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Tame automorphisms
We are interested in the group Aut(An) of polynomial automorphisms of the affine space An, over a
given base field k. The tame automorphism group

Tame(An) = 〈GLn,En〉 ⊆ Aut(An)

is defined as the subgroup generated by linear and elementary automorphisms, where

En =
{
(x1, x2, . . . , xn) 7→ (x1 + P(x2, . . . , xn), x2, . . . , xn) | P ∈ k[x2, . . . , xn]

}
.

Reminder

Is the inclusion Tame(An) ⊆ Aut(An) an equality or not ?
X Jung: Yes! when n = 2, over any base field;

X Shestakov & Umirbaev: No! when n = 3 and char k = 0;

X All other cases, n ≥ 4, or n = 3,char k > 0, are open!

Simplicity ?
In this work we focus on the group Tame(A3) itself, and its subgroup STame(A3) of automorphisms
with Jacobian 1.

Question

Is STame(A3) a simple group?

Our strategy is to use an action on a metric space with non-positive curvature properties. Specif-
ically, we will answer the question by the negative by using an action of Tame(A3) on a Gromov
hyperbolic simplicial complex. We hope that a similar strategy could provide a proof that all finite
subgroups of Tame(A3) are linearizable, but that’s another story...

Simplicial complex

[x1, x3] = [ax1 + bx3 + t,cx1 + dx3 + t′]

[x1, x2, x3]

[x2]

[x1 + Q(x2), x2, x3 + P(x1, x2)]

[x2, x3] [x1, x2]

[x2, x3 + P(x1, x2)][x1 + Q(x2), x2]

[x3] [x1] = [ax1 + t]

[x1 + Q(x2), x2, x3] [x1, x2, x3 + P(x1, x2)]

Figure 1: A few simplexes of the complex C

We construct a simplicial complex on which the group Tame(An) acts naturally. First one defines
n distinct types of vertices, by considering morphisms f = ( f1, . . . , fr) from An to Ar that can be
extended as tame automorphisms f = ( f1, . . . , fn). A vertex of type r is the equivalence class of
such a morphism, up to composition on the left by an affine automorphism:

[ f1, . . . , fr] := {a ◦ ( f1, . . . , fr) | a ∈ GLr (k) n kr }.

Now for any tame automorphism ( f1, . . . , fn) ∈ Tame(An) we attach a (n − 1)-simplex on the
vertices [ f1], [ f1, f2], ..., [ f1, . . . , fn]. This produces a connected, non-locally compact, (n − 1)-
dimensional simplicial complex Cn on which the tame group acts by isometries with fundamental a
single simplex, by the formulas g · [ f1, . . . , fr] := [ f1 ◦ g

−1, . . . , fr ◦ g
−1].

We use this construction mostly in the case of n = 3, and we denote by C the 2-dimensional sim-
plicial complex associated with Tame(A3). Observe however that in the case n = 2, one recover the
classical Bass-Serre tree associated with the amalgamated product structure of Aut(A2).

Hyperbolicity

Definition

X A geodesic metric space X is hyperbolic if all triangles in X are δ-thin for some uniform
δ ≥ 0.

X One says that g ∈ Isom(X ) is loxodromic if for some x ∈ X the limit lim 1
nd(x,gnx) is

positive.

X A loxodromic element g ∈ G ⊆ Isom(X ) has the WPD property if ∀x ∈ X , ∀r > 0,
∃n ∈ N, such that the set of f ∈ G satisfying d(x, f x) < r and d(gnx, f gnx) < r is finite.

The existence of such a WPD element is sufficient to ensure that the group G is not simple: in
fact G contains free normal subgroups and is SQ-universal. Such elements were recently found in
transformation groups, such as the Cremona group [Lon16], or the tame group of an affine quadric
3-fold [Mar15]. The main point of this work is to add Tame(A3) to this growing list.

Main Result

Theorem [LP16]

Assume the base field k has characteristic zero. Then
X The complex C has infinite diameter.

X The complex C is contractible.

X The complex C is hyperbolic.

X Their exist elements in Tame(A3) with the WPD property with respect to the action on C.

X The group STame(A3) is not simple.

Idea of proof

•

[x1+(x3+x2
2)2, x2, x3]

[x2, x3]
[x1, x2, x3]

//
[x3] [x3+x2

2]
•

[x1+A(x3), x2, x3]

[x2, x3]
[x1, x2, x3]

oooo
[x3]

•

[x1+(x2+x2
3)2, x2, x3]

[x2, x3]
[x1, x2, x3]

oo
[x3][x2+x2

3]
•

[x1+x2 x3, x2, x3]

[x2, x3]
[x1, x2, x3]

[x3]

Figure 2: Examples of orientation

X The theory of reductions of Shestakov, Umirbaev and Kuroda amounts to understanding the re-
lations in Tame(A3), and allows to prove that C is simply connected. This was first noticed by D.
Wright [Wri15], see also [Lam15] for a self-contained proof.
X To each pair of adjacent triangles along an edge of type 1 − 2 corresponds an elementary auto-

morphism (x1 + P(x2, x3), x2, x3). If the polynomial P(x2, x3) has the form A( f ) with A(T ) ∈ k[T],
and f ∈ k[x2, x3] a component of an element in Aut(A2), we put an arrow on the edge, pointing in
the direction of [ f ] inside the copy of the Bass-Serre tree associated with Aut(A2). A double arrow
means that [ f ] is the type one vertex of the edge, and a wavy edge that P is not of the form A( f ).




K (v1) = 1 −
deg v1

12
+

out(v1) − in(v1)
6

K (v2) = 1 −
deg v2

4
+

out(v2) − in(v2)
6

K (v3) = 1 −
deg v3

6

XWe define a discrete curvature at each interior vertex
vi of type i in a disc or sphere diagram, according to the
formulas on the left. One should think that each triangle
is endowed with a Euclidean metric with angles π

6 , π2 , π3 ,
with a correction coming from the arrows.

X One check that there is no local configuration in C with positive curvature. This yields that C
does not contain any sphere diagram, from which the contractibility follows.
X Further analysis yields a list of exactly eight configurations with zero curvature: Figure 3. Then

one shows that in a disc diagram, any vertex with zero curvature is at uniform distance of a vertex
with negative curvature. Moreover one can also define a curvature at each boundary vertex of
a disc diagram, which is bounded above by 1/2. Then we obtain the hyperbolicity of C via a
classical criterion based on isoperimetric estimates.
X Finally, an explicit example of WPD element is given by

f = h ◦ gn, where n ≥ 12, g = (x2 + x1x3, x1, x3), h = (x3, x2, x1).

Remark also that the existence of loxodromic elements insures that C has infinite diameter.
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Figure 3: Eight local configurations with zero curvature
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