M2 MAT-RI
EIMAR4E1
Advanced Course B3
Theoretical and numerical analysis
of dispersive PDEs.
S. LE COZ's Exam.

Duration : 1.5 hours. No documents, no calculator, no cell-phone.

In this exam, $S(t)=e^{i t \Delta}$ will denote the Schrödinger group, i.e. $S(t) u_{0}$ is the solution of

$$
\left\{\begin{array}{l}
i u_{t}+\Delta u=0, \quad u: \mathbb{R}_{t} \times \mathbb{R}_{x}^{d} \rightarrow \mathbb{C} . \\
u(0)=u_{0},
\end{array}\right.
$$

Exercise 1. We consider the nonlinear Schrödinger equation

$$
\begin{equation*}
i u_{t}+\Delta u+|u|^{p-1} u=0, \quad u: \mathbb{R}_{t} \times \mathbb{R}_{x}^{d} \rightarrow \mathbb{C}, \quad 1<p<\infty \tag{1}
\end{equation*}
$$

in dimension $d=2$. Given $x \in \mathbb{R}^{2}$, we use the notation $x=\left(x_{1}, x_{2}\right)$ and the partial derivatives with respect to $x_{1}$ and $x_{2}$ are denoted by $\partial_{1}$ and $\partial_{2}$. We define the angular momentum by

$$
X(u)=\operatorname{Im} \int_{\mathbb{R}^{2}}\left(x_{1} \partial_{2} \bar{u}-x_{2} \partial_{1} \bar{u}\right) u d x .
$$

We denote by $\mathcal{S}\left(\mathbb{R}^{2}\right)$ the Schwartz space of functions $v: \mathbb{R}^{2} \rightarrow \mathbb{C}$ smooth and rapidly decaying.

1. Let $v \in \mathcal{S}\left(\mathbb{R}^{2}\right)$.
(a) Express $\partial_{1}\left(|v|^{p+1}\right)$ in terms of $\partial_{1} v$ and $v$ (do not forget that $v$ is complex valued !).

Solution: To avoid the possible singularities at 0 , we write

$$
|v|^{p+1}=(v \bar{v})^{\frac{p+1}{2}} .
$$

Differentiating using the usual rules, we get

$$
\partial_{1}\left(|v|^{p+1}\right)=\frac{p+1}{2} \partial_{1}(v \bar{v})(v \bar{v})^{\frac{p-1}{2}}=\frac{p+1}{2}\left(\partial_{1} v \bar{v}+v \partial_{1} \bar{v}\right)|v|^{p-1}=(p+1) \operatorname{Re}\left(|v|^{p-1} v \partial_{1} \bar{v}\right) .
$$

(b) What is the value of

$$
\int_{\mathbb{R}^{2}} x_{2} \partial_{1}\left(|v|^{p+1}\right) d x ?
$$

Solution: Since $v \in \mathcal{S}\left(\mathbb{R}^{2}\right)$, we can integrate by part without boundary terms and obtain

$$
\int_{\mathbb{R}^{2}} x_{2} \partial_{1}\left(|v|^{p+1}\right) d x=-\int_{\mathbb{R}^{2}}\left(\partial_{1} x_{2}\right)|v|^{p+1} d x=0 .
$$

(c) Show that

$$
\operatorname{Re} \int_{\mathbb{R}^{2}} x_{1} \partial_{2} \bar{v} \Delta v d x=-\operatorname{Re} \int_{\mathbb{R}^{2}} \partial_{2} \bar{v} \partial_{1} v d x .
$$

Solution: Expanding the Laplace operator, we have

$$
\begin{equation*}
\operatorname{Re} \int_{\mathbb{R}^{2}} x_{1} \partial_{2} \bar{v} \Delta v d x=\operatorname{Re} \int_{\mathbb{R}^{2}} x_{1} \partial_{2} \bar{v} \partial_{11} v d x+\operatorname{Re} \int_{\mathbb{R}^{2}} x_{1} \partial_{2} \bar{v} \partial_{22} v d x . \tag{2}
\end{equation*}
$$

We treat each part in the second member separately, starting by the first one. Integrating by part in $x_{1}$, we obtain

$$
\operatorname{Re} \int_{\mathbb{R}^{2}} x_{1} \partial_{2} \bar{v} \partial_{11} v d x=-\operatorname{Re} \int_{\mathbb{R}^{2}} \partial_{2} \bar{v} \partial_{1} v d x-\operatorname{Re} \int_{\mathbb{R}^{2}} x_{1} \partial_{12} \bar{v} \partial_{1} v d x .
$$

Remark that

$$
\partial_{12} \bar{v} \partial_{1} v=\frac{1}{2} \partial_{2}\left(\left|\partial_{1} v\right|^{2}\right),
$$

Therefore, after integrating by part in $x_{2}$ we obtain

$$
\operatorname{Re} \int_{\mathbb{R}^{2}} x_{1} \partial_{12} \bar{v} \partial_{1} v d x=\frac{1}{2} \operatorname{Re} \int_{\mathbb{R}^{2}} x_{1} \partial_{2}\left(|v|^{2}\right) d x=-\frac{1}{2} \operatorname{Re} \int_{\mathbb{R}^{2}}\left(\partial_{2} x_{1}\right)|v|^{2} d x=0 .
$$

As a consequence, we have

$$
\operatorname{Re} \int_{\mathbb{R}^{2}} x_{1} \partial_{2} \bar{v} \partial_{11} v d x=-\operatorname{Re} \int_{\mathbb{R}^{2}} \partial_{2} \bar{v} \partial_{1} v d x .
$$

We now show that the second part of the right hand side of (??) is 0 . Indeed, integrating by part in $x_{2}$, we obtain

$$
\int_{\mathbb{R}^{2}} x_{1} \partial_{2} \bar{v} \partial_{22} v d x=-\int_{\mathbb{R}^{2}} x_{1} \partial_{22} \bar{v} \partial_{2} v d x
$$

which implies that

$$
2 \operatorname{Re} \int_{\mathbb{R}^{2}} x_{1} \partial_{2} \bar{v} \partial_{22} v d x=0
$$

This ends the proof.
2. Let $u \in \mathcal{C}^{1}\left(\mathbb{R}, \mathcal{S}\left(\mathbb{R}^{2}\right)\right)$ be a solution of (1). Show that the angular momentum $X$ is a constant of motion for $u$, i.e. that

$$
X(u(t))=X(u(0)) \quad \text { for all } t \in \mathbb{R} .
$$

Solution: To obtain the result, we simply show that $X(u(t))$ is constant by differentiating with respect to $t$. The solution $u$ being smooth and rapidly decaying, all the following calculations
are justified. We have

$$
\begin{array}{r}
\frac{\partial}{\partial t} X(u(t))=\operatorname{Im} \int_{\mathbb{R}^{2}}\left(x_{1} \partial_{2} \bar{u}_{t}-x_{2} \partial_{1} \bar{u}_{t}\right) u d x+\operatorname{Im} \int_{\mathbb{R}^{2}}\left(x_{1} \partial_{2} \bar{u}-x_{2} \partial_{1} \bar{u}\right) u_{t} d x \\
=\operatorname{Im} \int_{\mathbb{R}^{2}}\left(-x_{1} \bar{u}_{t} \partial_{2} u+x_{2} \bar{u}_{t} \partial_{1} u\right) d x+\operatorname{Im} \int_{\mathbb{R}^{2}}\left(x_{1} \partial_{2} \bar{u}-x_{2} \partial_{1} \bar{u}\right) u_{t} d x \\
=2 \operatorname{Im} \int_{\mathbb{R}^{2}}\left(x_{1} \partial_{2} \bar{u}-x_{2} \partial_{1} \bar{u}\right) u_{t} d x \\
=-2 \operatorname{Re} \int_{\mathbb{R}^{2}}\left(x_{1} \partial_{2} \bar{u}-x_{2} \partial_{1} \bar{u}\right) i u_{t} d x \\
=2 \operatorname{Re} \int_{\mathbb{R}^{2}}\left(x_{1} \partial_{2} \bar{u}-x_{2} \partial_{1} \bar{u}\right)\left(\Delta u+|u|^{p-1} u\right) d x .
\end{array}
$$

We remark now that

$$
\operatorname{Re}\left(\partial_{1} \bar{u}|u|^{p-1} u\right)=\frac{1}{p+1} \partial_{1}\left(|u|^{p+1}\right),
$$

Therefore

$$
\operatorname{Re} \int_{\mathbb{R}^{2}} x_{2} \partial_{1} \bar{u}|u|^{p-1} u d x=\frac{1}{p+1} \int_{\mathbb{R}^{2}} x_{2} \partial_{1}\left(|u|^{p+1}\right) d x=0 .
$$

And similarly we also have

$$
\operatorname{Re} \int_{\mathbb{R}^{2}} x_{1} \partial_{2} \bar{u}|u|^{p-1} u d x=0
$$

We have already seen that

$$
\operatorname{Re} \int_{\mathbb{R}^{2}} x_{1} \partial_{2} \bar{u} \Delta u d x=-\operatorname{Re} \int_{\mathbb{R}^{2}} \partial_{2} \bar{u} \partial_{1} u d x
$$

and from similar arguments we have

$$
\operatorname{Re} \int_{\mathbb{R}^{2}} x_{2} \partial_{1} \bar{u} \Delta u d x=-\operatorname{Re} \int_{\mathbb{R}^{2}} \partial_{1} \bar{u} \partial_{2} u d x
$$

Therefore

$$
\operatorname{Re} \int_{\mathbb{R}^{2}}\left(x_{1} \partial_{2} \bar{u}-x_{2} \partial_{1} \bar{u}\right) \Delta u d x=0
$$

Combining all previous equalities, we infer that

$$
\frac{\partial}{\partial t} X(u(t))=0
$$

which gives the desired result.

Exercise 2. Let $u_{0} \in H^{1}\left(\mathbb{R}^{d}\right)$ and $\lambda>0$. We define $u_{0}^{\lambda}$ by $u_{0}^{\lambda}(x)=u_{0}(\lambda x)$.

1. Show that $S(t) u_{0}^{\lambda}$ is given by

$$
\left(S(t) u_{0}^{\lambda}\right)(x)=\left(S\left(\lambda^{2} t\right) u_{0}\right)(\lambda x)
$$

Solution: Several approaches are possible. Here, we show that the function $u^{\lambda}$ defined by

$$
u^{\lambda}(t, x)=\left(S\left(\lambda^{2} t\right) u_{0}\right)(\lambda x)
$$

indeed solves the linear Schrödinger equation with initial data $u_{0}^{\lambda}$. First, when $t=0$, we have

$$
u^{\lambda}(0, x)=\left(S(0) u_{0}\right)(\lambda x)=u_{0}(\lambda x)=u_{0}^{\lambda}(x) .
$$

Moreover, differentiating in $t$, we obtain

$$
\partial_{t} u^{\lambda}(t, x)=\partial_{t}\left(S\left(\lambda^{2} t\right) u_{0}\right)(\lambda x)=\lambda^{2}\left(\partial_{t} S\left(\lambda^{2} t\right) u_{0}\right)(\lambda x)=\lambda^{2}\left(i \Delta S\left(\lambda^{2} t\right) u_{0}\right)(\lambda x) .
$$

Now, differentiating in $x$ we have

$$
\Delta u^{\lambda}(t, x)=\Delta\left(S\left(\lambda^{2} t\right) u_{0}\right)(\lambda x)=\lambda^{2}\left(\Delta S\left(\lambda^{2} t\right) u_{0}\right)(\lambda x)=-i \partial_{t} u^{\lambda}(t, x),
$$

which concludes the proof.
2. Express $\left\|u_{0}^{\lambda}\right\|_{L_{x}^{2}}$ in terms of $\left\|u_{0}\right\|_{L_{x}^{2}}$.

Solution: By a change of variable, we obtain

$$
\left\|u_{0}^{\lambda}\right\|_{L_{x}^{2}}=\lambda^{-\frac{d}{2}}\left\|u_{0}\right\|_{L_{x}^{2}} .
$$

3. Given $q, r \in[2, \infty]$, express $\left\|S(t) u_{0}^{\lambda}\right\|_{L_{t}^{q} L_{x}^{r}}$ in terms of $\left\|S(t) u_{0}\right\|_{L_{t}^{q} L_{x}^{r}}$.

Solution: Using the expression of $S(t) u_{0}^{\lambda}$ previously given, by a change of variable (in time and in space), we obtain

$$
\left\|S(t) u_{0}^{\lambda}\right\|_{L_{t}^{q} L_{x}^{r}}=\lambda^{-\frac{2}{q}-\frac{d}{r}}\left\|S(t) u_{0}\right\|_{L_{t}^{q} L_{x}^{r}} .
$$

4. Give a necessary condition (the answer should be justified) on $q, r$ and $d$ for the following property to hold: there exists $C>0$ such that for any $u_{0} \in H^{1}\left(\mathbb{R}^{d}\right)$ we have

$$
\left\|S(t) u_{0}\right\|_{L_{t}^{q} L_{x}^{r}} \leq C\left\|u_{0}\right\|_{L_{x}^{2}} .
$$

Solution: Since the inequality should be valid for any $u_{0}$, it should in particular be valid for any $u_{0}^{\lambda}$, hence necessarily

$$
\frac{2}{q}-\frac{d}{r}=\frac{d}{2} .
$$

Exercise 3. In this exercise, the space dimension is $d=2$. We recall the dispersive estimate: there exists $C>0$ such that for all $q \in[2, \infty]$, for $u_{0} \in L^{q^{\prime}}\left(\mathbb{R}^{2}\right)$ (where $1 / q+1 / q^{\prime}=1$ ) and for all $t>0$ we have

$$
\left\|S(t) u_{0}\right\|_{L_{x}^{q}} \leq C|t|^{-1+\frac{2}{q}}\left\|u_{0}\right\|_{L_{x}^{q^{\prime}}} .
$$

We define the function $f: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
f(z)=|z|^{2} z
$$

Let $\lambda>0$. Let $W, H:[0, \infty) \times \mathbb{R}^{2} \rightarrow \mathbb{C}$ be such that

$$
\|W\|_{L_{t}^{\infty} L_{x}^{4}}+\left\|e^{\lambda t}\right\| H(t)\left\|_{L_{x}^{\frac{4}{3}}}\right\|_{L_{t}^{\infty}} \leq 1
$$

Define the functional $\Phi$ for $\eta:[0, \infty) \times \mathbb{R}^{2} \rightarrow \mathbb{C}$ by

$$
\Phi(\eta)=-i \int_{t}^{\infty} S(t-s)(f(W(s)+\eta(s))-f(W(s))+H(s)) d s
$$

Define the ball

$$
B=\left\{\eta:[0, \infty) \times \mathbb{R}^{2} \rightarrow \mathbb{C}:\left\|e^{\lambda t}\right\| \eta(t)\left\|_{L_{x}^{4}}\right\|_{L_{t}^{\infty}} \leq 1\right\}
$$

Endowed with the norm

$$
\|\cdot\|_{B}=\left\|e^{\lambda t}\right\| \cdot\left\|_{L_{x}^{4}}\right\|_{L_{t}^{\infty}}
$$

the ball $B$ is a complete metric space.

1. Preliminary: Show that there exists $C>0$ such that for any $z_{1}, z_{2} \in \mathbb{C}$ we have

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leq C\left|z_{1}-z_{2}\right|\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)
$$

Solution: We have

$$
\left|\left|z_{1}\right|^{2} z_{1}-\left|z_{2}\right|^{2} z_{2}\right| \leq\left|\left|z_{1}\right|^{2}\left(z_{1}-z_{2}\right)\right|+\left|\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right) z_{2}\right|
$$

Moreover

$$
\left|\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right|=.\left\|z_{1}\left|-\left|z_{2}\right|\right| \cdot\right\| z_{1}\left|+\left|z_{2}\right|\right|
$$

and

$$
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right|
$$

Thus

$$
\left|\left|z_{1}\right|^{2} z_{1}-\left|z_{2}\right|^{2} z_{2}\right| \leq\left|z_{1}-z_{2}\right|\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|\left(\left|z_{1}\right|+\left|z_{2}\right|\right)\right) \leq 3\left|z_{1}-z_{2}\right|\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)
$$

2. Let $\eta \in B$ and $t \geq 0$. Show that there exists $C>0$ such that

$$
\|\Phi(\eta)(t)\|_{L_{x}^{4}} \leq C \int_{t}^{\infty}|t-s|^{-\frac{1}{2}} e^{-\lambda s} d s
$$

Solution: We have, using the dispersive estimate

$$
\begin{aligned}
&\|\Phi(\eta)(t)\|_{L_{x}^{4}} \leq \int_{t}^{\infty} \| S(t-s)(f(W(s)+\eta(s))-f(W(s))+H(s)) \|_{L_{x}^{4}} d s \\
& \leq C \int_{t}^{\infty}|t-s|^{-\frac{1}{2}}\|f(W(s)+\eta(s))-f(W(s))+H(s)\|_{L_{x}^{4}} d s
\end{aligned}
$$

As we have seen,

$$
|f(W(s)+\eta(s))-f(W(s))| \leq C|\eta(s)|\left(|W(s)|^{2}+|\eta(s)|^{2}\right) .
$$

Therefore

$$
\|f(W(s)+\eta(s))-f(W(s))\|_{L_{x}^{\frac{4}{3}}} \leq C\left\|\left|\eta(s)\left\|\left.W(s)\right|^{2}\right\|_{L_{x}^{\frac{4}{3}}}+\left\||\eta(s)|^{3}\right\|_{L_{x}^{\frac{4}{3}}} .\right.\right.
$$

We have $\left\||\eta(s)|^{3}\right\|_{L_{x}^{4}}=\|\eta(s)\|_{L_{x}^{4}}^{3}$ and by Hölder inequality

$$
\left\|\left|\eta(s)\left\|\left.W(s)\right|^{2}\right\|_{L_{x}^{\frac{4}{3}}} \leq C\|\eta(s)\|_{L_{x}^{4}}\left\|\left.W(s)\right|^{2}\right\|_{L_{x}^{2}} \leq C\|\eta(s)\|_{L_{x}^{4}}\|W(s)\|_{L_{x}^{4}}^{2} .\right.\right.
$$

Gathering the previous inequalities and using the assumptions on $W$ and $H$ we get

$$
\begin{aligned}
\|\Phi(\eta)(t)\|_{L_{x}^{4}} \leq C \int_{t}^{\infty} & |t-s|^{-\frac{1}{2}}\left(\|\eta(s)\|_{L_{x}^{4}}\|W(s)\|_{L_{x}^{4}}^{2}+\|\eta(s)\|_{L_{x}^{4}}^{3}+\|H(s)\|_{L_{x}^{\frac{4}{3}}}\right) d s \\
& \leq C \int_{t}^{\infty}|t-s|^{-\frac{1}{2}}\left(e^{-\lambda s}+e^{-3 \lambda s}+e^{-\lambda s}\right) d s \leq C \int_{t}^{\infty}|t-s|^{-\frac{1}{2}} e^{-\lambda s} d s .
\end{aligned}
$$

3. Given any $C>0$, show that there exists $\lambda^{*}$ sufficiently large such that if $\lambda>\lambda^{*}$, then for all $t \geq 0$ we have

$$
C \int_{t}^{\infty}|t-s|^{-\frac{1}{2}} e^{-\lambda s} d s \leq e^{-\lambda t} .
$$

Solution: By changes of variables, we have

$$
\int_{t}^{\infty}|t-s|^{-\frac{1}{2}} e^{-\lambda s} d s=\int_{0}^{\infty}|\sigma|^{-\frac{1}{2}} e^{-\lambda \sigma-\lambda t} d \sigma=e^{-\lambda t} \lambda^{-\frac{1}{2}} \int_{0}^{\infty}|z|^{-\frac{1}{2}} e^{-z} d z .
$$

Hence choosing $\lambda$ large enough gives the desired result.
4. Show that $\Phi$ maps $B$ into $B$ for $\lambda>\lambda^{*}$.

Solution: Combining the previous results, if $\lambda>\lambda^{*}$, then for any $\eta \in B$ we have

$$
\|\Phi(\eta)(t)\|_{L_{x}^{4}} \leq C \int_{t}^{\infty}|t-s|^{-\frac{1}{2}} e^{-\lambda s} d s \leq e^{-\lambda t}
$$

Thus

$$
\left\|e^{\lambda t}\right\| \Phi(\eta)\left\|_{L_{x}^{4}}\right\|_{L_{t}^{\infty}} \leq 1
$$

and $\Phi(\eta) \in B$.
5. Show that there exists $\lambda^{* *}>0$ such that $\Phi$ is a contraction mapping on $B$ for $\lambda>\lambda^{* *}$.

Solution: The proof that $\Phi$ is a contraction follows similar lines. Let $\eta_{1}, \eta_{2} \in B$. Then, at fixed $t$, we have

$$
\begin{aligned}
& \left\|\Phi\left(\eta_{1}\right)-\Phi\left(\eta_{2}\right)\right\|_{L_{x}^{4}} \leq C \int_{t}^{\infty}|t-s|^{-\frac{1}{2}}\left\|f\left(W+\eta_{1}\right)-f\left(W+\eta_{2}\right)\right\|_{L_{x}^{\frac{4}{3}}} d s \\
& \leq C \int_{t}^{\infty}|t-s|^{-\frac{1}{2}}\left\|\left|\eta_{1}-\eta_{2}\right|\left(|W|^{2}+\left|\eta_{1}\right|^{2}+\left|\eta_{2}\right|^{2}\right)\right\|_{L_{x}^{\frac{4}{3}}} d s \\
& \leq C \int_{t}^{\infty}|t-s|^{-\frac{1}{2}}\left\|\eta_{1}-\eta_{2}\right\|_{L_{x}^{4}}\left(\|W\|_{L_{x}^{4}}^{2}+\left\|\eta_{1}\right\|_{L_{x}^{4}}^{2}+\left\|\eta_{2}\right\|_{L_{x}^{4}}^{2}\right) d s \\
& \quad \leq C\left\|e^{\lambda t}\right\| \eta_{1}-\eta_{2}\left\|_{L_{x}^{4}}\right\|_{L_{t}^{\infty}} e^{\lambda t} \int_{t}^{\infty}|t-s|^{-\frac{1}{2}} e^{-2 \lambda s} d s \\
& \leq\left\|e^{\lambda t}\right\| \eta_{1}-\eta_{2}\left\|_{L_{x}^{4}}\right\|_{L_{t}^{\infty}} e^{-\lambda t} .
\end{aligned}
$$

6. Let $\eta \in B$ be such that $\Phi(\eta)=\eta$. Assume that $W$ verifies the equation

$$
i \partial_{t} W+\Delta W+f(W)=H
$$

What is the equation verified by $u$ defined by $u=W+\eta$ ?

Solution: Differentiating $\eta$ in time, we observe that

$$
\partial_{t} \eta=i(f(W+\eta)-f(W)+H)+i \Delta \eta .
$$

Therefore, $\eta$ verifies the Schrödinger equation

$$
i \partial_{t} \eta+\Delta \eta+f(W+\eta)-f(W)=-H
$$

Summing up with the equation of $W$ and using $u=W+\eta$, we obtain for $u$ the equation

$$
i u_{t}+\Delta u+f(u)=0 .
$$

