Differential systems

Exercise 1. 1. Compute the solution $\left(y_{1}, y_{2}\right)$ to the system

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=2 y_{1}, \quad y_{1}(0)=1, \\
y_{2}^{\prime}=y_{2}, \quad y_{2}(0)=1 .
\end{array}\right.
$$

Prove that $y_{1}(t)=y_{2}(t)^{2}$ and give a graphical representation in the plan of $t \mapsto\left(y_{1}(t), y_{2}(t)\right)$ (called the trajectory of the solution).
2. Compute the solution $\left(y_{1}, y_{2}\right)$ of the system

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=2 y_{1}, \quad y_{1}(0)=1, \\
y_{2}^{\prime}=-y_{2}, \quad y_{2}(0)=-1 .
\end{array}\right.
$$

and represent the trajectory.
Exercise 2. 1. Give the matrix diagonalization of $A=\left(\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right)$.
2. Deduce the general expression of the solutions to the system

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=3 y_{1}-2 y_{2}, \\
y_{2}^{\prime}=y_{1} .
\end{array}\right.
$$

3. Compute the solution corresponding to the initial conditions $y_{1}(0)=3, y_{2}(0)=2$ and represent its trajectory.
4. ** Using the same strategy employed in the previous questions compute and represent in the plan the solution of

$$
\begin{cases}y_{1}^{\prime}=5 y_{1}-6 y_{2}, & y_{1}(0)=3, \\ y_{2}^{\prime}=3 y_{1}-4 y_{2}, & y_{2}(0)=2 .\end{cases}
$$

Exercise 3. We consider the system

$$
(\mathrm{S})\left\{\begin{array}{l}
y_{1}^{\prime}=y_{2}, \quad y_{1}(0)=0 \\
y_{2}^{\prime}=y_{3}, \quad y_{2}(0)=1, \\
y_{3}^{\prime}=2 y_{1}+y_{2}-2 y_{3}, \quad y_{3}(0)=-3 .
\end{array}\right.
$$

1. Give the matrix A such that the system (S) is formulated under the form $Y^{\prime}=A Y$. Then give the diagonalization of A.
2. Compute the general solutions of (S).
3. Give the expression of the solution corresponding to the initial conditions $y_{1}(0)=0, y_{2}(0)=1$ and $y_{3}(0)=-3$.
4. ${ }^{* *}$ Using the same strategy employed in the previous questions, compute the solution of

$$
\begin{cases}y_{1}^{\prime}=y_{2}+y_{3}, & y_{1}(0)=1 \\ y_{2}^{\prime}=y_{1}+y_{3}, & y_{2}(0)=1 \\ y_{3}^{\prime}=y_{1}+y_{2}, & y_{3}(0)=1\end{cases}
$$

Exercise 4. We consider an electrical circuit given by

The intensities I_{1} and I_{2} are solutions of the differential system

$$
\left\{\begin{aligned}
\frac{d I_{1}}{d t} & =-\left(\frac{R+R_{1}}{L_{1}}\right) I_{1}-\left(\frac{R_{2}}{L_{1}}\right) I_{2}+\frac{U_{C A}}{L_{1}} \\
\frac{d I_{2}}{d t} & =-\left(\frac{R_{1}}{L_{2}}\right) I_{1}-\left(\frac{R+R_{2}}{L_{2}}\right) I_{2}+\frac{U_{D A}}{L_{2}}
\end{aligned}\right.
$$

In the following, we consider the case where $L_{1}=L_{2}=1, R=1, R_{1}=2, R_{2}=3$.

1. Prove that the system verifies by the couple $\left(I_{1}, I_{2}\right)$ is

$$
\left\{\begin{aligned}
\frac{d I_{1}}{d t} & =-3 I_{1}-3 I_{2}+U_{C A} \\
\frac{d I_{2}}{d t} & =-2 I_{1}-4 I_{2}+U_{D A}
\end{aligned}\right.
$$

2. Compute the associated general solution of the homogenous system (i.e. for $U_{C A}=0$ and $U_{D A}=0$).
3. We suppose that the tensions $U_{C A}$ and $U_{D A}$ are constants and equal to $U_{C A}=3$ and $U_{D A}=8$. Moreover we suppose that the initial intensities $I_{1}(0)$ and $I_{2}(0)$ are equal to 0 . Compute the corresponding solution $\left(I_{1}, I_{2}\right)$.
