

Intégration Numérique Correction succincte

Question 1)

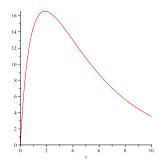


Figure 1. Courbe représentative de la fonction f.

La fonction admet un maximum en $x=-\frac{5}{6}+\frac{\sqrt{265}}{6}\approx 1.879803434$ ce qui correspond à la hauteur où la voile est fixée à une barre horizontale. Plus x devient grand et moins la force est grande car la surface de la voile est de plus en plus petite.

Une valeur approchée suffisamment précise pour servir de solution de référence peut être prise égale à

$$R_{ref} = 100.0613684$$

Questions 2 et 3) Les résultats des diverses simulations sont regroupés dans la tableau ci-dessous. Ici n représente le nombre de points considéré pour les calculs, la ligne Right correspond à la méthode des rectangles s'appuyant sur des rectangles "à droite" (voir Figure a), Left pour des rectangles "à gauche" (Question 2 au choix - Figure b), Middle pour la méthode des trapèzes (Question 3 - Figure c). Bien sur sans ordinateur ou machine a calculer programmable, il est demandé de prendre peu de points, 5 suffisent.

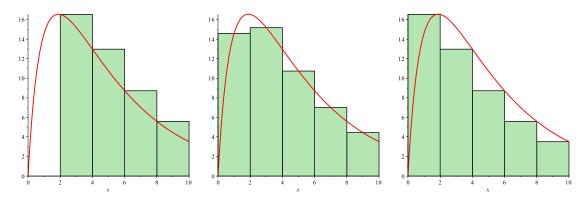


Figure 1. Illustration des différentes méthodes d'intégration numérique (Left, Right, Middle).

ĺ	n	5	10	20	40
	Right	87.71397281	95.85096524	98.54773518	99.46158154
Ì	Left	94.74982983	99.36889375	100.3066994	100.3410637
Ì	Middle	103.9879577	101.2445052	100.3754279	100.1411955

n	60	80	100	120	140	160
Right	99.69694763	99.80138851	99.85979438	99.89695355	99.92262384	99.94139959
Left	100.2832690	100.2411296	100.2115872	100.1901143	100.1739044	100.1612701
Middle	100.0969594	100.0814106	100.0742020	100.0702831	100.0679191	100.0663843

Question 4) Partant d'un intervalle I=[0,L]=[0,10], on peut définir une application affine qui transforme I en [-1,1] qui est l'intervalle nécessaire pour pouvoir appliquer les formules de quadratures. On utilise le changement de variable $X=\frac{x}{L}+1 \Longleftrightarrow x=L(X-1)$ ce qui donne dx=LdX. La nouvelle expression de R utilise ce changement de variable pour exprimer l'intégrale en fonction de X. Le choix du nom de la variable d'intégration étant indépendante du calcul de l'intégrale il suffit de remplacer X par x pour conclure. Si on considère n points x_i , $i=1\cdots n$, racine du polynôme de Legendre $P_n(x)$, le calcul approchée est réalisé par

$$I(f) = \sum_{i=1}^{n} \omega_i f(x_i)$$

où ω_i sont des poids définis par

$$\omega_i = \frac{-2}{(n+1)P'_n(x_i)P_{n+1}(x_i)}.$$

Les polynômes de Legendre pour n=5 et n=6 sont donnés par

$$P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x)$$
 et $P_6(x) = \frac{1}{16}(231x^6 - 315x^4 + 105x^2 - 5)$

n	5	10	20	40
GL				

n	2	3	4	5
x_i	± 0.57735	0	± 0.339981	0
		± 0.774597	± 0.861136	± 0.538469
				± 0.90618
ω_i	1	0.88889	0.652145	0.568889
		0.555556	0.347855	0.478629
				0.236927

D'autres formules de quadratures existent comme celle de Gauss-Lobatto-Legendre (GLL)

i	1	2	3	4	5
x_i	-0.830223896278567	-0.468848793470714	0	0.468848793470714	0.830223896278567
ω_i	0.276826047361560	0.431745381209868	0.487619047619047	0.431745381209868	0.276826047361560

Avec GLL on trouve

n	5	10	20	40
GLL	99.90570220	100.0613190	100.0613684	100.0611550

Conclusion:

AVEC 10 POINTS (GLL) ON EST BIEN PLUS PRECIS QU'AVEC 160 POINTS (TRAPEZES) 10 points demandent de connaître 4 points (réels) et 5 poids!!!!