The Three-dimensional tame automorphism group Action on a hyperbolic simplicial complex

Stéphane Lamy (joint work with Piotr Przytycki from McGill University)

Institut de Mathématiques de Toulouse

Tame automorphisms

We are interested in the group $\operatorname{Aut}\left(\mathbf{A}^{n}\right)$ of polynomial automorphisms of the affine space \mathbf{A}^{n}, over a given base field \mathbf{k}. The tame automorphism group

$$
\operatorname{Tame}\left(\mathbf{A}^{n}\right)=\left\langle\mathrm{GL}_{n}, E_{n}\right\rangle \subseteq \operatorname{Aut}\left(\mathbf{A}^{n}\right)
$$

is defined as the subgroup generated by linear and elementary automorphisms, where
$E_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(x_{1}+P\left(x_{2}, \ldots, x_{n}\right), x_{2}, \ldots, x_{n}\right) \mid P \in \mathbf{k}\left[x_{2}, \ldots, x_{n}\right]\right\}$

Reminder

Is the inclusion $\operatorname{Tame}\left(\mathbf{A}^{n}\right) \subseteq \operatorname{Aut}\left(\mathbf{A}^{n}\right)$ an equality or not?
\checkmark Jung: Yes! when $n=2$, over any base field;
\checkmark Shestakov \& Umirbaev: No! when $n=3$ and char $\mathbf{k}=0$;
\checkmark All other cases, $n \geq 4$, or $n=3$, char $\mathbf{k}>0$, are open!

Simplicity ?

In this work we focus on the group $\operatorname{Tame}\left(\mathbf{A}^{3}\right)$ itself, and its subgroup STame $\left(\mathbf{A}^{3}\right)$ of automorphisms with Jacobian 1.

Question

Is STame $\left(\mathbf{A}^{3}\right)$ a simple group?

Our strategy is to use an action on a metric space with non-positive curvature properties. Specif ically, we will answer the question by the negative by using an action of Tame (\mathbf{A}^{3}) on a Gromov hyperbolic simplicial complex. We hope that a similar strategy could provide a proof that all finite subgroups of $\operatorname{Tame}\left(\mathbf{A}^{3}\right)$ are linearizable, but that's another story

Simplicial complex

We construct a simplicial complex on which the group Tame $\left(\mathbf{A}^{n}\right)$ acts naturally. First one defines n distinct types of vertices, by considering morphisms $f=\left(f_{1}, \ldots, f_{r}\right)$ from \mathbf{A}^{n} to \mathbf{A}^{r} that can be extended as tame automorphisms $f=\left(f_{1}, \ldots, f_{n}\right)$. A vertex of type r is the equivalence class of such a morphism, up to composition on the left by an affine automorphism:

$$
\left[f_{1}, \ldots, f_{r}\right]:=\left\{a \circ\left(f_{1}, \ldots, f_{r}\right) \mid a \in \operatorname{GL}_{r}(\mathbf{k}) \ltimes \mathbf{k}^{r}\right\} .
$$

Now for any tame automorphism $\left(f_{1}, \ldots, f_{n}\right) \in \operatorname{Tame}\left(\mathbf{A}^{n}\right)$ we attach a $(n-1)$-simplex on the vertices $\left[f_{1}\right],\left[f_{1}, f_{2}\right], \ldots,\left[f_{1}, \ldots, f_{n}\right]$. This produces a connected, non-locally compact, $(n-1)$ dimensional simplicial complex C_{n} on which the tame group acts by isometries with fundamental a single simplex, by the formulas $g \cdot\left[f_{1}, \ldots, f_{r}\right]:=\left[f_{1} \circ g^{-1}, \ldots, f_{r} \circ g^{-1}\right]$.
We use this construction mostly in the case of $n=3$, and we denote by C the 2 -dimensional simplicial complex associated with $\operatorname{Tame}\left(\mathbf{A}^{3}\right)$. Observe however that in the case $n=2$, one recover the classical Bass-Serre tree associated with the amalgamated product structure of $\operatorname{Aut}\left(\mathbf{A}^{2}\right)$.

Hyperbolicity

Definition

\checkmark A geodesic metric space X is hyperbolic if all triangles in X are δ-thin for some uniform
$\delta \geq 0$.
\checkmark One says that $g \in \operatorname{Isom}(X)$ is loxodromic if for some $x \in X$ the limit $\lim \frac{1}{n} d\left(x, g^{n} x\right)$ is
positive.
\checkmark A loxodromic element $g \in G \subseteq \operatorname{Isom}(X)$ has the WPD property if $\forall x \in X, \forall r>0$,
$\exists n \in \mathbf{N}$, such that the set of $f \in G$ satisfying $d(x, f x)<r$ and $d\left(g^{n} x, f g^{n} x\right)<r$ is finite.

[^0]
Main Result

Theorem [LP16]

Assume the base field \mathbf{k} has characteristic zero. Then
\checkmark The complex C has infinite diameter.
\checkmark The complex C is contractible.
\checkmark The complex C is hyperbolic.
\checkmark Their exist elements in Tame (\mathbf{A}^{3}) with the WPD property with respect to the action on C The group STame $\left(\mathbf{A}^{3}\right)$ is not simple.

Idea of proof

$\left[x_{1}+\left(x_{3}+x_{2}^{2}\right)^{2}, x_{2}, x_{3}\right]$

$\left[x_{1}+A\left(x_{3}\right), x_{2}, x_{3}\right]$

$\left[x_{1}+\left(x_{2}+x_{3}^{2}\right)^{2}, x_{2}, x_{3}\right]$

$\left[x_{1}+x_{2} x_{3}, x_{2}, x_{3}\right]$

Figure 2: Examples of orientation

The theory of reductions of Shestakov, Umirbaev and Kuroda amounts to understanding the re lations in Tame $\left(\mathbf{A}^{3}\right)$, and allows to prove that C is simply connected. This was first noticed by D Wright [Wri15], see also [Lam15] for a self-contained proof.
\checkmark To each pair of adjacent triangles along an edge of type $1-2$ corresponds an elementary auto morphism ($\left.x_{1}+P\left(x_{2}, x_{3}\right), x_{2}, x_{3}\right)$. If the polynomial $P\left(x_{2}, x_{3}\right)$ has the form $A(f)$ with $A(T) \in \mathbf{k}[T]$, and $f \in \mathbf{k}\left[x_{2}, x_{3}\right]$ a component of an element in $\operatorname{Aut}\left(\mathbf{A}^{2}\right)$, we put an arrow on the edge, pointing in the direction of $[f]$ inside the copy of the Bass-Serre tree associated with $\operatorname{Aut}\left(\mathbf{A}^{2}\right)$. A double arrow means that $[f]$ is the type one vertex of the edge, and a wavy edge that P is not of the form $A(f)$.

\checkmark We define a discrete curvature at each interior vertex v_{i} of type i in a disc or sphere diagram, according to the formulas on the left. One should think that each triangle is endowed with a Euclidean metric with angles $\frac{\pi}{6}, \frac{\pi}{2}, \frac{\pi}{3}$, with a correction coming from the arrows.
\checkmark One check that there is no local configuration in C with positive curvature. This yields that C does not contain any sphere diagram, from which the contractibility follows.
\checkmark Further analysis yields a list of exactly eight configurations with zero curvature: Figure 3. Then one shows that in a disc diagram, any vertex with zero curvature is at uniform distance of a vertex with negative curvature. Moreover one can also define a curvature at each boundary vertex of a disc diagram, which is bounded above by $1 / 2$. Then we obtain the hyperbolicity of C via a classical criterion based on isoperimetric estimates
\checkmark Finally, an explicit example of WPD element is given by

$$
f=h \circ g^{n}, \quad \text { where } n \geq 12, \quad g=\left(x_{2}+x_{1} x_{3}, x_{1}, x_{3}\right), \quad h=\left(x_{3}, x_{2}, x_{1}\right) .
$$

Remark also that the existence of loxodromic elements insures that C has infinite diameter

References

[Lam15] S. Lamy. Combinatorics of the tame automorphism group. arXiv:1505.05497, 2015 [Lon16] A. Lonjou. Non simplicité du groupe de Cremona sur tout corps. Ann. Inst. Fourier, 66(5):2021-2046, 2016. [LP16] S. Lamy \& P. Przytycki. Acylindrical hyperbolicity of the three-dimensional tame automorphism group. In preparaion, 2016.
[Mar15] A. Martin. On the acylindrical hyperbolicity of the tame automorphism group of $\mathrm{SL}_{2}(\mathbf{C})$. arXiv:1512.07526, 2015.
[Wri15] D. Wright. The generalized amalgamated product structure of the tame automorphism group in dimension three. Transform. Groups, 20(1):291-304, 2015.

[^0]: The existence of such a WPD element is sufficient to ensure that the group G is not simple: in fact G contains free normal subgroups and is $S Q$-universal. Such elements were recently found in transformation groups, such as the Cremona group [Lon16], or the tame group of an affine quadric 3 -fold [Mar15]. The main point of this work is to add $\operatorname{Tame}\left(\mathbf{A}^{3}\right)$ to this growing list.

