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Abstract

We study the evolutionary dynamics of a phenotypically structured population in a changing environ-
ment, where the environmental conditions vary with a linear trend but in an oscillatory manner. Such
phenomena can be described by parabolic Lotka-Volterra type equations with non-local competition and a
time dependent growth rate. We first study the long time behavior of the solution to this problem. Next,
using an approach based on Hamilton-Jacobi equations we study asymptotically such long time solutions
when the effects of the mutations are small. We prove that, as the effect of the mutations vanishes, the
phenotypic density of the population concentrates on a single trait which varies linearly with time, while
the size of the population oscillates periodically. In contrast with the case of an environment without linear
shift, such dominant trait does not have the maximal growth rate in the averaged environment and there
is a cost on the growth rate due to the environmental shift. We also provide an asymptotic expansion for
the average size of the population and for the critical speed above which the population goes extinct, which
is closely related to the derivation of an asymptotic expansion for the Floquet eigenvalue in terms of the
diffusion rate. By mean of a biological example, this expansion allows to show that the fluctuations on the
environment may help the population to follow the environmental shift in a better way.
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1 Introduction

1.1 Model and motivations

The goal of this article is to study the evolutionary dynamics of a phenotypically structured population in an
environment which varies with a linear trend but in an oscillatory manner. We study the following non-local
parabolic equation 

∂tñ− σ∂xxñ = ñ[a(e(t), x− c̃t)− ρ̃(t)], (t, x) ∈ [0,+∞)× R,

ρ̃(t) =

∫
R
ñ(t, x)dx,

ñ(t = 0, x) = ñ0(x).

(1.1)

This equation models the dynamics of a population which is structured by a phenotypic trait x ∈ R. Here, ñ
corresponds to the density of individuals with trait x. We denote by a(e(t), x − c̃t) the intrinsic growth rate
of an individual with trait x at time t. The term −c̃t has been introduced to consider a shifting of the fitness
landscape with a linear trend. The function e(t) : R+ → E represents the environmental state at time t (for
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instance, the temperature) and is assumed to be periodic. The variation of the environmental state e may have
an impact on the optimal trait (the trait that maximizes a(e, x)) or other parameters of selection as for instance
the pressure of selection (corresponding to the curvature of a(e, x) around its maximum point, see Section 6
for some examples). The term ρ̃ which corresponds to the total size of the population represents a competition
term. Here, we assume indeed a uniform competition between all the individuals. The diffusion term models
the mutations, with σ the mutation rate.

A natural motivation to study such type of problem is the fact that many natural populations are subject both
to a directional change of the phenotypic optimum and fluctuations of the environment ([13]). Such fluctuations
may be periodic, due for instance to seasonal effects, or stochastic due to the random change of the environment.
Here we consider a deterministic growth rate that varies with a linear trend but in an oscillatory manner. Our
study provides also insights for the case of random environments since it is based on some homogenization
techniques that could also be used to study the random case. However, the study of the random fluctuations
would still need considerable work and is out of the scope of this article.

Will the population be able to adapt to the environmental change? Is there a maximal speed above which
the population will get extinct? How is such maximal speed modified due to the fluctuations?

1.2 Related works

The impact of changing environments on the evolution of quantitative traits has been studied using closely
related quantitative genetics models in the biological literature (see for instance [27, 26, 11, 23, 22]). In these
works one usually assumes that the growth rate a has a particular form of quadratic type and that the envi-
ronmental change has only an impact on the optimal trait. However, the environmental variations may also
modify other parameters of selection, as for instance the pressure of selection [17]. Finally, the works studying
a periodic environment, consider only a particular sinusoidal form of periodic variation [27, 23].

Models closely related to (1.1), but with a local reaction term and no fluctuation, have been widely studied (see
for instance [9, 7, 8, 6]). Such models are introduced to study dynamics of populations structured by a space
variable neglecting evolution. It is shown in particular that there exists a critical speed of environment change
c∗, such that the population survives if and only if the environment change occurs with a speed less than c∗. We
also refer to [10] where an integro-difference model has been studied for the spatial dynamics of a population
in the case of a randomly changing environment. Moreover, in [1], both spatial and evolutionary dynamics of
a population in an environment with linearly moving optimum has been studied. While in the present work,
we don’t include any spatial structure, we take into account oscillatory change of environment in addition to a
change with linear trend.
The evolutionary dynamics of structured populations under periodic fluctuations of the environment has been
recently studied by [29, 25, 16, 2]. The works in [25, 2] are focused on the study of a particular form of growth
rate a and in particular some semi-explicit solutions to such equations are provided. In [29, 16] some asymptotic
analysis of such equations for general growth rates are provided. The present article is closely related to [16]
where a periodically evolving environment was considered without the linear trend. The presence of such linear
trend of environment change leads to new difficulties in the asymptotic analysis. Moreover, we go further than
the results in [16] and provide an asymptotic expansion for the average size of the population in terms of the
mutation rate. Such expansion is closely related to an asymptotic expansion of the Floquet eigenvalue for the
linear problem. Furthermore in a very recent work [12] the authors study a closely related model, but without
the linear change of the environment, and study the impact of the different parameters of the model on the final
population size.

In this article, we use an asymptotic approach based on Hamilton-Jacobi equations with constraint. This
approach has been developed during the last decade to study the asymptotic solutions of selection-mutation
equations, assuming small effect of the mutations. Such equations have the property that their solution concen-
trate as Dirac masses on the fittest traits. There is a large literature on this approach. We refer to [14, 30, 5]
for the establishment of the basis of this approach for homogeneous environments.
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1.3 Mathematical assumptions

To introduce our assumptions, we first define

a(y) =
1

T

∫ T

0

a(e(t), y)dt.

We then assume that e : R+ → E, a periodic function, and a ∈ L∞(E,C3(R)) are such that:

e(t) = e(t+ T ), ∀ t ∈ R+, and ∃ d0 > 0 : ‖a(e, ·)‖L∞(R) ≤ d0 ∀ e ∈ E, (H1)

and that the averaged function a attains its maximum and

max
x∈R

a(x) > 0, (H2a)

which means that there exist at least some traits with strictly positive average growth rate.
Moreover, for some of our results (Theorem 7 and Theorem 9) we assume that this maximum is attained at a
single point xm; that is

∃! xm : max
x∈R

a(x) = a(xm), (H2b)

and also

∃! x ≤ xm; a(x) +
c̃2

4σ
= a(xm). (H3)

Let us explain the role of the trait x in our results. We will show in Theorem 7 that, as the mutation rate σ
vanishes and when the speed of the environmental change c̃ is not too high, the phenotypic density ñ concentrates
around a single trait which moves linearly with the same speed c̃. The population density concentrates indeed
around the trait x+ c̃t and follows in this way the optimum of the average environment, that is xm + c̃t, with
a constant lag.

Finally, we make the following assumption on the initial data:

0 ≤ ñ0(x) ≤ eC1−C2|x|, ∀x ∈ R, (H4)

which indicates that the initial density of individuals with large traits is exponentially small.

1.4 Preliminary results

To avoid the shift in the growth rate a, we transform our problem with a change of variable. We introduce
indeed n(t, x) = ñ(t, x+ c̃t) which satisfies:

∂tn− c̃∂xn− σ∂xxn = n[a(e(t), x)− ρ(t)], (t, x) ∈ [0,+∞)× R,

ρ(t) =

∫
R
n(t, x)dx,

n(t = 0, x) = ñ0(x).

(1.2)

Next, we introduce the linearized problem associated to (1.2). Let m(t, x) = n(t, x)e
∫ t
0
ρ(s)ds, for n the solution

of (1.2), then m satisfies{
∂tm− c̃∂xm− σ∂xxm = a(e(t), x)m, (t, x) ∈ [0,+∞)× R,

m(t = 0, x) = ñ0(x), x ∈ R. (1.3)

We also introduce the corresponding parabolic eigenvalue problem as follows{
∂tpc − c̃∂xpc − σ∂xxpc − a(e(t), x)pc = λc̃,σpc, (t, x) ∈ [0,+∞)× R,

0 < pc; pc(t, x) = pc(t+ T, x), (t, x) ∈ [0,+∞)× R. (1.4)
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For better legibility, we omit the tilde in the index of pc, while we still refer to the problem with constant c̃.
We also define the eigenvalue problem in the bounded domain [−R,R], for some R > 0, ∂tpR − c̃∂xpR − σ∂xxpR − a(e(t), x)pR = λRpR, (t, x) ∈ [0,+∞)× [−R,R],

pR = 0, (t, x) ∈ [0,+∞)× {−R,R},
0 < pR; pR(t, x) = pR(t+ T, x), (t, x) ∈ [0,+∞)× [−R,R].

(1.5)

It is known that problem (1.5) has a unique eigenpair (λR, pR) with pR a strictly positive eigenfunction such
that ‖pR(0, ·)‖L∞([−R,R]) = 1, (see [19]). Another fundamental result (see for instance [21]), for our purpose is
that the function R 7→ λR is decreasing and λR → λc̃,σ as R→ +∞.
To announce our first result we introduce another assumption. We assume that a takes small values at infinity
in the following sense: there exist positive constants δ and R0 such that

a(e, x) + λc̃,σ ≤ −δ, ∀e ∈ E and |x| ≥ R0. (Hc)

Proposition 1 Assume (H1), (H4) and (Hc). Then for problem (1.4) there exists a unique generalized principal
eigenfunction pc associated to λc̃,σ, with ‖pc(0, ·)‖L∞(R) = 1. Moreover, we have pc = lim

R→∞
pR and

pc(t, x) ≤ ‖pc‖L∞e−ν(|x|−R0), ∀(t, x) ∈ [0,+∞)× R, (1.6)

for ν = − c̃
2σ +

√
δ
σ + 1

2

(
c̃
σ

)2
.

Finally, the eigenfunction pc(t, x) is exponentially stable, in the following sense; there exists α > 0 such that:

‖m(t, x)etλc̃,σ − αpc(t, x)‖L∞(R) → 0 exponentially fast as t→∞. (1.7)

The proof of this proposition is based on the results in [16].
We next define the T−periodic functions Qc(t) and Pc(t, x) as follows:

Qc(t) =

∫
R a(e(t), x)pc(t, x)dx∫

R pc(t, x)dx
, Pc(t, x) =

pc(t, x)∫
R pc(t, x)dx

, (1.8)

and we recall a result proved in [16].

Proposition 2 There exists a unique periodic solution ρ̂(t) to the problem{
dρ̂

dt
= ρ̂ [Qc(t)− ρ̂] , t ∈ (0, T ),

ρ̂(0) = ρ̂(T ),
(1.9)

if and only if

∫ T

0

Qc(t)dt > 0. Moreover this solution can be explicitly expressed as follows:

ρ̂(t) =

1− exp

[
−
∫ T

0

Qc(s)ds

]

exp

[
−
∫ T

0

Qc(s)ds

]∫ t+T

t

exp

[∫ s

t

Qc(θ)dθ

]
ds

.

1.5 The main results and the plan of the paper

We are interested in determining conditions on the environment shift speed c̃ which leads to extinction or sur-
vival of the population. In the case of the population survival we then try to characterize asymptotically the
population density considering small effect of the mutations.

To present our result on the survival criterion, we define the ”critical speed”.
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Definition 3 We define the critical speed c̃∗σ as follows

c̃∗σ =

{
2
√
−σλ0,σ, if λ0,σ < 0,

0, otherwise,
(1.10)

where λ0,σ corresponds to the principal eigenvalue introduced by Proposition 1, in the case c = 0.

The next result shows that c̃∗σ is indeed a critical speed of environmental change above which the population
goes extinct.

Proposition 4 (Long time behavior)
Let n(t, x) be the solution of (1.2). Assume (H1), (H2a), (H4) and (Hc). Then the following statements hold:

(i) if c̃ ≥ c̃∗σ, then the population will go extinct, i.e. ρ(t)→ 0, as t→∞,

(ii) if c̃ < c̃∗σ, then |ρ(t)− ρ̂(t)| → 0, as t→∞, with ρ̂ the unique solution of (1.9).

(iii) Moreover,

∥∥∥∥n(t, x)

ρ(t)
− Pc(t, x)

∥∥∥∥
L∞
−→ 0, as t→∞. Consequently we have, as t→∞:

‖n(t, ·)− ρ̂(t)Pc(t, ·)‖L∞ → 0, if c̃ < c̃∗σ and ‖n‖L∞ → 0, if c̃ ≥ c̃∗σ.

Remark 5 Note that if λ0,σ ≥ 0, then c̃∗σ = 0, which means that the population goes extinct even without
environmental linear change, that is c̃ = 0.

Proposition 4 allows to relate extinction/survival of the population to the environmental change speed and
shows that if the change goes ”too fast” the population will not be able to follow the environment change and
will get extinct. However, if the change speed is ”moderate” the phenotypic density n converges to the periodic
function nc(t, x) = ρ̂(t)Pc(t, x), which is in fact the unique periodic solution of (1.2).

Next, we are interested in describing this periodic solution nc, asymptotically as the effect of mutations is small.
To this end, with a change of notation, we take σ = ε2 and c̃ = εc, and we study asymptotically the solution

(nεc, ρ̂εc) as ε vanishes. For better legibility, we also define c∗ε :=
c̃∗ε2

ε
where c̃∗ε2 stands for the critical speed c̃∗σ

with σ = ε2. Note that, in view of Proposition 4, to provide an asymptotic analysis considering σ = ε2 small,
a rescaling of the environmental shift speed as c̃ = εc is necessary (see also Theorem 9). The population can
tolerate only an environmental shift with small speed if the mutations have small effect.
In order to keep the notation simpler we denote (nεc, ρ̂cε) = (nε, ρε), which is the unique periodic solution of
the problem: 

∂tnε − εc∂xnε − ε2∂xxnε = nε[a(e(t), x)− ρε(t)], (t, x) ∈ [0,+∞)× R,

ρε(t) =

∫
R
nε(t, x)dx,

nε(0, x) = nε(T, x).

(1.11)

To study asymptotically this problem we perform a Hopf-Cole transformation (or WKB ansatz), i.e we consider

nε =
1√
2πε

exp

(
ψε
ε

)
. (1.12)

This change of variable comes from the fact that with such rescaling the solution nε will naturally have this
form. While we expect that nε tends to a Dirac mass, as ε→ 0, ψε will have a non singular limit.
Here is our first main result:
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Theorem 6 (Asymptotic behavior)
Assume (H1), (H2a) and (Hc) and also that c < lim inf

ε→0
c∗ε. Then the following statements hold:

(i) As ε→ 0, we have ‖ρε(t)− %̃(t)‖L∞ → 0, with %̃(t) a T−periodic function.

(ii) Moreover, as ε → 0, ψε(t, x) converges locally uniformly to a function ψ(x) ∈ C(R), a viscosity solution
to the following equation:

−
∣∣∣∂xψ +

c

2

∣∣∣2 = a(x)− ρ− c2

4 , x ∈ R,
max
x∈R

ψ(x) = 0,

−A1|x|2 − c
2x−A2 ≤ ψ ≤ c1 − c2|x|,

(1.13)

with

ρ̄ =

∫ T

0

%̃(t)dt,

for some positive constants A1, A2, c1 and c2 = − c
2 +

√
δ + c2

2 .

The above theorem is closely related to Theorem 4 in [16]. A new difficulty comes from the drift term. To deal
with the drift term we use a Liouville transformation (see for instance [7, 8]) that allows us to transform the
problem to a parabolic problem without drift.

To present our next result, let us consider the eigenproblem (1.4) for σ = ε2 and c̃ = cε, that is: ∂tpcε − εc∂xpcε − ε2∂xxpcε − a(e(t), x)pcε = pcελc,ε, (t, x) ∈ [0,+∞)× R,
0 < pcε; pcε(t, x) = pcε(t+ T, x), (t, x) ∈ [0,+∞)× R. (1.14)

Here we denote λc,ε the eigenvalue λc̃,σ with σ = ε2 and c̃ = cε for better legibility.

Theorem 7 (Uniqueness and identification of the solution)
Let λc,ε be the principal eigenvalue of problem (1.14) and assume (H1), (H2b), (H3) and (Hc). Assume in

addition that c < lim inf
ε→0

c∗ε, then the following statements hold:

(i) Let ρε = 1
T

∫ T
0
ρε(t)dt, then ρε = −λc,ε.

(ii) The viscosity solution of (1.13) is unique and it is indeed a classical solution given by

ψ(x) =
c

2
(x− x) +

∫ xm

x

√
a(xm)− a(y)dy −

∣∣∣∣∫ x

xm

√
a(xm)− a(y)dy

∣∣∣∣ . (1.15)

where x < xm is given in (H3). Moreover, as ε→ 0, ρε converges to ρ = a(x).

(iii) Furthermore, let nε solve (1.11), then

nε(t, x)− %̃(t)δ(x− x) ⇀ 0, as ε→ 0, (1.16)

point wise in time, weakly in x in the sense of measures, with %̃ the unique periodic solution of the following
equation {

d%̃

dt
= %̃ [a(e(t), x̄)− %̃] , t ∈ (0, T ),

%̃(0) = %̃(T ).
(1.17)
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Remark 8 The statement (iii) in Theorem 7 implies, for the solution ñε to the initial problem (1.1) with σ = ε2

and c̃ = cε, that

ñε(t, x)− %̃(t)δ(x− x− ct) ⇀ 0, as ε→ 0,

point wise in time, weakly in x in the sense of measures. This implies that the phenotypic density of the
population concentrates on a dominant trait which follows the optimal trait with the same speed but with a
constant lag xm − x.

Note that while in [16] the uniqueness of the viscosity solution to the corresponding Hamilton-Jacobi equation
with constraint was immediate, here to prove the uniqueness of the viscosity solution more work is required. In
particular, in order to prove such result the constraint is not enough and we use also the bounds on ψ, given in
(1.13). More precisely we introduce a new function u(x) = ψ(x) + c

2x which solves
−|∂xu|2 = a(x)− ρ− c2

4 , x ∈ R,

maxx∈R u(x)− c
2x = 0,

−A1|x|2 −A2 ≤ u(x) ≤ c1 − c2|x|+ c
2x,

(1.18)

where the constants A1, A2, c1, c2 are the same as in (1.13).
The main idea comes from the fact that any viscosity solution to a Hamilton-Jacobi equation of type (1.18) but
in a bounded domain Ω can be uniquely determined by its values on the boundary points of Ω and by its values
at the maximum points of the RHS of the Hamilton-Jacobi equation [24].

Finally, in our last result we provide an asymptotic expansion for the Floquet eigenvalue which leads to an
asymptotic expansion for the critical speed c∗ε and the average size of the population ρ̄ε.

Theorem 9 (Asymptotic expansions)
Let λc,ε be the principal eigenvalue of problem (1.14) and assume (H1), (H2b) and (Hc). Assume in addition

that c < lim inf
ε→0

c∗ε, then the following asymptotic expansions hold

ρε = −λc,ε = a(xm)− c2

4
− ε
√
−axx(xm)/2 + o(ε), (1.19)

c∗ε = 2
√
a(xm)− ε

√
−axx(xm)

2 a(xm)
+ o(ε). (1.20)

Note that the expansion for the Floquet eigenvalue is indeed related to the harmonic approximation of the
ground state energy of the Schrödinger operator [18]. However, here we have a parabolic, non self-adjoint op-
erator.
In Section 6 we study an illuminating biological example and show thanks to the above result that the fluctua-
tions of the environment may help the population to follow the environmental shift.

The paper is organized as follows: in Section 2 we deal with the long time study of the problem and prove the
preliminary results Proposition 1 and Proposition 4. Next in Section 3 we provide an asymptotic analysis of the
problem considering small effect of mutations and we prove Theorem 6. In Section 4, we obtain the uniqueness
of the viscosity solution to (1.13) and prove Theorem 7. Section 5 is devoted to the approximations of the
principal eigenvalue (average size of the population) and the critical speed, given in Theorem 9. In Section 6
we study a biological example and discuss the effect of the fluctuations on the critical speed of survival and on
the phenotypic distribution of the population. Finally, in Appendix A and B, we provide some technical results
and computations.
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2 The convergence in long time

In this section we provide the proofs of Proposition 1 and Proposition 4. To this end, we make a change of
variable which allows us to transform the problem into a parabolic equation without the drift term.
Let m(t, x) satisfy the linearized problem (1.3), we denote P0 and Pc the linear operators associated to problem
(1.3), for c̃ = 0 and c̃ > 0 respectively, that is:

P0ω := ∂tω − σ∂xxω − a(e(t), x)ω, Pcω := ∂tω − c̃∂xω − σ∂xxω − a(e(t), x)ω.

In Subsection 2.1, we introduce the Liouville transformation and provide a relation between P0 and Pc which
allows us to obtain a relationship between c̃ and λc̃,σ. Next in Subsection (2.2) and (2.3) we provide the proofs
of Proposition 1 and Proposition 4 respectively.

2.1 Liouville transformation

Here, we reduce the parabolic equation (1.2) to a parabolic problem without the drift term via a Liouville
transformation (see for instance [7, 8] where this transformation is used for an elliptic problem).
Let M(t, x) be given by

M(t, x) := m(t, x)e
c̃

2σ x, (2.1)

for m(t, x) the solution of the linearized problem (1.3), then M satisfies:

∂tM − σ∂xxM =
[
a(e(t), x)− c̃2

4σ

]
M.

We denote P̃ the linear operator associated to the above equation, i.e.

P̃ω := ∂tω − σ∂xxω − ac(e(t), x)ω,

where ac(e(t), x) =
[
a(e(t), x)− c̃2

4σ

]
.

We establish in the next lemma the relation between the principal eigenvalues associated to the operators P0,
Pc and P̃.

Lemma 10 Let λ(P,D) denote the principal eigenvalue of the operator P in the domain D, it holds

λc̃,σ = λ (Pc,R+ × R) = λ
(
P̃,R+ × R

)
.

Moreover, let λ0,σ = λ(P0,R+ × R), then λc̃,σ = λ0,σ + c̃2

4σ .

Proof. The proof follows from the definition of the eigenfunction and eigenvalue and the fact that

P̃ω =
(
Pc
(
ωe−

c̃
2σ x
))

e
c̃

2σ x.

�

2.2 Proof of Proposition 1

Proposition 1 can be proved following similar arguments as in the proof of Lemma 6 in [16]. Note that the
argument in [16] is based on an exponential separation result for linear parabolic equations in [21] that holds
for general linear operators of the form

ωt = L(t, x)ω, in [0,+∞)× R,

with L(t, x) being any time-dependent second-order elliptic operator in non-divergence form, i.e:

L(t, x)ω = aij(t, x)∂i∂jω +Bi(t, x)∂iω +A(t, x)ω,
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where the functions Bi, A ∈ L∞(R+ × R) and aij satisfies

aij(t, x)ξiξj ≥ α0|ξ|2, (t, x) ∈ R+ × R,

(see Section 9 in [21] for more details).
Here, we only provide the proof of the inequality (1.6) which is also obtained by an adaptation of the proof
of Lemma 6 in [16]. Let ãc(e(t), x) = ac(e(t), x) + λc̃,σ then pc is a positive periodic solution of the following
equation:

∂tpc − c̃∂xpc − σ∂xxpc = pcãc(e(t), x), in R× R. (2.2)

Note that we have defined pc in (−∞, 0] by periodic prolongation. We denote ‖pc‖L∞(R×R) = Γ and define:

ζ(t, x) = Γe−δ(t−t0) + Γe−ν(|x|−R0),

for some ν to be found later and δ, R0 given in (Hc). One can verify that

Γ ≤ ζ(t, x) if |x| = R0 or t = t0.

Furthermore if |x| > R0 or t > t0 evaluating in (2.2) shows:

∂tζ − c̃∂xζ −σ∂xxζ − ζãc(e(t), x) = Γe−δ(t−t0)(−δ− ãc(e(t), x)) + Γe−ν(|x|−R0)

(
c̃ν

x

|x|
− σν2 − ãc(e(t), x)

)
≥ 0,

since ãc(e(t), x) + c̃2

4σ = a(e(t), x) +λc̃,σ ≤ −δ thanks to assumption (Hc) and choosing ν conveniently such that
the inequality holds. Indeed, since −1 ≤ x

|x| ≤ 1, we have:

c̃ν
x

|x|
− σν2 − ãc(e(t), x) ≥ −c̃ν − σν2 + δ +

c̃2

4σ
≥ 0 for

−c̃−
√

4δσ + 2c̃2

2σ
≤ ν ≤ −c̃+

√
4δσ + 2c̃2

2σ
.

Thus ζ is a supersolution of (2.2) on:

Λ0 = {(t, x) ∈ (t0,∞)× R ; |x| > R0},

which dominates pc on the parabolic boundary of Λ0. Applying the maximum principle to ζ − pc, we obtain

pc(t, x) ≤ Γe−δ(t−t0) + Γe−ν(|x|−R0), |x| ≥ R0, t ∈ (t0,∞).

Taking the limit t0 → −∞ yields

pc(t, x) ≤ Γe−ν(|x|−R0), |x| ≥ R0, t < +∞,

in particular, for ν =
−c̃+

√
4δσ + 2c̃2

2σ
. We conclude that pc satisfies (1.6).

�

2.3 Proof of Proposition 4

The proof of Proposition 4, is closely related to the proof of Proposition 2 in [16] but we need to verify two
properties before applying the arguments in [16]. To this end we prove the following lemmas. The rest of the
proof follows from the arguments in [16].

Lemma 11 Let λc̃,σ be the principal eigenvalue of problem (1.4). Then, λc̃,σ < 0 if and only if c̃ < c̃∗σ.

Proof. Follows directly from the definition of c̃∗σ.

�
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Lemma 12 Assume (H1) and (H4) and let C3 = C2(σC2 + c̃) + d0 then the solution n(t, x) to equation (1.2)
satisfies:

n(t, x) ≤ exp (C1 − C2|x|+ C3t) , ∀(t, x) ∈ (0,+∞)× R.

Proof. We argue by a comparison principle argument. Define the function n̄(t, x) = exp (C1 − C2|x|+ C3t).
We prove that n ≤ n̄. One can verify that for C3 defined as in the formulation of the Lemma, we have the
following inequality a.e:

∂tn̄− c̃∂xn̄− σ∂xxn̄− [a(e(t), x)− ρ(t)] n̄ = e(C1−C2|x|+C3t)

[
C3 − σC2

2 + C2
cx

|x|
− a(e(t), x) + ρ(t)

]
≥ 0.

Moreover, we have for t = 0, n(0, x) ≤ n̄(0, x) thanks to assumption (H4). We can then apply a maximum
principle to d(t, x) = n̄(t, x)− n(t, x), in the class of L2 functions, and we conclude that:

0 ≤ d(t, x)⇒ n(t, x) ≤ n̄(t, x), ∀(t, x) ∈ (0,+∞)× R.

�

3 Regularity estimates

In this section, we prove Theorem 6. To this end we first provide some uniform bounds for ρε(t). Then, in
Subsection 3.2, we prove that ψ is locally uniformly bounded, Lipschitz continuous with respect to x and locally
equicontinuous in time. Finally in the last subsection we conclude the proof of Theorem 6 by letting ε go to
zero and describing the limits of ψε and ρε.

3.1 Uniform bounds for ρε

We have the following result on ρε.

Proposition 13 Assume (H1), (Hc) and let c̃ = εc with c < lim inf
ε→0

c∗ε. Then for all 0 < ε ≤ ε0, there exist

positive constants ρm and ρM such that:

0 < ρm ≤ ρε(t) ≤ ρM , ∀t ≥ 0. (3.1)

The proof of this result follows similar arguments as in [16]. For the convenience of the reader, we provide this
proof in Appendix A.

3.2 Regularity results for ψε

In this subsection we prove some regularity estimates on ψε which give the basis to prove the convergence of ψε
and ρε as ε→ 0 in Subsection 3.3. From the Hopf-Cole transformation (1.12) we deduce that ψε solves:

1

ε
∂tψε − ε∂xxψε =

∣∣∣∂xψε +
c

2

∣∣∣2 + a(e(t), x)− c2

4
− ρε(t), (t, x) ∈ [0,+∞)× R. (3.2)

We claim the following Theorem.

Theorem 14 Assume (H1), (H2a) and (Hc). Let ψε be a T−periodic solution to (3.2). Then the following
items hold:

(i) The sequence (ψε)ε is locally uniformly bounded; i.e.

−A1|x|2 −
c

2
x−A2 ≤ ψε ≤ c1 − c2|x|, ∀(t, x) ∈ R+ × R, (3.3)

for some positive constants A1, A2, c1 and c2 = − c
2 +

√
δ + c2

2 .
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(ii) Moreover, the sequence (φε =
√

2c1 − ψε)ε, is uniformly Lipschitz continuous with respect to x in (0,+∞)×
R.

(iii) Also, (ψε)ε is locally equicontinuous in time in [0, T ]× R and satisfies

|ψε(t, x)− ψε(s, x)| → 0 as ε→ 0, ∀ 0 ≤ s ≤ t ≤ T. (3.4)

In the next subsections we provide the proof of the lower bound in (3.3) and the uniform Lipschitz continuity
of φε. The proof of the other properties can be obtained by an adaptation of the arguments in [16]. For the
convenience of the reader we provide them in Appendix A.

3.2.1 Lower bound for ψε

To obtain the lower bound for ψε we use the bounds for a in (H1) and for ρε in (3.1) and we obtain for
D0 = d0 + ρM

∂tnε − cε∂xnε − ε2∂xxnε ≥ −D0nε.

Let n∗ε be the solution of the following Cauchy problem{
∂tn
∗
ε − cε∂xn∗ε − ε2∂xxn

∗
ε +D0n

∗
ε = 0,

n∗ε(0, x) = n0
ε,

we define N∗ε analogously to (2.1) by the Liouville transformation of n∗ε as follows

N∗ε (t, x) := n∗ε(t, x)e
c
2εx.

Then, N∗ε solves the heat equation {
∂tN

∗
ε − ε2∂xxN

∗
ε +D1N

∗
ε = 0,

N∗ε (0, x) = n0
ε(x)e

c
2εx,

for D1 = D0 + c2

4 . The solution to the latter equation is given explicitly by the Heat Kernel K,

N∗ε (t, x) = e−D1t (N∗ε (0, y) ∗K) =
e−D1t

ε
√

4πt

∫
R
N∗ε (0, y)e−

|x−y|2

4tε2 dy, t > 0.

Note that N∗ε (0, x) from its definition can be written as follows

N∗ε (0, x) :=
pcε(0, x)∫

R pcε(0, x)dx
ρε(0)e

c
2εx. (3.5)

We recall that pcε is uniquely determined once ‖pcε(0, x)‖L∞(R) = 1 is fixed. Then, one can choose xε such that
pcε(0, xε) = 1. From an elliptic-type Harnack inequality in a bounded domain we can obtain

pcε(t0, xε) ≤ sup
y∈B(xε,ε)

pcε(t0, y) ≤ Cpcε(t0, x), ∀(t0, x) ∈ [δ0, 2T ]×B(xε, ε), (3.6)

where δ0 is such that 0 < δ0 < T and C is a positive constant depending on δ0 and d0 (we refer to Appendix
A-Proof of upper bound, for more details on this inequality). We then use the T−periodicity of pcε to conclude
that the last inequality is satisfied for all t ∈ [0, T ].
From (1.6), (3.5) and (3.6) we deduce that

ε−1D2e
−D3

ε + c
2εx ≤ ρm

pε(0, x)e
c
2εx∫

R pε(0, x)dx
≤ N∗ε (0, x), ∀x ∈ B(xε, ε),

11



for some positive constants D2 and D3 depending on ‖pε‖L∞ , ρm, δ, and the constants of hypothesis (Hc).
Then, for all (t, x) ∈ (0,+∞)× R

N∗ε (t, x) ≥ D2

ε2
√

4πt
e−

D3+εD1t
ε

∫
B(xε,ε)

e
c
2εye−

|x−y|2

4tε2 dy

≥ D2|B(xε, ε)|
ε2
√

4πt
exp

{
−|x|

2 + (|xε|+ ε)2

2tε2
+
c

2

(xε
ε
− 1
)
− D3 +D1tε

ε

}
.

By the definition of n∗ε and the comparison principle we obtain that n∗ε(t, x) ≤ nε(t, x) and hence

nε(t, x) ≥ D2|B(xε, ε)|
ε2
√

4πt
exp

{
−|x|

2 + (|xε|+ ε)2

2tε2
+
c

2

(
xε − x
ε
− 1

)
− D3 +D1tε

ε

}
.

This, together with the definition of ψε, implies that

ε log

(
D2|B(xε, ε)|
ε2
√

4πt

)
− |x|

2 + (|xε|+ ε)2

2tε
+
c

2
(xε − x− ε)− (D3 +D1tε) ≤ ψε(t, x), ∀t ≥ 0.

In particular, we obtain that

ε log

(
D2|B(xε, ε)|
ε3/2
√

4πt

)
− |x|

2 + (|xε|+ ε)2

2t
+
c

2
(xε − x− ε)− (D3 +D1t) ≤ ψε

(
t

ε
, x

)
, ∀t ∈ [1, 1 + εT ] .

Note that xε is uniformly bounded in ε thanks to (1.6). Then we can conclude by using the periodicity of ψε.
We obtain a quadratic lower bound for ψε for all t ≥ 0; that is, there exist A1, A2 ≥ 0 and ε0 small enough
such that for all ε ≤ ε0,

−A1|x|2 −
c

2
x−A2 ≤ ψε(t, x), ∀t ≥ 0.

3.2.2 Lipschitz bounds

In this section we prove the Lipschitz bounds for ψε. To this end we use a Bernstein type method closely related
to the one used in [5, 16]. Let φε =

√
2c1 − ψε, for c1 given by (3.3), then φε satisfies

1

ε
∂tφε − c∂xφε − ε∂xxφε −

(
ε

φε
− 2φε

)
|∂φε|2 =

a(e(t), x)− ρε(t)
−2φε

.

Define Φε = ∂xφε, which is also T−periodic. We differentiate the above equation with respect to x and multiply
by Φε
|Φε| , i.e.,

1

ε
∂t|Φε|− c∂x|Φε|−ε∂xx|Φε|−2

(
ε

φε
− 2φε

)
Φε ·∂x|Φε|+

(
ε

φ2
ε

+ 2

)
|Φε|3 ≤

(a(e(t), x)− ρε(t)) |Φε|
2φ2

ε

− ∂xa · Φε
2φε|Φε|

.

From (3.3) we deduce that

√
c1 ≤ φε ≤

√
A1|x|2 +

c

2
x+A3, ∀ t ≥ 0, x ∈ R,

for A3 = A2 + 2c1. It follows that ∣∣∣∣2( ε

φε
− 2φε

)∣∣∣∣ ≤ A4|x|+A5,

for some positive constants A4 and A5. From here, we deduce for ϑ large enough

1

ε
∂t|Φε| − c∂x|Φε| − ε∂xx|Φε| −

(
A4|x|+A5

)∣∣Φε · ∂x|Φε|∣∣+ 2 (|Φε| − ϑ)
3 ≤ 0. (3.7)

12



Let TM > 2T and A6 to be chosen later, define now, for (t, x) ∈
(

0, TMε

]
× [−R,R]

Θε(t, x) =
1

2
√
tε

+
A6R

2

R2 − |x|2
+ ϑ.

We next verify that Θε is a strict supersolution of (3.7) in
(

0, TMε

]
× [−R,R]. To this end we compute

∂tΘε = − 1

4t
√
tε
, ∂xΘε =

2A6R
2x

(R2 − |x|2)2
, ∂xxΘε =

2A6R
2

(R2 − |x|2)2
+

8A6R
2|x|2

(R2 − |x|2)3
,

and then replace in (3.7) to obtain

1
ε∂tΘε − c∂xΘε − ε∂xxΘε −

(
A4|x|+A5

)
|Θε · ∂xΘε|+ 2 (Θε − ϑ)

3

= − 1
4εt
√
εt
− 2cA6R

2x
(R2−|x|2)2 − ε

[
2A6R

2

(R2−|x|2)2 + 8A6R
2|x|2

(R2−|x|2)3

]
−
(
A4|x|+A5

) (
1

2
√
εt

+ A6R
2

R2−|x|2 + ϑ
)

2A6R
2|x|

(R2−|x|2)2 + 2
(

1
2
√
εt

+ A6R
2

R2−|x|2

)3

≥ −ε
[

2A6R
2d

(R2−|x|2)2 + 8A6R
4

(R2−|x|2)3

]
−
(
A4R+A5

) (
1

2
√
εt

+ A6R
2

R2−|x|2 + ϑ
)

2A6R
3

(R2−|x|2)2

+ 3A6R
2

R2−|x|2

(
1

2tε + A6R
2

√
εt(R2−|x|2)

)
+ 2A6R

3

(R2−|x|2)2

(
A2

6R
3

R2−|x2| − c
)
,

where, for the inequality, we have used that |x| ≤ R.
One can verify that the RHS of the above inequality is strictly positive for R > 1, ε ≤ 1, and A6 >>

√
TM .

Therefore, Θε is a strict supersolution of (3.7) in
(

0, TMε

]
× [−R,R] and for ε ≤ 1.

We next prove that

|Φε(t, x)| ≤ Θε(t, x) in
(

0,
TM
ε

]
× [−R,R].

To this end, we notice that Θε(t, x) goes to +∞ as |x| → R or as t→ 0. Therefore, |Φε|(t, x)−Θε(t, x) attains

its maximum at an interior point of
(

0, TMε

]
× [−R,R]. We choose tmax ≤ TM

ε the smallest time such that the

maximum of |Φε|(t, x)−Θε(t, x) in the set (0, tmax]×[−R,R] is equal to 0. If such tmax does not exist, we are done.

Let xmax be such that |Φε|(t, x) − Θε(t, x) ≤ |Φε|(tmax, xmax) − Θε(tmax, xmax) = 0 for all (t, x) ∈ (0, tmax) ×
[−R,R]. At such point, we have

0 ≤ ∂t
(
|Φε| −Θε

)
(tmax, xmax), 0 ≤ −∂xx

(
|Φε| −Θε

)
(tmax, xmax),

|Φε|(tmax, xmax)∂x|Φε|(tmax, xmax) = Θε(tmax, xmax)∂xΘε(tmax, xmax).

Combining the above properties with the facts that |Φε| and Θε are respectively sub- and strict super-solution
of (3.7), we obtain that

(|Φε|(tmax, xmax)− ϑ)3 − (Θε(tmax, xmax)− ϑ)3 < 0⇒ |Φε|(tmax, xmax) < Θε(tmax, xmax),

which is in contradiction with the choice of (tmax, xmax). We deduce, then that

|Φε(t, x)| ≤ 1

2
√
εt

+
A6R

2

R2 − |x|2
+ ϑ for (t, x) ∈

(
0,
TM
ε

]
× [−R,R], ∀ R > 1.

We note that for ε < ε0 small enough we have TM
ε > 2T

ε > T
ε + T > T

ε . Letting R→∞ we deduce that

|Φε(t, x)| ≤ 1

2
√
εt

+A6 + ϑ ≤ 1

2
√
T

+A6 + ϑ for (t, x) ∈
[
T

ε
,
T

ε
+ T

]
× R.
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Finally we use the periodicity of Φε to extend the result for all t ∈ [0,+∞) and rewriting the result in terms of
φε we obtain for some positive constant A7

|∂xφε| ≤ A7, in [0,+∞)× R.

3.3 Derivation of the Hamilton-Jacobi equation with constraint

In this section we derive the Hamilton-Jacobi equation with constraint (1.13) using the regularity estimates in
Theorem 14.

3.3.1 Convergence along subsequences of ψε and ρε

According to section 3.2, {ψε} is locally uniformly bounded and equicontinuous, so by the Arzela-Ascoli Theorem
after extraction of a subsequence, ψε(t, x) converges locally uniformly to a continuous function ψ(t, x). Moreover
from (3.4), we obtain that ψ does not depend on t, i.e ψ(t, x) = ψ(x).
Furthermore, from the uniform bounds on ρε in (3.1) we obtain that |dρεdt | is also bounded. Then we apply the
Arzela-Ascoli Theorem to guarantee the locally uniform convergence along subsequences of ρε(t), to a function
%̃(t) as ε→ 0.

3.3.2 The Hamilton-Jacobi equation with constraint

Here we use a perturbed test function argument (see for instant [15]), in order to prove that, ψ(x) = limε→0 ψ(t, x)
is in fact a viscosity solution of the following Hamilton-Jacobi equation.

−
∣∣∣∂xψ +

c

2

∣∣∣2 = a(x)− ρ− c2

4
, (3.8)

where ρ = 1
T

∫ T
0
%̃(t)dt. We prove that ψ is a viscosity sub-solution and one can use the same type of argument

to prove that it is also a super-solution.

Let us define the auxiliary “cell problem”: ∂tφ = a(e(t), x)− %̃(t)− a(x) + ρ, (t, x) ∈ [0,+∞)× Rd,
φ(0, x) = 0,

φ : T − periodic.
(3.9)

This equation has a unique smooth solution, that we can explicitly write:

φ(t, x) = −t(a(x)− ρ) +

∫ t

0

(a(e(t), x)− %̃(t))dt.

Let ϕ ∈ C∞(R) be a test function and assume that ψ − ϕ has a strict local maximum at some point x0 ∈ R,
with ψ(x0) = ϕ(x0). We must prove:

−
∣∣∣∂xϕ(x0) +

c

2

∣∣∣2 − a(x0) +
c2

4
+ ρ ≤ 0. (3.10)

We define the perturbed test function Ψε(t, x) = ϕ(x) + εφ(t, x), such that ψε−Ψε attains a local maximum at
some point (tε, xε). We note that Ψε converges locally uniformly to ϕ as ε → 0 since φ is locally bounded by
definition, and hence one can choose xε such that xε → x0 as ε→ 0, (see Lemma 2.2 in [3]). Then Ψε satisfies:

1

ε
∂tΨε(tε, xε)− ε∂xxΨε(tε, xε)−

∣∣∣∂xΨε(tε, xε) +
c

2

∣∣∣2 − a(e(tε), xε) +
c2

4
+ ρε(tε) ≤ 0,
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since ψε is a solution of (3.2). The above line gives:

∂tφ(tε, xε)− ε∂xxϕ(xε)− ε2∂xxφ(tε, xε)−
∣∣∣∂xϕ(xε) + ε∂xφ(tε, xε) +

c

2

∣∣∣2 − a(e(tε), xε) +
c2

4
+ ρε(tε) ≤ 0.

Using (3.9), this last equation becomes:

−ε∂xxϕ(xε)− ε2∂xxφ(tε, xε)−
∣∣∣∂xϕ(xε) + ε∂xφ(tε, xε) +

c

2

∣∣∣2 + (ρε − %̃)(tε)− a(xε) + ρ+
c2

4
≤ 0. (3.11)

Next we pass to the limit as ε → 0. We know from Subsection 3.3.1 that ρε → %̃ locally uniformly as ε → 0.
Moreover φ is smooth with locally bounded derivatives with respect to x, thanks to its definition. Using these
arguments and letting ε→ 0 in (3.11) we obtain (3.10) which implies that ψ is a viscosity sub-solution of (3.8).

Furthermore, note that ψ is also bounded from above, by taking the limit as ε→ 0 in (3.3), i.e.,

ψ(x) ≤ c1 − c2|x|,

and attains its maximum. We claim that
max
x∈R

ψ(x) = 0.

Indeed, from the upper bound for ρε in (3.1), the definition of ψε in (1.12) and the continuity of ψ, we obtain
that ψ(x) ≤ 0. Moreover, from the locally uniform convergence of ψε to ψ, as ε→ 0, and (3.3) we deduce that
maxx∈R ψ(x) < 0 implies that ψε(x) < −β, for all x ∈ R and ε ≤ ε0 and some positive constant β. This is in
contradiction with the fact that ρε is bounded by below by a positive constant ρm (we refer to section 4.3 of
[16] for more details).

4 Uniqueness of the viscosity solution to (1.13) and explicit identi-
fication

In this section we provide the proof of Theorem 7. To this end, we first derive an equivalent Hamilton-Jacobi
equation to (1.13) by mean of the Liouville transformation and prove some properties of the eigenvalue λc,ε. We
then prove the uniqueness of the viscosity solution to such equivalent equation. This allows us to establish the
uniqueness of the solution to (1.13) and to identify it explicitly. Finally, we provide the proof of the convergence
of nε to the Dirac mass given by (1.16).

4.1 Derivation of an equivalent Hamilton-Jacobi equation

In this subsection, we define a new function

u(x) := ψ(x) +
c

2
x, (4.1)

which solves the following Hamilton-Jacobi equation in the viscosity sense

−|∂xu|2 = a(x)− ρ− c2

4
. (4.2)

Note that the transformation (4.1) is indeed analogous to the Liouville transformation presented in Section 2.1.
We have the following boundedness result for u.

Lemma 15 The function u(x), defined by (4.1), is locally bounded and satisfies

−A1|x|2 −A2 ≤ u(x) ≤ c1 − c2|x|+
c

2
x, ∀ x ∈ R, (4.3)

where the constants A1, A2, c1 and c2 are given in (3.3).
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Proof. From Subsection 3.2 we got uniform bounds for ψε in (3.3), which lead to bounds on ψ. That is

−A1|x|2 −
c

2
x−A2 ≤ ψ(x) ≤ c1 − c2|x|.

Then, the bounds (4.3) follow directly from the definition of u(x) in (4.1).

�

Therefore, we conclude that the function u satisfies (1.18). In Subsection 4.3 we will prove a uniqueness result
for (1.18) which will imply the uniqueness of ψ, the solution to (1.13).

4.2 Some properties of the eigenvalue λc,ε

In this subsection we prove Theorem 7-(i). We also establish that λc,ε is uniformly bounded above and below
by negative constants and derive some properties of the limit, along subsequences, of λc,ε.

From the equation (1.14) we can integrate in R, divide by
∫
R pcε(t, x)dx and integrate again in t ∈ [0, T ] and

obtain

λc,ε = − 1

T

∫ T

0

Qcε(t)dt. (4.4)

where Qcε(t) is defined analogously to (1.8) from the periodic eigenfunction pcε. We next use the relationship
between the solution nε to (1.11) and the eigenfunction pcε to obtain the first claim of Theorem 7. Indeed, from
equation (1.11) after an integration in x ∈ R we obtain:

dρε(t)

dt
=

∫
R
nε(t, x)a(e(t), x)dx− ρ2

ε(t).

We divide by ρε(t) and use the relation between nε and pcε inside of the integral, that is:

ρε(t) +
d

dt
ln ρε(t) =

∫
R pcε(t, x)a(e(t), x)dx∫

R pcε(t, y)dy
.

Note that the RHS is exactly Qcε. We then integrate in [0, T ] and using (4.4) and the T−periodicity of ρε we
deduce that

ρε = −λc,ε,

We next prove that λc,ε is uniformly bounded above and below by negative constants. Combining 4.4 and (H1)
we obtain that

−d0 ≤ λc,ε.

Moreover, since we are in the case c < lim inf
ε→0

c∗ε, we can find a positive constant τ such that for every ε ≤ ε0,

with ε0 small enough we have c < c∗ε − τ . Then from the definition of c∗ε we deduce that

c < 2
√
−λ0,ε2 − τ = 2

√
−λc,ε +

c2

4
− τ,

which leads to

λc,ε < −
cτ

2
− τ2

4
,

and hence, for λm = cτ
2 + τ2

4 we obtain

λc,ε ≤ −λm < 0. (4.5)
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Thus (λc,ε)ε is uniformly bounded above and below by negative constants. This implies that we can extract
a subsequence, still called λc,ε, which converges as ε → 0 to some negative value λ1. Moreover passing to the
limit as ε→ 0 in assumption (Hc) we obtain, for all such limit values λ1,

a(x) ≤ −δ − λ1, ∀|x| ≥ R0. (4.6)

Note that passing to the limit of ρε as ε→ 0 along the same subsequence, we obtain that

ρ = −λ1. (4.7)

4.3 Uniqueness and explicit formula for u(x)

In this subsection we prove the uniqueness of the viscosity solution of the Hamilton-Jacobi equation (1.18). To
this end we consider the Hamilton-Jacobi equation as follows

−|∂xu|2 = h(x), x ∈ Ω, (4.8)

where h ∈ C1(R). Note that this corresponds to our problem for h(x) = h̄(x) := a(x)− ρ− c2

4 .
We divide the proof of the uniqueness result into several steps. We first prove that, in the case where Ω is an
open bounded domain and h < 0 in Ω, a viscosity solution to (4.8) can be uniquely determined by its values
on the boundary of Ω. We then use this property and (4.3) to prove that in our problem it is not possible that
h̄(x) < 0 for all x ∈ R. We prove indeed that max h̄(x) = 0 and this maximum is attained only at the point
xm. Finally we use these properties to conclude that u is indeed uniquely determined by an explicit formula.

Step 1: If h < 0 and Ω is bounded then the viscosity solution to (4.8) is uniquely determined
by its values on the boundary of Ω. Suppose that h(x) < 0, for every x ∈ Ω. For this problem we obtain
uniqueness of the viscosity solution thanks to a representation formula for the function u. Indeed, for Ω bounded
we define L(x, y) as follows

L(x, y) = sup

{∫ T0

0

−
√
−h(ξ(t))dt/(T0, ξ) such that ξ(0) = x, ξ(T0) = y, ξ(t) ∈ Ω,∀t ∈ [0, T0],

∣∣∣∣dξdt
∣∣∣∣ ≤ 1 a.e in [0, T0]

}
,

and in [24]-Chapter 5 the following is proved.

Proposition 16 Assume that h(x) < 0, ∀x ∈ Ω, with Ω a bounded domain. The function

u = inf
y∈∂Ω

[ϕ(y) + L(x, y)],

is the unique viscosity solution of

|Du| =
√
−h(x) in Ω; u = ϕ on ∂Ω.

Step 2: maxx∈R h̄(x) = h̄(xm) = 0 and the maximum is only attained at this point. We assume in
the contrary that maxx∈R h̄(x) < 0. We consider Ω = BR′ = (−R′, R′) for R′ > 0, to be chosen later. According
to step 1, we can express the value of the viscosity solution of (4.8) at the point 0, for h(x) = h̄(x), as follows:

u(0) = max

{
u(−R′)−

∣∣∣∣∫ 0

−R′

√
−h̄(y)dy

∣∣∣∣ ;u(R′)−

∣∣∣∣∣
∫ R′

0

√
−h̄(y)dy

∣∣∣∣∣
}
.

Note that thanks to (4.6) and (4.7), we obtain that√
δ +

c2

4
≤
√
−h̄(y), ∀|y| ≥ R0.
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We deduce that, for all R′ > R0,∫ 0

−R′

√
−h̄(y)dy ≥

√
δ +

c2

4
(R′ −R0), and

∫ R′

0

√
−h̄(y)dy ≥

√
δ +

c2

4
(R′ −R0).

Next we combine the above inequalities with the third line of (1.18) to obtain

u(0) ≤ max

{
c1 −R′

√
δ +

c2

2
− (R′ −R0)

√
δ +

c2

4
; c1 + cR′ −R′

√
δ +

c2

2
− (R′ −R0)

√
δ +

c2

4

}
,

for c1 given in (1.18). This implies that, taking R′ arbitrarily large, u(0) is arbitrarily small which is a contra-
diction. Therefore the assumption on h̄(x) of being strictly negative in Ω is false.
We have proved that h̄(x) vanishes at some point x ∈ R. Note also from (4.2) that

ā(x)− ρ̄− c2

4
≤ 0,

and maxx∈R h̄(x) is attained at the unique maximum point of ā, which is xm.

Step 3: Identification of u in R. We now prove that the solution u is uniquely determined by its value
at the maximum point of h̄(x). That is, for all x ∈ R

u(x) = −
∣∣∣∣∫ x

xm

√
−h̄(y)dy

∣∣∣∣+ u(xm). (4.9)

To this end we choose 0 < R, and 0 < R′ such that R << R′ and we consider the domain BR′ = [−R′, xm] ∪
[xm, R

′]. Note that h̄ < 0 in the sets (−R′, xm) and (xm, R
′). We can thus apply Proposition 16 in these

domains:

u(x) = max

{
u(−R′)−

∣∣∣∣∫ x

−R′

√
−h̄(y)dy

∣∣∣∣ ;u(xm)−
∣∣∣∣∫ x

xm

√
−h̄(y)dy

∣∣∣∣ .} , ∀x ∈ (−R, xm),

u(x) = max

{
u(R′)−

∣∣∣∣∫ x

R′

√
−h̄(y)dy

∣∣∣∣ ;u(xm)−
∣∣∣∣∫ x

xm

√
−h̄(y)dy

∣∣∣∣ .} , ∀x ∈ (xm, R),

We next prove the following inequalities for R′ large enough,∣∣∣∣∫ x

xm

√
−h̄(y)dy

∣∣∣∣− u(xm) ≤
∣∣∣∣∫ x

−R′

√
−h̄(y)dy

∣∣∣∣− u(−R′), ∀x ∈ (−R, xm),

∣∣∣∣∫ x

xm

√
−h̄(y)dy

∣∣∣∣− u(xm) ≤
∣∣∣∣∫ x

R′

√
−h̄(y)dy

∣∣∣∣− u(R′), ∀x ∈ (xm, R).

and combine them with the above lines to obtain (4.9) for all x ∈ [−R,R]. Since R is arbitrary we thus obtain
(4.9).
Suppose that xm < x < R. We prove the second inequality (the first one follows from an analogous argument).
We claim that, for R′ large enough

−
∫ x

xm

√
−h̄(y)dy + u(xm) +

∫ R′

x

√
−h̄(y)dy − u(R′) ≥ 0.

Indeed, for x ∈ [xm, R] we have

−
∫ x

xm

√
−h̄(y)dy ≥ −

∫ R

xm

√
−h̄(y)dy. (4.10)
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Moreover, from the upper bound for u in (4.3) we obtain for all x ∈ BR′(xm),

u(x) ≤ c1 − c2|x|+
c

2
x, ⇒ u(R′) ≤ c1 +

c

2
R′. (4.11)

Furthermore, following similar arguments as in the previous step we obtain that:√
−h̄(y) ≥

√
δ +

c2

4
, ∀y ∈ (R0, R

′). (4.12)

Finally, putting together (4.10), (4.11) and (4.12) we obtain:

−
∫ x

xm

√
−h̄(y)dy+u(xm)+

∫ R′

x

√
−h̄(y)dy−u(R′) ≥ −

∫ R

xm

√
−h̄(y)dy+u(xm)+(R′−R0)

√
δ +

c2

4
− c

2
R′−c1 ≥ 0,

for R′ large enough.

Step 4: Uniqueness of u. We finally determine the value of u at xm which leads to the uniqueness and
an explicit formula for u thanks to (4.9).
Replacing the value of h in (4.9), we obtain

u(x) = u(xm)−

∣∣∣∣∣
∫ x

xm

√
ρ+

c2

4
− a(y)dy

∣∣∣∣∣ , ∀x ∈ R.

This directly implies that u is in fact a classical solution for x ∈ R which attains its maximum at x = xm. We
also recall the second property in (1.18), that is

max
x∈R

u(x)− c

2
x = 0.

We denote the set of maximum points of u(x)− c
2x by X∗, i.e

X∗ := {x∗ ∈ R such that u(x∗)− c

2
x∗ = 0}.

Let x∗ ∈ X∗, we evaluate the above formula of u at x∗ in order to obtain an expression for u(xm). This implies

u(x) =
c

2
x∗ +

∣∣∣∣∣
∫ x∗

xm

√
a(xm)− a(y)dy

∣∣∣∣∣−
∣∣∣∣∫ x

xm

√
a(xm)− a(y)dy

∣∣∣∣ , ∀x ∈ R.

Moreover, we have

u(xm)− c

2
xm ≤ u(x∗)− c

2
x∗ = 0,

which implies that
c

2
(x∗ − xm) ≤ 0,

and hence x∗ ≤ xm. Note also that we have a(xm) = ρ + c2

4 from step 2 and ā(x∗) = ρ̄ thanks to (1.13).
Combining these properties with assumption (H3) it follows that x∗ = x, and hence u is uniquely determined.
As a consequence we obtain the explicit formula (1.15) for ψ(x). This ends the proof of Theorem 7-(ii).

4.4 Convergence to the Dirac mass

We deal in this subsection with the result for the convergence of nε, that is Theorem 7-(iii).

Call fε(t, x) =
nε(t, x)

ρε(t)
, then fε is uniformly bounded in L∞(R+, L

1(R)). Next, we fix t ≥ 0, and we prove that

fε(t, ·), converges, along subsequences, to a measure, as follows

fε(t, ·) ⇀ δ(· − x̄) as ε→ 0,

19



weakly in the sense of measures.
Indeed, we already know that

max
x∈R

ψ(x) = ψ(x̄) = 0 and ψ(x) ≤ c1 − c2|x|,

for x̄ given in Theorem 7. This implies that for any ζ > 0, there exists β > 0 such that ψ(x) ≤ −β for every
x ∈ R \ [x̄− ζ, x̄+ ζ].
We denote O = R \ [x̄− ζ, x̄+ ζ] and choose χ ∈ Cc(O), such that supp χ ⊂ K, for some compact set K, then
it follows that ∣∣∣∣∫

O
fε(t, x)χ(x)dx

∣∣∣∣ ≤ 1

ρm

∫
O
e
ψε(t,x)

ε |χ(x)|dx ≤ 1

ρm

∫
K
e
ψε(t,x)

ε |χ(x)|dx.

From the locally uniform convergence of ψε, to ψ(x), we obtain that there exists ε0 > 0 such that ∀ε < ε0,
ψε(t, x) ≤ −β2 , ∀x ∈ K, and hence∫

K
e
ψε(t,x)

ε |χ(x)|dx ≤
∫
K
e−

β
2ε |χ(x)|dx→ 0 as ε→ 0,

since χ is bounded in K. Therefore, thanks to the uniform L1 bound of fε, we obtain that fε converges weakly
in the sense of measures and along subsequences to µδ(x − x̄) as ε → 0. Then to prove that in fact, µ = 1 we
can proceed as in Section 4.3 in [16].

4.5 Identification of the limit of ρε

In order to identify the limit of ρε we first write thanks to Proposition 4 and Proposition 2 the following explicit
expression for ρε:

ρε(t) =

1− exp

[
−
∫ T

0

Qcε(s)ds

]

exp

[
−
∫ T

0

Qcε(s)ds

]∫ t+T

t

exp

[∫ s

t

Qcε(θ)dθ

]
ds

, (4.13)

where Qcε is defined analogously to (1.8), using the periodic eigenfunction pcε of problem (1.14).

We then compute the limit of Qcε as ε→ 0. We know that pcε(t, x) =
nε(t, x)

ρε(t)

∫
R
pcε(t, y)dy. Replacing pcε by

this quantity in the formula for Qcε we obtain

Qcε(t) =

∫
R
a(e(t), x)pcε(t, x)dx∫

R
pcε(t, x)dx

=

∫
R
a(e(t), x)

nε(t, x)

ρε(t)

∫
R
pcε(t, y)dydx∫

R
pcε(t, x)dx

=

∫
R
a(e(t), x)nε(t, x)dx

ρε(t)
.

From the previous subsection we deduce that:

lim
ε→0

Qcε(t) = lim
ε→0

∫
R
fε(t, x)a(e(t), x)dx = a(e(t), x̄).

Finally we can pass to the limit in the expression (4.13) for ρε, to obtain the following explicit formula for %̃

%̃(t) =

1− exp

[
−
∫ T

0

a(s, x̄)ds

]

exp

[
−
∫ T

0

a(s, x̄)ds

]∫ t+T

t

exp

[∫ s

t

a(θ, x̄)dθ

]
ds

,

which is in fact the unique periodic solution of the equation (1.17) thanks to Proposition 2. Therefore using
the convergence result for ρε we deduce finally (1.16) and this ends the proof of Theorem 7.
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5 Approximations of the eigenvalue

In this section we prove Theorem 9, i.e., the asymptotic expansions (1.19) and (1.20). Note that the first
equality in (1.19) has been already obtained in Section 4.2.
To this end we develop an asymptotic approximation of order ε of the eigenvalue λc,ε given by the eigenvalue
problem (1.14). To obtain such asymptotic expansion we construct an approximate eigenfunction p̃ε corre-

sponding to an approximate eigenvalue λ̃ε which solves an equation close to (1.14). We then use Proposition 1

to prove that λ̃ε approximates λc,ε with an error of order ε2.
To construct an approximate eigenfunction, we first try to approximate wε, obtained from the Hopf-Cole trans-
formation of pcε as follows:

pcε(t, x) =
1√
2πε

e
wε(t,x)

ε .

One can verify that wε solves:

1

ε
∂twε − ε∂xxwε =

∣∣∣∂xwε +
c

2

∣∣∣2 + a(e(t), x) + λc,ε −
c2

4
. (5.1)

We can obtain similar bounds for wε as for ψε, which guarantee the convergence along subsequences of wε
to certain function w = w(x), which is in fact the limit of the whole sequence wε, and satisfies the following
Hamilton-Jacobi equation in the viscosity sense

−
∣∣∣∂xw +

c

2

∣∣∣2 = a(x) + λ1 −
c2

4
. (5.2)

Remark 17 Note that in order to obtain the limit equation (5.2) we can argue exactly as for ψε in Section
3.3.2, by a ”perturbed test function” argument, (see also [16]).

Note that, thanks to theorems 6 and 7, λ1 = −ρ and ψ(x) is a solution to (5.2). We then, write (formally)

wε(t, x) = ψ(x) + εφ(t, x) + ε2ω(t, x) + o(ε2) and λc,ε = −ρ+ ελ2 + o(ε), (5.3)

for some T−periodic functions φ and ω, and we construct the following approximated eigenpair:

ψ̃ε = ψ + εφ and λ̃ε = −ρ+ ελ2.

We then substitute this pair (ψ̃ε, λ̃ε) into (5.1) and obtain:

∂tφ− cψx − cε∂xφ− εψxx − ε2∂xxφ = |ψx + ε∂xφ|2 + a(e(t), x)−ρ+ ελ2 + o(ε),

where the notations ψx and ψxx correspond respectively to the first and second derivative of ψ.
Regrouping the terms with similar powers of ε we obtain the following system for φ,

∂tφ =
∣∣∣ψx +

c

2

∣∣∣2 + a(e(t), x)− c2

4
−ρ,

−ψxx = [2ψx + c]
1

T

∫ T

0

∂xφ(t, x)dt+ λ2.

(5.4)

We remark that the previous system has a unique solution φ up to addition by a constant. Indeed, from equation
(1.13) we obtain

∂tφ = a(e(t), x)− ā(x).

Integrating in [0, t] leads to

φ(t, x) = φ(0, x) +

∫ t

0

a(τ, x)dτ − tā(x),
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and the value of φ(0, x) can be obtained from the second equation in (5.4) once we fix φ(0, xm). Note that here
we use the fact that 2ψx + c vanishes only at the point xm.

We now define p̃ε(t, x) := 1√
2πε

e
ψ̃ε(t,x)

ε , and use the system (5.4), to obtain the equality:

Pεp̃ε − λ̃εp̃ε = −ε2
(
|∂xφ|2 + ∂xxφ

)
p̃ε, (5.5)

for Pε the following parabolic operator

Pεp = ∂tp− cε∂xp− ε2∂xxp− a(e(t), x)p.

We denote
λε+ = λ̃ε + ε2K, and λε− = λ̃ε − ε2K,

with
K = ‖|∂xφ|2 + ∂xxφ‖L∞ , (5.6)

where the well definition of K is guaranteed by the next lemma which is proved in the next subsection.

Lemma 18 The constant K given in (5.6) is well defined. Moreover the function φ computed above solves (5.4)
with λ2 =

√
−āxx(xm)/2.

We then deduce from (5.5) that

p̃ελε− ≤ ∂tp̃ε − cε∂xp̃ε − ε2∂xxp̃ε − a(e(t), x)p̃ε ≤ p̃ελε+ .

We next define the functions

qε(t, x) = p̃ε(t, x)e−tλε− , q
ε
(t, x) = p̃ε(t, x)e−tλε+ .

One can verify that qε and q
ε

are super- and sub-solution of the linear problem (1.3) with σ = ε2 and c̃ = cε,
that is

∂tqε − cε∂xqε − ε
2∂xxqε ≤ qεa(e(t), x),

∂tqε − cε∂xqε − ε2∂xxqε ≥ qεa(e(t), x).

We then apply a Comparison Principle and obtain that the solution qε(t, x) to the following linear problem{
∂tqε − cε∂xqε − ε2∂xxqε = qεa(e(t), x),
qε(0, x) = p̃ε(0, x),

satisfies
q
ε
(t, x) ≤ qε(t, x) ≤ qε(t, x), ∀(t, x) ∈ R+ × R.

From the proof of Proposition 1 in Section 2.2 (see equation (1.7)), applied to the case σ = ε2 and c = cε we
know that qε converges exponentially fast as t → +∞ to the periodic eigenfunction in (1.14), (see also [21]);
that is, we can write for some positive constants α and β,

‖qεetλc,ε − αpcε‖L∞ ≤ e−βt. (5.7)

We recall that qεe
tλc,ε can indeed be written as

qεe
tλc,ε = q̃ε,1 + q̃ε,2,

with q̃ε,1(t, ·) ∈ span{pcε(t, ·)}, q̃ε,2 → 0 exponentially fast and∫
R
q̃ε,2(t, x)p∗cε(t, x)dx = 0,
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where p∗cε is the principal eigenfunction to the adjoint problem

−∂tp∗cε + cε∂xp
∗
cε − ε2∂xxp

∗
cε = (a(e(t), x) + λc,ε)p

∗
cε,

(see Theorem 2.2 in [21] and the proof of Lemma 6 in [16]). The positivity of α is then derived from the fact
that qε(0, x) and p∗cε are positive functions.
On the one hand equation (5.7) implies that,

0 ≤ p̃εe(−λε++λc,ε)t ≤ αpcε + e−βt.

Since pcε and p̃ε are time-periodic functions, then necessarily

λc,ε − λε+ ≤ 0,

otherwise we get a contradiction as t→ +∞. Therefore

λc,ε − λ̃ε ≤ Kε2, (5.8)

where K is defined in (5.6).
On the other hand, from (5.7) we obtain

p̃εe
(−λε−+λc,ε)t ≥ αpcε − e−βt.

Note that if λc,ε − λε− ≤ 0 we obtain from the T−periodicity of the eigenfunctions, as t→ +∞, that pcε ≤ 0,
which is also a contradiction. We deduce that

λc,ε − λε− ≥ 0.

Therefore we have

λc,ε − λ̃ε ≥ −Kε2. (5.9)

Combining both inequalities (5.8) and (5.9) we write∣∣λc,ε − (−ρ+ ελ2)
∣∣ ≤ Kε2,

which leads thanks to Theorem 7-(ii) and Lemma 18 to an approximation for the eigenvalue of order ε2 as
follows:

λc,ε = −a(xm) +
c2

4
+ ε
√
−āxx(xm)/2 + o(ε).

The approximation (1.20) for the critical speed c∗ε can be derived from the above approximation and (1.10).
Indeed, from (1.10) and the definition of c∗ε we obtain

c∗ε = 2

√
ā(xm)− ε

√
− āxx(xm)

2
+ o(ε) = 2

√
ā(xm)− ε

√
− āxx(xm)

2 ā(xm)
+ o(ε).

5.1 Boundedness of K

In this subsection we prove Lemma 18. We provide the proof in several steps.
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Step 1: |∂xφ| is bounded. An integration in [0, T ] of the first equation in (5.4) gives us the already known
equation for ψ in (3.8). This allows us to rewrite the equation as follows:

∂tφ = a(e(t), x)− a(x)⇒ ∂xφ(t, x) = ∂xφ(0, x) +

∫ t

0

ax(e(τ), x)dτ − tax(x), (5.10)

where ax and ax denote the derivatives with respect to x of a(e(t), x) and a(x) respectively. This implies that
in order to bound ∂xφ we just need to bound the derivative of φ at point t = 0 since a(e(t), x) ∈ L∞(R+, C

3(R)).

Then from the second equation in (5.4) we obtain:

1

T

∫ T

0

∂xφ(t, x)dt =
−ψxx(x) + ψxx(xm)

2ψx(x) + c
, (5.11)

if the last formula is well defined, i.e., if all the derivatives exist.
Note that, an integration for t ∈ [0, T ] in the equation (5.10) leads to, (after dividing by T )

1

T

∫ T

0

∂xφ(t, x)dt = ∂xφ(0, x) +
1

T

∫ T

0

∫ t

0

ax(e(τ), x)dτdt− T

2
ax(x),

since ∂xφ(0, x) does not depend on t. We then deduce from the last formula and (5.11)

∂xφ(0, x) =
−ψxx(x) + ψxx(xm)

2ψx(x) + c
+G(x),

where

G(x) = − 1

T

∫ T

0

∫ t

0

ax(e(τ), x)dτdt+
T

2
ax(x), (5.12)

is a regular function. We next prove that the derivatives involved in (5.11) exist. To this end we claim the
following technical result.

Lemma 19 The function ψ(x) is twice differentiable for every x ∈ R and

ψxx(x) =



− ax(x)

2
√
a(xm)− a(x)

, x < xm,

−
√
−axx(xm)/2, x = xm,

ax(x)

2
√
a(xm)− a(x)

, x > xm.

Proof of Lemma 19
Indeed, from the explicit formula (1.15) we differentiate and obtain:

ψx(x) =

 −
c
2 +

√
a(xm)− a(x), x < xm,

− c
2 , x = xm,

− c
2 −

√
a(xm)− a(x), x > xm.

We next compute

lim
x→x+

m

ψx(x)− ψx(xm)

x− xm
= lim
x→x+

m

−
√
ā(xm)− ā(x)

x− xm
= lim
x→x+

m

−
√
f(x)

x− xm
,

where we have denoted f(x) = a(xm)− a(x). We write a Taylor expansion of f around x = xm, i.e.:

f(x) = −1

2
āxx(xm)(x− xm)2 − 1

6
āxxx(xm)(x− xm)3 + o((x− xm)3),
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since f(xm) = 0 and xm is a maximum point. It implies that:

lim
x→x+

m

ψx(x)− ψx(xm)

x− xm
= lim
x→x+

m

āx(x)

2
√
ā(xm)− ā(x)

= −
√
−axx(xm)/2.

Note that xm being a maximum point, a(xm) ≥ a(x), ∀x ∈ R and axx(xm) ≤ 0. Following similar arguments
one can prove that

lim
x→x−m

ψx(x)− ψx(xm)

x− xm
= lim
x→x−m

−āx(x)

2
√
ā(xm)− ā(x)

= −
√
−axx(xm)/2.

�

We pursue with the proof of Lemma 18.
By substituting the derivatives of ψ in (5.11) we obtain for every x 6= xm:

∂xφ(0, x) = G(x) +


ax(x)−

√
−2axx(xm)(a(xm)− a(x))

4(a(xm)− a(x))
, x < xm,

ax(x) +
√
−2axx(xm)(a(xm)− a(x))

4(a(xm)− a(x))
, x > xm.

(5.13)

We can bound ∂xφ(0, x) near to x = xm. We write the limits as x → xm in (5.13) in terms of f and its
derivatives A = −axx(xm)/2 and B = −axxx(xm)/6, and compute:

lim
x→x∓m

∂xφ(0, x) = lim
x→x∓m

G(x) + lim
x→x∓m

−f ′(x)∓ 2
√
A
√
f(x)

4f(x)
, (5.14)

if both limits exist. Note that from the definition of G in (5.12) we deduce that the first limit in (5.14) exists
and is equal to G(xm). We, then, only need to compute the second one to guarantee the existence of ∂xφ(0, xm).
We compute both lateral limits separately:

lim
x→x−m

−f ′(x)− 2
√
A
√
f(x)

4f(x)

= lim
x→x−m

−[2A(x− xm) + 3B(x− xm)2 + o((x− xm)2)]− 2A|x− xm|
√

1 + B
A (x− xm) + o((x− xm))

4 (A(x− xm)2 +B(x− xm)3 + o((x− xm)3))

= lim
x→x−m

−2A(x− xm)− 3B(x− xm)2 + o((x− xm)2) + 2A(x− xm)(1 + B
2A (x− xm) + o((x− xm))

4 (A(x− xm)2 +B(x− xm)3 + o((x− xm)3))

= − B

2A
.

Following similar arguments one can prove that

lim
x→x+

m

−f ′(x)− 2
√
A
√
f(x)

4f(x)
= − B

2A
.

From this last computation and formula (5.13) we deduce that ∂xφ(t, x) is bounded for every (t, x) ∈ R+ × R
and

∂xφ(0, xm) = G(xm)− axxx(xm)

6axx(xm)
.
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Step 2: |∂xxφ| is bounded. Again in order to bound ∂xxφ(t, x) we can bound ∂xxφ(0, x) according to
formula (5.10). Note that far from xm this derivative exists and it is bounded because of the regularity of
a(e(t), x). To verify the boundedness near of xm we follow the same arguments as above for the first derivative,
that is, we denote f(x) = ā(xm)− ā(x) as before and we compute

lim
x→x∓m

∂xφ(0, x)− ∂xφ(0, xm)

x− xm
= lim
x→x∓m

G(x)−G(xm)

x− xm
+ lim
x→x∓m

−f ′(x)∓ 2
√
A
√
f(x) + 2B

A f(x)

4f(x)(x− xm)
, (5.15)

if both limits in the RHS exist and are bounded. Note that the first limit in the RHS of (5.15) exist and is
equal to G′(xm) because of the definition of G in (5.12) and the regularity of a(e(t), x). Moreover, using the
Taylor expansion for f(x) around x = xm the terms in the numerator of (5.15) can be developed as follows

f ′(x) = 2A(x− xm) + 3B(x− xm)2 +O((x− xm)3),

2
√
A
√
f(x) = 2A|x− xm|

√
1 + B

A (x− xm) +O((x− xm))2

= 2A|x− xm|
(
1 + B

2A (x− xm) +O((x− xm)2)
)
,

2B
A f(x) = 2B(x− xm)2 +O((x− xm)3).

We substitute into (5.15) and it holds that the terms remaining in the numerator are of order (x−xm)3. Indeed,

lim
x→x−m

−f ′(x)− 2
√
A
√
f(x) + 2B

A f(x)

4f(x)(x− xm)

= lim
x→x−m

−2A(x− xm)− 3B(x− xm)2 + 2A(x− xm)(1 + B
2A (x− xm)) + 2B(x− xm)2 + 2B2

A (x− xm)3 +O((x− xm)3)

4A(x− xm)3 + 4B(x− xm)4 +O((x− xm)4)

=
B2

2A2
,

and by an analogous procedure we can obtain

lim
x→x+

m

−f ′(x) + 2
√
A
√
f(x) + 2B

A f(x)

4f(x)(x− xm)
=

B2

2A2
.

We then conclude that the second derivative of φ at point (0, xm) is bounded and

∂xxφ(0, xm) = G′(xm) +
a2
xxx(xm)

18 a2
xx(xm)

.

Step 3: λ2 =
√
−āxx(xm)/2. We next evaluate the second equation in (5.4) at x = xm to obtain λ2 =√

−āxx(xm)/2.

�

6 An illustrating biological example

In this section we discuss the effect of the periodic fluctuations on the critical speed of survival and the phenotypic
distribution of the population for the following particular growth rate

a(e, x) = r − g(e)(x− θ(e))2, (6.1)
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where r is a positive constant corresponding to the maximal growth rate. The positive function g represents the
pressure of selection and the function θ represents the optimal trait, both being functions of the environmental
state e. As above, we assume that e(t) : R+ → E is a periodic function with period T = 1.

We compute the mean of a(e(t), x)

a(x) =

∫ 1

0

a(e(t), x)dt = r − x2ḡ + 2xg1 − g2,

where

ḡ =

∫ 1

0

g(e(t))dt, g1 =

∫ 1

0

g(e(t))θ(e(t))dt, g2 =

∫ 1

0

g(e(t))θ2(e(t))dt, (6.2)

and we observe that the maximum of a(x) is attained at xm = g1

ḡ , with

ā(xm) = r +
g2

1

ḡ
− g2.

In what follows, we try to characterize the phenotypic density nε, the solution to (1.11).
From Theorem 7-(ii) we obtain that ψ(x) the solution of the Hamilton-Jacobi equation (1.13) attains its

maximum at
x̄ = xm −

c

2
√
ḡ

=
g1

ḡ
− c

2
√
ḡ
.

Let ψ(x) be given by (1.15), then for this specific growth rate it can be written as follows

ψ(x) =
c

2

(
xm −

c

2
√
ḡ
− x
)

+

∫ xm

xm− c
2
√
ḡ

√
ḡ(y − xm)2dy −

∣∣∣∣∫ x

xm

√
ḡ(y − xm)2dy

∣∣∣∣
= −

√
ḡ

2

(
x+

c

2
√
ḡ
− g1

ḡ

)2

= −
√
ḡ

2
(x− x̄)

2
.

Moreover, the asymptotic expansions in Theorem 9 imply that

ρε = r +
g2

1

ḡ
− g2 −

c2

4
− ε
√
ḡ + o(ε), c∗ε = 2

√
r +

g2
1

ḡ
− g2 − ε

√√√√√ ḡ

r +
g2

1

ḡ
− g2

+ o(ε).

Furthermore, following the arguments in [16]-Section 5, we can also obtain an approximation of order ε for the
phenotypic mean µε and the variance σ2

ε of the population’s distribution, that is:

µε(t)=
1

ρε(t)

∫
R
x nε(t, x)dx =

g1

ḡ
− c

2
√
ḡ

+ εD(t) + o(ε), σ2
ε=

1

ρε(t)

∫
R
(x− µε)2nε(t, x)dx =

ε√
ḡ

+ o(ε),

where D(t) = ∂xφ(x̄, t) for φ the solution of the system (5.4). We refer the readers to the Appendix B for more
details on the derivation of the moments.
One can verify that for this growth rate we have

D(t) = −c
√
ḡ

(
t− 1

2

)
+ 2

∫ 1

0

∫ τ

0

g(e(s))(x̄− θ(e(s)))dsdτ − 2

∫ t

0

g(e(s))(x̄− θ(e(s)))ds.

Note that the phenotypic mean is 1−periodic since D(0) = D(1). Moreover 〈µε(t)〉 = g1

ḡ −
c

2
√
ḡ
+o(ε) since∫ 1

0
D(t)dt = 0.

We are now interested in comparing these quantities with the case where there is no fluctuations. To do
so we first consider a case where g(e) = g > 0 is constant and then a case where θ is constant.
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Case 1. g(e) = g constant. Note that, in such a case g1 = gθ̄ and g2 = g
∫ 1

0
θ2(e(t))dt with θ̄ =

∫ 1

0
θ(e(t))dt. We

compute

ρε,g(e)=g = r + g

[
θ̄2 −

∫ 1

0

θ2(e(t))dt

]
− c2

4
− ε√g + o(ε),

〈
µε,g(e)=g(t)

〉
= θ̄ − c

2
√
g

+ o(ε), (6.3)

c∗ε,g(e)=g = 2

√
r + g

[
θ̄2 −

∫ 1

0

θ2(e(t))dt

]
− ε
√

g

r + g
[
θ̄2 −

∫ 1

0
θ2(e(t))dt

] + o(ε).

We compare then, the sub-cases where e is constant or periodic.

a) If e(t) is a 1−periodic function then, θ̄2 <
∫ 1

0
θ2(e(t))dt and we obtain

ρε,p < r − c2

4
− ε√g + o(ε),

〈
µε,p(t)

〉
= θ̄ − c

2
√
g

+ o(ε), c∗ε,p < 2
√
r − ε

√
g

r
+ o(ε).

b) If e(t) ≡ e is constant, typically equal to the averaged state of the periodic environment above, (so

that θ ≡ θ(e) =: θe) we obtain in particular that θ̄2 =
∫ 1

0
θ2(e)dt and hence

ρε,c = r − c2

4
− ε√g + o(ε),

〈
µε,c(t)

〉
= θe −

c

2
√
g

+ o(ε), c∗ε,c = 2
√
r − ε

√
g

r
+ o(ε).

Thus, by keeping the pressure of selection constant, we deduce that, for ε small,

ρε,p ≤ ρε,c and c∗ε,p ≤ c∗ε,c.

This means that having an oscillating optimal trait is not beneficial for the population, in the sense that
the mean total size of the population decreases with respect to the case with a constant optimal trait and
the critical speed which leads the population to extinct is smaller in the periodic case. Note also from
(6.3) that in the periodic case the mean population size is reduced by the product of the selection pressure

and the variance of the optimal trait (that is
∫ 1

0
θ2(e(t))dt− θ̄2).

Case 2. θ(e(t)) = θ constant. Note that, in such a case g1 = ḡθ and g2 = ḡθ2. We compute

ρε,θ(e(t))=θ = r− c
2

4
−ε
√
ḡ+o(ε),

〈
µε,θ(e(t))=θ(t)

〉
= θ− c

2
√
ḡ

+o(ε), c∗ε,θ(e(t))=θ = 2
√
r−ε

√
ḡ

r
+o(ε).

We compare then, the sub-cases where e is constant or periodic.

a) If e(t) is a 1−periodic function then we obtain

ρε,p = r − c2

4
− ε
√
ḡ + o(ε),

〈
µε,p(t)

〉
= θ − c

2
√
ḡ

+ o(ε), c∗ε,p = 2
√
r − ε

√
ḡ

r
+ o(ε).

b) If e(t) ≡ e is constant, typically equal to the averaged state of the periodic environment above, (so
that g ≡ g(e) =: ge), we obtain

ρε,c = r − c2

4
− ε√ge + o(ε),

〈
µε,c(t)

〉
= θ − c

2
√
ge

+ o(ε), c∗ε,c = 2
√
r − ε

√
ge
r

+ o(ε).
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If we choose an oscillating selection pressure function g(e) which satisfies:

ḡ < g(e), (6.4)

which holds for instance if g(·) is a concave function, then we obtain that

ρε,c < ρε,p and c∗ε,c < c∗ε,p.

This means that the mean total size of the population increases with respect to the case with a constant
environmental state. Moreover, the critical speed above which the population goes extinct is larger in the
periodic case. This means that the periodic fluctuations can help the population to follow the environment
change.
Note that the condition (6.4) imposed to g(e(t)) is the opposite to the one imposed in [16] (equation 51
of Section 6.2), leading to more performant populations. There, it was proved that in presence of the
mutations and while the fluctuations act on the pressure of the selection (that is with a similar growth
rate, however with c = 0 and under the condition ḡ > g(e)), a fluctuating environment can select for a
population with smaller variance and in this way lead to more performant populations. What is beneficial
in a (in average) constant environment may indeed be disadvantageous in a changing environment.
Note also that in the present example under condition (6.4), we have∣∣∣〈µε,p(t)〉− θ∣∣∣ > ∣∣∣〈µε,c(t)〉− θ∣∣∣.
This means that even if the population can follow the environmental change in a better way by considering
a fluctuating environment, this population is less adapted.

Appendix A The proofs of some regularity estimates

A.1 Uniform bounds for ρε

Proof of Proposition 12.
From equation (1.11) integrating in x ∈ R and using assumption (H1) we obtain:

dρε
dt

=

∫
R
nε(t, x)[a(e(t), x)− ρε(t)]dx ≤ ρε(t)[d0 − ρε(t)].

This implies that
ρε(t) ≤ ρM := max(ρ0

ε, d0).

For the lower bound we use the explicit expression (4.13) for ρε, the solution of (1.9). We come back to equation
(4.4), which gives, thanks to (H1), (4.5) and (4.13) the following lower bound for ρε

0 < ρm :=
1

T
e−d0T

(
eλmT − 1

)
≤ ρε(t), ∀ t ≥ 0.

�

A.2 Upper bound for ψε: the proof of the r.h.s of (3.3)

We prove that ψε is bounded from above using the equation for nε. From (1.6), we have for pcε:

pcε(t, x) ≤ ‖pcε‖L∞e
− 1
ε

(
− c2 +

√
δ+ c2

2

)
(|x|−R0)

, ∀(t, x) ∈ [0,+∞)× R. (A.1)

Define qcε(t, x) = pcε(t, xε), which satisfies{
∂tqcε − c∂xqcε − ∂xxqcε = aε(e(t), x)qcε, in [0,+∞)× R,

0 < qcε(t, x) = qcε(t+ T, x)
(A.2)
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for aε(e(t), x) = a(e(t), xε) + λc,ε. Note that aε is uniformly bounded thanks to the L∞−norm of a. Moreover
we have the following bounds for λc,ε coming from (4.4),

−d0 ≤ λc,ε ≤ −λm.

We recall that pcε is uniquely determined once ‖pcε(0, x)‖L∞(R) = 1 is fixed. Then, one can choose xε such that
pcε(0, xε) = 1. Note also that qε is a nonnegative solution of (A.2) in the bounded domain (0, 2T )×B(xεε , 1).
Here we apply an elliptic-type Harnack inequality for positive solutions of (A.2) in a bounded domain, (see for
instance Theorem 2.5 [20]). Let δ0, be such that 0 < δ0 < T , then we have:

sup
x∈B( xεε ,1)

qcε(t, x) ≤ C inf
x∈B( xεε ,1)

qcε(t, x), ∀ t ∈ [δ0, 2T ],

where C is a positive constant depending on δ0 and d0. Coming back to pcε this implies

pcε(t0, xε) ≤ sup
y∈B(xε,ε)

pcε(t0, y) ≤ Cpcε(t0, x), ∀(t0, x) ∈ [δ0, 2T ]×B(xε, ε). (A.3)

And we use the T−periodicity of pcε to conclude that the last inequality is satisfied for t ∈ [0, T ].
From (3.1), (A.1) and (A.3) we obtain

nε(0, x) ≤ ρM
pcε(0, x)∫

R pcε(0, x)dx
≤ ρM

Cpcε(0, x)∫
B(xε,ε)

pcε(0, xε)dx
= ρM

Cpcε(0, x)

|B(xε, ε)|
≤ C ′ε−1 exp

c1−c2|x|
ε ,

for all ε ≤ ε0, with ε0 small enough, where the constant c1 depends on ρM , δ, R0 and c, and c2 = − c
2 +
√
δ + c2

2 .

Next we proceed with a maximum principle argument to obtain for every (t, x) ∈ [0,+∞) × R and c3 =
c2(c+ c2) + d0,

nε(t, x) ≤ C ′ exp
c1−c2|x|

ε +c3t .

From the latter inequality and the periodicity of ψε, with an abuse of notation for constant c1, we deduce that:

ψε(t, x) ≤ c1 − c2|x|, ∀(t, x) ∈ [0,+∞)× R.

A.3 Equicontinuity in time for ψε

We will use the arguments in [16], which follow a method introduced in [4], in order to deduce uniform equicon-
tinuity in time for the family ψε on compact subsets of (0,+∞)× R.
The goal will be to find for any η > 0, constants Λ1, Λ2 large enough such that: for any x ∈ B(0, R/2), s ∈ [0, T ],
and for all ε < ε0 we have

ψε(t, y)− ψε(s, x) ≤ η + Λ1|x− y|2 + εΛ2(t− s),∀(t, y) ∈ [s, T ]×BR(0), (A.4)

and
ψε(t, y)− ψε(s, x) ≥ −η − Λ1|x− y|2 − εΛ2(t− s),∀(t, y) ∈ [s, T ]×BR(0).

Because of the analogy between the both inequalities above we only prove (A.4).
We fix (s, x) in [0, T [×BR/2(0) and define

ξ̂(t, y) = ψε(s, x) + η + Λ1|x− y|2 + εΛ2(t− s), (t, y) ∈ [s, T [×BR(0),

with Λ1 and Λ2 positive constants to be determined. We prove that, for Λ1 and Λ2 large enough, ξ̂ is a super-
solution of the equation (3.2) on [s, T ]×BR(0) and ξ̂(t, y) > ψε(t, y) for (t, y) ∈ {s} ×BR(0)∪ [s, T ]× ∂BR(0).
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According to Section 3.2.1, {ψε}ε is locally uniformly bounded, so we can find a constant Λ1 such that for
all ε < ε0,

8‖ψε‖L∞([0,T ]×BR(0))

R2
≤ Λ1.

With this choice, ξ̂(t, y) > ψε(t, y) on [s, T ]× ∂BR(0), for all η > 0, Λ2 > 0 and x ∈ BR/2(0).

Next we prove that, for Λ1 large enough, ξ̂(s, y) > ψε(s, y) for all y ∈ BR(0). We argue by contradiction.
Assume that there exists η > 0 such that for every constant Λ1 there exists yΛ1,ε ∈ BR(0) such that

ψε(s, yΛ1,ε) − ψε(s, x) > η + Λ1|yΛ1,ε − x|2. (A.5)

This implies

|yΛ1,ε − x| ≤
√

2ΨM

Λ1
−→ 0, as Λ1 →∞,

where we have denoted ΨM a uniform upper bound for ‖ψε‖L∞([0,T ]×BR(0)). Then for all δ1 > 0, there exist Λ1

large enough and ε0 small enough, such that ∀ε < ε0,

|yΛ1,ε − x| ≤ δ1.

Therefore, from the uniform continuity in space of ψε taking δ1 small enough, we obtain

|ψε(s, yΛ1,ε)− ψε(s, x)| < η/2 ∀ε ≤ ε0,

but this is a contradiction with (A.5). Therefore ξ̂(s, y) > ψε(s, y) for all y ∈ BR(0).

Finally, noting that R < +∞ we deduce that for Λ2 large enough, ξ̂ is a super-solution to (3.2) in [s, T ]×BR(0).
Using a comparison principle, we have

ψε(t, y) ≤ ξ̂(t, y) ∀(t, y) ∈ [s, T ]×BR(0).

Thus (A.4) is satisfied for t ≥ s ≥ 0. To conclude we put x = y and obtain that for all η > 0 there exists ε0 > 0
such that for all ε < ε0

|ψε(t, x)− ψε(s, x)| ≤ η + εΛ2(t− s),

for every (t, x) ∈ [0, T ] × BR(0). This implies that ψε is locally equicontinuous in time. Moreover we obtain
that

∀R > 0, sup
t∈[0,T ], x∈BR

|ψε(t, x)− ψε(s, x)| → 0 as ε→ 0.

Appendix B Computations of the moments of the population’s dis-
tribution

In this section we estimate the moments of the population’s distribution with a small error, following [28, 16].
To this end, we use the arguments in Section 5.
Using (1.15), one can compute a Taylor expansion of order 4 around the point of maximum x.

ψ(x) = −A
2

(x− x̄)2 +B(x− x̄)3 + C(x− x̄)4 + o(x− x̄)4. (B.1)

Note also that using the formal expansions in (5.3) one can obtain φ from an equivalent system to (5.4), that is
∂tφ =

∣∣∣ψx +
c

2

∣∣∣2 + a(e(t), x)− c2

4
− ρ̄,

−ψxx = [2ψx + c]
1

T

∫ T

0

∂xφ(t, x)dt− ψxx(xm).

(B.2)
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and write (formally)

φ(t, x) = φ(t, x̄) +D(t)(x− x̄) + E(t)(x− x̄)2 + o(x− x̄)2, ω(t, x) = F (t) + o(x− x̄).

The above approximations of ψ, φ and ω around the maximum point of ψ allow us to estimate the moments of
the population’s distribution with an error of order ε2 as ε → 0. Indeed, we use the following approximation
for the phenotypic density of the population

nε(t, x) =
1√
2πε

e
ψ(x)
ε +φ(t,x)+O(ε),

and replacing by the approximations of ψ, φ and ω given above, we can obtain∫
R
(x− x̄)knε(t, x)dx =

eφ(t,x̄)ε
k
2

√
2π

∫
R
yke

−Ay2

2

[
1 +
√
ε
(
By3 +D(t)y

)
+ε
(
Cy4 + E(t)y2 + F (t) + 1

2 (By3 +D(t)y)2
)

+ o(ε)
]
dy.

Note that, we performed above a change of variable x− x̄ =
√
ε y. Therefore each term x− x̄ can be considered

as of order
√
ε in the integration. The above computation leads in particular to the following approximations

of the mean phenotypic trait and the variance:

µε(t) =
1

ρε(t)

∫
R
x nε(t, x)dx = x̄+ ε

(
3B

A2
+
D(t)

A

)
+O(ε2),

σ2
ε(t) =

1

ρε(t)

∫
R

(x− µε)2nε(t, x)dx =
ε

A
+O(ε2).

B.1 Application to the biological example

We now apply the previous computations to the particular growth rate a given in (6.1). Thanks to (1.13), we
obtain

ρ = a(x̄) = r − g2
1

ḡ
− c2

4
− g2,

for ḡ, g1 and g2 given in (6.2). Next from the second equation of (B.2) and the fact that ψxx(x) = ψxx(xm),
∀ x ∈ R, we obtain that

0 =

(∫ 1

0

∂xφ(t, x)dt

)[
−2
√
ḡ (x− x̄) + c

]
, ∀ x ∈ R,

which implies directly, that ∫ 1

0

∂xφ(t, x)dt = 0. (B.3)

On the other hand, by substituting ψ(x) in (B.1) we find A =
√
g, B = C = 0.

Moreover, we differentiate with respect to x in the first equation of (B.2) and obtain:

∂x∂tφ = ∂x
(
a(e(t), x)− ā(x)

)
= 2x(ḡ − g(e(t))) + 2g(e(t))θ(e(t))− 2g1,

and an integration in [0, t] gives

∂xφ(t, x)− ∂xφ(0, x) = 2t(xḡ − g1)− 2

∫ t

0

g(e(s))(x− θ(e(s)))ds.

We next integrate the last equality in [0, 1] and use (B.3) to obtain

∂xφ(0, x) = −xḡ + g1 + 2

∫ 1

0

∫ t

0

g(e(s))(x− θ(e(s)))dsdt,
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from where we deduce that

∂xφ(t, x) = (2t− 1)(xḡ − g1) + 2

∫ 1

0

∫ τ

0

g(e(s))(x− θ(e(s)))dsdτ − 2

∫ t

0

g(e(s))(x− θ(e(s)))ds.

Evaluating in x̄ gives

D(t) = ∂xφ(t, x̄) = −c
√
ḡ

(
t− 1

2

)
+ 2

∫ 1

0

∫ τ

0

g(e(s))(x̄− θ(e(s)))dsdτ − 2

∫ t

0

g(e(s))(x̄− θ(e(s)))ds.

Now we are able to give an approximation of the population mean size ρε, the phenotypical mean µε and the
variance σ2

ε of the population’s distribution, following the previous computations, that is:

µε(t) ≈
g1

ḡ
− c

2
√
ḡ

+ εD(t), σ2
ε ≈

ε√
ḡ
.
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