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Abstract

In this note we give an alternative, shorter proof of the classical result of Berestycki
and Cazenave on the instability by blow-up for the standing waves of some nonlinear
Schrödinger equations.
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1 Introduction

In 1981, in a celebrated note [1], Berestycki and Cazenave studied the instability of
standing waves for the nonlinear Schrödinger equation

iut + ¢u + |u|p°1u = 0 (1.1)

where u = u(t, x) 2 C, t 2 R, x 2 RN and p > 1. A standing wave is a solution of (1.1)
of the form ei!t'(x) with ' 2 H1

(RN
) and ! > 0. Thus ' is solution of

°¢' + !' = |'|p°1', ' 2 H1
(RN

). (1.2)

We say that ' 2 H1
(RN

) is a ground state solution of (1.2) if it satisfies

˜S(') = inf{ ˜S(v); v 2 H1
(RN

) \ {0} is a solution of (1.2) }
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456 S. Le Coz

where ˜S is defined for v 2 H1
(RN

) by

˜S(v) :=

1

2

krvk22 +

!

2

kvk22 °
1

p + 1

Z

RN

|v|p+1dx.

In [1] it is shown that if 1 +

4
N < p < 1 +

4
N°2 when N > 3, and 1 +

4
N < p < +1

when N = 1, 2, then any standing wave associated with a ground state solution ' of (1.2)
is unstable by blow up. More precisely, there exists ('n) Ω H1

(RN
) such that 'n ! ' in

H1
(RN

) and the corresponding maximal solution un of (1.1) with un(0) = 'n blows up
in finite time.

The result, and perhaps more, the methods introduced in [1] still have a deep influence
on the field of instability for nonlinear Schrödinger and related equations. In particular, the
idea of defining appropriate invariant sets and how to use them to establish the blow-up. We
should mention that in [1] more general nonlinearities were considered. The paper [1] is
only a short note which contains the main ideas but no proofs. For the special nonlinearity
|u|p°1u these proofs can be found in [5]. For the general case it seems that the extended
version [2] of [1] has remained unpublished so far.

The aim of the present note is to present an alternative, shorter proof of the result of [1]
for general nonlinearities. Also the instability of the standing waves is proved under slightly
weaker assumptions. Before stating our result we need to introduce some notations. Let
g : R 7! R be an odd function extended to C by setting g(z) = g(|z|)z/|z| for z 2 C\{0}.
Equation (1.1) now becomes

iut + ¢u + g(u) = 0 (1.3)

and correspondingly for the ground states we have

°¢' + !' = g('). (1.4)

For z 2 C, let G(z) :=

R |z|
0 g(s)ds. We assume

(A0) The function g satisfies

(a) g 2 C(R, R).

(b) lims!0
g(s)

s = 0.

(c) when N > 3, lims!+1 g(s)s°
N+2
N°2

= 0;
when N = 2, for any Æ > 0, there exists CÆ > 0 such that |g(s)| 6 CÆeÆs2

for all s > 0.

(A1) The function h(s) := (sg(s) ° 2G(s))s°(2+4/N) is strictly increasing on (0,+1)

and lims!0 h(s) = 0.

(A2) There exist C > 0 and Æ 2 [0, 4
N°2 ) if N > 3, Æ 2 [0,1) if N = 2, such that

|g(s)° g(t)| 6 C(1 + |s|Æ + |t|Æ)|t° s|

for all s, t 2 R. If N = 1 we assume that for every M > 0, there exists L(M) > 0

such that
|g(s)° g(t)| 6 L(M)|s° t|

for all s, t 2 R such that |s| + |t| 6 M.
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Finally we define for v 2 H1
(RN

) the functional

S(v) :=

1

2

krvk22 +

!

2

kvk22 °
Z

RN

G(v)dx

and set
m := inf{S(v); v 2 H1

(RN
) \ {0} is a solution of (1.4) }.

Our main result is

Theorem 1.1 Assume that (A0) ° (A2) hold and let ' be a ground state solution

of (1.4), i.e. a solution of (1.4) such that S(') = m. Then for every " > 0 there

exists u0 2 H1
(RN

) such that ku0 ° 'kH1(RN ) < " and the solution u of (1.3) with

u(0) = u0 satisfies

lim

t!Tu0

kru(t)k2 = +1 with Tu0 < +1.

From [3, 4] we know that assumption (A0) is almost necessary to guarantee the
existence of a solution for (1.4). Assumption (A1) is a weaker version of the assumption
(H.1) in [1]. An assumption of this type, on the growth of g, is necessary since it is known
from [6] that when g(u) = |u|p°1u, with 1 < p < 1 +

4
N , the standing waves associated

with the ground states are, on the contrary, orbitally stable. Assumption (A2) is purely
technical and is aimed at ensuring the local well-posedness of the Cauchy problem for
(1.3). It replaces assumption (H.2) in [1]. Indeed, in [1] the authors were using the results
of Ginibre and Velo [8] for that purpose. Since [1] has been published, advances have
been made in the study of the Cauchy problem (see [5, 7] and the references therein). In
particular, under our condition (A2), for all u0 2 H1

(RN
) there exist Tu0 > 0 and a

unique solution u 2 C([0, Tu0),H
1
(RN

)) \ C1
([0, Tu0),H

°1
(RN

)) of (1.3) such that
limt!Tu0

kru(t)k2 = +1 if Tu0 < +1. Furthermore, the following conservation
properties hold : for all t 2 [0, Tu0) we have

S(u(t)) = S(u0), (1.5)

ku(t)k2 = ku0k2. (1.6)

Finally, the function f : t 7! kxu(t)k22 is C2 and we have the virial identity

@ttf(t) = 8Q(u(t)), (1.7)

where Q is defined for v 2 H1
(RN

) by

Q(v) := krvk22 °
N

2

Z

RN

(g(|v|)|v|° 2G(v))dx.

The proofs of instability in [1] and here share some elements, in particular the intro-
duction of sets invariant under the flow. The main difference lies in the variational charac-
terization of the ground states which is used to define the invariant sets and how to derive
this characterization.
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In [1] it is shown that a ground state of (1.4) can be characterized as a minimizer of S
on the constraint

M := {v 2 H1
(RN

) \ {0}, Q(v) = 0}.

To show this characterization, S is directly minimized on M . Additional assumptions (see
(H.1) in [1]) are necessary at this step to insure that the minimizing sequences are bounded.
Once the existence of a minimizer for S on M has been established, one has to get rid of
the Lagrange multiplier, namely to prove that it is zero. There, a stronger version of (A0),
requiring in particular g 2 C1

(R, R) and a control on g0
(s) at infinity, is necessary along

with tedious calculations.
Having established that the ground states of (1.4) minimize S on M , Berestycki and

Cazenave show that the set

K := {v 2 H1
(RN

), S(v) < m and Q(v) < 0}

is invariant under the flow of (1.3) and that one can choose in K an initial data, arbitrarily
close to the ground state, for which the blow-up occurs.

In our approach we characterize the ground states as minimizers of S on

M := {v 2 H1
(RN

) \ {0}; Q(v) = 0, I(v) 6 0},

where I(v) is defined for v 2 H1
(RN

) by

I(v) := krvk22 + !kvk22 °
Z

RN

g(|v|)|v|dx

and correspondingly our invariant set is

{v 2 H1
(RN

), S(v) < m, Q(v) < 0 and I(v) < 0}.

The dominant feature of our approach, which also explains why our assumptions on
g are weaker than in [1] is that we never explicitly solve a minimization problem. At the
heart of our approach is an additional characterization of the ground states as being at a
mountain pass level for S. This characterization was derived in [10] for N > 2 and in [11]
for N = 1. We also strongly benefit from recent techniques developed by several authors
[12, 13, 14, 15, 16, 17] where minimization approaches using two constraints have been
introduced.

2 Proof of Theorem 1

We first prove the existence of ground states and the fact that they correspond to minimizers
of S on the Nehari manifold.

Lemma 2.1 Assume that (A0) and (A1) hold. Then (1.4) admits a ground state

solution. Furthermore, the ground states solutions of (1.4) are minimizers for

d(!) := inf

©
S(v); v 2 H1

(RN
) \ {0}, I(v) = 0

™
.
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On Berestycki-Cazenave’s instability result for NLS 459

Before proving Lemma 2.1, we prove a technical result.

Lemma 2.2 Assume that (A0) and (A1) hold. Then the nonlinearity g satisfies

g(s)

s
is increasing for s > 0. (2.1)

g(s)

s
! +1 as s! +1. (2.2)

Proof. From the definition of h(s) we have

g(s)

s
= s4/Nh(s) +

2G(s)

s2
. (2.3)

Furthermore, for s > 0

@

@s

µ
G(s)

s2

∂
=

s(sg(s)° 2G(s))

s4
> 0 (2.4)

where the last inequality follows from (A1). Thus, combining (2.3), (2.4) and (A1) we get
(2.1) and (2.2). §

Proof of Lemma 2.1. It follows from Lemma 2.2 that

(P) There exists s0 > 0 such that

– if N > 2, then 1
2!s2

0 < G(s0);
– if N = 1, then 1

2!s2 > G(s) for s 2 (0, s0), 1
2!s2

0 = G(s0) and !s0 < g(s0).

Now, from [3, Théorème 1] and [4, Theorem 1] we know that the conditions (A0) and (P)
are sufficient to insure the existence of a ground state.

If v is a solution of (1.4), then S0
(v)v = I(v) = 0; therefore, to prove the lemma it

is enough to show that d(!) > m. From [10, 11] we know that under (A0) and (P) the
functional S has a mountain pass geometry. More precisely, if we set

° := {¬ 2 C([0, 1],H1
(RN

)); ¬(0) = 0, S(¬(1)) < 0},

then ° 6= ; and
c := inf

¬2°
max

t2[0,1]
S(¬(t)) > 0.

In addition it is shown1 in [10, 11] that

m = c.

Namely, the mountain pass level c corresponds to the ground state level m. Now it is well-
known that (2.1) ensure that if v 2 H1

(RN
) satisfies I(v) = 0 then t 7! S(tv) achieves

1
In fact, the results of [10, 11] are proved only for real valued functions; however, it is not hard

to see that they can be extended to the complex case (see [9, Lemma 14]).
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460 S. Le Coz

its unique maximum on [0,+1) at t = 1. Also (2.2) shows that limt!+1 S(tv) = °1.
From the definition of c, it implies that c 6 S(v) for all v 2 H1

(RN
) such that I(v) = 0.

Hence we have
d(!) > c,

and combined with the fact that m = c it ends the proof. §

Now we investigate the behavior of the functionals under some rescaling.

Lemma 2.3 Assume that (A0) and (A1) hold. For ∏ > 0 and v 2 H1
(RN

), we

define v∏
( · ) := ∏

N
2 v(∏ · ). We suppose Q(v) 6 0. Then there exists ∏0 6 1 such

that

(i) Q(v∏0
) = 0,

(ii) ∏0 = 1 if and only if Q(v) = 0,

(iii)

@
@∏S(v∏

) > 0 for ∏ 2 (0,∏0) and

@
@∏S(v∏

) < 0 for ∏ 2 (∏0, +1),

(iv) ∏ 7! S(v∏
) is concave on (∏0, +1),

(v)

@
@∏S(v∏

) =

1
∏Q(v∏

).

Proof. Easy computations lead to

@

@∏
S(v∏

) =

1

∏
Q(v∏

)

= ∏

µ
krvk22 °

N

2

Z

RN

∏°(N+2)
≥
∏

N
2 g(∏

N
2 |v|)|v|° 2G(∏

N
2 v)

¥
dx

∂
,

and recalling from (A1) that the function h(s) := (sg(s) ° 2G(s))s°(2+4/N) is strictly
increasing on [0, +1), (i), (ii), (iii) and (v) follow easily. To see (iv), we remark that since

µ
krvk22 °

N

2

Z

RN

∏°(N+2)
≥
∏

N
2 g(∏

N
2 |v|)|v|° 2G(∏

N
2 v)

¥
dx

∂
< 0

on (∏0,+1), we infer from (A1) that @
@∏S(v∏

) is strictly decreasing on (∏0, +1), which
implies (iv). §

Proof of Theorem 1.1. Let ' be a ground state solution of (1.4). We recall that

M = {v 2 H1
(RN

) \ {0};Q(v) = 0, I(v) 6 0},

and define
dM := inf{S(v); v 2M }.

We proceed in three steps.
Step 1. Let us prove d(!) = dM . Since the ground state ' satisfies

Q(') = I(') = 0, we have ' 2 M . Combined with S(') = d(!), this implies
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On Berestycki-Cazenave’s instability result for NLS 461

dM 6 d(!). Conversely, let v 2 M . If I(v) = 0, then trivially S(v) > d(!); thus
we suppose I(v) < 0. We use the rescaling defined in Lemma 2.3 : for ∏ > 0 we have

I(v∏
) = ∏2krvk22 + !kvk22 °

Z

RN

∏°N/2g(∏N/2|v|)|v|dx.

It follows from (A0)-(b) that lim∏!0 I(v∏
) = !kvk22 and thus by continuity there exists

∏1 < 1 such that I(v∏1
) = 0. Thus S(v∏1

) > d(!). Now, from Q(v) = 0 and (iii) in
Lemma 2.3, we have

S(v) > S(v∏1
) > d(!);

hence dM = d(!).

Step 2. For ∏ > 0, we set u∏
:= '∏. For ∏ > 1 close to 1, we have

S(u∏
) < S(') and Q(u∏

) < 0, (2.5)

I(u∏
) < 0. (2.6)

Indeed, (2.5) follows from (iii) and (v) in Lemma 2.3. For (2.6), we write

I(u∏
) = 2S(u∏

) +

2

N
Q(u∏

)° 2

N
kru∏k22

6 2S(') +

2

N
Q(')° I(')° 2∏2

N
kr'k22

6 2(1° ∏2
)

N
kr'k22 < 0.

Let u(t) be the solution of (1.3) with u(0) = u∏. We claim that the properties described
in (2.5), (2.6) are invariant under the flow of (1.3). Indeed, since from (1.5) we have for all
t > 0

S(u(t)) = S(u∏
) < S('), (2.7)

we infer that I(u(t)) 6= 0 for any t > 0, and by continuity we have I(u(t)) < 0 for all
t > 0. It follows that Q(u(t)) 6= 0 for any t > 0 (if not u(t) 2 M and thus S(u(t)) > S(')

which contradicts (2.7)), and by continuity we have Q(u(t)) < 0 for all t > 0. Thus for all
t > 0 we have

S(u(t)) < S('), I(u(t)) < 0 and Q(u(t)) < 0.

Step 3. We fix t > 0 and define v := u(t). For Ø > 0, let vØ
(x) := Ø

N
2 v(Øx).

From Step 2 we have Q(v) < 0. Thus from Lemma 2.3 there exists Ø0 < 1 such that
Q(vØ0

) = 0. If I(vØ0
) 6 0, we keep Ø0, otherwise we replace it by ˜Ø0 2 (Ø0, 1) such that

I(vØ̃0
) = 0. Thus in any case we have

S(vØ0
) > d(!) (2.8)

and Q(vØ0
) 6 0. Now from (iv) in Lemma 2.3 we have

S(v)° S(vØ0
) > (1° Ø0)

@

@Ø
S(vØ

)|Ø=1.
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Thus, from (v) in Lemma 2.3, Q(v) < 0 and Ø0 < 1, and we get

S(v)° S(vØ0
) > Q(v).

Combined with (2.8), this gives

Q(v) 6 S(v)° d(!) := °± < 0 (2.9)

where ± is independent of t since S is a conserved quantity.
To conclude, it suffices to observe that thanks to (1.7) and (2.9) we have

kxu(t)k22 6 °4±t2 + Ct + kxu∏k22, (2.10)

and since the right hand side of (2.10) becomes negative when t grows up, we easily deduce
that Tu∏ < +1 and limt!Tu∏ kru(t)k2 = +1. §
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