M2 MAT-RI

EIMAR4E1
Advanced Course B3
Theoretical and numerical analysis
of dispersive PDEs.
S. LE COZ's Exam.

Duration : 1.5 hours. No documents, no calculator, no cell-phone.

In this exam, $S(t)=e^{i t \Delta}$ will denote the Schrödinger group, i.e. $S(t) u_{0}$ is the solution of

$$
\left\{\begin{array}{l}
i u_{t}+\Delta u=0, \\
u(0)=u_{0},
\end{array} \quad u: \mathbb{R}_{t} \times \mathbb{R}_{x}^{d} \rightarrow \mathbb{C} .\right.
$$

Exercise 1. Let $u_{0} \in H^{1}\left(\mathbb{R}^{d}\right)$ and $\lambda>0$. We define u_{0}^{λ} by $u_{0}^{\lambda}(x)=u_{0}(\lambda x)$.

1. Show that $S(t) u_{0}^{\lambda}$ is given by

$$
\left(S(t) u_{0}^{\lambda}\right)(x)=\left(S\left(\lambda^{2} t\right) u_{0}\right)(\lambda x)
$$

2. Express $\left\|u_{0}^{\lambda}\right\|_{L_{x}^{2}}$ in terms of $\left\|u_{0}\right\|_{L_{x}^{2}}$.
3. Given $q, r \in[2, \infty]$, express $\left\|S(t) u_{0}^{\lambda}\right\|_{L_{t}^{q} L_{x}^{r}}$ in terms of $\left\|S(t) u_{0}\right\|_{L_{t}^{q} L_{x}^{r}}$.
4. Give a necessary condition (the answer should be justified) on q, r and d for the following property to hold: there exists $C>0$ such that for any $u_{0} \in H^{1}\left(\mathbb{R}^{d}\right)$ we have

$$
\left\|S(t) u_{0}\right\|_{L_{t}^{q} L_{x}^{r}} \leq C\left\|u_{0}\right\|_{L_{x}^{2}} .
$$

Exercise 2. In this exercise, the space dimension is $d=2$. We recall the dispersive estimate: there exists $C>0$ such that for all $q \in[2, \infty]$, for $u_{0} \in L^{q^{\prime}}\left(\mathbb{R}^{2}\right)$ (where $1 / q+1 / q^{\prime}=1$) and for all $t>0$ we have

$$
\left\|S(t) u_{0}\right\|_{L_{x}^{q}} \leq C|t|^{-1+\frac{2}{q}}\left\|u_{0}\right\|_{L_{x}^{q^{\prime}}} .
$$

We define the function $f: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
f(z)=|z|^{2} z .
$$

Let $\lambda>0$. Let $W, H:[0, \infty) \times \mathbb{R}^{2} \rightarrow \mathbb{C}$ be such that

$$
\|W\|_{L_{t}^{\infty} L_{x}^{4}}+\left\|e^{\lambda t}\right\| H(t)\left\|_{L_{x}^{\frac{4}{x}}}\right\|_{L_{t}^{\infty}} \leq 1
$$

Define the functional Φ for $\eta:[0, \infty) \times \mathbb{R}^{2} \rightarrow \mathbb{C}$ by

$$
\Phi(\eta)=-i \int_{t}^{\infty} S(t-s)(f(W(s)+\eta(s))-f(W(s))+H(s)) d s
$$

Define the ball

$$
B=\left\{\eta:[0, \infty) \times \mathbb{R}^{2} \rightarrow \mathbb{C}:\left\|e^{\lambda t}\right\| \eta(t)\left\|_{L_{x}^{4}}\right\|_{L_{t}^{\infty}} \leq 1\right\}
$$

Endowed with the norm

$$
\|\cdot\|_{B}=\left\|e^{\lambda t}\right\| \cdot\left\|_{L_{x}^{4}}\right\|_{L_{t}^{\infty}},
$$

the ball B is a complete metric space.

1. Preliminary: Show that there exists $C>0$ such that for any $z_{1}, z_{2} \in \mathbb{C}$ we have

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leq C\left|z_{1}-z_{2}\right|\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right) .
$$

2. Let $\eta \in B$ and $t \geq 0$. Show that there exists $C>0$ such that

$$
\|\Phi(\eta)(t)\|_{L_{x}^{4}} \leq C \int_{t}^{\infty}|t-s|^{-\frac{1}{2}} e^{-\lambda s} d s
$$

3. Given any $C>0$, show that there exists λ^{*} sufficiently large such that if $\lambda>\lambda^{*}$, then for all $t \geq 0$ we have

$$
C \int_{t}^{\infty}|t-s|^{-\frac{1}{2}} e^{-\lambda s} d s \leq e^{-\lambda t} .
$$

4. Show that Φ maps B into B for $\lambda>\lambda^{*}$.
5. Show that there exists $\lambda^{* *}>0$ such that Φ is a contraction mapping on B for $\lambda>\lambda^{* *}$.
6. Let $\eta \in B$ be such that $\Phi(\eta)=\eta$. Assume that W verifies the equation

$$
i \partial_{t} W+\Delta W+f(W)=H
$$

What is the equation verified by u defined by $u=W+\eta$?
Exercise 3 (Optional exercise, to be treated only if time permits). We consider the nonlinear Schrödinger equation

$$
\begin{equation*}
i u_{t}+\Delta u+|u|^{p-1} u=0, \quad u: \mathbb{R}_{t} \times \mathbb{R}_{x}^{d} \rightarrow \mathbb{C}, \quad 1<p<\infty \tag{1}
\end{equation*}
$$

in dimension $d=2$. Given $x \in \mathbb{R}^{2}$, we use the notation $x=\left(x_{1}, x_{2}\right)$ and the partial derivatives with respect to x_{1} and x_{2} are denoted by ∂_{1} and ∂_{2}. We define the angular momentum by

$$
X(u)=\operatorname{Im} \int_{\mathbb{R}^{2}}\left(x_{1} \partial_{2} \bar{u}-x_{2} \partial_{1} \bar{u}\right) u d x .
$$

We denote by $\mathcal{S}\left(\mathbb{R}^{2}\right)$ the Schwartz space of functions $v: \mathbb{R}^{2} \rightarrow \mathbb{C}$ smooth and rapidly decaying.

1. Let $v \in \mathcal{S}\left(\mathbb{R}^{2}\right)$.
(a) Express $\partial_{1}\left(|v|^{p+1}\right)$ in terms of $\partial_{1} v$ and v (do not forget that v is complex valued !).
(b) What is the value of

$$
\int_{\mathbb{R}^{2}} x_{2} \partial_{1}\left(|v|^{p+1}\right) d x ?
$$

(c) Show that

$$
\operatorname{Re} \int_{\mathbb{R}^{2}} x_{1} \partial_{2} \bar{v} \Delta v d x=-\operatorname{Re} \int_{\mathbb{R}^{2}} \partial_{2} \bar{v} \partial_{1} v d x .
$$

2. Let $u \in \mathcal{C}^{1}\left(\mathbb{R}, \mathcal{S}\left(\mathbb{R}^{2}\right)\right)$ be a solution of (1). Show that the angular momentum X is a constant of motion for u, i.e. that

$$
X(u(t))=X(u(0)) \quad \text { for all } t \in \mathbb{R} .
$$

