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Abstract

We describe the structure of the group of algebraic automorphisms of the following surfaces
1) P1

k × P1
k minus a diagonal; 2) P1

k × P1
k minus a fiber. The motivation is to get a new proof

of two theorems proven respectively by L. Makar-Limanov and H. Nagao. We also discuss the
structure of the semi-group of polynomial proper maps from C2 to C2.
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1 Introduction

In [6] we explained how to get a geometric proof of the classical theorem of Jung-Van der Kulk
which describes the structure of polynomial automorphisms of the affine plane A

2
k (k is an arbitrary

field):

Theorem 1 (Jung - Van der Kulk) The group of polynomial automorphisms of the affine plane
A

2
k is the amalgamated product of the affine group

A = {(x, y) 7→ (a1x + b1y + c1, a2x + b2y + c2); ai, bi, ci ∈ k, a1b2 − a2b1 6= 0}

and the elementary group

E = {(x, y) 7→ (αx + P (y), βy + γ); α, β ∈ k∗, γ ∈ k, P ∈ k[X]}

along their intersection.

In this article we apply the same line of argument to obtain a description of the automorphism
group of some other classes of surfaces.

Precisely we are interested in the automorphism group of two surfaces distinct from A
2
k: namely

P
1
k × P

1
k minus either a diagonal or a fiber. Our motivation is to get an unified geometric proof of

two known theorems due respectively to L. Makar-Limanov and H. Nagao. The result by Makar-
Limanov is about the description of the automorphisms of an affine quadric surface. This result

1The choice of “affine” in the french title was infortunate, since one of the surface under study (namely P
1

k × P
1

k

minus a fiber) is only quasi-projective...
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(applied over the base field k = C(t)) was used in [7] in the study of a certain class of automor-
phisms of C

3. The result of Nagao is a description of the group GL(2, k[X]). This theorem was
given a new (and more general, see [9]) proof by Serre [11], using an action of GL2(k[X]) on a
simplicial tree.

Note that V. Danilov and M. Gizatullin [4] studied the more general situation where G is the
automorphism group of an affine surface which admits a projective compactification with exactly
one rational curve at infinity; thus their results contained ours theorems 4 and 5. Their method
is to show that G acts on a tree whose vertices are identified with certain compactifications of the
surface, with fundamental domain an edge. Then applying the theory of Bass and Serre [11] they
obtain a description of G as an amalgamated product. Our proof is also geometric bur nevertheless
quite different. We use the fact that any birational maps between surfaces admits a factorization
by a sequence of blow-ups to obtain generators for the group G, and then the question of the
absence of relations (i.e. the structure of amalgamated product) is nothing more than an easy
remark (see page 11).

In the last section we consider a different problem: the description of a class of endomorphisms
(but no longer automorphisms) of the complex affine plane. Precisely we discuss the structure of
the semi-group of proper polynomial maps from C

2 to C
2.

In this paper we use repetitively the following basic result, which is true over any algebraically
closed field (see [5, th. 5.5]).

Theorem 2 (Zariski) Any birational map between surfaces is a sequence of blow-ups and blow-
downs; in other words if X, Y are (smooth) surfaces and

g : X 99K Y

is a birational map (which is not an isomorphism), then there exists a surface M and two sequences
of blow-ups π1 and π2 such that the following diagram commutes:

M
π2

  A
AA

AA
AA

A
π1

~~||
||

||
||

X g
//_______ Y

We will refer to this diagram as the diagram of Zariski associated with g. Each one of the
points blown-up in the sequence π1 is called a base point of g; thus these points either belongs to
X (one says that the base point is proper) or to a surface obtained after blowing-up X (one says
that the base point is in an infinitely close neighborhood of a point of X 2). We will note #ind(g)
the number of base points of g (proper or not). We will use certain compactifications of A

2 called
Hirzebruch surfaces, which are defined by Fn = P(OP1 ⊕ OP1(n)). All we need to know here is
that such a surface, which is a fibration in P

1 over P
1, compactifies A

2 by adding two transverse
rational curves: one fiber at infinity f∞ and a section s∞ with self-intersection −n. We will use
the notation f∞(Fn) and s∞(Fn) if there is a risk of ambiguity on the Hirzebruch surface at hand.

2if π : X̃ → X is a blow-up sequence, if q belongs to one of the exceptional divisors and if π(q) = p ∈ X, one says
that q is in the infinitely close neighborhood of p.
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A basic example is F1 which is obtained by blowing up a point p on the line at infinity in P
2: in

this case the fibration comes from the pencil of lines passing through p, f∞ is the transform of the
line at infinity and s∞ is the exceptional divisor.

2 On the automorphisms of P1 × P1 minus a rational curve

In the sequel k will be an arbitrary field (except in the context of the theorem 6 where we assume
char(k) 6= 2). We state two theorems describing the structure of the automorphisms of P

1 × P
1

minus a diagonal or a fiber. Then we explain the links between these results and two theorems
already found in the literature (due respectively to Makar-Limanov and Nagao), and finally we
give the proofs in the last paragraph.

2.1 Statements of the theorems

Note [t0 : t1], [u0 : u1] the homogeneous coordinates on P
1 × P

1, and identify A
2 with the open set

t1 6= 0, u1 6= 0. We note t = t0
t1

, u = u0

u1
the coordinates in A

2. Let D be the diagonal of equation

t0u1 + t1u0 = 0. We note AD the group of automorphisms of P
1×P

1 \D which extend as biregular
automorphisms of P

1 × P
1. This group is generated by (t, u) 7→ (u, t) and by the automorphisms

of the form

(t, u) 7→

(

at + b

ct + d
,
−au + b

cu − d

)

;

(

a b
c d

)

∈ PGL(2, k).

On the other hand we note ED the group of automorphisms of P
1 × P

1 \ D which preserve the
pencil of curves t + u = cte. From the lemma 9 (see below) one can obtain an explicit description
of the elements in ED:

Lemma 3 The group ED is generated by (t, u) 7→ (u, t) and by the automorphisms of the form

(t, u) 7→

(

αt + P

(

1

t + u

)

, αu − P

(

1

t + u

))

; α ∈ k∗, P ∈ k[X].

Proof. First note that

AD ∩ ED = {(t, u) 7→ (at + b, au − b) ou (au + b, at − b); a ∈ k∗, b ∈ k}.

Now pick g ∈ ED \ AD, that we see as a birational map from P
1 × P

1 to P
1 × P

1. The pencil
generated by the lines t + u = cte contains a unique singular element, namely {t1 = 0}∪ {u1 = 0}.
Thus these two are globally invariant under g, and up to composition by (t, u) 7→ (u, t) one can
assume that each one of these lines is invariant under g. Furthermore the point [1 : 0], [1 : 0], which
is the unique base point of the pencil, is either a base point or a fixed point for g; but the later
possibility is impossible since g−1(D) is the unique proper base point of g (the unicity is given by
the lemma 9.1). Blow-up [1 : 0], [1 : 0] on the initial and final P

1 × P
1, and blow-down the strict

transforms of {t1 = 0} and {u1 = 0} ( see figure).

The map g is now a birational map from P
2 to P

2, which induces an automorphism of A
2 =

P
2 \ D. Indeed the second base point of g is still located on the transform of D, because by the
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blow-down

{u1 = 0}and {t1 = 0}

t − u

P
2

X = t−u

t+u

Y = 1
t+u •

t+u

t−u

t + u

1
t−u

•

D

[1 : 0], [1 : 0]

{t1 = 0}
{t0u1 + t1u0 = 0}

{u1 = 0}

D =

•

{t0u1 − t1u0 = 0}

P
1 × P

1

blow-up

[1 : 0], [1 : 0]

{t1 = 0}

D

{u1 = 0}

assertion 5 of the lemma 9 we have to perform three successive blow-ups on D in order to get
D2 = −1 and so to be able to blow-down its transform. In the local chart X = t−u

t+u
, Y = 1

t+u
we

can write g as

g : (X,Y ) 7→ (aX + P (Y ), bY + c); a, b ∈ k∗, c ∈ k, P ∈ k[Y ].

Since the line {Y = 0} contains two fixed points for g (the points where we blew-down {t1 = 0} and
{u1 = 0}), we can in fact write g : (X,Y ) 7→ (X + Y P (Y ), bY ). Coming back to the coordinates
t, u we obtain the statement. 2

Theorem 4 The automorphism group of P
1 × P

1 \ D is equal to the product of AD and ED

amalgamated along their intersection.

Now let F ⊂ P
1 × P

1 be the fiber t1 = 0. Note AF the group of automorphisms of P
1 × P

1 \ F
which extend as biregular automorphisms of P

1 × P
1; this group corresponds to the following

automorphisms:

(t, u) 7→

(

αt + β,
au + b

cu + d

)

; α ∈ k∗, β ∈ k,

(

a b
c d

)

∈ PGL(2, k).

On the other hand we note EF the group of elementary automorphisms

(t, u) 7→ (αt + β, γu + P (t)); α, γ ∈ k∗, β ∈ k, P ∈ k[X].

Theorem 5 The automorphism group of P
1 × P

1 \ F is equal to the product of AF and EF amal-
gamated along their intersection.

2.2 A theorem of Makar-Limanov

Here we explain the relation between the theorem 4 and the description of the automorphism
group G of the smooth quadric surface Vλ ⊂ A

3 with equation y2 + xz = λ, where λ ∈ k∗ and
char(k) 6= 2. Note that if λ = 0 or if char(k) = 2 this surface is no longer smooth. Makar-Limanov
shows that in this case the automorphism group is slightly bigger: precisely we have to add the
homotheties with center the singularity. We restrict ourselves to the smooth case.

There exist two natural subgroups of G. On one hand we have the orthogonal group O(3, k)
associated with the quadratic form y2 + xz, generated by (x, y, z) 7→ (x,−y, z) and by SO(3, k).
The later group is composed of the matrices

1

ad − bc





a2 2ab −b2

ac ad + bc −bd
−c2 −2cd d2



 with

(

a b
c d

)

∈ PGL(2, k).
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Recall that the identification between PGL(2, k) and SO(3, k) can be obtained via the action by
conjugacy of PGL(2, k) on the 2×2 matrices with trivial trace, where we identify k3 to (x, y, z) 7→
(

−y x
z y

)

. this action preserve the determinant which is equal, up to a sign, to the quadratic

form y2 + xz. Note that since any matrix in GL(2, k) can be written as a composition of matrices
of the form

(

1 0
c 1

)

,

(

a 0
0 d

)

and

(

0 1
1 0

)

we see that O(3, k) is generated by matrices of the form





1 0 0
c 1 0

−c2 −2c 1



 ,





a/d 0 0
0 1 0
0 0 d/a



 ,





0 0 1
0 −1 0
1 0 0



 and





1 0 0
0 −1 0
0 0 1



 .

On the other hand we have EG the group of automorphisms of the form3

(x, y, z) 7→

(

αx + 2αyP (z) − αzP 2(z),± (y − zP (z)) ,
1

α
z

)

; α ∈ k∗, P ∈ k[X].

Note (as an attempt to justify the adjective ’natural’ used above...) that the group EG is exactly
the subgroup of G obtained by intersecting G with the elementary automorphisms of A

3.

Theorem 6 Assume char(k) 6= 2. The group G is the product of O(3, k) and EG along their
intersection.

This result is contained in [8] (in fact Makar-Limanov obtains a more general result covering
a larger class of surfaces, but he does not make the statement about the amalgamated product
structure) and also in [4]. The statement above, applied over the field k = C(t), was crucial in
[7] where we gave a description of the automorphisms of C

3 which preserve the quadratic form
y2 + xz.

Assume first that λ admits a square root δ in k. We now explain how to identify Vλ with an
open set of P

1 × P
1. Note [x : y : z : w] the homogeneous coordinates on P

3, where we identify A
3

with the open set w 6= 0. The homogeneous equation of Vλ is then y2 − λw2 + xz = 0. Consider
the Segre embedding

[t0 : t1], [u0 : u1] ∈ P
1 × P

1 7→ [t0u0 : t1u0 : t0u1 : t1u1] ∈ P
3

which identifies P
1 × P

1 with the smooth projective quadric xw − yz = 0. By a linear change of
coordinates we obtain the following parametrization of the quadric (y − δw)(y + δw) + xz = 0
(where δ2 = λ):

[t0 : t1], [u0 : u1] ∈ P
1 × P

1 7→
[

4δ2t0u0 : δ(t0u1 − t1u0) : t1u1 : t0u1 + t1u0

]

∈ P
3.

More simply, in the local charts (t, u) and (x, y, z) this parametrization becomes

(t, u) →

(

4δ2 tu

t + u
, δ

t − u

t + u
,

1

t + u

)

3We should mention that there was a sign missing in the definition of EG given in [7], that we correct here.
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Via this parametrization the quadric Vλ is identified to the open set in P
1 × P

1 defined as the
complement of the diagonal D = {t0u1 + t1u0 = 0}, and the fibration z = cte corresponds to the
fibration t + u = cte. Furthermore by a straightforward computation we can verify that through
this parametrization the automorphism

(t, u) 7→

(

t + P

(

1

t + u

)

, u − P

(

1

t + u

))

∈ ED

is identified to

(x, y, z) 7→ (x − 2y(2δP (z)) − z(2δP (z))2 , y + z(2δP (z)), z) ∈ EG.

Similarly (u, t) 7→
(

t
ct+1 , −u

cu−1

)

∈ AD is identified to





1 0 0
− c

2δ
1 0

− c2

4δ2

c
δ

1



 ∈ O(3, k); (t, u) 7→ (at, au)

to (x, y, z) 7→ (ax, y, z/a), (t, u) 7→ ( 1
4δ2t

, 1
4δ2u

) to (x, y, z) 7→ (z,−y, x) and (t, u) 7→ (u, t) to
(x, y, z) 7→ (x,−y, z). We conclude that the group O(3, k) is identified to AD and the group EG to
ED; thus the theorem 6 is equivalent to the theorem 4.

Suppose now that λ does not admit a square root in k. Note k̄ the algebraic closure of k and
δ ∈ k̄ a square root of λ. Let g be an automorphism of Vλ defined over k, i.e. g is given by an
automorphism of the algebra k[X,Y,Z]/(Y 2 + XZ − λ), that we can extend as an automorphism
of the algebra k(δ)[X,Y,Z]/(Y 2 + XZ −λ). One can see g as an automorphism of Vλ defined over
the field k(δ). The argument above says that g can be written as a composition of elements in
O(3) and in EG with coefficients in k(δ). We just have to prove that these coefficients are in fact
in k; Let us recall briefly the argument already exposed p.313 of [6].

The main point is that we know that g admits a unique proper base point, which is the image
by g−1 of the conic at infinity with equations y2 + xz = 0 and w = 0. Pick a point p defined over
k on this conic, such that p is not the base point of g−1 (one of the two points [1 : 0 : 0 : 0] or
[0 : 0 : 1 : 0] will do). Then g−1(p) is the proper base point of g, and so is contained in P

3
k. By a

similar argument the proper base point of g−1 is also in P
3
k. Composing g on the right and on the

left with well chosen elements of O(3, k), we can reduce to the case where the base points of g and
g−1 are both equal to [1 : 0 : 0 : 0]. This is equivalent to say that we are reduced to the case where
the decomposition of g begins and ends with an element of EG (a priori with coefficients in k(δ)):

g = en ◦ an−1 ◦ · · · ◦ a1 ◦ e1 with ai ∈ O(3, k(δ)) \ EG, ej ∈ EG \ O(3, k(δ)).

A straightforward induction then shows that g can be written

g : (x, y, z) 7→ (α2β2d1+1z(2d1+1)d2 + · · · , αβd1+1z(d1+1)d2 + · · · , βzd2 + · · ·)

with d1, d2 > 1 (we have only written the homogeneous components of higher degree). Since by
assumption f has coefficients in k we deduce that β, and so also α, are elements in k. Composing
g on the left by the automorphism (x, y, z) 7→ (x − 2αyzd1 − α2z2d1+1, y + αzd1+1, z) which is an
element in EG with coefficients in k we obtain an element of Aut(Vλ) with degree strictly less than
g. We conclude by induction on the degree.
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2.3 A theorem of Nagao

The following theorem, due to Nagao [10], describes the structure of the GL2 with coefficients in
the polynomial ring k[X]:

Theorem 7 The group GL(2, k[X]) is equal to the product of GL(2, k) and the triangular subgroup
{(

a P (X)
0 d

)

; a, d ∈ k∗, P ∈ k[X]

}

amalgamated along their intersection.

The group PGL(2, k[X]) admits a natural identification with certain automorphisms of A
1×P

1:

(

a(X) b(X)
c(X) d(X)

)

: (t, u) 7→

(

t,
a(t)u + b(t)

c(t)u + d(t)

)

.

From this point of view the theorem of Nagao (or to be precise: the version of the theorem 7 for
PGL(2, k[X]), which is equivalent) is given by the following corollary of the theorem 5:

Corollary 8 The group of automorphisms of P
1 × P

1 \ F which fix each line t = cte is equal to
the amalgamated product of

{

(t, u) 7→

(

t,
au + b

cu + d

)

;

(

a b
c d

)

∈ PGL(2, k)

}

and of
{(t, u) 7→ (t, γu + P (t)); γ ∈ k∗, P ∈ k[X]}

along their intersection.

This statement comes by taking the quotient by {(t, u) 7→ (αt + β, u); α ∈ k∗, β ∈ k} of the
two groups in the statement of theorem 5.

2.4 Proof of theorems 4 and 5

We want to show how we can adapt our proof of the theorem of Jung [6] to this new situation.
First assume that k is an algebraically closed field. In the sequel the curve C ⊂ P

1 × P
1, called

divisor at infinity, will be either equal to the diagonal D or to the fiber F . We say that a birational
map g : X 99K Y comes from an automorphism of V = P

1×P
1\C if X and Y are compactifications

of V and g induces an automorphism of V . A first step is to note that there are strong constraints
on the possible configurations of the base points of g when Y = P

1 × P
1 (the main point is that

the divisor at infinity is an irreducible curve).

Lemma 9 Let X be a surface and g a birational map from X to P
1 × P

1 which comes from an
automorphism of V . Assume that g is not a morphism. Then

1. g admits a single proper base point, located on the divisor at infinity of X;

2. g admits base points p1, · · · , pr (r ≥ 1) such that

(a) p1 is the proper base point;

(b) For all i = 2, · · · , r, the point pi is located on the divisor produced by blowing-up pi−1;
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3. Each irreducible curve contained in the divisor at infinity of X is contracted to a point by g;

4. Using the notations of the theorem of Zariski applied to g: the first contracted curve in the
sequence π2 is the strict transform of a curve contained in the divisor at infinity of X;

5. In particular, if X = P
1 × P

1, the first curve contracted by π2 is the transform of the curve
C ⊂ X.

Proof. It is exactly the same proof as the one of lemma 9 in [6]. 2

Now pick g an automorphism of V , that we extend as a birational map from P
1×P

1 to P
1×P

1.
By the lemma 9.1 g admits a unique proper base point, located on C. Composing g by an element
in AC we can reduce to the case where this point is [1 : 0], [1 : 0]. Assuming this, we are going to
show that there exists a diagram

P1 × P1

g◦ϕ−1

%%L
L

L
L

L

P
1 × P

1

ϕ
99r

r
r

r
r

g
//__________
P

1 × P
1

where ϕ is the extension of an element in EC , and such that

#ind(g ◦ ϕ−1) < #ind(g).

By induction on the number of base points of g, this will prove that g is contained in the group
generated by EC and AC . We study the question of the amalgamated product structure at the
end of this section.

Case C = F : context of the theorem 5. We identify P
1 ×P

1 with the Hirzebruch surface F0,
and we note f∞(F0) = {t1 = 0} and s(F0) = {u1 = 0}. Remark that here we note by s and not by
s∞ the section: indeed in this context the divisor at infinity is equal to the single curve f∞. We
can now apply the following lemma (ascending case, n = 0):

Lemma 10 Assume that h : Fn 99K P
1 × P

1 which comes from an automorphism of V . Note p
the proper base point of h, ϕ the birational map constructed by blowing-up p and blowing-down the
transform of f∞, and h′ = h ◦ ϕ−1. Then #ind(h′) = #ind(h) − 1, and we have two situations:

• ascending case: if p = s ∩ f∞, then we obtain a map h′ : Fn+1 99K P
1 × P

1;

• descending case: if p 6= s ∩ f∞, then we obtain a map h′ : Fn−1 99K P
1 × P

1. Furthermore
the base point p′ of h′ (if h′ is not a morphism) still satisfies p′ 6= s(Fn−1) ∩ f∞(Fn−1).

Proof. Consider the Zariski decomposition of h. the lemma 9.4 tells us that the first curve
contracted by π2 is the transform of f∞. Thus the point p, unique proper base point of h, is
contained in f∞. After the blow-up of p, f∞ already has self-intersection −1; we deduce that all
the other blow-ups in the sequence π1 have centers outside f∞. So it is equivalent to first realize
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all these blow-ups and then blow-down f∞, or to blow-down f∞ first and realize the blow-ups
afterward. In other words we have a commutative diagram :

M
π2

��

π1

��

����
��

��
��

��
��

contf∞
��?

??
?

M ′

}}{{
{{

{{
{{

{{

��:
::

::
::

::

πp

����
�� contf∞

��>
>>

>

Fn
ϕ

//___

h

99N
Q T

Y _ e
j m

p
Fn′

h′

//________
P

2

This gives the equality #ind(h′) = #ind(h) − 1; and the distinction between ascending and de-
scending case is then straightforward. 2

After applying the lemma once (ascending case, n = 0), we are again in the conditions to apply
the lemma, with n = 1. We apply the lemma as long as we are in the ascending case (say r times,
with r ≥ 1). We obtain the diagram

Fr

g1=g◦ϕ−1

1

##G
G

G
G

G

F0 = P
1 × P

1

ϕ1 = r times the
ascending lemma

99r
r

r
r

r
r

g
//_______
P

1 × P
1

where g1 satisfies the conditions of the lemma (with n = r, descending case), and #ind(g1) =
#ind(g)− r. Then we can apply successively r times the lemma (descending case) until we obtain
the diagram:

F0 = P1 × P1

g2

''O
O

O
O

O
O

Fr

ϕ2 = r times the
descending lemma

99r
r

r
r

r
r

g1

//____________
P

1 × P
1

In conclusion, we have a diagram

P1 × P1

g2=g◦ϕ−1

%%L
L

L
L

L

P
1 × P

1

ϕ=ϕ2◦ϕ1

99r
r

r
r

r

g
//__________
P

1 × P
1

with #ind(g ◦ϕ−1) = #ind(g)− 2r. We still have to verify that ϕ ∈ EF . But this is easy: remark
that ϕ induces an automorphism of A

2 = P
1 × P

1 \ (s ∪ f∞) which preserves the fibration t = cte,
and this property characterizes the elementary automorphisms.

Case F = D: context of the theorem 4. Consider again the Zariski diagram associated with
g. By the lemma 9.5, we know that the first contracted curve by π2 is the transform of D. But D
has self-intersection +2 in P

1 × P
1, thus we have to perform three blow-ups on D to bring down
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its self-intersection to −1. This implies that there is a unique possible configuration for the first
3 blow-ups of the sequence π1, that we want to explain now. After the blow-up of the proper
base point [1 : 0], [1 : 0], the intersection point of the exceptional divisor and of the transform
of D must be the second base point of g. Blowing-up this point, we obtain a surface Σ1 and g
factorizes through these two blow-ups as a map g1 : Σ1 99K P1 × P1 with #ind(g1) = #ind(g) − 2.
Note that Σ1 can be seen as F1 blown-up twice (contract the transforms of the two fibers of F0

passing through [1 : 0], [1 : 0]): the fibration on F1 corresponds to the fibration on Σ1 given by
the lines t + u = cte. More generally we will note Σn a compact surface containing an open set
isomorphic to V = P

1 × P
1 \ D, and such that Σn \ V is equal to three rational curves in the

following configuration, and with self-intersection 0, −n and −2:

0

−2

−n

We can see Σn as the surface obtained by blowing-up a Hirzebruch surface Fn in two points
located on a same fiber (but not included in f∞∪s∞). We still note by s∞ and f∞ the corresponding
curves:

s∞(Fn)

0

−n

f∞(Fn)

•

0

−n

f∞(Σn)

−2

Fn
Σn

•

s∞(Σn)

With these notations at hand, remark that the proper base point of g1, which corresponds to
the third base point of g, must be the intersection point of s∞(Σ1) and of f∞(Σ1). Thus we are
in the conditions to apply the following lemma (with n = 1, ascending case):

Lemma 11 Consider h : Σn 99K P
1 × P

1 the extension of an automorphism of V . We note p the
proper base point of h.

• ascending case: Suppose that n ≥ 1 and p = s∞ ∩ f∞. Then by blowing-up p and blowing-
down the transform of f∞ we obtain a map h′ : Σn+1 99K P

1 × P
1.

• descending case: Suppose that n ≥ 2 and p 6= s∞ ∩ f∞. Then p ∈ f∞, and by blowing-up
p and blowing-down the transform of f∞ we obtain a map h′ : Σn−1 99K P

1 × P
1.

Furthermore in these two cases #ind(h′) = #ind(h) − 1.

Proof. Apply the theorem of Zariski to h. By the lemma 9.4, the first curve contracted by
π2 is the transform of one of the three curves at infinity: thus it must be the transform of f∞,
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because the two other have self-intersection strictly less than −1 in M . We conclude using exactly
the same argument as in the proof of the lemma 10. 2

We apply the lemma, ascending case, as long as necessary (say r times) until we are in the
conditions of the lemma, descending case. Then we can apply r times the lemma, descending case,
and we obtain a map g2 : Σ1 7→ P

1 × P
1, with #ind(g2) = #ind(g1) − 2r. Then we blow-down

twice to get ḡ : P
1 × P

1 7→ P
1 × P

1. Clearly we have #ind(ḡ) ≤ #ind(g2) + 2; in fact it would be
possible to prove that #ind(ḡ) = #ind(g2). Anyways even with this coarse estimation we get:

#ind(ḡ) ≤ #ind(g) − 2r.

Now we just have to check that the map ḡ−1 ◦ g is an element in ED. It is sufficient to remark
that this map preserves the pencil of lines t + u = cte, which corresponds to the fibration on all
the surfaces Σn that appear in the proof.

End of the proofs. Now we discuss the two missing points to complete the proofs of theorems
4 and 5: first the amalgamated product structure, and then the proof over an arbitrary field.

Amalgamated product structure (compare with [6, 4.2]). Note p = [1 : 0], [1 : 0].
Then for C = D or C = F we have:

1. Any element in EC \ AC , that we see as a map P
1 × P

1
99K P

1 × P
1, admits p as unique

proper base point, and contracts C to p;

2. Any element in AC \ EC does not fix the point p.

As a consequence any composition (non reduced to a single element in AC) of elements in EC \AC

and AC \ EC contracts the curve C to a point, and thus cannot be equal to the identity map.

Proof over an arbitrary field. Let k be a field, and note k̄ its algebraic closure. We want
to check that the lemma 9 is still true over k, the key point being the assertion 9.1. Consider g a
birational map from Xk to P

1
k × P

1
k that comes from an algebraic automorphism of P

1
k × P

1
k \ C.

The base points of g, which a priori are points over k̄, are invariant under the action of the Galois
group Gal(k̄/k). But we know (this is the lemma 9 applied over k̄) that g admits a unique proper
base point p0. Thus this point is invariant under the action of Gal(k̄/k), which exactly means that
p0 is a point over k. All the other assertions of the lemma are then straightforward. In conclusion
the proofs remains true because all the blow-ups that we realize concern points defined over k.

3 Proper polynomial maps of C
2

In this section we discuss a possible generalisation of the result of Jung and Van der Kulk. A
polynomial automorphism of C

2 can be characterized as a proper morphism from C
2 to C

2 with
topological degree equal to 1. Keeping the properness assumption but allowing maps with arbitrary
topological degree we obtain the semi-group of proper polynomial maps from C

2 to ce2. It is known
that a proper polynomial maps cannot be a candidate to be a counter-example to the Jacobian
conjecture [1, th. 2.1]. This might explain the slight amount of interest this class of maps has
received so far. However it seems to me that this class could present some dynamical behaviour
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different from the case of automorphisms, but still could be the subject of an almost exhaustive
study (in this direction we mention the preprint [2] that study the dynamics of ’polynomial like’
maps; however quoting the authors (p.18) ’in general a polynomial endomorphism of C

k with k ≥ 2
is not polynomial like even if it is proper’).

Thus we consider from now on polynomial maps from C2 to C2 with arbitrary topological
degree which are proper (the preimage of a compact is compact). Of course elements in Aut[C2]
are basic examples. Another class of very simple examples are the maps of the form

(x, y) 7→ (P (x), Q(y)).

An obvious counter-example is given by the map (x, y) 7→ (xy, y), indeed the preimage of any
neighborhood of (0, 0) contains the line y = 0. A more subtle counter-example (which was given
to me by J.-P. Furter) is the map (x, y) 7→ (x + x2y, y). The preimage of any point contains
one or two points but this maps is still not proper: The points (−1/ε, ε) and (0, ε) are the two
preimages of (0, ε), hence the preimage of a compact neighborhood of (0, 0) is never compact. We
do not know any other examples of proper polynomial maps apart from the previous examples
(and composition of those): It is tempting to conjecture that there is indeed no other examples4.
Let just say that we ask the

Question: Are all proper polynomial maps from C
2 to C

2 composition of polynomial automor-
phisms and maps of the form (x, y) 7→ (x, P (y))?

We were able to answer the question only when the topological degree is equal to 2; this is
what want to explain now. Note g : C

2 7→ C
2 a proper polynomial map with topological degree 2.

From g we can construct an involution σ which exchange the two preimages of a point (possibly
these two preimages are equal and give a fixed point for σ).

Lemma 12 The involution σ is an element of Aut[C2]. In particular σ is conjugate in Aut[C2]
either to (−x,−y) or to (x,−y).

Proof. Consider the birational extension g : P
2

99K P
2. Blowing-up sufficiently many times

the final P
2 we can assume that the line at infinity in the initial P

2 is not contracted to a point,
that is we have a diagram

X

π

��
P

2

ḡ
>>}

}
}

}

g
//___
P

2

where ḡ does not contract any curve (not the line at infinity by construction, nor any other curve
by the properness assumption). As above associate an involution to ḡ, this is a holomorphic map
that extends σ and is well defined outside the finite number of base points of ḡ: By Hartogs’ lemma
σ is a birational map from P

2 to P
2. Since furthermore σ sends C

2 on C
2 (this is again by the

properness assumption), we obtain σ ∈ Aut[C2].
It is known that an element of finite order in Aut[C2], and so in particular an involution, is

conjugate to an elementary automorphism. Furthermore (see [3]), any elementary automorphism
is conjugate:

4It turns out that this guess was rather naive: see C. Bisi and F. Polizzi, “On Proper Polynomial Maps of C
2”,

J. of Geom. Analysis, January 2010.
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1. either to an element in the affine group;

2. or to an element of the form (βdx + βdydq(yr), βy) with d ≥ 1, q non constant, β rth root of
the unity.

Notice that in the second case the automorphism has always infinite order. Finally σ is conjugate
to an affine automorphism. It is easy to verify that σ admits a fixed point; by conjugating by a
translation and by diagonalizing we obtain the result. 2

Now we can prove the

Proposition 13 Let g : C
2 7→ C

2 be a proper polynomial map with topological degree 2. Then
there exist f1, f2 ∈ Aut[C2] such that

g = f2 ◦ (x, y2) ◦ f1.

Proof. Consider the involution σ ∈ Aut[C2] associated with g, and note f1 the automorphism
given by the lemma 12 such that σ′ = f−1

1 σf1 = (x,−y) or (−x,−y). Take g′ = g ◦ f1, we have
g′ ◦ σ′ = g′. Suppose σ′ = (x,−y). This means that g′ depends only on x and y2, in other
words there exists a polynomial map f2 : C

2 7→ C
2 such that g′ = f2 ◦ (x, y2). Furthermore f2 is

proper because g′ is proper, and f2 has topological degree 1 because g′ and (x, y2) have topological
degree 2. Finally f2 ∈ Aut[C2], and we have g = f2 ◦ (x, y2) ◦ f1. It is easy to see that the case
σ′ = (−x,−y) never happen: we would have g′ = f2 ◦ (x2, y2) but g′ has topological degree 2 and
(x2, y2) has degree 4. 2
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