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Advanced Course B3
Theoretical and numerical analysis

of dispersive PDEs.

S. LE COZ’s Exam.

Duration : 1.5 hours. No documents, no calculator, no cell-phone.

In this exam, S(t) = eit∆ will denote the Schrödinger group, i.e. S(t)u0 is the solution of{
iut + ∆u = 0,

u(0) = u0,
u : Rt × Rdx → C.

Exercise 1. We consider the nonlinear Schrödinger equation

iut + ∆u+ |u|p−1u = 0, u : Rt × Rdx → C, 1 < p <∞. (1)

in dimension d = 2. Given x ∈ R2, we use the notation x = (x1, x2) and the partial derivatives with
respect to x1 and x2 are denoted by ∂1 and ∂2. We define the angular momentum by

X(u) = Im

∫
R2

(x1∂2ū− x2∂1ū)udx.

We denote by S(R2) the Schwartz space of functions v : R2 → C smooth and rapidly decaying.

1. Let v ∈ S(R2).

(a) Express ∂1

(
|v|p+1

)
in terms of ∂1v and v (do not forget that v is complex valued !).

Solution: To avoid the possible singularities at 0, we write

|v|p+1 = (vv̄)
p+1
2 .

Differentiating using the usual rules, we get

∂1

(
|v|p+1

)
=
p+ 1

2
∂1 (vv̄) (vv̄)

p−1
2 =

p+ 1

2
(∂1vv̄ + v∂1v̄) |v|p−1 = (p+1)Re

(
|v|p−1v∂1v̄

)
.

(b) What is the value of ∫
R2

x2∂1

(
|v|p+1

)
dx ?

Solution: Since v ∈ S(R2), we can integrate by part without boundary terms and obtain∫
R2

x2∂1

(
|v|p+1

)
dx = −

∫
R2

(∂1x2) |v|p+1dx = 0.
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(c) Show that

Re

∫
R2

x1∂2v̄∆vdx = −Re

∫
R2

∂2v̄∂1vdx.

Solution: Expanding the Laplace operator, we have

Re

∫
R2

x1∂2v̄∆vdx = Re

∫
R2

x1∂2v̄∂11vdx+ Re

∫
R2

x1∂2v̄∂22vdx. (2)

We treat each part in the second member separately, starting by the first one. Integrating
by part in x1, we obtain

Re

∫
R2

x1∂2v̄∂11vdx = −Re

∫
R2

∂2v̄∂1vdx− Re

∫
R2

x1∂12v̄∂1vdx.

Remark that
∂12v̄∂1v =

1

2
∂2

(
|∂1v|2

)
,

Therefore, after integrating by part in x2 we obtain

Re

∫
R2

x1∂12v̄∂1vdx =
1

2
Re

∫
R2

x1∂2

(
|v|2
)
dx = −1

2
Re

∫
R2

(∂2x1) |v|2dx = 0.

As a consequence, we have

Re

∫
R2

x1∂2v̄∂11vdx = −Re

∫
R2

∂2v̄∂1vdx.

We now show that the second part of the right hand side of (??) is 0. Indeed, integrating
by part in x2, we obtain ∫

R2

x1∂2v̄∂22vdx = −
∫
R2

x1∂22v̄∂2vdx

which implies that

2Re

∫
R2

x1∂2v̄∂22vdx = 0.

This ends the proof.

2. Let u ∈ C1(R,S(R2)) be a solution of (1). Show that the angular momentum X is a constant of
motion for u, i.e. that

X(u(t)) = X(u(0)) for all t ∈ R.

Solution: To obtain the result, we simply show thatX(u(t)) is constant by differentiating with
respect to t. The solution u being smooth and rapidly decaying, all the following calculations
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are justified. We have

∂

∂t
X(u(t)) = Im

∫
R2

(x1∂2ūt − x2∂1ūt)udx+ Im

∫
R2

(x1∂2ū− x2∂1ū)utdx

= Im

∫
R2

(−x1ūt∂2u+ x2ūt∂1u)dx+ Im

∫
R2

(x1∂2ū− x2∂1ū)utdx

= 2Im

∫
R2

(x1∂2ū− x2∂1ū)utdx

= −2Re

∫
R2

(x1∂2ū− x2∂1ū)iutdx

= 2Re

∫
R2

(x1∂2ū− x2∂1ū)(∆u+ |u|p−1u)dx.

We remark now that
Re(∂1ū|u|p−1u) =

1

p+ 1
∂1

(
|u|p+1

)
,

Therefore
Re

∫
R2

x2∂1ū|u|p−1udx =
1

p+ 1

∫
R2

x2∂1

(
|u|p+1

)
dx = 0.

And similarly we also have

Re

∫
R2

x1∂2ū|u|p−1udx = 0.

We have already seen that

Re

∫
R2

x1∂2ū∆udx = −Re

∫
R2

∂2ū∂1udx,

and from similar arguments we have

Re

∫
R2

x2∂1ū∆udx = −Re

∫
R2

∂1ū∂2udx.

Therefore
Re

∫
R2

(x1∂2ū− x2∂1ū)∆udx = 0.

Combining all previous equalities, we infer that

∂

∂t
X(u(t)) = 0,

which gives the desired result.

Exercise 2. Let u0 ∈ H1(Rd) and λ > 0. We define uλ0 by uλ0(x) = u0(λx).

1. Show that S(t)uλ0 is given by
(S(t)uλ0)(x) = (S(λ2t)u0)(λx).

Solution: Several approaches are possible. Here, we show that the function uλ defined by

uλ(t, x) = (S(λ2t)u0)(λx)
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indeed solves the linear Schrödinger equation with initial data uλ0 . First, when t = 0, we have

uλ(0, x) = (S(0)u0)(λx) = u0(λx) = uλ0(x).

Moreover, differentiating in t, we obtain

∂tu
λ(t, x) = ∂t(S(λ2t)u0)(λx) = λ2(∂tS(λ2t)u0)(λx) = λ2(i∆S(λ2t)u0)(λx).

Now, differentiating in x we have

∆uλ(t, x) = ∆(S(λ2t)u0)(λx) = λ2(∆S(λ2t)u0)(λx) = −i∂tuλ(t, x),

which concludes the proof.

2. Express ‖uλ0‖L2
x
in terms of ‖u0‖L2

x
.

Solution: By a change of variable, we obtain

‖uλ0‖L2
x

= λ−
d
2 ‖u0‖L2

x
.

3. Given q, r ∈ [2,∞], express ‖S(t)uλ0‖Lq
tL

r
x
in terms of ‖S(t)u0‖Lq

tL
r
x
.

Solution: Using the expression of S(t)uλ0 previously given, by a change of variable (in time
and in space), we obtain

‖S(t)uλ0‖Lq
tL

r
x

= λ
− 2

q
− d

r ‖S(t)u0‖Lq
tL

r
x
.

4. Give a necessary condition (the answer should be justified) on q, r and d for the following property
to hold: there exists C > 0 such that for any u0 ∈ H1(Rd) we have

‖S(t)u0‖Lq
tL

r
x
≤ C‖u0‖L2

x
.

Solution: Since the inequality should be valid for any u0, it should in particular be valid for
any uλ0 , hence necessarily

2

q
− d

r
=
d

2
.

Exercise 3. In this exercise, the space dimension is d = 2. We recall the dispersive estimate: there
exists C > 0 such that for all q ∈ [2,∞], for u0 ∈ Lq

′
(R2) (where 1/q + 1/q′ = 1) and for all t > 0 we

have
‖S(t)u0‖Lq

x
≤ C|t|−1+ 2

q ‖u0‖Lq′
x
.
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We define the function f : C→ C by
f(z) = |z|2z.

Let λ > 0. Let W,H : [0,∞)× R2 → C be such that

‖W‖L∞t L4
x

+

∥∥∥∥eλt‖H(t)‖
L

4
3
x

∥∥∥∥
L∞t

≤ 1.

Define the functional Φ for η : [0,∞)× R2 → C by

Φ(η) = −i
∫ ∞
t

S(t− s) (f(W (s) + η(s))− f(W (s)) +H(s)) ds.

Define the ball
B =

{
η : [0,∞)× R2 → C :

∥∥∥eλt‖η(t)‖L4
x

∥∥∥
L∞t
≤ 1

}
.

Endowed with the norm
‖·‖B =

∥∥∥eλt‖·‖L4
x

∥∥∥
L∞t
,

the ball B is a complete metric space.

1. Preliminary: Show that there exists C > 0 such that for any z1, z2 ∈ C we have

|f(z1)− f(z2)| ≤ C|z1 − z2|
(
|z1|2 + |z2|2

)
.

Solution: We have∣∣|z1|2z1 − |z2|2z2

∣∣ ≤ ∣∣|z1|2(z1 − z2)
∣∣+
∣∣(|z1|2 − |z2|2)z2

∣∣.
Moreover ∣∣|z1|2 − |z2|2

∣∣ = .||z1| − |z2|| · ||z1|+ |z2||.

and
||z1| − |z2|| ≤ |z1 − z2|.

Thus ∣∣|z1|2z1 − |z2|2z2

∣∣ ≤ |z1 − z2|(|z1|2 + |z2|(|z1|+ |z2|)) ≤ 3|z1 − z2|(|z1|2 + |z2|2).

2. Let η ∈ B and t ≥ 0. Show that there exists C > 0 such that

‖Φ(η)(t)‖L4
x
≤ C

∫ ∞
t
|t− s|−

1
2 e−λsds.

Solution: We have, using the dispersive estimate

‖Φ(η)(t)‖L4
x
≤
∫ ∞
t
‖S(t− s) (f(W (s) + η(s))− f(W (s)) +H(s))‖L4

x
ds

≤ C
∫ ∞
t
|t− s|−

1
2 ‖f(W (s) + η(s))− f(W (s)) +H(s)‖

L
4
3
x

ds.
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As we have seen,

|f(W (s) + η(s))− f(W (s))| ≤ C|η(s)|(|W (s)|2 + |η(s)|2).

Therefore

‖f(W (s) + η(s))− f(W (s))‖
L

4
3
x

≤ C‖|η(s)||W (s)|2‖
L

4
3
x

+ ‖|η(s)|3‖
L

4
3
x

.

We have ‖|η(s)|3‖
L

4
3
x

= ‖η(s)‖3L4
x
and by Hölder inequality

‖|η(s)||W (s)|2‖
L

4
3
x

≤ C‖η(s)‖L4
x
‖|W (s)|2‖L2

x
≤ C‖η(s)‖L4

x
‖W (s)‖2L4

x
.

Gathering the previous inequalities and using the assumptions on W and H we get

‖Φ(η)(t)‖L4
x
≤ C

∫ ∞
t
|t− s|−

1
2 (‖η(s)‖L4

x
‖W (s)‖2L4

x
+ ‖η(s)‖3L4

x
+ ‖H(s)‖

L
4
3
x

)ds

≤ C
∫ ∞
t
|t− s|−

1
2 (e−λs + e−3λs + e−λs)ds ≤ C

∫ ∞
t
|t− s|−

1
2 e−λsds.

3. Given any C > 0, show that there exists λ∗ sufficiently large such that if λ > λ∗, then for all t ≥ 0
we have

C

∫ ∞
t
|t− s|−

1
2 e−λsds ≤ e−λt.

Solution: By changes of variables, we have∫ ∞
t
|t− s|−

1
2 e−λsds =

∫ ∞
0
|σ|−

1
2 e−λσ−λtdσ = e−λtλ−

1
2

∫ ∞
0
|z|−

1
2 e−zdz.

Hence choosing λ large enough gives the desired result.

4. Show that Φ maps B into B for λ > λ∗.

Solution: Combining the previous results, if λ > λ∗, then for any η ∈ B we have

‖Φ(η)(t)‖L4
x
≤ C

∫ ∞
t
|t− s|−

1
2 e−λsds ≤ e−λt.

Thus
‖eλt‖Φ(η)‖L4

x
‖L∞t ≤ 1

and Φ(η) ∈ B.

5. Show that there exists λ∗∗ > 0 such that Φ is a contraction mapping on B for λ > λ∗∗.
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Solution: The proof that Φ is a contraction follows similar lines. Let η1, η2 ∈ B. Then, at
fixed t, we have

‖Φ(η1)− Φ(η2)‖L4
x
≤ C

∫ ∞
t
|t− s|−

1
2 ‖f(W + η1)− f(W + η2)‖

L
4
3
x

ds

≤ C
∫ ∞
t
|t− s|−

1
2 ‖|η1 − η2|(|W |2 + |η1|2 + |η2|2)‖

L
4
3
x

ds

≤ C
∫ ∞
t
|t− s|−

1
2 ‖η1 − η2‖L4

x
(‖W‖2L4

x
+ ‖η1‖2L4

x
+ ‖η2‖2L4

x
)ds

≤ C‖eλt‖η1 − η2‖L4
x
‖L∞t e

λt

∫ ∞
t
|t− s|−

1
2 e−2λsds

≤ ‖eλt‖η1 − η2‖L4
x
‖L∞t e

−λt.

6. Let η ∈ B be such that Φ(η) = η. Assume that W verifies the equation

i∂tW + ∆W + f(W ) = H.

What is the equation verified by u defined by u = W + η ?

Solution: Differentiating η in time, we observe that

∂tη = i(f(W + η)− f(W ) +H) + i∆η.

Therefore, η verifies the Schrödinger equation

i∂tη + ∆η + f(W + η)− f(W ) = −H.

Summing up with the equation of W and using u = W + η, we obtain for u the equation

iut + ∆u+ f(u) = 0.
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