)u(x)2dx

]
.

The first eigenfunction Ai1 is positive, unlike the eigenfunctions corresponding to
the other eigenvalues. Those eigenfunctions are smooth.

Let us recall the following notation for i, j ∈ {1, 2}

µij =

∫
X
Iij(x)Aj1(x)dx. (31)

3.1. Studies of the steady states. This part is devoted to the proof of Lemma
1.1 that identifies the steady states of the equation (1).
The conditions on the existence of the three first steady states are immediate from
Theorem 1.5. Moreover, it follows from Lemma 3.1 that there is no nonnegative
steady state other than the ones stated above. We only prove the last point corre-
sponding to the steady state with two positive exponents.
We first suppose that r1 and r2 given by (8) are positive. It is then easy to verify,
from (30) and (6), that (r1A

1
1, r2A

2
1) is a steady solution of (1).

We next notice using (7) that the matrix in (8) is invertible, and r1 and r2 are
positive if and only if

ri =
Hiµjj −Hjµij
µjjµii − µjiµij

> 0, for (i, j) ∈ {(1, 2), (2, 1)}.

This is equivalent to (H2µ11−H1µ21)(H1µ22−H2µ12) > 0 and H1, H2 > 0. Indeed,
if H2µ11 −H1µ21 and H1µ22 −H2µ12 have the same sign, then

µ11µ22 − µ12µ21 =
µ11

H1
(H1µ22 −H2µ12) +

µ12

H1
(H2µ11 −H1µ21) ,

has also the same sign if and only if H1 > 0. We conclude easily.

3.2. Long time behavior of the system (proof of Theorem 1.2). In this
section, we prove Theorem 1.2. To this end, noticing that the total density of
the population is not constant, we will first study the limit of population densities
normalized by the masses. Then we will study the long time behavior of a system of
differential equations which describes the dynamics of the two masses (see Lemma
3.2).
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Similarly to the proof of Theorem 1.4, we make the following change of variables,
for i ∈ {1, 2},

vi(t, x) = gi(t, x) exp

(∫ t

0

(∫
X
Ii1(y)g1(s, y)dy +

∫
X
Ii2(y)g2(s, y)dy

)
ds

)
.

Following similar arguments as in subsection 2.2, we find a similar limit as (28) for
gi, which leads to

g1(t, .)∫
X g1(t, y)dy

L∞−→
t→+∞

A1
1 and

g2(t, .)∫
X g2(t, y)dy

L∞−→
t→+∞

A2
1. (32)

Let ρi(t) =
∫
X gi(t, y)dy for i ∈ {1, 2}. We deduce the following limits from (32),

for i, j ∈ {1, 2},∫
X

ai(y)gi(t, y)

ρi(t)
dy −→

t→+∞
Hi and

∫
X

Iji(y)gi(t, y)

ρi(t)
dy −→

t→+∞
µji.

It remains now to understand the behavior of (ρ1(t), ρ2(t)). Integrating (1) on X
and using the previous limits, we find that (ρ1, ρ2) is a solution to

d

dt
ρ1(t) = ρ1(t) (H1 +D1(t)− µ11ρ1(t)− µ12ρ2(t)) ,

d

dt
ρ2(t) = ρ2(t) (H2 +D2(t)− µ21ρ1(t)− µ22ρ2(t)) ,

(33)

with, for i ∈ {1, 2},

Di(t) =

∫
X
ai(y)

gi(t, y)

ρi(t)
dy −Hi +

∑
j=1,2

(∫
X
Iij(y)

gj(t, y)

ρj(t)
dy − µij

)
ρj(t) −→

t→+∞
0.

Here we have used the fact that, in view of (2) and (3), ρj is a positive solution to

∂tρj(t) ≤ (a∞ − I−ρj(t))ρj(t)
and hence ρj is bounded, for j ∈ {1, 2}.

To go further we need the following lemma.

Lemma 3.2. Let (ρ1(t), ρ2(t)) be a positive solution to
d

dt
ρ1(t) = ρ1(t) (H1 + E1(t)− µ11ρ1(t)− µ12ρ2(t)) ,

d

dt
ρ2(t) = ρ2(t) (H2 + E2(t)− µ21ρ1(t)− µ22ρ2(t)) ,

where Ei(t) −→
t→+∞

0 for i ∈ {1, 2}.

• If H1 ≤ 0 and H2 ≤ 0, then (ρ1(t), ρ2(t)) −→
t→+∞

(0, 0).

Also if at least one of the two eigenvalues is positive and

• if H2µ11 − H1µ21 ≤ 0 and H1µ22 − H2µ12 > 0, then (ρ1(t), ρ2(t)) −→
t→+∞(

H1

µ11
, 0
)

,

• if H2µ11 − H1µ21 > 0 and H1µ22 − H2µ12 ≤ 0, then (ρ1(t), ρ2(t)) −→
t→+∞(

0, H2

µ22

)
,

• if H2µ11−H1µ21 > 0 and H1µ22−H2µ12 > 0 then (ρ1(t), ρ2(t)) −→
t→+∞

(r1, r2),

where r1 and r2 are given by (8),
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• if H2µ11 − H1µ21 < 0 and H1µ22 − H2µ12 = 0, or if H2µ11 − H1µ21 = 0

and H1µ22 −H2µ12 < 0, then (ρ1(t), ρ2(t)) has a limit which can be
(
H1

µ11
, 0
)

or
(

0, H2

µ22

)
, depending on the initial condition, on the parameters and on the

functions (Ei)i=1,2,
• finally, if H2µ11 −H1µ21 < 0 and H1µ22 −H2µ12 < 0, then (ρ1(t), ρ2(t)) has

a limit which can be one of the three non-zero limits, depending on the initial
condition, on the parameters and on the functions (Ei)i=1,2.

This lemma and expressions (32) are sufficient to prove all the statements of the
theorem:

(1) One can verify using (7) that all possible values of (H1, H2) ∈ R2 are covered
by Lemma 3.2 and hence, in all cases, the solution to (33) has a limit when t tends
to +∞ for any initial condition.

(2) If H1 ≤ 0 and H2 ≤ 0, (ρ1(t), ρ2(t)) tends to (0, 0), so for any initial condition,
(g1(t, .), g2(t, .)) tends to (0, 0).

(3) If H1 > 0, H2µ11 −H1µ21 ≤ 0 and H1µ22 −H2µ12 > 0, (ρ1(t), ρ2(t)) tends to
( H1

µ11
, 0) and

∫
X ḡ1(x)dx = H1

µ11
. Therefore, for any initial condition, (g1(t, .), g2(t, .))

tends to (ḡ1, 0).

(4) If H2 > 0, H2µ11 −H1µ21 > 0 and H1µ22 −H2µ12 ≤ 0, (ρ1(t), ρ2(t)) tends to
(0, H2

µ22
) and

∫
X ḡ2(x)dx = H2

µ22
. Therefore, for any initial condition, (g1(t, .), g2(t, .))

tends to (0, ḡ2).

(5) If H1 > 0, H2 > 0, H2µ11 −H1µ21 > 0 and H1µ22 −H2µ12 > 0, (ρ1(t), ρ2(t))
tends to (r1, r2) and we have, from Lemma 1.1, that r1 =

∫
X ĝ1(x)dx and r2 =∫

X ĝ2(x)dx. It follows that (g1(t, .), g2(t, .)) tends to (ĝ1, ĝ2) for any initial condi-
tion.

Proof of Lemma 3.2. We split the proof into several cases depending on the values
of H1 and H2.

Case 1: First of all, we will consider that at least one of the two variables is non-
positive. For example, let assume that H1 ≤ 0.
Let ε > 0 and tε > 0 such that for all t ≥ tε, |E1(t)| ≤ µ11ε. So for all t ≥ tε,
∂tρ1(t) ≤ ρ1(t)(µ11ε− µ11ρ1(t)). Thanks to the results on the logistic equation, we
conclude easily that lim sup

t→+∞
ρ1(t) ∈ [0, ε]. As this is true for all ε > 0, ρ1(t) tends

toward 0 when t approaches infinity. Therefore, ρ2 solves

∂tρ2(t) = ρ2(t)(H2 + E ′(t)− µ22ρ2(t)) where E ′(t) = E2(t)− µ21ρ1(t) −→
t→+∞

0.

We conclude that ρ2 converges and we evaluate its limit thanks to Lemma 2.3.

We consider now that H1 and H2 are positive. We will detail only three cases here,
the other ones can be adapted from those three cases.
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Case 2: Let H2µ11 −H1µ21 < 0 and H1µ22 −H2µ12 > 0; the case where H2µ11 −
H1µ21 > 0 and H1µ22 −H2µ12 < 0, can be studied following similar arguments.

Let ε > 0 be small enough to satisfy

min

{
H1 − ε
µ12

− H2 + ε

µ22
,
H1 − ε
µ11

− H2 + ε

µ21
,
H2 − ε
µ22

,
H2 − ε
µ21

}
> 0. (34)

We split (R+)2 into the next five disjoint sets drawn on Figure 1:

D1 = {(ρ1, ρ2) ∈ (R∗+)2, −H2 + µ21ρ1 + µ22ρ2 ≤ −ε}
D2 = {(ρ1, ρ2) ∈ (R∗+)2, −H1 + µ11ρ1 + µ12ρ2 ≥ ε}
D3 = {(ρ1, ρ2) ∈ (R∗+)2, −H2 + µ21ρ1 + µ22ρ2 ≥ ε, −H1 + µ11ρ1 + µ12ρ2 ≤ −ε}
D4 = {(ρ1, ρ2) ∈ (R∗+)2, −H2 + µ21ρ1 + µ22ρ2 ≥ −ε, −H2 + µ21ρ1 + µ22ρ2 ≤ ε}
D5 = {(ρ1, ρ2) ∈ (R∗+)2, −H1 + µ11ρ1 + µ12ρ2 ≥ −ε, −H1 + µ11ρ1 + µ12ρ2 ≤ ε}.

There exists tε > 0 such that for all t ≥ tε, max{|E1(t)|, |E2(t)|} ≤ ε
2 . It is then

b

b

b

ρ2

ρ1

H1

µ12

H1

µ11

H2

µ21

H2

µ22

D1

{
ρ̇1 > 0

ρ̇2 > 0

D4

D2

{
ρ̇1 < 0

ρ̇2 < 0

D3

{
ρ̇1 > 0

ρ̇2 < 0

D5

Figure 1. Plan arrangement for case 2, i.e. H2µ11 −H1µ21 < 0
and H1µ22 −H2µ12 > 0

easy to verify that, for i = 1, 2, d
dtρi ≥

ε
2ρi in D1 and d

dtρi ≤ −
ε
2ρi in D2. Moreover,

d
dtρ1 ≥ ε

2ρ1 and d
dtρ2 ≤ − ε2ρ2 in D3.

As ρ1 satisfies d
dtρ1(t) ≥ ε

2ρ1(t) in D1, for all t ≥ tε, if (ρ1(t̄), ρ2(t̄)) belongs to D1

for some t̄ ≥ tε, it will quit this domain after a finite time t0 and reach the set
D′ = D3 ∪ D4 ∪ D5. Same kind of results holds in D2. Thus after a finite time
t0 ≥ tε, the trajectory of the solution reaches D′. Moreover it cannot quit this
domain according to the signs of derivatives of ρ1 and ρ2 at the boundaries of D′.
The next step is to study the dynamics in D′. Suppose that the trajectory belongs
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to D3 ∪ D4, it cannot stay in that area for all t ≥ t0, so there exists t1 such that
(ρ1(t1), ρ2(t1)) ∈ D5. We denote the entry point in D5 by x1, drawn in Figure 2.
According to the derivatives of ρ1 and ρ2, the trajectory of the solution does not
quit the set:

Dx1 =
{

(ρ1, ρ2) ∈ (R∗+)2, ρ1 ≥ ρx1
1 , ρ2 ≤ ρx1

2

}
∩D′,

where (ρx1
1 , ρx1

2 ) are the coordinates of x1. This set is represented by the hatched
area on the left scheme of Figure 2. Moreover, as long as the trajectory stays in
D3 ∪D5, ρ2 satisfies ∂tρ2(t) ≤ − ε2ρ2(t). So two cases can happen:

(a) either ρ2(t) −→
t→+∞

0, and thus ρ1 tends to H1

µ11
from Lemma 2.3,

(b) or there exists t2 > t1 where the trajectory reaches D4. Let us denote

x2 = (ρx1
1 ,

H2+ε−µ21ρ
x1
1

µ22
). As the trajectory stays in Dx1

, it reaches D4 ∩Dx2
,

where Dx2
= {(ρ1, ρ2) ∈ (R∗+)2, ρ1 ≥ ρx2

1 , ρ2 ≤ ρx2
2 } ∩D′ . Moreover, for all

t ≥ t2, the trajectory stays in Dx2 (see the hatched area on the right scheme
of Figure 2).
Iterating the previous step, we construct a decreasing sequence of areas de-
noted by (Dxn

)n≥0 which will be necessarily finite. Indeed, the choice of ε
(34) implies that there exists m ∈ N such that Dx2m

∩ D4 = ∅. Then we
conclude as in the case (a) above.

b

bc

ρ2

ρ1

D1

D4

D2

D3

D5
x1

b

ρ2

ρ1

D1

D4

D2

D3

D5
x1

x2 x3

bc

bc bc

Figure 2. Dynamics for the case 2: H2µ11 − H1µ21 < 0 and
H1µ22 −H2µ12 > 0

The next case is quite similar except for the end of the proof.
Case 3: Let H2µ11 −H1µ21 = 0 and H1µ22 −H2µ12 > 0; the case where H2µ11 −
H1µ21 > 0 and H1µ22 − H2µ12 = 0 and the one where H2µ11 − H1µ21 > 0 and
H1µ22 −H2µ12 > 0 can be proven using same kind of arguments.

Let k ≥ 1 and ε > 0 be such that

max

{
µ11

µ21
,
µ21

µ11

}
< k and min

{
H1 − ε
µ21

− H2 + ε

µ22
,
H2 − kε
µ22

,
H2 − kε
µ21

}
> 0.
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We divide the plan (R+)2 as presented in Figure 3, where D1, D2, D3, D4, D5 and
D′ are defined as follows

D1 = {(ρ1, ρ2) ∈ (R∗+)2, −H2 + µ21ρ1 + µ22ρ2 ≤ −kε}
D2 = {(ρ1, ρ2) ∈ (R∗+)2, −H1 + µ11ρ1 + µ12ρ2 ≥ kε}
D3 = {(ρ1, ρ2) ∈ (R∗+)2, −H2 + µ21ρ1 + µ22ρ2 ≥ ε, −H1 + µ11ρ1 + µ12ρ2 ≤ −ε}
D4 = {(ρ1, ρ2) ∈ (R∗+)2, −H2 + µ21ρ1 + µ22ρ2 ≥ −kε, −H2 + µ21ρ1 + µ22ρ2 ≤ ε}
D5 = {(ρ1, ρ2) ∈ (R∗+)2, −H1 + µ11ρ1 + µ12ρ2 ≥ −ε, −H1 + µ11ρ1 + µ12ρ2 ≤ kε}
D′ = D3 ∪D4 ∪D5.

b

b

b

ρ2

ρ1

H1

µ12

H1

µ11
=

H2

µ21

H2

µ22

D1

{
ρ̇1 > 0
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ρ̇2 < 0

D5

Dε

ε
xε

+
x1

x2 x3

x4

Figure 3. Arrangement for the case 3, i.e. H2µ11 −H1µ21 = 0
et H1µ22 −H2µ12 > 0

The constant k is chosen such that D1∩D5 = ∅ and D2∩D4 = ∅ and tε is defined
as before. There exists t0 ≥ tε such that for all t ≥ t0, the trajectory is belonging
to D′. Then we construct a sequence of sets (Dxn

)n≥1 as before, but now, this
sequence can be infinite. So let Dε be the set

Dε = D′ ∩
{

(ρ1, ρ2) ∈ (R+)2, ρ2 ≤ ε
(

µ11 + µ21

µ11µ22 − µ12µ21
+ 1

)
and ρ1 ≥

H1

µ11
− ε

(
µ22 + µ12

µ11µ22 − µ12µ21
+ 1

)}
.

There exists n such that Dxn is included in Dε, i.e. the trajectory is belonging to

Dε after a finite time. As this is true for all ε > 0, (ρ1(t), ρ2(t)) −→
t→+∞

(
H1

µ11
, 0
)

.
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The last case that we detail is a case where several limits are possible.
Case 4: Let H2µ11−H1µ21 < 0 and H1µ22−H2µ12 = 0; we can deal with the case
H2µ11 −H1µ21 = 0 and H1µ22 −H2µ12 < 0 and the one with H2µ11 −H1µ21 < 0
and H1µ22 −H2µ12 < 0 thanks to similar arguments.

Let k ≥ 1 and ε > 0 such that

max

{
µ22

µ12
,
µ12

µ22

}
< k and min

{
H1 − ε
µ11

− H2 + ε

µ21
,
H2 − kε
µ22

,
H2 − kε
µ21

}
> 0.

We divide the plan (R+)2 as presented in Figure 4, where D3, D4, D5, D′ are
defined as in the case 3 and Dε is defined as follows

Dε = D′ \
{

(ρ1, ρ2) ∈ (R+)2, ρ1 > ε
µ21 + µ22

µ12µ21 − µ11µ22

and ρ2 <
H2

µ22
− ε µ12 + µ11

µ12µ21 − µ11µ22

}

b

b

b

ρ2

ρ1

H1

µ12
=

H2

µ22

H1

µ11

H2

µ21

D1

{
ρ̇1 > 0

ρ̇2 > 0

D4

D2

{
ρ̇1 < 0

ρ̇2 < 0

D3

D5

Dε

+
x1

x2

Figure 4. Arrangement for the case 4, i.e. H2µ11 −H1µ21 < 0
et H1µ22 −H2µ12 = 0

As before, we find t0 ≥ tε such that for all t ≥ t0, the trajectory of the solution
belongs to D′. Then there exist two possibilities.

• Either for all ε > 0, there exists τε > tε such that for all t ≥ τε the trajectory

belongs to Dε, that is, (ρ1(t), ρ2(t)) −→
t→+∞

(
0, H2

µ22

)
.

• Or there exists ε > 0 and τε > tε when the trajectory is belonging to D′ \Dε.
Using same kind of arguments as before, we obtain that the trajectory won’t
quit this set for all t ≥ τε, and we construct a sequence of decreasing sets to

conclude that (ρ1(t), ρ2(t)) −→
t→+∞

(
H1

µ11
, 0
)

.
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3.3. Cases with several equilibria (proof of Theorem 1.3). In this section
we prove Theorem 1.3.

(1) Let us deal with the first case where H1 > 0, H2 > 0, H2µ11 − H1µ21 <
0, and H1µ22−H2µ12 < 0. Thanks to the last statement of Lemma 3.2, we already
know that any solution tends towards one of the non-trivial steady states. We pre-
cise the stability of each state.

(1a) This point is devoted to show the asymptotic stability of (ḡ1, 0) if H1 > 0
and H2µ11 −H1µ21 < 0. Using symmetric arguments, it then can be shown that if
H2 > 0 and H1µ22 −H2µ12 < 0, (0, ḡ2) is stable.

Precisely, we show that if the positive initial condition (g1(0, .), g2(0, .)) satisfies the
following condition: there exist C1 > 0 and C2 > 0 such that

max
i=1,2
{‖g1(0, .)− ḡ1‖L2‖Ii1‖L2} ≤ C1, (35)

‖g2(0, .)‖L2‖I12‖L2 ≤ C2, (36)

where the above constants satisfy the following compatibility conditions

C = 2

(
(C1 + C2) ·max

{
1,
µ21

µ11

}
+ C1

)
< min

{
H1 − λ1

2,
µ21

µ11
H1 −H2

}
, (37)

then the solution to the equation (1) tends to the steady state (ḡ1, 0).

Let us express g1 in the basis (A1
k, k ∈ N∗), ∀x ∈ X

g1(t, x) =

∫
X
ḡ1(x)dxA1

1(x) +

∞∑
k=1

αk(t)A1
k(x),

and denote for all t ∈ R+

κ(t) =

∫
X
ḡ1(x)dx+ α1(t).

From (1) and the representation of g1 and ∂tg1 with respect to the basis (A1
k, k ∈

N∗), we find the following dynamical system
d

dt
αk(t) = αk(t)

(
λ1
k −H1 −

∞∑
`=1

α`(t)

∫
X

(I11A
1
`)−

∫
X

(I12g2(t, .))

)
, ∀k ≥ 2,

d

dt
κ(t) = κ(t)

(
H1 −

∞∑
`=2

α`(t)

∫
X

(I11A
1
`)−

∫
X

(I12g2(t, .))− µ11κ(t)

)
.

(38)
Here, we have used the fact that since, from Lemma 3.1, LN =

∫
X ḡ1dxA

1
1 +∑N

k=1 αkA
1
k tends to g1 in L2 as N → ∞, and since the domain X is bounded,

LN tends to g1 in L1.

We will show that for all t ≥ 0,

min
i=1,2

{ ∞∑
k=1

αk(t)

∫
X

(Ii1(y)A1
k(y))dy

}
≥ −C. (39)
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We notice that this is true for t = 0 thanks to (35): for i ∈ {1, 2},∣∣∣∣∣
∞∑
k=1

αk(0)

∫
X

(Ii1A
1
k)

∣∣∣∣∣ ≤
( ∞∑
k=1

αk(0)2

∫
X
|A1
k|2
)1/2( ∞∑

k=1

(
∫
X Ii1A

1
k)2∫

X |A
1
k|2

)1/2

≤ ‖g1(0, .)− ḡ1‖L2‖Ii1‖L2

≤ C1 < C.

The second line is justified using the representation of Ii1 with respect to the or-
thonormal basis {A1

k/‖A1
k‖L2}k≥1 which is {(

∫
X Ii1A

1
k)/‖A1

k‖L2}k≥1.

We prove the result (39) by contradiction. Denote

t0 = inf

{
t > 0

∣∣∣ min
i=1,2

{ ∞∑
k=1

αk(t)

∫
X

(Ii1(y)A1
k(y))dy

}
≤ −C

}
and suppose that t0 is finite. Thus, for i ∈ {1, 2},

∀t ≤ t0,
∞∑
k=1

αk(t)

∫
X

(Ii1(y)A1
k(y))dy ≥ −C. (40)

In fact, from (40), we will find a lower bound greater than −C for any t ≤ t0 which
is a contradiction with the fact that t0 is finite.
First, let us deal with the expression

∑∞
k=2 αk(t)

∫
X (Ii1A

1
k)dx. We multiply the

first equation of (38) by αk. Then, using the positivity of g2, the assumption (37)

and Gronwall’s lemma, we get for all t ≤ t0, αk(t)2 ≤ αk(0)2e2(λ1
k−H1+C)t ≤ αk(0)2.

Thus, for all t ≤ t0, for i ∈ {1, 2},∣∣∣∣∣
∞∑
k=2

αk(t)

∫
X

(Ii1A
1
k)

∣∣∣∣∣ ≤
( ∞∑
k=2

αk(t)2

∫
X
|A1
k|2
)1/2( ∞∑

k=2

(
∫
X Ii1A

1
k)2∫

X |A
1
k|2

)1/2

≤

( ∞∑
k=2

αk(0)2

∫
X
|A1
k|2
)1/2( ∞∑

k=2

(
∫
X Ii1A

1
k)2∫

X |A
1
k|2

)1/2

≤ ‖g1(0, .)− ḡ1‖L2‖Ii1‖L2 < C1.

(41)

Then, in view of finding a lower bound to κ, we are concerned with
∫
X I12g2(t, .)dx.

We multiply the second equation in (1) by g2 and integrate it over X :

1

2

d

dt
‖g2(t, .)‖2L2≤

(
H2 − µ21

H1

µ11
−
∞∑
k=1

αk(t)

∫
X

(I21A
1
k)

−
∫
X
I22(y)g2(t, y)dy

)
· ‖g2(t, .)‖2L2

From Assumption (40) for i = 2, the positivity of g2 and the Gronwall’s lemma, we
get that for all t ≤ t0,

‖g2(t, .)‖2L2 ≤ exp

{
2

(
H2 − µ21

H1

µ11
+ C

)
t

}
· ‖g2(0, .)‖2L2 ≤ ‖g2(0, .)‖2L2 , (42)

as H2 − (µ21H1)/µ11 + C is negative by Assumptions (37). That is, with the
assumption (36), for all t ≤ t0, 0 ≤

∫
X (I12g2(t, .)) ≤ ‖I12‖L2‖g2(t, .)‖L2 ≤ C2.

We use this inequality and (41) to show that κ satisfies, for all t ≤ t0,

κ(t) (H1 − C1 − C2 − µ11κ(t)) ≤ ∂tκ(t).
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Moreover, from (35), |κ(0) − H1

µ11
| · µ11 ≤ C1. Using classical results on logistic

equation, we deduce the following lower bound

−C1 − C2

µ11
≤ κ(t)− H1

µ11
= α1(t), ∀t ≤ t0. (43)

Finally, we conclude with inequalities (41), (43), assumption (37) and definitions of
µi1: for all t ≤ t0, for i ∈ {1, 2}
∞∑
k=1

αk(t)

∫
X

(Ii1A
1
k) ≥ α1(t)µi1+

∞∑
k=2

αk(t)

∫
X

(Ii1A
1
k) ≥ −(C1+C2)

µi1
µ11
−C1 ≥ −

C

2
.

This is the contradiction that we wanted to reach, thus, t0 = +∞.

Moreover, Theorem 1.2 guarantees the existence of a limit for (g1(t, .), g2(t, .)). Let
us identify that limit. On the one hand, we note that (42) holds for all t ≥ 0, since
t0 = +∞, and hence

∫
X |g2(t, x)|2dx tends to 0, as t approaches infinity.

On the other hand, thanks to the equation (43), which holds for all t ≥ 0, and (37),∫
X
|g1(t, x)|2dx ≥

∞∑
k=2

αk(t)2

∫
X
|A1
k|2 + κ(t)2

∫
X
|A1

1|2

≥ 0 +

(
H1 − C1 − C2

µ11

)2 ∫
X
|A1

1|2 > 0.

Thus, the limit of ‖g1(t, .)‖L2 is positive. The limit of the solution is hence the
steady state (ḡ1, 0).

(1b) Here, we show that if H2µ11 − H1µ21 < 0 and H1µ22 − H2µ12 < 0, the
steady state (ĝ1, ĝ2) is unstable, precisely in any neighborhood of (ĝ1, ĝ2), there ex-
ists a solution to (1) that does not tend towards (ĝ1, ĝ2), but there also exist some
solutions that tend towards it.
We use a solution to (1) with an initial condition which belongs to the subspace
vect(ĝ1) × vect(ĝ2). Let us notice, using the form of the equation (1) satisfied
by (g1, g2), that, if the initial condition belongs to a subspace vect(A1

k)k∈K ×
vect(A2

`)`∈L withK and L subsets of N, then for all t ≥ 0, the solution (g1(t, .), g2(t, .))
belongs to that subspace. Thus, for all t ≥ 0, g1(t, x) = α(t)ĝ1(x) and g2(t, x) =
β(t)ĝ2(x). We get the following system

d

dt
α(t) = α(t)

(
H1 − µ11

(∫
X
ĝ1

)
α(t)− µ12

(∫
X
ĝ2

)
β(t)

)
d

dt
β(t) = β(t)

(
H2 − µ21

(∫
X
ĝ1

)
α(t)− µ22

(∫
X
ĝ2

)
β(t)

)
.

We first notice that (1, 1) is obviously a steady state here. Moreover, the deter-
minant of the Jacobian matrix of the linearized dynamical system at point (1, 1)
is (µ11µ22 − µ12µ21)

∫
X ĝ1

∫
X ĝ2 < 0. So the linearized system around (1, 1) is hy-

perbolic. From Hartman-Grobman Theorem (see part 9.3 in [27]) concerning the
linearized system, we can conclude that (ĝ1, ĝ2) is unstable, but that there exists
some solutions tending towards it.

(2) It remains to deal with the last uncertain case : H1 > 0, H2 > 0, H2µ11 −
H1µ21 < 0 and H1µ22 −H2µ12 = 0. The point (3) where H2µ11 −H1µ21 = 0 and
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H1µ22 −H2µ12 < 0 can be studied following similar arguments.

Thanks to point (1a), we already know that the steady state (ḡ1, 0) is stable. We
prove that the steady state (0, ḡ2) is unstable; more precisely, we show that in any
neighborhood of (0, ḡ2), there exists a solution to (1) that does not tend to (0, ḡ2)
as t→∞, but there also exist some solutions tending towards it.

To prove that this steady state is unstable, we consider solutions of the form
(g1, g2) = (α(t)A1

1, β(t)A2
1). The dynamics is then given by the following Lotka-

Volterra system 
d

dt
α(t) = α(t) (H1 − µ11α(t)− µ12β(t)) ,

d

dt
β(t) = β(t) (H2 − µ21α(t)− µ22β(t)) .

In view of the conditions on the parameters in this case, any solution with α(0) > 0,
converges to ( H1

µ11
, 0) (see [10], p.186 Theorem 1(c)) and thus (α(t)A1

1, β(t)A2
1) con-

verges to (ḡ1, 0). Since one can choose α(0) and β(0) to make (α(0)A1
1, β(0)A2

1) be
arbitrarily close to (0, ḡ2), we obtain that this point is unstable.

Finally, in order to find a solution that tends towards the steady state, we consider
the initial condition (g0

1 , g
0
2) = (0, g0

2), with a nonnegative and non-trivial function
g0

2 ∈ L2(X ). Then, since for all t ≥ 0, g1(t, x) = 0, it follows from Theorem 1.4 that
g2(t, x)→ ḡ2(x) in L∞ as t→∞.

4. Numerics. In this last section, we illustrate the main theorem 1.2 with some
numerical examples. The numerics are computed with an algorithm based on finite
difference method. Our aim is to illustrate the behavior of mutant individuals that
appear in a well established population.
First of all, thanks to Theorem 1.4, we have a mean to compute the principal
eigenvalues Hi when they are positive. In fact, in this case, Theorem 1.4 guarantees
that any positive solution to ∂tu = mi∆x(u) +

(
ai −

∫
X Iiiu

)
u with Neumann

boundary conditions tends to the steady state ḡi, and

Hi =

∫
X
Iii(x)ḡi(x)dx. (44)

Thus, with the finite difference method, we resolve numerically the previous para-
bolic equation. After a long time, the solution is stable, so we consider that it has
reached the steady state. We calculate then Hi thanks to the simple formula (44).
With same ideas, we can also calculate µi,j for i, j ∈ {1, 2}. Thus we can check the
conditions of Theorem 1.2 for the following numerical examples whose parameters
values are given in Figure 5.

Let us now describe our numerical simulations. We consider that the growth rates
of the two populations are maximal at two different spatial positions. For instance,
the space state can represent a variation of resources, as seed size for some birds,
and so the two populations are not best-adapted to same resources. Different values
of ā2, the maximum of the growth rate of the mutant population, will be explored,
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while the other parameters are fixed,

X = [0, 1], u1 = 0.3, ā1 = 1, u2 = 0.5,
ai(x) = max{āi(1− 20(x− ui)2),−1}. (45)

Notice that around the trait ui, the growth rate of the population i is positive but
far from this position, it becomes negative. Thus positions around ui are favorable
for population i, and we suppose that the intraspecific competition is greater around
that position:

Iii(x) =

{
1, if |x− ui| < 0.25,

0.1, else.
(46)

Then, we define the interspecific competition from the previous kernels by I12 =
I21 = min{I11, I22}. Finally, we suppose that all individuals move with the same
diffusion constant m1 = m2 = 0.01.
As we want to illustrate the invasion of a mutant, we suppose that the initial condi-
tion is near (ḡ1, 0), as presented in figure 5(a). We resolve numerically the system of
parabolic equations (1) and present the solution after a long time, that is, when the
densities are almost stable, see figure 5. When ā2 is small, the mutant population is
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Figure 5. The numerical resolution of (1) with parameters given by
(45)–(46). (a) presents the densities of each population initially. (b), (c)
and (d) present the densities at time t = 1000 for different values of ā2,
the red dashed curves represent the density of the resident population
and the green continuous curves represent the density of the mutants.

not able to survive (case (b)). But when ā2 is large enough, coexistence (case (c))
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and even invasion (case (d)) can appear. On the two last cases, the new population
that has invaded the space does not live on the same spatial position as the previous
one. From an ecological viewpoint, such examples are very interesting because we
observe a change of spatial niche due to a selection event.
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