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1. PRELIMINARIES ON BLOW-UPS

1.1. Canonical divisor. If X is a smootm-dimensional variety, the canonical divisor
is the divisor of zeros and poles of a rational n-formwit= fdw A--- Adu, on an
open setJ with local parametersiy,--- ,up, then f is a local equation of the divisor
(w) onU. The following proposition says that this diviskik is uniquely defined up
to linear equivalence

Proposition 1. If wandw are 2 n-forms on X, thefw) ~ (o).

Proof. Locally, the two n-forms areo= fdu A --- Adu, andw = gdu A --- Adu,
with f,g e C[U]. Thus(w) = (w¥) + (f/g), indeed a change of chart induces the same
Jacobian determinant in the expression of lotndw . O

One can compute directly the canonical divisoP6f then-form dx; A - -- Adx, has
a pole of orden+ 1 on the hyperplane at infinity, as one verifies by computingnn
affine chart around a point at infinity.

K]pn = —(n—i—l)H

To compute the canonical divisor in general, we use a fornaiach gives the
canonical divisor of a hypersurface starting from the cé&airdivisor of the ambient
space: this is the adjunction formula.

Proposition 2 (Adjunction). If Y C X is a hypersurface, with X and Y smooth, we
have
Ky = (Kx —i—Y)yy.

The restriction here makes sense when we see divisors abuirdies (see next
section, and$ha94#p), but can also be interpreted as an intersection: to coeipjt,
chooseD’ ~ D intersecting transversely and therD|y ~ D'NY.

Proof. We noteNy y the normal bundle of in X. The proof proceeds by showing
that

(1) Nxyy =Yly;

(2) Ky = (Kx +Nxy)lv-

1. If {f4} are local equations of, thenfy = gqp fg Where theg,g are the transition
functions of the line bundle associated withWe haved fy = gqpd fg +dgqg fg, and
this last term is zero in restriction ¥. One can seéy as a section of the line bundle
Y, andd fy is then a 1-form with value in sections %f in other words a section of the
bundIeN;g/Y ®Y. Since this section is regular and without zero (becalisesmooth),
the bundIeN;;/Y ®Y is trivial, that isNy y = Yly.

2. By definition Ny v = Tx /Ty, henceTy = T;/N;/Y. So the transition matrix
between open sety, andUg for the vector bundldy has the form

(% as)

whereAqg is the transition matrix ofly’, andggg is the transition function of the line

bundleNy . We see that dd; = detTy @ Ny v, henceKy = (Kx +Nyx v)ly- O
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1.2. Digression: Weil vs Cartier divisors.

Definition 3 (Weil divisor). A (Weil) divisor D on a varietyX is a finite collection
of irreducible subvarietie€; (i =1,--- ,r) of codimension 1, each one labelled with a
multiplicity k; € Z.

We noteD = 3 kC.

In particular ifX is a curve D is a collection of points with multiplicities; in this case
we call ded the sum of the;.

Definition 4 (Cartier divisor) A (Cartier) divisorD on a varietyX is given by an open
covering (Uq) of X, and for eaciy a rational functionfy, with the compatibility
condition:

On each intersectiody NUg, the functionfy/ fg has values ifC* (in other words
it has no zero and no pole).

A Cartier divisor corresponds to a line bundle, andghg = fy/ fg are then exactly
the transition functions frordy x C toUg x C.
One can endow the set of (Weil or Cartier) divisors with a grtaw.

Proposition 5. On a smooth variety the notions of Weil and Cartier divisacide.
Standard counter-example on a singular variety: rule oftmey? = xzin C2 c PS.

The key property to show this equivalence is

Proposition 6. Let X be a smooth variety, ¥ X be an irreducible subvariety of
codimension 1, and ® Y. Then in a neighborhood of x the subvariety Y can be
defined by a single equation.

Remark: the proposition is true evenyifis singular. On the other hand, the general-
ization in higher codimension is correct onlyyifis smooth (see§ha94ap.111]).

Main point of Cartier divisors: one can define the pull-bagkabmorphism (pull-
back the local equation).

On a singular variety the canonical divisor is only defined &geil divisor (divisor
of poles and zeros of a n-form defined on the smooth part).

If a Weil divisor D is not Cartier, but a multipl&D is Cartier, one says th@il is
Q-Cartier, and one can define the pull-backbalby a morphisnmtby the formula:

D= %T{*nD.

This leads naturally to the notion of (Weil or Cartiép}divisors, that is divisors with
coefficients inQ instead ofZ.

1.3. Discrepancies.

1.3.1. Blow-up of a smooth pointConsiderp the origin ofX = A", with coordinates
X1, -+ ,%n. FOreach =1,--- n, define a map

U ~A"— A"
(yla'” 7Yn) — (Y1Yia‘” 7yi7”' 7YnYi)-
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Apart from the hyperplang = 0 which is contracted op, this map is injective. The
Ui are glued in a natural way (identify points #) andU; with the same image),
to produce a varietyy and a morphisntt: Y — A" such that the preimage qf is
isomorphic taP"1,

In dimension 3:

X1

X2 X3

We compute now theliscrepancy of E, i.e. the coefficiena = a(E,X) in the
ramification formula

Ky = 'Ky + aE.
InY, consider the affine coordinatgs= X1, Y» = X2/X1, Y3 = X3/X1. S0 we have
X1 =Y1 dx =dys
X2 = Y1Y2 dx = y2dy1 +y1dy2
X3 =Y1Y3 dxs = y3dyr +y1dys

and finally
dxq A dxe A dxg = y2dys A dys A dya.

We obtain that the fornax; A dx A dXs, view onY, has a zero of order 2 alorig =
{y1 = 0}, in other word the discrepanay= 2.

NB: In the previous argument you should be careful not to eeaf(as | invariably
do at some point) the pull-back of the 3-form with the pultkaf the divisor defined
by the 3-form...

In general, the same argument shows that n— 1 for the blow-up of a smooth
point on a variety of dimension.

1.3.2. Blow-up of a curve.First consider the case of the axis= x3 = 0 in A3,

X1

X2 X3

Similarly to the previous case we compute thecrepancyof E:

Ky = 'Ky + aE.
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InY, consider the affine coordinatgs= X1, Y2 = X2, Y3 = X3/X2. S0 we have

X1 =Y1 dx, =dyy
X2 = Y2 dxo = dy,
X3 = Y2Y3 dxz = y3dy> +y2dys

and finally

dxg Adxe Adxg = yodys Adys Adys.
We obtain that the fornax; A dx A dxg, view onY, has a zero of order 1 alorig, in
other word the discrepaney= 1.

The same is true for the blow-up of any smooth curve in a sm8ditid: reduce to
the previous case by working in a local analytic chart.

1.3.3. Cone over a curveNow we compute the discrepancies of a simple class of
singular points on surfaces.

LetC c P" be a smooth curve of degrdeLet p € P"*1, andX the cone with vertex
p overC. Lettt: Y — X the blow-up ofp (that is, blow-up in the ambient projective
space and restrict to the strict transformXgf andE C Y the exceptional curve. The
curveE is isomorphic taC (each rule intersects only onéeandC). NotelL a rule of
X.

We want to compute the coefficientsanda in the ramification formulas

Ky = 'Ky +aE
Ly =m'L—mE
The coefficienta = a(E, X) is called thediscrepancyof the divisorE overX (NB : a

does not depend of a choice of resolution). The coeffigientO is the multiplicity of
L at the pointp.

We have
0=mL-E=Ly-E+mE?=1+mE?
hence
1
Similarly
0=T1'Ky-E =Ky -E—aE?= (2g—2) — (a+1)E?
hence _—
g_
a= 2 1
On X we have (consider hyperplane sections)
Cc?=d, C~dL
hence 1
L2=2.
d
We have

1
= = (L)% = (Ly + mE)?2 = 2m+nPE% = ~52

(RN
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hence
5 1
E-=—d, m:a, a=———1

Digressions:

(1) The rational coefficients come from the fact that we aadidg with Q-Cartier
divisors.
(2) Casgg=0:a= % Hirzebruch surfaces. Weighted projective spat&s, 1,1).

1.3.4. Cone over &@2. LetS~ P? c P" such that the image of each lineSis a curve
of degreed in P". Let p € P™1, andX the cone with vertexp overS. Lett: Y — X
the blow-up ofp, andE C Y the exceptional divisor. The surfaéeis isomorphic to
P2. NoteL a rule of the coné&, andF the surface given by the rules over a linefin

Ky = 'Ky +aE
F = T'F —mE.
We have
O=mF Le=FKR-Lg+mE-Lg=1-md
hence
e 1
=5
Similarly
0= T[*KX-LE:Ky-LE—aE-LE:—3—|—(a+1)d
hence
a_3—d
-

The surprise is thad = 1/2 > 0 for d = 2: this gives our first example of terminal
singularity (cone over the Veronese embeddin@df

2. FLOPS, FLIPS, CONTRACTIONS..

2.1. Atiyah flop. Considerxy—zw= 0 in A%: this is the cone over a smooth quadric
surface inP3. Blow-up the vertexp of the cone. The exceptional divisBris isomor-
phic toP! x P, and for any linel of bidegreeg(0,1) or (1,0) in E we haveE - L = —1:
indeed the fibered surfaéeoverE is isomorphic tdf, by 8§1.3.3



FIVE LECTURES ON SARKISOV PROGRAM AT LES DIABLERETS 7

We can blow-dowrE on aP? in both directions, and we obtain the diagram

The birational map<; --+ X, is an isomorphism in codimension 1, called a “flop”.
The flopped curves C X; andl” C X, have normal bundl€)(—1) & O(—1), and so
(see Exercisé)

Ky, -1 =Ky, -I"=0.

Here is the same construction in a slightly different sgttitConsiderX the P*-
bundle oveiP? with a sectionS of normal bundle9d(—d) (see §.3.4). Choose a fiber
I, andp € | a point not contained 5. LetY — X be the blow-up ofp. Then the
strict transform of has normal bundl®(—1) & O(—1) (this is easy to see since the
transform ofl is a complete intersection) and can be flopped. The res\8tiwid is a
Pl-bundle oveff;.

2.2. Francia Flip. In the last construction, consider now the contractiots before
and after flop: we obtain the following diagram (and the Firartip”, when d = 2):

SFy |1
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The left hand side of the diagram isPa-bundle overP?, with a sectionS with
normal bundle®(—d), and the contraction of this section to a singular peinsee
81.3.4

The middle of the diagram is obtained by blowing-up the sin@ainte, producing
an exceptional divisoE ~ P,

The right hand side of the diagram is obtained by floppingdfifig the curve to
the curvel’. The vertical arrow is the contraction of the divisdon the curvd’: note
that all horizontal divisor ar&y_;, and that the resulting 3-fold is smoothdf= 2,
and singular alongf if d > 3.

The upper part of the diagram (blow-up of a point ifP&bundle, followed by a
flop) is an example of a Sarkisov link of type | (see next lesfur

NB: All this is mainly descriptive, and can be checked malyuasing local charts
(or toric arguments, since all involved varieties are foric
Itis interesting to compute the intersection numikek on the singular 3-fold before
the flip. We havat: Y — X the contraction of. Let us note byy the flopped curve,
andlx = 1. (ly) the flipped curve. We use the general property of intersectionbers,
known as the “projection formula”, that says that for anyigtivD on X, and any curve
conY, we have
mwD-C=D-mC.
In particular, we have
Kx '|x = T[*Kx 'IY-
Recall from 8.3.4thatTt'Ky = Ky — 3%"3 FurthermoreKy - Iy = 0 andS-Ily = 1, so
we get
d-3

KX'IX:T

which is negative ifid = 2.

By definition aflip replaces a curve of negative intersection with respect é¢o th
canonical divisor by a curve of positive intersection (vd@es in the case offéop both
intersection numbers are zero). It turns out that the phenam of flip does not occur
on smooth 3-fold. However it does occur on 3-folds with gretiild singularities, as
the example shows.

Final warning: This is not true that any smooth rational euirva smooth 3-fold
with normal bundleO(—1) ® O(—1) can be flopped. In general it might happen that
the blow-up/blow-down process leads to a non projectivé gbwerwise perfectly fine
smooth algebraic) 3-fold.

2.3. Divisorial contraction Ez. Mori[Mor82] classified (among other things) all pos-
sible divisorial contractions from a smooth 3-fold. There & types of these, often
denoted byE;, - -, Es (This notation seems to have been introduced first in the book
[CKM88, p.30]. See also p. 33 for the Francia flifgy is the blow-up of a smooth
curve, E, the blow-up of a smooth pointEs is the blow-up of a singularity locally
isomorphic to the cone over the Veronese embeddirif ¢the example we have seen

in 81.3.4). An example ok, is given in Exercis®. The case OEj is somewhat tricky,
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and the subject of this paragraph.

Warm-up : Let us consider first the blow-mp: X — A3 of xy=z=0in A® (union
of two lines). Recall that in general the blow-up of a subefgriof A" defined by two
equationsf = g =0 is given by

{(X1, %), [u: V] € AN PLuf(xg, %) = vO(Xe, %) }
In our case the equation isxy = vz, which gives in the affine chau= 1
Xy =Vvz

This is exactly the equation of the singularity that was ttaeting point for our con-
struction of the Atiyah flop:

In general, the blow-up of a singular curve in a smooth 3-foldduces a singular
3-fold.

The exceptional divisoE; of Ty is (in the affine charti = 1)

E1={(XxY,zV);x=2z=0o0ry=z=0}.

In other wordsE; = E}UEY is the cone over two intersecting rulesitfx P, and has
two irreducible component&} = {x=z=0}, E{ = {y=2z=0}.

We can blow-up the singular point (vertex of the cone), pouuy an exceptional
divisor E, ~ P x P1. Denote by, C E, the rule in the closure of the strict transform
of EJ, Ly C E, the rule in the closure oE{, and G the strict transform of the line
EXNE]={x=y=z=0}

Note thatmy-exceptional curves iy tend toG + Ly. Similarly, u-exceptional
curves inE} tend toG + Ly.

Now for the real thing: consider a cubic nodal cu®@en P? c P3. The node
is locally (analytically) isomorphic taxy = z= 0, so the blow-upy of C produces
a singularity as in the previous case. The blowsgpof this singularity produces
an exceptional divisoE ~ P! x P1. But the point now is thaE; is an irreducible
divisor, and that we can deform-exceptional curves both d8+LyorG+Ly. As a
consequencd,x = Ly, and so anyrojectivemorphism which contracts one of them
has to contract the other.

In the vocabulary of the next lecturex andLy correspond to a single extremal ray,
andTp, is a divisorial contraction: the so-calléd type.

3. MINIMAL MODEL PROGRAM AND SARKISOV PROGRAM

3.1. Linear systems and rational maps.Let f: X C P" --» P™ be a rational map.
One can expres$ usingm+ 1 homogeneous polynomid] of the same degree and
writing f(x) = [fo(X) : -+ : fm(X)]. One can also write

[ B fm(X)
f(x) = 1.%.-.-. o0 |

Here thef; / fo aremrational functions oiX, with poles bounded by the divisdg = 0.
Furthermore the divisofy = 0 is the preimage by of an hyperplane.




FIVE LECTURES ON SARKISOV PROGRAM AT LES DIABLERETS 10

Conversely, leD be a divisor onX (say effective for now). We now construct a
rational map such thd is the preimage of an hyperplane. Consider the set of rdtiona
functions onX with poles bounded b, i.e.

L£(D) =HOX,D) = {f € C(X);D+ (f)o— (f)e > O} .
By convention,f =0 is in £L(D).
Theorem 7 (see Bha94ap. 173]) £(D) is a finite dimensional vector space.

Proof. Note first that ifD = D; — D, with D1, D, effective, thenl(D) C £(D3), and
SO we can restrict ourselves to the case 0.

Suppose first thdD is an effective divisor on aurve X Letx € Supf be a point
with multiplicity r > 0, andt a local parameter. Consider the linear function

A fel(D)— (t'f)(x).

The kernel ofA is the effective divisoD — x which has degree one less thanthus
after ded such operations we obtain that0) is a subspace of (D) defined by
degD) linear forms. But{(0) = C (regular functions orX are constant), and so
dim£(D) < degD + 1.

The general case (higher dimensiongl follows by induction. Let us indicate
briefly how to obtain the result wheX is a surface. LeH be a general hyperplane
section. TherH is a smooth curve anB|y is an effective divisor of degrele > 0.
Thus if f € £(D), the restrictionF |y admits at mosk poles, and also at moktze-
ros. ConsideHq,-- - ,Hy general hyperplane sections, on each of them the restrictio
L(D)ln is a finite dimensional space. So the subspacg(@f) containing functions
identically zero on the union dfl; has finite codimension. But ifi > k, this subspace
is trivial. O

We have a bijection betwed(£ (D)) and the setD| of effective divisors linearly
equivalent taD: simply note that such a divis@®’ can be writterD’ = D + (f) with
f € £(D). One says thdD| is the (complete) linear system associated \Bifta linear
subspace oD| (corresponding to a vector subspaceldD)) is simply called a linear
system. Note that the definitions 6f{D) and|D| can be easily generalized to the case
of a non-effective divisor. We have:

Proposition 8. If D1 ~ D, then|D;| = |D2| anddim£(D1) = dim£(D).

Proof. Write D; = D2+ (g) and note thaf € £(D1) — fge £(D>) is an isomorphism.
U

If 9o, -+ ,0r is an independent family id (D), one can define a rational mgpx --»
[9o(X) : g1(X) : -+ : gr(X)] (the image off is not contained in a hyperplane Bf be-
cause the family is independent).Df> 0, one can always takg = 1.

If one take a basis of (D), we obtain a rational map that we denotegsy,.

Definition 9. The Kodaira dimension k(D) of D is the maximum of the dimensions
of the imagespnp (X) whenn € N. If £(nD) = 0 for all n, by conventiork(D) = —.
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Since dimp,p|(X) grows withn, it is clear that the max is reached fosufficiently
large and divisible. But if furthermore the algebra

Rp = P H(X,nD)

n>0

is finitely generated, then one can define Rgpand a rational magp : X --» ProjRp.

3.2. Basics on Minimal Model Program. Curves which are negative with respect to
the canonical divisors are obstruction to the ngap to be well-defined. The general
idea of the Minimal Model Program is to produce an algorithimicl allows us to
remove these undesirable curves.

Theorem 10 (Cone theorem, first versionlet X be a smooth complex projective
variety. There exists a (minimal, at most countable) setatibnal curves Ewith
Kx - Ej < 0 such that

NE(X) =NE(X)NKxo+ Y RT[Ej].

The raysR*[E;] in NE(X) are callecextremal rays.

To each extremal raR * [Ej] corresponds a morphisk— Y with connected fibers
which contracts exactly the curves &nproportional toE;: this is not trivial, and is
often called the “contraction theorem”.

There are 3 types of such contraction morphisms:

e Fibering type: dinY < dimX. Then one says that is a Mori fiber space.
One can show that the general fiber is a smooth Fano varieXyisia 3-fold,
then we have del Pezzo fibrations, conic bundle and prime fanbe Picard
number is 1, and is a point).

e Divisorial contraction:X — Y is birational, and the exceptional set is a divisor.
WhenX is a smooth 3-fold, there are five types of thesg (- - , Es, see 8.3).
Note thaty might be singular (with terminal singularities).

e Small contractionXX — Y is birational, and the exceptional set has codimen-
sion at least 2. The big problem here is that intersectionbmimare not well
defined onY (some Weil divisors are not Cartier, even up to a constaritg T
solution is to flip the curves in the exceptional set (evenhim 3-fold case,
this set does not have to be irreducible, even if this wasdlse in the simple
example of the Francia flip). Existence of flip is by no mearygascontrast
with unicity)...

There are several ways in which the cone and contractiomeéheocan be extended.
In particular:

e singular version: one can allow terminal singularities,chihis a class stable
under divisorial contractions and flips.

e relative version: We consider varieties with a morphism tfixad variety
S. The relative effective cone NK/S) is the cone generated by contracted
curves.

e logarithmic version: We repladéy by a small perturbatioiy + A. “Small”
means a control on coefficients and singularitied\pthere are several ver-
sions (Kawamata log terminal, divisorially log terminaglcanonical...)
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We are now going to describe the Sarkisov program, which aithiactorizing a
given birational map between Mori fiber spaces (suck'gsy mean of elementary
links. The relative and logarithmic MMP play a key role indlsitory. First we look at
the comparably easy case of surfaces.

3.3. Sarkisov Program for surfaces. Let f: S--» S be a birational map between
2-dimensional Mori fiber space¥'T andS/T'.

We start by taking a resolutios <= X E> S of the base points of, whereX is a
smooth projective surface and we choose an ample ditisen S. We noteHs C S
(or Hx C X, etc...) the strict transform of a general member of thealirsystemH’|
on S(or X, etc...), andC; C X the irreducible components of the exceptional locus of
1. We write down the ramification formulas

Kx:T[*KS—FZCiCi and Hx:T[*HS—ZmiCi.

We define the maximal multiplicith as the maximum of tha; = % It turns out
that in the case of surfaces the maximum is realized by aati@swith ¢; = 1, that
is C; does not correspond to an infinitely near point. Note thatigimér dimension
the maximum of the\; does not coincide in general with the maximum of the
Technically /A is defined as a canonical threshold.

On the other hand we define the degpes f as the positive rational numbé%
whereC is any curve contained in a fiber of the log Mori fibration@&n

In the case\ > |, we consideZ — Sthe blow-up of a point realizing the maximal
multiplicity. ThenZ — T (recall thatS— T was the Mori fibration o1®) is a morphism
and the relative Picard number is 2. In other word the redationeNE(Z/T) is 2-
dimensional, and so has exactly two extremal rays. One sdigs Reid) that we are
in position to play a 2-rays game. One of the rays corresptmtie maximal blow-up
we just did. The other one corresponds to a ray which is stmeigative with respect
to Kz + %Hz: this comes from the assumptian> 1. The contraction of this second
extremal ray gives either

e a Mori fiber structure oZ: we say we have a link of type I;
e adivisorial contraction to a surfac with a Mori fiber structureS — T: we
say that we have a link of type II.

These operations done, one shows that we have simplfifiadhe sense that: either
1 went down; o remained constant batwent down; ot andA remained constant
but the number of exceptional divisorsXnrealizing the multiplicityh went down.

In the case\ <, it is possible to prove thdfs-+ ﬁHS cannot be nef (otherwisé
would be an isomorphism). We are again in position to playray®-game, this time
directly onS. Indeed NES) is 2-dimensional, with one ray corresponding to the Mori
fiber structureés— T, and the other beingkas+ ﬁHS-negative ray. The contraction of
this extremal rays gives either

e another Mori fiber structure o& we say we have a link of type I\VS(has to
beP! x PY);
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e adivisorial contraction to a surfac with a Mori fiber structureS — pt: we
say that we have a link of type 1§ has to beP?).

The four types of elementary links occurring in the factatian procedure are sum-
marized in the following diagrams:

S Z
_ N
type () S type(ll) S S
| NS
pt 28 C
S S———9g
T~ ¢ ¢
type (Il) S type (IV)  pl

Pl
\ /
pt

pL—— Pt

3.4. Sarkisov Program after Corti. One can try to apply the same strategy in higher
dimension. Corti Cor9g sorted it out in dimension 3. Here are the main distinctions
from the 2-dimensional case:

e The 2-ray games might involves log-flips before producirgyekpected divi-
sorial contraction or Mori fiber space. So now links have tilWwing form:
Z-—-—-—~- X' Z---7

\

type (I) X type (I) X X/
| e
S S S
X-—---- z X-—-—---=-- X!
N\ | }
type (I1) X' type (IV) S

\ / S
S T

e The maximal multiplicity might correspond to an infinitelgar point or curve.
In particularA is in general rational, with no obvious control on the denomi
nator.

e The varieties involved might in general be singular (temhgingularities); as
a consequence the denominator of the degréenot easy to control either,
especially in the case of Fano varieties with Picard number 1

e From the previous observation it is not clear why the progsfrould stop,
since we are trying to make an induction argument using matioumbers
with poor control on the denominator (the proof by Corti ie B+rdimensional
case is quite tricky for this reason).

e As a final remark, Mori fiber spaces in higher dimension aréeqoompli-
cated. There are plenty of smooth (or terminal...) Fanol@sf¢-folds...)
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with Picard number 1, and B!-bundle over an arbitrary blow-up & is a
rational Mori fiber space(so the Picard number can be arpiteage)... Thus
the factorization is less satisfying than in dimension 2.

4. MORI DREAM SPACES ANDSARKISOV LINKS

4.1. Cones. Consider a projective toric (or Fano, or log Fano...) varit these are
special cases of “Mori dream spaces00, McK10]. The finite dimensional vec-
tor spaceN*(X) of Q-divisors modulo numerical equivalence contains the Vailig
interesting cones:

e Because of the assumptioX toric or Fano), the cone EiK) of effective
divisors is closed and for arly € Eff(X) we can define

P X --» Xp = ProjP HO(X, [mD)).
m>0

e Thebig cone BigX) is the cone of divisor® such that dinXp = dimX. Itis
a general fact that B() is the interior of EffX).

e thenefcone NefX) is the cone of divisor® such thaD -C > 0 for any curve
CeX.

e theample cone AmgX) is the cone of ample divisors; by Kleiman criterion it
corresponds to divisof® such thaD -C > 0 for any 1-cycleC € NE(X). The
ample cone is the interior of the nef cone, and the nef conleciclosure of
the ample cone.

e The movable cone Moy X) is the cone of divisor® without any divisor in
the base locus dD|.

4.2. Chamber decomposition.

Definition 11. We say that two divisor®1, D, € Eff(X) areMori equivalent if there
exists an isomorphisms betwe&®, and Xp, which makes the following diagram
commutes:

X

Proj®HO(X, [mDy)) Proj @ HO(X, |mDz])

Taking equivalence classes we obtain a chamber deconguositthe cone EfiX).
For instance the cone of ample divisors is a (open, and magiimansional) chamber.
If C1,C5 are the closure of chambers of maximal dimension, we say that

e W= _1NCyis aninternal wall if dimW =dim€; — 1;

e W= 1\ Big(X) is awindow if W is a maximal convex subset 6f \. Big(X)
(hence dimiv = dimC; — 1). In this case | say thdt; is (the closure of) an
external chamber with windowWV.

The chambers admit the following descriptior {0Q]):

There exists a finite number of small birational mapsX --+» X; such that the
f*(Nef(X;)) are exactly the maximal dimensional chambers inside (XgvAll others
maximal dimensional chambers have the fgjtNef(X;)) + Exc(gj) whereg;: X --»
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X; is a finite collection of birational contractions. All (cla® of) chambers are poly-
hedral cones.

4.3. Minimal Model Program. Fix D a divisor onX (for instance the canonical
divisor Kx). ChooseA an ample generic divisor oK, and consider the segment
[A, D] NEff(X). The generic assumption dhis to be sure that this segment never
cross two walls or windows simultaneously. Every wall-siog (when going fronAA
to D) corresponds to either2Hflip or aD-divisorial contraction. This MMP ends with
aD-nef model ifD is in the interior of EffX) (i.e. D big), or with a Mori Fiber space
otherwise.

The key proposition here is (see proof next lectd®;

Proposition 12. ConsiderA;, A two chambers, an@;, C; their closures. IC;N.A;j #

0, there exists ifi: X; — X; a morphism such that;f= f; ; o fi. Furthermore the
relative Picard number of XX is equal to the difference in the dimensionspand

CiNge;.

In particular, ifA; is an external chamber ang); is its window, fi j: Xi — X is a
Mori fiber space structure.

An internal wall corresponds to a flip if the correspondi¥gX; have the same
Picard number. This is in particular the case when the walkisle the movable cone.

When the Picard numbers differ by one, we have a divisoriatreation.

Thus on such a space (a “Mori dream space”), the MMP works veiipect to
any divisorD (whereas in generdD as to be the canonical divisttx, or a small
enough perturbatioKy + A). In particular we can apply this tb = Kx. Note that
the anticanonical divisorKy is effective for a toric variety, so it is easier to picture
—Kyx. Depending on the position efKy in the effective cone, it is not always possible
to reach any external chamber b)KaVIMP. These not-reachable chambers typically
correspond to varieties with singularities worst than terminal.

4.4. Sarkisov program. Suppose that;, C; are two external chambers with adjacent
windowsW;, W; (meaningW; N'W; has codimension 1 iW; andW;).
We have a diagram

Z
/ AN
/ AN
/ AN
¥ K\
Xi X|
T Tj

| claim that the induced birational mag --» X is a Sarkisov link. There are
several cases to consider:

o If Win'Wj, Wj andW; all belong to distinct chambers. Then there is a rational
mapZ --» T; ; corresponding to the chamb®; "'W;, andX;, X; have the
same Picard number (because the relative Picard numbetigvier2 in both
cases). This is a link of type IV.



FIVE LECTURES ON SARKISOV PROGRAM AT LES DIABLERETS 16

NB: in this case, it is possible to ha@g= C; (see example below).
o If Win'W;, W; andW); all belong to the same chamber. Ag3inX; have the
same Picard number. This is a link of type II.
o If Win'W;j andW; are in a same chamber, aW¢gj in another. Then the Picard
number ofX; is one more than the Picard numben®f This is a link of type
I. In the obvious symmetric situation we get a link of type Il

4.5. Example. P2 blown-up at two distinct points

For those who know some toric geometry (if not, the boBk §] is a great place
to start with), | give below the fan (i3, with canonical basigvi, v, V3)) of the toric
variety X obtained fromP® by blowing-up the two pointf0:1:0:J and[0:0:1:0:

The dotted line corresponds to a flopping curve.

Now | describe divisors oX (without using toric geometry).

Note Dy (resp. Dy, D, Dy the strict transform oiX of the planex =0 in P2 (resp.
y=0, etc...). NotdD1, D, the exceptional divisors obtained by blowing{dp 0:0:(
and[0:1:0:(Q respectively.

Notelq,l, lines inDy, D, andl the transform of the ling =t = 0 through the two
blown-up points.

The divisorsD,,D1,D, generate the cone EX) of effective divisors, and the
curvesl,lq1,l> generate the cone of curves.

From the following intersection table, we see tbgt~ D, + D,Dy ~ D, + D> and
D,+ D1+ D, generate the nef cone.
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|Dz Dy Dy Dt D1 D2 Dz;+Di1+D;

lb{+1 0O +1 +1 -1 O 0
lL|+1 +1 0 +1 O -1 0
l|l-2 0 0 -1 +1 +1 +1

We have the following chamber decomposition in the ciiiig X):

00 N0
D. () p, (i) D1

The five external faces of this cone correspond to all Morirféaces that we can
obtain fromX by running a MMP:
e (i): The trivial fibrationP3 — pt;
e (i) and(iii ): The twoP!-fibrations toP? obtained by blowing-uf® at one of
the two points;
e (iv) and(v): The twoP!-fibrations to the Hirzebruch surfad that exist on
Y (which is obtained fronX by the flop ofl).

Two adjacent windows correspond to Sarkisov links. Noté tthe anticanonical divi-
sor—Ky is equivalent tdDy + Dy, and is nef, movable but not ample. Thus Mori fiber
spacegi), (i), (iii ) can be obtained bi-MMP, whereagiv) and(v) cannot.

5. SARKISOV PROGRAM AFTERHACON-MCKERNAN: OVERVIEW

As it is often the case, the global features that we obseragar@ective toric vari-
eties partially generalize to more general projectiveataas.

We start with a classical example that shows the difficultbd then we review the
construction by Hacon and McKernan that leads to a proof stexce of a Sarkisov
program in any dimension.

5.1. A surface with infinitely many —1-curves. See Fri98, p. 131], or McK10].

Proposition 13. Consider S the blow-up @2 at 9 general points. Then there is a
bijection between the set of exceptional curves on SZ&nd

Proof. First step: consider the 9 base points of a pencil of ellipticves orP2. Note
that these points are in special position, because (by angdilore argument), by 9 gen-
eral points passes only one cubic. The surfaobtained by blowing-up these 9 points
is an elliptic fibration ove!, and the 9 exceptional divisors are sections. Taking one
of the exceptional divisor to define a neutral element on e#igtic curve of the fibra-
tion, the 8 other define automorphismsSWe obtain a subgroup® c Aut(S) (if the
pencil is sufficiently general). The orbit under this grodpany exceptional divisor
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gives infinitely many—1-curves.

Second step: consider perturbatipn of the 9 points in the first step, and the sur-
faceS obtained by blowing-up these points. The exceptional ®iore&s= S persists
on the nearby fibers, because they are characterized togallgdy their intersection
numbers Kg-E = E2 = —1.

An alternative proof would be to show that, fixiri§y an exceptional curve of a
generalS and denoting by the set of exceptional curves &the map

& — (Ks)* /Ks
E—-E-E

is a bijection. Then sincé&Ks)*/Ks = Z8 and any class satisfyinge? = Ks-e= —1
can be represented by an effective curve (Riemann-Rochdpteen the result. [

5.2. Minimal and canonical models. [KM98, §3.8]

A birational map@: X --» Y is called abirational contraction if ¢~ does not
contract any divisor.

Let (X,A) be a log canonical pair angt (X,A) --» (Y,@.A) a birational contrac-
tion.

We call (Y, @.A) aweak canonical modelof (X,A) if

(1) Ky +@.Alis nef;
(2) a(E, X, ) <a(E,Y,@.A) for everyg-exceptional divisoE C X.
There are two ways in which this definition can be strengttiene

Ifin (1) we put “ample” instead of “nef”, we say thaY, @.A) is acanonical model
If a canonical modeY of (X,A) exists then it is unique and is given by

Y =ProjPHO(X, [m(Kx +4)]).

m>0

Ifin (2) we ask for a strict inequality then we say thi#t@.A) is aminimal model.
If Kx 4+ A is big and we run a log MMP starting froid, the end product will be a
minimal model.

Note the following result fromBCHM10, Corollary 1.1.2]:

Corollary 14. Let (X,A) be a projective Kawamata log terminal pair, wherg k A
is Q-Cartier. Then the ring

PHX, [m(Kx +4)])

m>0
is finitely generated.

In particular taking the Proj we obtain the canonical moded @lso say amample
model, in particular when the dimension of the model is strictlysléhan the dimen-
sion ofZ) of Ky + A.
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5.3. Shokurov polytopes. Let Z be a smooth projective variety, C WDivg(Z) a
finite dimensional vector subspace which generBt§&), A > 0 an ampleQ-divisor.
We define

Ea(V)={D=A(Kz+A+B);
A>0,B>0¢€V,(Z,A+B) log canonicalD pseudo-effectivg.

A key result from BCHM10, Theorem E] is

Theorem 15 (Finiteness of models)There are finitely many birational contractions
Pj: Z --» Xj such that ify: Z --» X is a weak canonical model forz A, with
Kz+A € Ea(V), theny = ; up to an isomorphism X X;.

Using Corollary14 it makes sense to consider the equivalence relatiofi A8\ )
given by Definition11.

We noteA; the equivalence classel; Z --» X; the associated ample models, and
Gj the closure ofA;.

Proposition 16 ([HM09, Theorem 3.3]) TheA; are in finite number, with the follow-
ing properties:

(1) {Ai;1<i<m}isapartition ofEa(V). EachC; is a rational polyhedral cone,
and is the disjoint union of some of tig.

(2) Ifi,j are two indices such that N.A;j # 0, there existsfj: X; — X; a mor-
phism such thatf= fj j o f;.

(3) fiis birational and Xis Q-factorial iff C; is of maximal dimension.

(4) The relative Picard number of jf: X; — X; is equal to the difference in the
dimensions o€; andC; N C;j.

Proof. (1) is essentially a consequence of Theorginbut | skip the details.

(2) Pick6g € CiNAj, andB, € Aj, such tha, =16, + (1—1)6g € A forallt €]0, 1].

We may assume that there exists a birational contractiod --+ X which is a
weak canonical model fdare]0, 1].

Setl; = f,6;. The Base Point Free Theoretvi implies thatKy + A; is semiample,
and so by unicity of the ample model we have a morphggsmX — X; and ample
divisorsHy /> andHj such that

Kx +41/2 = g7 H1/2 andKy + A1 = g/ Hs.

One can verify thaKx + A, = g'H; for all t € [0,1].

SinceKx +Ag is semiample we also have a morphigm X — X;.

The curves contracted pgrare the curve€ such tha(Kx +4;)-C =0fort €]0,1],
and so also fot = 0. Hence NEg) C NE(g;), and the rigidity Lemmaé.8 gives a
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morphismf; j : X; — X; such that the following diagram commutes:

Z
/1N
/1N

/
fi/

X\
/ \
X
fiii
(3) I skip details.

(4) Let us prove this whe®; = Nef(Z) (closure ofA; = Amp(Z)). In fact the
statement is equivalent to a dual statement (Cone Theomhi¢h says that to any
K + A negative face in the cone of curlE(Z) corresponds a contraction morphism
with relative Picard number the dimension of the face. O

Theorem 17(Base Point Free, se®§b01, Theorem 7.32]) Let X be a smooth pro-
jective variety, and let D be a nef divisor on X such that-aR is nef and big for
some positive a. Then the linear systgnD| is base point free for all m sufficiently
large.

X

Lemma 18 (Rigidity, see Peb01, Proposition 1.14]) Let X,Y,Y’ be projective vari-
eties and lett: X — Y, 1W: X — Y’ be morphisms with connected fibersNE(m) C
NE(17), there is a unique morphism: ¥ — Y’ such thatt' = foTt

5.4. Sarkisov program again. We start with a birational map: X/S--» X’/S be-
tween (smooth) Mori fiber spaces. For instadce: X’ = P3, in which caseS= S is
a point. Consider a smooth resolution fof

Now we consider the chamber decompositior€gfV ), for a small ample and effec-
tive divisor A onW, andV C WDiv(W) a finite dimensional vector subspace which
generateN'(W) and contains all effective divisors we need in what follows.
ConsiderH a divisor onX such thatkx + H is ample. IfH is chosen to be a sum
of divisor with small enough coefficients and simply normedssing support, then
(W, 'H) is kit andKw + 1t°H € Ea(W). So we see thaX corresponds to an external
chamberCy, andX can be reached frov by running aK-MMP; i.e. there exist8x
an ample divisor oW such that the segmefBy, Kw] pass through the chambéx.
The same is true foX’, by the same argument (so there exBtsample oW, etc...).
There is a sequence of adjacent external chambers @&pito Cx, (consider all the
K-MMP starting fromB € [Bx,Bx/]). This gives a finite sequence of Sarkisov links,
by the same argument as i1.8.
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Exercises

Exercises you can try to do after LECTURE .

Exercise 1. Find the canonical divisor db* x P! by computing explicitely the zeros
and poles of a 2-form (for instance, you can work with the farm dy in a local
affine chartA? c P! x P1).

Do the same computation again starting with another 2-f(m1y%‘ A d73’). Check
that you find a divisor linearly equivalent to the previougon

Exercise 2. Prove (or take for granted) that a smooth quadric surfzeP? is iso-
morphic toP! x P1. Compute the canonical divisor 8fusing the adjunction formula.
Compare with the previous exercise.

Exercise 3. Consider a smooth plane cur@c P? of degreed: the equation o€ is
F(X,Y,Z) = 0 whereF is homogeneous of degrele
(1) In the affine chark = X/Z,y =Y /Z, consider the 1-formw = ad—>; where
y
fxy) =F(xy1).
Prove thatwois regular on this chart (hint: note théif = 0 onC).
(2) Consider now the chatt= X/Y,v=Z/Y, and denote bg(u,v) = F(u,1,v)
the equation o€ in this chart.
Prove that(w) admits a zero of orded — 3 along the hyperplane section
v=0.
(3) Is this result coherent with the adjunction formula ?

Exercise 4. Prove that if an exceptional divis& over a (normal{Q-factorial) variety
X satisfiesa(E, X) < —1, then one can find a sequence of exceptional divispes/er
X such tha@(En; X) — —co.

Hint: suppose first thaX is a surface, and th& is a divisor witha(E,X) < —1.
Blow-up a point onE to produce an exceptional curi®g. Blow-up again the point
E; N E. Compute discrepancies...

Exercise 5. If C is a projective curve, recall the relation between the geafiGand
the degree of the canonical divisorg(€) — 2 = degKc. Use the adjunction formula
to compute the genus of a smooth curve of degraeP?. Same question for a smooth
curve of bidegreém,n) in P! x P!, Same question for a smooth curve which is the
complete intersection of two smooth surfaces of degpessdg. Conclude that some
curves inP3 are not complete intersections.

Exercise 6. If C C X is a smooth curve in a smooth 3-fold, we want to establish
degdNc/x) = 29(C)—2—Kx-C

whereNc x = Tx|c/Tc is the normal bundle df in X (vector bundle of rank 2).

(1) IfC=5 NS is acomplete intersection (both surfaces smooth), useetitjun
formula.



(2) In general, recall that if we have an exact sequence @bvécandles orC
0=V =V =sV' =0

then the first Chern class is additive: ae(V’) = degci(V) + degei (V).
Apply this to the sequence

0—Ng/x =+ Tx|[C—=Tc—0
and conclude.

Exercise 7.LetY — X be the blow-up of a smooth curné&in a smooth projective
3-fold X. LetE be the exceptional divisor andC E a contracted curve. Show that

Ky -L=E-L=—1.

Exercise 8. Let Q C P" be a smooth quadric hypersurface. Show tQas$ the com-
pactification ofA" by an irreducible divisor as soon a$> 3 (hint: consider a tangent
hyperplane section).

Exercise 9. Consider the blow-up of a cuspidal cubiclid (sayz=y*—x3=0in a
local affine chart\3 c P3).

(1) Check that the resulting 3-fold has exactly one isolaiadular point.

(2) Consider the blow-up of this singular point. What is tieeptional divisor ?
Compute the discrepancy.

Exercises you can try to do after LECTURE III.

Exercise 10.0n P! x P1, considerF; = {x = 0}, F, = {y = 0}. Computeqy for
D=F,D=F+FandD = F; + 2F,.

Exercise 11.Consider a smooth cubic surfae- P3.

(1) What is the dimension of the real vector spacgS)?

(2) How many extremal rays are thereNi(S)?

(3) Running the Minimal Model Program froi® how many different ways are
there to reach a Mori fiber space?

Exercise 12.What is the result of the Sarkisov links starting fréhwith the blow-up
of (i) a point or (ii) a line?

Exercise 13. (1) What is the result of the Sarkisov link starting fr@?with the
blow-up of a smooth conic?

(2) Show that with two such links we can construct a Cremonp aididegree
(2,2) (i.e. a birational mag: P® --» P2 of degree 2 such that~! has also
degree 2).

(3) Can you produce an example of a quadratic birational map?® --» P2 such
that f~1 has degree 3? 4? 5?

(4) Back to the first question: what happen if we start withktoev-up of a plane
curve of higher degree?

Exercise 14. Apply the Sarkisov program to the following two quadraticational
maps ofP?:



(1) o: [x:y:Z --» [yz:Xz: xy].
(2) f:[x:y:Z --» [xz+y?:yz: 7.

Exercise 15. Show that a smooth cubic 3-fold is unirational, i.e. there exists a
dominant rational map? --» X:

(1) Show that there exists a lihg in X.

(2) Consider the variet of lines which are tangent & in a pointx € Lg. Show
thatB is rational (i.e., birational t&3).

(3) Show that there exist a dominant mBp-+ X and conclude (hint : iL is one
of the lines parametrized &, consider. N X).

Exercise 16.What are the Sarkisov links starting from a smooth cubicl8-ath the
blow-up of a point; a line; a conic; a plane smooth cubic?

Exercise 17.Prove that the exceptional locus of an extremal divisoraitaction is
irreducible.

Hint: you'll probably need a version of the negativity lemmvhich says: ifE =
S aE; is atenef exceptional divisor of a morphism Y — X, thena; <0 for alli.

NB: for a small contraction, the exceptional locus might bducible (see next
exercise)!

Exercise 18.ConsiderS c P* a smooth cubic surface, and a morphismS — P?
(given by blowing-up 6 points).

(1) If C C Sis the pull-back byf of a general conic, what is the degreedfas a
curve inP%)?

(2) Prove that any quadrisecant ©f(line intersectingC 4 times) lies insides.
How many such quadrisecants are there?

(3) Consider the blow-up dP® alongC. What are the two extremal rays of the
resulting nef cone?

(4) Prove that if we perform an Atiyah flop on one of the (sttieinsform of the)
quadrisecants, we end up with an algebraic but non prog8tifold. Compare
with the cover illustration of Shafarevic, vol 2...

Exercise you can try to do after LECTURE IV.

Exercise 19.Consider the following two situations:

(1) X = P2 blown-up at a point and an infinitely near line;
(2) X =P?blown-up at a point and an infinitely near point.

In each case compute the chamber decomposition ¢XEffyou should find some-
thing like the following picture.
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(ii)

(iii)

o——— 0
(iv)
Identify the Mori fiber spaces corresponding to the winddisg). Where is the
anticanonical diviso—Kyx ? Which chambers correspond to varieties with terminal
singularities ? Verify that these can be reached g aMP.
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