THE THREE-DIMENSIONAL TAME AUTOMORPHISM GROUP Action on a hyperbolic simplicial complex

Stéphane Lamy (joint work with Piotr Przytycki from McGill University) Institut de Mathématiques de Toulouse

Tame automorphisms

We are interested in the group $Aut(A^n)$ of polynomial automorphisms of the affine space A^n , over a given base field k. The tame automorphism group

Tame(\mathbf{A}^n) = $\langle \mathbf{GL}_n, E_n \rangle \subseteq \operatorname{Aut}(\mathbf{A}^n)$

is defined as the subgroup generated by linear and elementary automorphisms, where

 $E_n = \{ (x_1, x_2, \dots, x_n) \mapsto (x_1 + P(x_2, \dots, x_n), x_2, \dots, x_n) \mid P \in \mathbf{k} [x_2, \dots, x_n] \}.$

Reminder

Is the inclusion $\text{Tame}(\mathbf{A}^n) \subseteq \text{Aut}(\mathbf{A}^n)$ an equality or not ?

Main Result

Theorem [LP16]

- Assume the base field **k** has characteristic zero. Then
- \checkmark The complex *C* has infinite diameter.
- \checkmark The complex *C* is contractible.
- \checkmark The complex *C* is hyperbolic.
- \checkmark Their exist elements in Tame(A³) with the WPD property with respect to the action on C.
- \checkmark The group STame(A³) is not simple.

 \checkmark Jung: *Yes!* when n = 2, over any base field; \checkmark Shestakov & Umirbaev: *No!* when n = 3 and char $\mathbf{k} = 0$; \checkmark All other cases, $n \ge 4$, or n = 3, char $\mathbf{k} > 0$, are open!

Simplicity ?

In this work we focus on the group Tame(A^3) itself, and its subgroup STame(A^3) of automorphisms with Jacobian 1.

Question

Is $STame(A^3)$ a simple group?

Our strategy is to use an action on a metric space with non-positive curvature properties. Specifically, we will answer the question by the negative by using an action of $Tame(A^3)$ on a Gromov hyperbolic simplicial complex. We hope that a similar strategy could provide a proof that all finite subgroups of Tame(A^3) are linearizable, but that's another story...

Simplicial complex

Idea of proof

✓ The theory of reductions of Shestakov, Umirbaev and Kuroda amounts to understanding the relations in Tame(A^3), and allows to prove that C is simply connected. This was first noticed by D. Wright [Wri15], see also [Lam15] for a self-contained proof.

 \checkmark To each pair of adjacent triangles along an edge of type 1 – 2 corresponds an elementary automorphism $(x_1 + P(x_2, x_3), x_2, x_3)$. If the polynomial $P(x_2, x_3)$ has the form A(f) with $A(T) \in \mathbf{k}[T]$, and $f \in \mathbf{k}[x_2, x_3]$ a component of an element in Aut(\mathbf{A}^2), we put an **arrow** on the edge, pointing in

We construct a simplicial complex on which the group $Tame(A^n)$ acts naturally. First one defines *n* distinct types of vertices, by considering morphisms $f = (f_1, \ldots, f_r)$ from \mathbf{A}^n to \mathbf{A}^r that can be extended as tame automorphisms $f = (f_1, \ldots, f_n)$. A vertex of type r is the equivalence class of such a morphism, up to composition on the left by an affine automorphism:

 $[f_1,\ldots,f_r] := \{a \circ (f_1,\ldots,f_r) \mid a \in \operatorname{GL}_r(\mathbf{k}) \ltimes \mathbf{k}^r\}.$

Now for any tame automorphism $(f_1, \ldots, f_n) \in \text{Tame}(\mathbf{A}^n)$ we attach a (n - 1)-simplex on the vertices $[f_1]$, $[f_1, f_2]$, ..., $[f_1, \ldots, f_n]$. This produces a connected, non-locally compact, (n - 1)dimensional simplicial complex C_n on which the tame group acts by isometries with fundamental a single simplex, by the formulas $g \cdot [f_1, \ldots, f_r] := [f_1 \circ g^{-1}, \ldots, f_r \circ g^{-1}].$

We use this construction mostly in the case of n = 3, and we denote by C the 2-dimensional simplicial complex associated with Tame(A^3). Observe however that in the case n = 2, one recover the classical Bass-Serre tree associated with the amalgamated product structure of $Aut(A^2)$.

the direction of [f] inside the copy of the Bass-Serre tree associated with Aut(A^2). A double arrow means that [f] is the type one vertex of the edge, and a wavy edge that P is not of the form A(f).

✓ We define a **discrete curvature** at each interior vertex v_i of type *i* in a disc or sphere diagram, according to the formulas on the left. One should think that each triangle is endowed with a Euclidean metric with angles $\frac{\pi}{6}$, $\frac{\pi}{2}$, $\frac{\pi}{3}$, with a correction coming from the arrows.

- \checkmark One check that there is no local configuration in C with positive curvature. This yields that C does not contain any sphere diagram, from which the **contractibility** follows.
- ✓ Further analysis yields a list of exactly eight configurations with zero curvature: Figure 3. Then one shows that in a disc diagram, any vertex with zero curvature is at uniform distance of a vertex with negative curvature. Moreover one can also define a curvature at each boundary vertex of a disc diagram, which is bounded above by 1/2. Then we obtain the hyperbolicity of C via a classical criterion based on isoperimetric estimates.

 \checkmark Finally, an explicit example of **WPD element** is given by

 $f = h \circ g^n$, where $n \ge 12$, $g = (x_2 + x_1 x_3, x_1, x_3)$, $h = (x_3, x_2, x_1)$.

Remark also that the existence of loxodromic elements insures that C has infinite diameter.

Hyperbolicity

Definition

- \checkmark A geodesic metric space X is **hyperbolic** if all triangles in X are δ -thin for some uniform $\delta \geq 0.$
- \checkmark One says that $g \in \text{Isom}(X)$ is **loxodromic** if for some $x \in X$ the limit $\lim \frac{1}{n} d(x, g^n x)$ is positive.
- \checkmark A loxodromic element $g \in G \subseteq \text{Isom}(X)$ has the WPD property if $\forall x \in X, \forall r > 0$, $\exists n \in \mathbb{N}$, such that the set of $f \in G$ satisfying d(x, fx) < r and $d(g^n x, fg^n x) < r$ is finite.

The existence of such a WPD element is sufficient to ensure that the group G is not simple: in fact G contains free normal subgroups and is SQ-universal. Such elements were recently found in transformation groups, such as the Cremona group [Lon16], or the tame group of an affine quadric 3-fold [Mar15]. The main point of this work is to add Tame(A^3) to this growing list.

Figure 3: Eight local configurations with zero curvature

References

- [Lam15] S. Lamy. Combinatorics of the tame automorphism group. arXiv:1505.05497, 2015.
- [Lon16] A. Lonjou. Non simplicité du groupe de Cremona sur tout corps. Ann. Inst. Fourier, 66(5):2021–2046, 2016.
- [LP16] S. Lamy & P. Przytycki. Acylindrical hyperbolicity of the three-dimensional tame automorphism group. In preparation, 2016.
- [Mar15] A. Martin. On the acylindrical hyperbolicity of the tame automorphism group of $SL_2(\mathbb{C})$. arXiv:1512.07526, 2015.
- [Wri15] D. Wright. The generalized amalgamated product structure of the tame automorphism group in dimension three. Transform. Groups, 20(1):291-304, 2015.