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Abstract

The population formalism of ’adaptive evolution’ has been developed in the last twenty years
along ideas presented in other chapters in this volume. This mathematical formalism addresses
the question of explaining how selection of a favorable phenotypical trait in a population occurs.
It uses models based, usually, on integro-differential equations for the population structured by a
phenotypical trait. A self-contained mathematical formulation of adaptive evolution also contains
the description of mutations and leads to partial differential equations. Then the complete evolution
picture follows from the model ingredients mostly driven by the changing adaptive landscape.

It is possible to introduce scaling parameters and perform asymptotic analysis. Then highly
concentrated population densities (well separated Dirac masses) arise that can undergo branching
patterns. This phenomenon is interpreted as the speciation process.

The process in which concentrated solutions occur and a continuous set of traits cannot be
present is subtle and numerical methods can induce artifacts if not correctly shaped. Simulations
on Monte-Carlo methods can be compared to deterministic numerical methods as finite differences.
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1 Introduction

Since the 1980’s the word ’adaptive evolution’ has been coined to describe the mathematical formalisms
addressing the selection of a favorable trait in a population structured by a continuous phenotypical
trait. Closely related to the concept of ’Evolutionary game theory’ [32, 29, 28], the models ingredient
are the three principles underlying Darwin’s explanation of Evolution
• multiplication of the population,
• selection by competition for resources,
• variability (mutations).
Simple models based on these ingredients explain how the fittest traits can emerge and populations
characterized by several well separated traits (also called strategies) can possibly coexist. The theory
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and numerical simulations show the appearance of clusters and speciation that can be explained sim-
ply: the limited resources lead to competition and individuals with close traits use similar resources,
therefore competition between them is higher. The question of understanding how, in such a popula-
tion, a mutant can invade or not a population has been initiated in [27, 36, 25] and a recent survey
can be found in [18], see also [35]. In a self-contained population model, the mutations are part of
the dynamics and take into account that the newborn may inherit a slightly different trait than its
parent.

The formalism for describing selection, in an asexual population, uses integro-differential equations
for the population density n(x, t) where x denotes the phenotypical trait and several models have been
derived or postulated for mutations, leading to parabolic partial differential equations (PDEs) [38, 8, 9].
In this Chapter, we aim at explaining how speciation occurs in such PDE models. This corresponds
to highly concentrated population densities, which means that n(x, t) is close to well separated Dirac
masses. Because of their regularizing effects, parabolic PDEs cannot sustain such singular solutions
and this phenomenon can only happen asymptotically. With this respect, two typical asymptotic
regimes are possible. The first one consists in introducing a small parameter for mutations frequency
or size and considers the limiting behavior when this parameter vanishes [19, 2, 3, 4]. The second
asymptotic is to consider long times and this leads to singular steady state solutions, very similar to
the pure selection case [16, 30]. We present these models in Sections 2 and 3 on two different type of
competition kernels that we have chosen for their simplicity.

The appearance of these singular solutions is related to an instability mechanism of Turing type.
Numerical methods may produce artificially this Turing mechanism in particular because artificial
boundary conditions are needed. We discuss this fact in Section 4 based on finite differences or
Monte-Carlo simulations.

2 A model with a single nutrient

2.1 The chemostat

Following [18, 19], the simplest example to build up a self-contained mathematical model for adaptive
evolution is the chemostat. Micro-organisms characterized by a parameter x ∈ R (it can be thought
of as the logarithm of their size) live in a bath containing a nutrient which is continuously renewed
with a rate d > 0. The nutrient concentration is denoted by S(t) ≥ 0 (for substrate) and the fresh
nutrient Sin > 0, the population density of the micro-organism is denoted by n(x, t) and the uptake
rate for individuals of trait x is η(x) > 0.

In such a simple situation, the standard equations for the chemostat is written






d
dt

S(t) = d
(
Sin − S(t)

)
− S(t)

∫∞
−∞ η(x)n(x, t)dx,

∂
∂t

n(x, t) = −dn(x, t) + (1 − µ)S(t)η(x)n(x, t) + µS(t)
∫∞
−∞ M(y, x)η(y)n(y, t)dy.

The first two principles mentioned earlier from Darwin theory are directly included in the model: the
population growth comes from the equation on n(x, t) and the competition comes from the limited
amount of nutrients. We assume that initially S(0) ≤ Sin, then all along the dynamics we have
S(t) ≤ Sin because S(t) decreases if it attains Sin. The term (1 − µ)η(x)n(x, t) represents the birth
rate without mutations. The parameter 0 < µ < 1 represents the proportion of birth undergoing
mutations.
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Mutations are represented by the probability M(y, x) that a newborn has the trait x when its parent
has the trait y. We therefore assume M(y, x) ≥ 0,

∫∞
0 M(y, x)dx = 1.

We may simplify the model in various ways to make it more amenable to analysis. One can suppose
that the nutrients reach quickly an equilibrium compared to the evolution time scale for the population.
Then one can replace the differential equation on S(t) by the relation

S(t) =
dSin

d +
∫∞
−∞ η(x)n(x, t)dx

.

One can also replace the mutation term by a mere diffusion leading to

∂

∂t
n(x, t) = −dn(x, t) + S(t)η(x)n(x, t) + λ∆n(x, t).

Note however that both representations of mutations by integral terms or by a Laplace term λ∆ can
be derived from stochastic individual based models (IBM) depending on the scaling of microscopic
mutations, [11, 12, 13]. See also [33].

We can write a general form of the resulting model, that we will keep for the end of this section





∂
∂t

n(x, t) = n(x, t) R
(
x, I(t)

)
+ λ∆n(x, t), x ∈ R, t > 0,

I(t) =
∫∞
−∞ η(x)n(x, t)dx.

(1)

With these notations, the neat growth rate R(x, I) contains both birth and death terms. In the case
at hand, it is given by

R(x, I) = −d +
dSin

d + I
η(x).

It is natural to handle more general models and then we need some general hypothesis. We assume
that R is smooth enough and there are IM > Im > 0 such that

sup
x∈R

RI(x, I) < 0, ∀I ≥ 0, max
x∈R

R(x, IM ) = 0, min
x∈R

R(x, Im) = 0. (2)

We also assume that there are positive constants ηm, ηM such that

0 < ηm ≤ η(x) ≤ ηM < ∞, η ∈ W 2,∞(R). (3)

2.2 Rescaling

As mentioned earlier, such parabolic models cannot exhibit high concentrations as long as the diffusion
coefficient µ > 0 is fixed. This is the reason why we rescale the problem and set λ = ε2. Having in
mind that the mutation rate is small we consider the limit ε → 0. Such a limit only leads to the
same equation with λ = 0, the selection model. This is because the effect of rare mutations on the
population can be observed only on a very long time. This leads us naturally to change time and
replace t by t/ε so as to consider the evolution on a long time rather than a generation time scale.
Then equation (1) is changed to





ε ∂

∂t
nε(x, t) = nε(x, t)R

(
x, Iε(t)

)
+ ε2∆nε(x, t), x ∈ R, t > 0,

Iε(t) =
∫∞
−∞ η(x)nε(x, t)dx.

(4)
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But we can point out that other scales are also interesting [8].

We are now ready for a possible interpretation of the speciation phenomena

Theorem 2.1 ([3, 4]) We assume (2)–(3), that R is monotonic in x and the initial data is ’well-
prepared’ (see below). Then, there are two constants ρm > 0, ρM > 0 such that

ρm ≤
∫

R

nε(x, t)dx ≤ ρM (5)

and Iε(t) → Ī(t) almost everywhere and in the weak sense of measures

nε(x, t) ⇀ ρ̄(t)δ
(
x − x̄(t)

)
.

The above assumptions, and in particular monotonicity on R in x, can be replaced by strong concavity
on R with quadratic behavior at infinity [31].

This Theorem is a mathematical version of the famous competitive exclusion principle in ecology.
With a single nutrient, a single species will be selected. With N nutrients, we expect in general that
N species will co-exist.

It is not easy to characterize the fittest trait x̄(t) and the total population size ρ̄(t). In the situations
covered by Theorem 2.1, it is proved (see [3, 31]) that

R
(
x̄(t), Ī(t)

)
= 0, Ī(t) = ρ̄(t)η

(
x̄(t)

)
.

Such points appear naturally in the language of evolutionary game theory and are called ’singular
points’. Of course this identity only relates x̄(t) and Ī(t). It is possible to go further and establish an
analogue of the so-called canonical equation [17]

˙̄x(t) =
(
−D2u

(
x̄(t), t

))−1
.∇xR

(
x̄(t), Ī(t)

)
,

where u(x, t) is introduced below. Such a differential equation was formally introduced in [19] and it
can be established rigorously in a multidimensional framework, see [31].

2.3 The constrained Hamilton-Jacobi equation

The proof of Theorem 2.1 relies on a WKB approach, as in front propagation [20, 1, 40]. In the
context of adaptive dynamics the method was introduced in [19] and yields a new type of Hamilton-
Jacobi equation because an algebraic constraint appears. It is based on the real phase defined by the
Hopf-Cole transform

uε = ε ln(nε).

This requires that the initial data itself is ’well-prepared’, that is ’exponentially’ concentrated as
u0

ε = ε ln(n0
ε) with u0

ε a function that behaves nicely as ε → 0 (even though this can be somehow
relaxed, see [4]).

The equation on uε is written

∂

∂t
uε(x, t) = R

(
x, Iε(t)

)
+ ε∆uε(x, t) +

∣∣∇uε(x, t)
∣∣2.
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One can prove that uε is uniformly lipschitzian (this requires that u0
ε is so) and that Iε is uniformly

with bounded variations. This allows us to pass to the limit ε → 0 and obtain the constrained
Hamilton-Jacobi equation 





∂
∂t

u(x, t) = R
(
x, I(t)

)
+ |∇u(x, t)|2.

max
x∈R

u(x, t) = 0, ∀t > 0.
(6)

The algebraic constraint maxx∈R u(x, t) = 0 comes from the uniform a priori bound on the total mass
stated in (5) together with the definition of uε by the Hopf-Cole transform.

Being a parabolic limit, the solution u(x, t) should be understood as a viscosity solution to (6), see
[15].

As mentioned earlier, the originality of this problem stems from the two unknowns u(x, t) et I(t)
which should be solved together. The latter is a Lagrange multiplier associated with the algebraic
constraint. This makes the main difference with the standard eikonale equation arising in geometrical
optics. A uniqueness result is proved in [3], however under restrictive assumptions. The method of
Hopf-Cole transform is very general and, in the present context, it has been extended to systems in
[10] (for fronts see [1]).

3 Competition models

In a chemostat, the competition between species is global because it arises through the substrate
described by S(t). All individuals are equally competing for the reosurce. This is not always the
case and, in many situations, it is more realistic to assume that there is higher competition between
individuals with closer traits. This is the reason why other models have been proposed that implement
a trait dependent competition. A class of such models (see [34, 16, 23, 24, 5]) are given by the
population dynamics of Lotka-Volterra type

∂n(x, t)

∂t
− λ

∂2n(x, t)

∂x2
= n(x, t)

(
R(x) − K ∗ n(x, t)

)
, t ≥ 0, x ∈ R. (7)

The model is completed by an initial data n(x, t = 0) = n0(x) which we take highly concentrated for
the numerical simulations presented below in section 4.

The interpretation of the quantitites arising in this model are
• n(x, t) still denotes the population density at position x and time t,
• R(x) > 0 is the intrinsic growth rate of individuals with trait x (if isolated without competition)
• K ∈ L∞(R) is called the competition kernel. It is a probability density: K ≥ 0,

∫
R

K(z)dz = 1.
The convolution K ∗ n(x) =

∫
R

K(x − y)n(y, t)dy represents the competition for resource,
• λ is the mutation rate that is supposed to be a constant.

When derived from stochastic IBM, as in [38, 12, 13] such models are called mean field equations
[7, 39]. They arise not only in evolution theory but also in ecology for non-local resources (and x
denotes the location then) [6, 26, 41, 21].

The large variety of regimes that can appear in such models can be seen in special cases. Below, we
use simple examples to describe two of them, regularly distributed traits, or concentration as a Dirac
mass. The main interest of the model (7) is mostly from the branching patterns that correspond to

5



multiple concentration points which can either die out or branch again and create new structures (see
[22]).

3.1 The gaussian case without mutations

Firstly we consider the case

λ = 0, R(x) =
1√

2πσ1
e
− |x|2

2σ1 , K(z) =
1√

2πσ2
e
− |x|2

2σ2 . (8)

This corresponds to widely used standard forms of the input parameters because of their statistical
meaning.

As usual for pure selection models, λ = 0, there are Dirac mass stationary solutions N(x) = ρ̄δ(x−x̄)
with R(x̄) = ρ̄K(0). But this can be obtained in a long time asymptotic only when

R(x) < ρ̄K(x − x̄) ∀x 6= x̄,

or, replacing ρ̄ from the first condition

R(x)

R(x̄)
<

K(x − x̄)

K(0)
∀x 6= x̄.

One can deduce from this calculation the

Proposition 3.1 For σ1 > σ2 there is a smooth steady state to (7) given by

N(x) =
1√
2πσ

e−
|x|2

2σ , σ = σ1 − σ2,

and Dirac masses are not stable steady states.

For σ1 < σ2 the Dirac mass ρ̄δ(x) is a stable steady state (and only the Dirac mass at 0 is stable).

The authors in [30] prove that the corresponding stable states are also the long time limits of the
dynamics described by equation (7). They use a relative entropy method built on the corresponding
steady state. The construction of this entropy is rather easy when the positive steady state exists. It
is much more difficult in the case where the Dirac masses have to be handled.

3.2 The NonLocal-Fisher equation

We now consider the case

R ≡ 1. (9)

Then, the equation (7) is called the NonLocal-Fisher (NLF) equation. It also arises in mathematical
ecology, as an extension of the Fisher/KPP equation. As mentioned earlier, the non-local aspect in-
duced by the convolution represents long range access to resources, see [26, 5, 21] and the references
therein.
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The positive steady state is simply given by N ≡ 1 but a result from [23] states that it can be Turing
unstable (i.e. only a bounded set of linearly unstable modes occur). In order to explain this, we may
use the Fourier transform of the competition kernel K defined as

K̂(ξ) =

∫

R

K(x)e−ixξdx.

Then one has

Proposition 3.2 ([23]) Assume there is a ξ0 such that

K̂(ξ0) < 0, (10)

then for λ small enough the steady state N ≡ 1 is linearly unstable.

The result of this statement corresponds qualitatively to the case σ1 < σ2 in Proposition 3.1 (with
mutations neglected).

The Fourier transform also characterizes a nonlinear stability result; this is the case in the

Theorem 3.3 ([5]) Take R ≡ 1 and assume

K̂(ξ) > 0 ∀ξ ∈ R. (11)

Then n ≡ 0 and n ≡ 1 are the only two nonnegative and bounded steady states of (7).
Furthermore, there are traveling waves connecting the states n = 0 and n = 1.

The result of this Theorem corresponds to the situation σ1 > σ2 in Proposition 3.1.

In the Turing unstable case it is possible to rescale the problem as we did it in Section 2.2 and it is
observed numerically that, in general, the asymptotic limit leads to Dirac concentrations characterized
again by a constrained Hamilton-Jacobi equation [24].

4 Numerical methods and branching patterns

In general it is very difficult, in the direct competition model (7), to distinguish between the two
behaviors: convergence towards a continuous state or speciation. Numerical methods are useful to get
an intuition but they can create artifacts and we explain this now.

We present two numerical approaches that allow to simulate solutions to equation (7). The first is
a standard finite difference scheme, the second one is a Monte-Carlo simulations related to IBM that
solves the same equation.

For the sake of simplicity we concentrate on the NonLocal Fisher equation as in Section 3.2 with a
gaussian competition kernel

R ≡ 1, K(x) =
1√
2πσ

e−
|x|2

2σ . (12)

Because the Fourier transform of K is positive (a gaussian), we do not expect appearance of concen-
trations (speciation).

At this stage we insist that the Monte-Carlo algorithms are only seen here as an approximation to
(7). From this point of view, the closer it is from the PDE, the better it is because one looks only
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for possible computational cost reduction. Monte-Carlo methods also used as a modeling tool and
allow to include further stochastic effects. One of them is ’demographic stochasticity’ which makes
that too small populations can die out by statistical effects [14, 37]. These effects are not included in
the models under consideration here and give quantitatively different answers (in term od evolution
speed, branching patterns). It is shown in [22] that the notion of ’survival threshold’ in the equations
as (7) is able to reproduce these effects in great details.

4.1 Finite differences
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Figure 1: Left: Numerical population density dynamics obtained for model (7)–(12) when the initial
population is concentrated in the center of the computational domain. Horizontally is x and vertically
is t, in gray zone n ≡ 1 and the white zone corresponds to n ≡ 0. Right: The population density n(x, T )
at final time. The deterministic finite difference scheme (13)–(15) has been used with parameters in
(16). We observe convergence toward the constant solution in accordance with Theorem 3.3.

We consider the solution on interval [−L
2 , L

2 ]. We use a uniform grid with N points on the segment,
with ∆x = L

N
the space step. We denote by nk

i ≥ 0 the numerical solution at grid point xi = i△x,
1 ≤ i ≤ N , and time tk = k△t where △t is the time step

n(xi, k△t) ≈ nk
i .

We use a time splitting algorithm between the growth term and the diffusion that is we solve alterna-
tively the two equations

d

dt
n(x, t) = n(x, t) [1 − K ∗ n(t) ] ,

∂n(x, t)

∂t
− λ

∂2n(x, t)

∂x2
= 0.

1. First compute, with a semi-implicit method, the solution to the discrete reaction term

d

dt
ni(t) = ni(t)

[
1 − Kd ∗ nk

i

]
.

The exact solution is

n
k+ 1

2

i = nk
i exp

(
∆t

λ

(
1 − Kd ∗ nk

i

))
, 1 ≤ i ≤ N. (13)
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The discrete convolution is computed according to

Kd ∗ nk
i = ∆x ·

N∑

j=−N

Kd(j△x)nk
i−j , nk

i−j = 0 for i − j /∈ [1, N ]. (14)

Indeed, as a consequence of the domain truncation, only those terms satisfying 1 ≤ i− j ≤ N are well
defined and the extension by zero amounts to extend n by 0 outside [−L

2 , L
2 ]. This is some kind of

Dirichlet boundary condition.

2. As for the Laplace term, we use a three points explicit scheme

nk+1
i = n

k+ 1

2

i +
λ∆t

2∆x2

(
n

k+ 1

2

i+1 + n
k+ 1

2

i−1 − 2n
k+ 1

2

i

)
, 1 ≤ i ≤ N. (15)

Because we choose λ small, the explicit scheme is not penalizing in terms of computational time.
We use Neumann boundary condition, nk+1

0 = nk+1
1 and nk+1

N = nk+1
N−1, but as far as the wave does

not reach the boundary, the Dirichlet boundary condition nk+1
1 = nk+1

N = 0 gives equivalent results.

The stability of the scheme is ensured by the CFL condition
λ∆t

2∆x2
≤ 1, which is verified for

λ = 0.004, σ = 0.04, ∆t = 0.025, ∆x = 0.1, L = 100, N = 1000. (16)

We have implemented this method. We choose the initial data concentrated in the center of the
domain. The numerical results are depicted in Fig. 1. We can observe that the population propagates
as a traveling wave. For L large enough, for 0 ≤ t ≤ T the front does not reach the numerical boundary
and there is almost no mass on the boundary of the interval [−L

2 , L
2 ]. This is in accordance to the

theory in [5] and the statement in Theorem 3.3.

4.2 The stochastic individual-based method

We also compace the finite volume simulation with a Monte-Carlo algorithm. Then, the solution is
approximated by a sum of Dirac masses

n(t) ≈ ω

N(t)∑

j=1

δ
(
x − yj(t)

)
.

Here the weight ω is taken constant. The simulation starts with a number N(0) of ‘individuals
located’ distributed on an interval of length L. Then N(0) and ω are related by the approximation

n(0) ≈ ω
∑N(0)

j=1 δ
(
x − yj(0)

)
in the weak sense of measures.

Several Monte-Carlo algorithms are possible. See for instance [6, 21] for another algorithm motivated
by models from ecology.

Here we use the method proposed in [7, 39]. The number of individuals is denoted by N(k) at
iteration k. The algorithm uses also a time splitting but not with the same operators as in Section
4.1. We solve alternatively the two equations

d

dt
n(x, t) = −n(x, t) K ∗ n(t),
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Figure 2: Numerical solution with the Monte-Carlo algorithm in section 4.2. Horizontally is the trait
x and vertically is time t. Initially the population is concentrated in one Dirac mass at the center
of the domain. We observe that the population distribution converges weakly towards the constant
solution as expected (see also Fig. 1).

∂n(x, t)

∂t
− λ

∂2n(x, t)

∂x2
= n(x, t).

Finally, in the rationale of small mutations and long times, as in section 2.2, we choose △t = 1. Then
the algorithm [7, 39] reads as follows.

1. The competition term is now computed as (this makes a difference with [7, 39])

C(x) =
ω√
2πσ

N(k)∑

j=1

exp

(
−|x − yj|2

2σ

)
. (17)

Because the value of C(x) is small, it defines the probability that an individual located at x dies. For
a given j, we compute this probability and set N(k + 1) = N(k) − 1 if this individual dies.

2. If the individual survives, it reproduces. The newborn undergoes a mutation from its parent trait
to a new trait given by a Gaussian distribution with variance λ′ = 2λ. Then N(k + 1) = N(k) + 1.

We notice that for n the solution of

∂tn = λ′△n, n(x, tk) = nk(x),

we have n(tk+1) = nk ∗ 1√
4πλ′

e
−x

2

4λ′ . Hence the choice λ′ = 2λ in the second step of the Monte-Carlo

method. We act a gaussian mutation to the new-born only but with twice stronger intensity.

We have used the following parameters values which take into account the small time step in the
deterministic algorithm

λ′ = 10−6, σ = 0.04, L = 10, N = 3000,
ω√
2πσ

= 1/18000.

These values are such that the mutations are very weak compared to intraspecific competition, again
in accordance with the parameters used in the finite difference method. The numerical results are
depicted in Fig. 2. We can observe that the population propagates as a traveling wave as in Fig. 1
and according to the theoretical prediction in Theorem 3.3.
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4.3 The convolution formula

x

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

x

t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 3: Dynamics of the concentration points with the Monte-Carlo algorithm in section 4.3 based on
periodizing the convolution. Horizontally is the trait x and vertically is time t. Initially the population
is concentrated in one Dirac mass on the left and two Dirac masses on the right.
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Figure 4: Dynamics of the concentration points. Same as above but with different initial data. A new
phenomena occurs with extinction of branches.

Surprisingly, in [7, 39] the authors observed that simulations based on this Monte-Carlo method
may yield concentration patterns too (clusters). The main difference is that, rather than with 17, the
convolution kernel is computed assuming the yj are on the circle

C(x) =
ω√
2πσ

N(k)∑

j=1

exp

(
−d(x, yj)

2

2σ

)
, (18)

where d is the shortest distance on the circle.
This can be interpreted as periodic boundary conditions rather than extension by zero or as a

periodic convolution kernel

Ks(x) ∝ exp

(

−(x [L])2

2σ

)

, x[L] = x mod L, x ∈ R.

In opposition with the Gaussian kernel because it has some Fourier coefficients with a negative real
part. In this case the Fourier condition (10) is not fulfilled. Therefore according to the linear analysis
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in [23], and Proposition 3.2, the constant state is unstable for problem (7)–(12) and we expect to
observe pattern formation.

We have run both the Monte-Carlo and finite difference approximations with this periodic kernel.
The numerical results are in accordance with those obtained in different contexts in [7, 39, 23, 24].
They can be found in Fig. 3 and Fig. 4 for Monte-Carlo simulations and Fig. 5 for finite differences.

Figure 5: Numerical population density dynamics obtained by deterministic simulations for model
(7)–(12) with periodic boundary conditions. We have used the following parameter values: λ = 0.001,
σ = 0.04, ∆t = 0.0001, ∆x = 0.001, L = 1, N = 1000.

5 Conclusion

Mathematical models explaining how speciation occurs in biological population have been developed
since the 1980’s. They involve a population dynamics under local competition and with mutations.
A self-contained formalism can be established. It allows to represent the speciation phenomena as
the convergence of the solution to a sum of Dirac masses, either in the large time limit or the small
mutation rate limit. However, competition models not always yield speciation and a population with
a continuous set of traits can occur. It is difficult to predict between these two alternatives.

Numerical methods are therefore useful tools to observe the model prediction. We presented two
numerical methods: finite differences and the individual based approach. These methods give com-
patible numerical results either in the case when a uniform trait distribution is produced by the model
and when patterns are obtained.
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[13] Champagnat, N., Ferrière, R. and Méléard, S. Individual-based probabilistic models of adaptive
evolution and various scaling approximations. Progress in Probability 59 (2008), 75–114.

[14] Claessen, D., Andersson, J., Persson, L. and de Roos, A. M., Delayed evolutionary branching in
small populations. Evolutionary Ecology Research 9 (2007) 51–69.

[15] Crandall, M. G., Ishii, H. and Lions, P.-L. User’s guide to viscosity solutions of second order
partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1–67.

[16] Desvillettes, L., Jabin, P.-E., Mischler, S. and Raoul, G. On selection dynamics for continuous
structured populations. Comm. Math. Sci. 6(3), 729–747 (2008).

[17] Dieckmann U. and Law R., The dynamical theory of coevolution: A derivation from a stochastic
ecological processes. J. Math. Biol. 34 (1996) 579–612.

[18] Diekmann, O., Beginner’s guide to adaptive dynamics. Banach Center Publications 63 (2004)
47–86.

[19] Diekmann, O., Jabin, P.-E., Mischler S. and Perthame B., The dynamics of adaptation : an
illuminating example and a Hamilton-Jacobi approach. Th. Pop. Biol., 67(4) (2005) 257–271.

[20] Evans L.C., Souganidis P.E. A PDE approach to geometric optics for certain reaction-diffusion
equations. Indiana Univ. Math J. 38 (1989), 141–172.

13
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[39] Schwämmle, V. and Brigatti, E. Speciational view of macroevolution: Are micro and macroevo-
lution decoupled? Europhys. Lett. 75(2) (2006), 342–348.

[40] Souganidis, P. E. Front propagation: theory and applications, CIME course on ‘Viscosity solu-
tions’, Lecture Notes in Math., Springer-Verlag, Berlin (1998).

[41] Wang, Z.-C., Li, W.-T., Ruan S., Travelling Wave Fronts in Reaction-Diffusion Systems with
Spatio-Temporal Delays, J. Differential Equations 222, No. 1 (2006), 185–232.

15


