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1. PRELIMINARIES ON BLOW-UPS

1.1. Canonical divisor. If X is a smoothn-dimensional variety, the canonical divisor
is the divisor of zeros and poles of a rational n-form: ifω = f du1∧ ·· · ∧ dun on an
open setU with local parametersu1, · · · ,un, then f is a local equation of the divisor
(ω) onU . The following proposition says that this divisorKX is uniquely defined up
to linear equivalence

Proposition 1. If ω andω′ are 2 n-forms on X, then(ω)∼ (ω′).

Proof. Locally, the two n-forms areω = f du1∧ ·· · ∧ dun andω′ = gdu1∧ ·· · ∧ dun

with f ,g∈C[U ]. Thus(ω) = (ω′)+( f/g), indeed a change of chart induces the same
Jacobian determinant in the expression of bothω andω′. �

One can compute directly the canonical divisor ofPn: then-form dx1∧·· ·∧dxn has
a pole of ordern+1 on the hyperplane at infinity, as one verifies by computing inan
affine chart around a point at infinity.

KPn =−(n+1)H.

To compute the canonical divisor in general, we use a formulawhich gives the
canonical divisor of a hypersurface starting from the canonical divisor of the ambient
space: this is the adjunction formula.

Proposition 2 (Adjunction). If Y ⊂ X is a hypersurface, with X and Y smooth, we
have

KY = (KX +Y)|Y.

The restriction here makes sense when we see divisors as linebundles (see next
section, and [Sha94b]), but can also be interpreted as an intersection: to compute D|Y,
chooseD′ ∼ D intersecting transverselyY and thenD|Y ∼ D′∩Y.

Proof. We noteNX/Y the normal bundle ofY in X. The proof proceeds by showing
that

(1) NX/Y =Y|Y;
(2) KY = (KX +NX/Y)|Y.

1. If { fα} are local equations ofY, then fα = gαβ fβ where thegαβ are the transition
functions of the line bundle associated withY. We haved fα = gαβd fβ +dgαβ fβ, and
this last term is zero in restriction toY. One can seefα as a section of the line bundle
Y, andd fα is then a 1-form with value in sections ofY, in other words a section of the
bundleN∗X/Y⊗Y. Since this section is regular and without zero (becauseY is smooth),
the bundleN∗X/Y⊗Y is trivial, that isNX/Y =Y|Y.

2. By definitionNX/Y = TX/TY, henceT∗Y = T∗X/N∗X/Y. So the transition matrix
between open setsUα andUβ for the vector bundleT∗X has the form

(

gαβ 0
∗ Aαβ

)

whereAαβ is the transition matrix ofT∗Y , andgαβ is the transition function of the line
bundleN∗X/Y. We see that detT∗X = detT∗Y ⊗N∗X/Y, henceKY = (KX +NX/Y)|Y. �
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1.2. Digression: Weil vs Cartier divisors.

Definition 3 (Weil divisor). A (Weil) divisor D on a varietyX is a finite collection
of irreducible subvarietiesCi (i = 1, · · · , r) of codimension 1, each one labelled with a
multiplicity ki ∈ Z.
We noteD = ∑i kiCi.

In particular ifX is a curve,D is a collection of points with multiplicities; in this case
we call degD the sum of theki .

Definition 4 (Cartier divisor). A (Cartier) divisorD on a varietyX is given by an open
covering(Uα) of X, and for eachUα a rational functionfα, with the compatibility
condition:

On each intersectionUα∩Uβ, the function fα/ fβ has values inC∗ (in other words
it has no zero and no pole).

A Cartier divisor corresponds to a line bundle, and thegα,β = fα/ fβ are then exactly
the transition functions fromUα×C toUβ×C.

One can endow the set of (Weil or Cartier) divisors with a group law.

Proposition 5. On a smooth variety the notions of Weil and Cartier divisors coincide.

Standard counter-example on a singular variety: rule of theconey2 = xzin C3⊂P3.

The key property to show this equivalence is

Proposition 6. Let X be a smooth variety, Y⊂ X be an irreducible subvariety of
codimension 1, and x∈ Y. Then in a neighborhood of x the subvariety Y can be
defined by a single equation.

Remark: the proposition is true even ifY is singular. On the other hand, the general-
ization in higher codimension is correct only ifY is smooth (see [Sha94a, p.111]).

Main point of Cartier divisors: one can define the pull-back by a morphism (pull-
back the local equation).

On a singular variety the canonical divisor is only defined asa Weil divisor (divisor
of poles and zeros of a n-form defined on the smooth part).

If a Weil divisor D is not Cartier, but a multiplenD is Cartier, one says thatD is
Q-Cartier, and one can define the pull-back ofD by a morphismπ by the formula:

π∗D :=
1
n

π∗nD.

This leads naturally to the notion of (Weil or Cartier)Q-divisors, that is divisors with
coefficients inQ instead ofZ.

1.3. Discrepancies.

1.3.1. Blow-up of a smooth point.Considerp the origin ofX = An, with coordinates
x1, · · · ,xn. For eachi = 1, · · · ,n, define a map

Ui ≃ An→ An

(y1, · · · ,yn)→ (y1yi , · · · ,yi , · · · ,ynyi).
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Apart from the hyperplaneyi = 0 which is contracted onp, this map is injective. The
Ui are glued in a natural way (identify points inUi andU j with the same image),
to produce a varietyY and a morphismπ : Y → An such that the preimage ofp is
isomorphic toPn−1.

In dimension 3 :

x1

x2 x3 E

y1=x1

x2 x3

y2=
x2
x1

x1
x2

x3
x2

x2
x3

x1
x3

y3=
x3
x1π

We compute now thediscrepancy of E, i.e. the coefficienta = a(E,X) in the
ramification formula

KY = π∗KX +aE.

In Y, consider the affine coordinatesy1 = x1, y2 = x2/x1, y3 = x3/x1. So we have

x1 = y1 dx1 = dy1

x2 = y1y2 dx2 = y2dy1+y1dy2

x3 = y1y3 dx3 = y3dy1+y1dy3

and finally

dx1∧dx2∧dx3 = y2
1dy1∧dy2∧dy3.

We obtain that the formdx1∧dx2∧dx3, view onY, has a zero of order 2 alongE =
{y1 = 0}, in other word the discrepancya= 2.

NB: In the previous argument you should be careful not to confuse (as I invariably
do at some point) the pull-back of the 3-form with the pull-back of the divisor defined
by the 3-form...

In general, the same argument shows thata = n− 1 for the blow-up of a smooth
point on a variety of dimensionn.

1.3.2. Blow-up of a curve.First consider the case of the axisx2 = x3 = 0 inA3.

x1

x2 x3

Ex1 x1

x2 x3x3
x2

x2
x3

π

Similarly to the previous case we compute thediscrepancyof E:

KY = π∗KX +aE.
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In Y, consider the affine coordinatesy1 = x1, y2 = x2, y3 = x3/x2. So we have

x1 = y1 dx1 = dy1

x2 = y2 dx2 = dy2

x3 = y2y3 dx3 = y3dy2+y2dy3

and finally
dx1∧dx2∧dx3 = y2dy1∧dy2∧dy3.

We obtain that the formdx1∧dx2∧dx3, view onY, has a zero of order 1 alongE, in
other word the discrepancya= 1.

The same is true for the blow-up of any smooth curve in a smooth3-fold: reduce to
the previous case by working in a local analytic chart.

1.3.3. Cone over a curve.Now we compute the discrepancies of a simple class of
singular points on surfaces.

LetC⊂ Pn be a smooth curve of degreed. Let p∈ Pn+1, andX the cone with vertex
p overC. Let π : Y→ X the blow-up ofp (that is, blow-up in the ambient projective
space and restrict to the strict transform ofX), andE ⊂Y the exceptional curve. The
curveE is isomorphic toC (each rule intersects only onceE andC). NoteL a rule of
X.

We want to compute the coefficientsm anda in the ramification formulas

KY = π∗KX +aE

LY = π∗L−mE.

The coefficienta= a(E,X) is called thediscrepancyof the divisorE overX (NB : a
does not depend of a choice of resolution). The coefficientm> 0 is the multiplicity of
L at the pointp.

We have
0= π∗L ·E = LY ·E+mE2 = 1+mE2

hence

m=−
1

E2 .

Similarly

0= π∗KX ·E = KY ·E−aE2 = (2g−2)− (a+1)E2

hence

a=
2g−2

E2 −1.

OnX we have (consider hyperplane sections)

C2 = d, C∼ dL

hence

L2 =
1
d
.

We have
1
d
= (π∗L)2 = (LY +mE)2 = 2m+m2E2 =−

1
E2
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hence

E2 =−d, m=
1
d
, a=

2−2g
d
−1.

Digressions:

(1) The rational coefficients come from the fact that we are dealing withQ-Cartier
divisors.

(2) Caseg= 0: a= 2−d
d . Hirzebruch surfaces. Weighted projective spacesP2(n,1,1).

1.3.4. Cone over aP2. Let S≃ P2⊂ Pn such that the image of each line inSis a curve
of degreed in Pn. Let p∈ Pn+1, andX the cone with vertexp overS. Let π : Y→ X
the blow-up ofp, andE ⊂Y the exceptional divisor. The surfaceE is isomorphic to
P2. NoteL a rule of the coneX, andF the surface given by the rules over a line inE.

KY = π∗KX +aE

FY = π∗F−mE.

We have

0= π∗F ·LE = FY ·LE +mE·LE = 1−md

hence

m=
1
d
.

Similarly

0= π∗KX ·LE = KY ·LE−aE ·LE =−3+(a+1)d

hence

a=
3−d

d
.

The surprise is thata = 1/2 > 0 for d = 2: this gives our first example of terminal
singularity (cone over the Veronese embedding ofP2).

2. FLOPS, FLIPS, CONTRACTIONS...

2.1. Atiyah flop. Considerxy−zw= 0 in A4: this is the cone over a smooth quadric
surface inP3. Blow-up the vertexp of the cone. The exceptional divisorE is isomor-
phic toP1×P1, and for any lineL of bidegree(0,1) or (1,0) in E we haveE ·L =−1:
indeed the fibered surfaceF overE is isomorphic toF1 by §1.3.3.
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We can blow-downE on aP1 in both directions, and we obtain the diagram

E

l

f lop
X1 X2

l ′

•

The birational mapX1 99K X2 is an isomorphism in codimension 1, called a “flop”.
The flopped curvesl ⊂ X1 and l ′ ⊂ X2 have normal bundleO(−1)⊕O(−1), and so
(see Exercise6)

KX1 · l = KX2 · l
′ = 0.

Here is the same construction in a slightly different setting. ConsiderX the P1-
bundle overP2 with a sectionSof normal bundleO(−d) (see §1.3.4). Choose a fiber
l , and p ∈ l a point not contained inS. Let Y → X be the blow-up ofp. Then the
strict transform ofl has normal bundleO(−1)⊕O(−1) (this is easy to see since the
transform ofl is a complete intersection) and can be flopped. The resulting3-fold is a
P1-bundle overF1.

2.2. Francia Flip. In the last construction, consider now the contraction ofSbefore
and after flop: we obtain the following diagram (and the Francia “flip”, when d = 2):

•

S

l
l

S

E

π

f lop
S≃F1 l ′

⋆

•

⋆

l

E

f lip
l ′
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The left hand side of the diagram is aP1-bundle overP2, with a sectionS with
normal bundleO(−d), and the contraction of this section to a singular point⋆: see
§1.3.4.

The middle of the diagram is obtained by blowing-up the smooth point•, producing
an exceptional divisorE ≃ P2.

The right hand side of the diagram is obtained by flopping/flipping the curvel to
the curvel ′. The vertical arrow is the contraction of the divisorSon the curvel ′: note
that all horizontal divisor areFd−1, and that the resulting 3-fold is smooth ifd = 2,
and singular alongl ′ if d≥ 3.

The upper part of the diagram (blow-up of a point in aP1-bundle, followed by a
flop) is an example of a Sarkisov link of type I (see next lecture).

NB: All this is mainly descriptive, and can be checked manually using local charts
(or toric arguments, since all involved varieties are toric).

It is interesting to compute the intersection numberK · l on the singular 3-fold before
the flip. We haveπ : Y→ X the contraction ofS. Let us note bylY the flopped curve,
andlX = π∗(lY) the flipped curve. We use the general property of intersection numbers,
known as the “projection formula”, that says that for any divisorD onX, and any curve
C onY, we have

π∗D ·C= D ·π∗C.
In particular, we have

KX · lX = π∗KX · lY.

Recall from §1.3.4thatπ∗KX = KY−
3−d

d S. FurthermoreKY · lY = 0 andS· lY = 1, so
we get

KX · lX =
d−3

d
which is negative iffd = 2.

By definition aflip replaces a curve of negative intersection with respect to the
canonical divisor by a curve of positive intersection (whereas in the case of aflop both
intersection numbers are zero). It turns out that the phenomenon of flip does not occur
on smooth 3-fold. However it does occur on 3-folds with pretty mild singularities, as
the example shows.

Final warning: This is not true that any smooth rational curve in a smooth 3-fold
with normal bundleO(−1)⊕O(−1) can be flopped. In general it might happen that
the blow-up/blow-down process leads to a non projective (but otherwise perfectly fine
smooth algebraic) 3-fold.

2.3. Divisorial contraction E3. Mori [Mor82] classified (among other things) all pos-
sible divisorial contractions from a smooth 3-fold. There are 5 types of these, often
denoted byE1, · · · ,E5 (This notation seems to have been introduced first in the book
[CKM88, p.30]. See also p. 33 for the Francia flip).E1 is the blow-up of a smooth
curve,E2 the blow-up of a smooth point.E5 is the blow-up of a singularity locally
isomorphic to the cone over the Veronese embedding ofP2 (the example we have seen
in §1.3.4). An example ofE4 is given in Exercise9. The case ofE3 is somewhat tricky,
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and the subject of this paragraph.

Warm-up : Let us consider first the blow-upπ1 : X→A3 of xy= z= 0 inA3 (union
of two lines). Recall that in general the blow-up of a subvariety ofAn defined by two
equationsf = g= 0 is given by

{

(x1, · · · ,xn), [u : v] ∈ An×P1;u f(x1, · · · ,xn) = vg(x1, · · · ,xn)
}

In our case the equation isuxy= vz, which gives in the affine chartu= 1

xy= vz.

This is exactly the equation of the singularity that was the starting point for our con-
struction of the Atiyah flop:

In general, the blow-up of a singular curve in a smooth 3-foldproduces a singular
3-fold.

The exceptional divisorE1 of π1 is (in the affine chartu= 1)

E1 = {(x,y,z,v);x = z= 0 or y= z= 0} .

In other wordsE1 = Ex
1∪Ey

1 is the cone over two intersecting rules ofP1×P1, and has
two irreducible componentsEx

1 = {x= z= 0}, Ey
1 = {y= z= 0}.

We can blow-up the singular point (vertex of the cone), producing an exceptional
divisor E2≃ P1×P1. Denote byLx⊂ E2 the rule in the closure of the strict transform
of Ex

1, Ly ⊂ E2 the rule in the closure ofEy
1, andG the strict transform of the line

Ex
1∩Ey

1 = {x= y= z= 0}.
Note thatπ1-exceptional curves inEx

1 tend toG+ Lx. Similarly, π1-exceptional
curves inEy

1 tend toG+Ly.

Now for the real thing: consider a cubic nodal curveC in P2 ⊂ P3. The node
is locally (analytically) isomorphic toxy= z= 0, so the blow-upπ1 of C produces
a singularity as in the previous case. The blow-upπ2 of this singularity produces
an exceptional divisorE ≃ P1×P1. But the point now is thatE1 is an irreducible
divisor, and that we can deformπ1-exceptional curves both onG+Lx or G+Ly. As a
consequence,LX ≡ LY, and so anyprojectivemorphism which contracts one of them
has to contract the other.

In the vocabulary of the next lecture:LX andLY correspond to a single extremal ray,
andπ2 is a divisorial contraction: the so-calledE3 type.

3. MINIMAL MODEL PROGRAM AND SARKISOV PROGRAM

3.1. Linear systems and rational maps.Let f : X ⊂ Pn
99K Pm be a rational map.

One can expressf usingm+ 1 homogeneous polynomialfi of the same degree and
writing f (x) = [ f0(x) : · · · : fm(x)]. One can also write

f (x) =

[

1 :
f1(x)
f0(x)

: · · · :
fm(x)
f0(x)

]

.

Here thefi/ f0 arem rational functions onX, with poles bounded by the divisorf0 = 0.
Furthermore the divisorf0 = 0 is the preimage byf of an hyperplane.
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Conversely, letD be a divisor onX (say effective for now). We now construct a
rational map such thatD is the preimage of an hyperplane. Consider the set of rational
functions onX with poles bounded byD, i.e.

L(D) = H0(X,D) = { f ∈ C(X);D+( f )0− ( f )∞ ≥ 0} .

By convention,f ≡ 0 is inL(D).

Theorem 7(see [Sha94a, p. 173]). L(D) is a finite dimensional vector space.

Proof. Note first that ifD = D1−D2 with D1,D2 effective, thenL(D) ⊂ L(D1), and
so we can restrict ourselves to the caseD≥ 0.

Suppose first thatD is an effective divisor on acurve X. Let x∈ SuppD be a point
with multiplicity r > 0, andt a local parameter. Consider the linear function

λ : f ∈ L(D)→ (tr f )(x).

The kernel ofλ is the effective divisorD− x which has degree one less thanD, thus
after degD such operations we obtain thatL(0) is a subspace ofL(D) defined by
deg(D) linear forms. ButL(0) = C (regular functions onX are constant), and so
dimL(D)≤ degD+1.

The general case (higher dimensionalX) follows by induction. Let us indicate
briefly how to obtain the result whenX is a surface. LetH be a general hyperplane
section. ThenH is a smooth curve andD|H is an effective divisor of degreek > 0.
Thus if f ∈ L(D), the restrictionF|H admits at mostk poles, and also at mostk ze-
ros. ConsiderH1, · · · ,Hm general hyperplane sections, on each of them the restriction
L(D)|Hi is a finite dimensional space. So the subspace ofL(D) containing functions
identically zero on the union ofHi has finite codimension. But ifm> k, this subspace
is trivial. �

We have a bijection betweenP(L(D)) and the set|D| of effective divisors linearly
equivalent toD: simply note that such a divisorD′ can be writtenD′ = D+( f ) with
f ∈L(D). One says that|D| is the (complete) linear system associated withD; a linear
subspace of|D| (corresponding to a vector subspace ofL(D)) is simply called a linear
system. Note that the definitions ofL(D) and|D| can be easily generalized to the case
of a non-effective divisor. We have:

Proposition 8. If D1∼ D2 then|D1|= |D2| anddimL(D1) = dimL(D2).

Proof. WriteD1=D2+(g) and note thatf ∈L(D1)→ f g∈L(D2) is an isomorphism.
�

If g0, · · · ,gr is an independent family inL(D), one can define a rational mapg: x99K
[g0(x) : g1(x) : · · · : gr(x)] (the image off is not contained in a hyperplane ofPr be-
cause the family is independent). IfD≥ 0, one can always takeg0≡ 1.

If one take a basis ofL(D), we obtain a rational map that we denote byφ|D|.

Definition 9. TheKodaira dimension κ(D) of D is the maximum of the dimensions
of the imagesφ|nD|(X) whenn∈N. If L(nD) = /0 for all n, by conventionκ(D) =−∞.
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Since dimφ|nD|(X) grows withn, it is clear that the max is reached forn sufficiently
large and divisible. But if furthermore the algebra

RD =
⊕

n≥0

H0(X,nD)

is finitely generated, then one can define ProjRD and a rational mapφD : X 99KProjRD.

3.2. Basics on Minimal Model Program. Curves which are negative with respect to
the canonical divisors are obstruction to the mapφKX to be well-defined. The general
idea of the Minimal Model Program is to produce an algorithm which allows us to
remove these undesirable curves.

Theorem 10 (Cone theorem, first version). Let X be a smooth complex projective
variety. There exists a (minimal, at most countable) set of rational curves Ei with
KX ·Ei < 0 such that

NE(X) = NE(X)∩K≥0+∑R+[Ei ].

The raysR+[Ei ] in NE(X) are calledextremal rays.
To each extremal rayR+[Ei ] corresponds a morphismX→Y with connected fibers

which contracts exactly the curves onX proportional toEi: this is not trivial, and is
often called the “contraction theorem”.

There are 3 types of such contraction morphisms:

• Fibering type: dimY < dimX. Then one says thatX is a Mori fiber space.
One can show that the general fiber is a smooth Fano variety. IfX is a 3-fold,
then we have del Pezzo fibrations, conic bundle and prime Fano(i.e the Picard
number is 1, andY is a point).
• Divisorial contraction:X→Y is birational, and the exceptional set is a divisor.

WhenX is a smooth 3-fold, there are five types of these (E1, · · · ,E5, see §2.3).
Note thatY might be singular (with terminal singularities).
• Small contraction:X→Y is birational, and the exceptional set has codimen-

sion at least 2. The big problem here is that intersection numbers are not well
defined onY (some Weil divisors are not Cartier, even up to a constant). The
solution is to flip the curves in the exceptional set (even in the 3-fold case,
this set does not have to be irreducible, even if this was the case in the simple
example of the Francia flip). Existence of flip is by no mean easy( in contrast
with unicity)...

There are several ways in which the cone and contraction theorems can be extended.
In particular:

• singular version: one can allow terminal singularities, which is a class stable
under divisorial contractions and flips.
• relative version: We consider varieties with a morphism to afixed variety

S. The relative effective cone NE(X/S) is the cone generated by contracted
curves.
• logarithmic version: We replaceKX by a small perturbationKX +∆. “Small”

means a control on coefficients and singularities of∆; there are several ver-
sions (Kawamata log terminal, divisorially log terminal, log canonical...)
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We are now going to describe the Sarkisov program, which aimsat factorizing a
given birational map between Mori fiber spaces (such asPn) by mean of elementary
links. The relative and logarithmic MMP play a key role in this story. First we look at
the comparably easy case of surfaces.

3.3. Sarkisov Program for surfaces. Let f : S99K S′ be a birational map between
2-dimensional Mori fiber spacesS/T andS′/T ′.

We start by taking a resolutionS
π
← X

π′
→ S′ of the base points off , whereX is a

smooth projective surface and we choose an ample divisorH ′ on S′. We noteHS⊂ S
(or HX ⊂ X, etc...) the strict transform of a general member of the linear system|H ′|
on S (or X, etc...), andCi ⊂ X the irreducible components of the exceptional locus of
π. We write down the ramification formulas

KX = π∗KS+∑ciCi and HX = π∗HS−∑miCi .

We define the maximal multiplicityλ as the maximum of theλi =
mi
ci

. It turns out
that in the case of surfaces the maximum is realized by a divisor Ci with ci = 1, that
is Ci does not correspond to an infinitely near point. Note that in higher dimension
the maximum of theλi does not coincide in general with the maximum of themi.
Technically 1/λ is defined as a canonical threshold.

On the other hand we define the degreeµ of f as the positive rational numberHS·C
−KS·C

whereC is any curve contained in a fiber of the log Mori fibration onS.

In the caseλ > µ, we considerZ→ S the blow-up of a point realizing the maximal
multiplicity. ThenZ→T (recall thatS→T was the Mori fibration onS) is a morphism
and the relative Picard number is 2. In other word the relative coneNE(Z/T) is 2-
dimensional, and so has exactly two extremal rays. One says (after Reid) that we are
in position to play a 2-rays game. One of the rays correspondsto the maximal blow-up
we just did. The other one corresponds to a ray which is strictly negative with respect
to KZ +

1
λ HZ: this comes from the assumptionλ > µ. The contraction of this second

extremal ray gives either

• a Mori fiber structure onZ: we say we have a link of type I;
• a divisorial contraction to a surfaceS′ with a Mori fiber structureS′→ T: we

say that we have a link of type II.

These operations done, one shows that we have simplifiedf in the sense that: either
µ went down; orµ remained constant butλ went down; orµ andλ remained constant
but the number of exceptional divisors inX realizing the multiplicityλ went down.

In the caseλ ≤ µ, it is possible to prove thatKS+
1
µHS cannot be nef (otherwisef

would be an isomorphism). We are again in position to play a 2-rays game, this time
directly onS. Indeed NE(S) is 2-dimensional, with one ray corresponding to the Mori
fiber structureS→ T, and the other being aKS+

1
µHS-negative ray. The contraction of

this extremal rays gives either

• another Mori fiber structure onS: we say we have a link of type IV (Shas to
beP1×P1);
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• a divisorial contraction to a surfaceS′ with a Mori fiber structureS′→ pt: we
say that we have a link of type III (S′ has to beP2).

The four types of elementary links occurring in the factorization procedure are sum-
marized in the following diagrams:

type (I) S

S′

pt P1

type (II) S S′

Z

C

type (III)

S

S′

P1 pt

type (IV)

S S′

P1 P1

pt

≃

3.4. Sarkisov Program after Corti. One can try to apply the same strategy in higher
dimension. Corti [Cor95] sorted it out in dimension 3. Here are the main distinctions
from the 2-dimensional case:

• The 2-ray games might involves log-flips before producing the expected divi-
sorial contraction or Mori fiber space. So now links have the following form:

type (I) X

X′Z

S S′

type (II) X X′

Z Z′

S

type (III)

X

X′

Z′

S S′

type (IV)

X X′

S S′

T
• The maximal multiplicity might correspond to an infinitely near point or curve.

In particularλ is in general rational, with no obvious control on the denomi-
nator.
• The varieties involved might in general be singular (terminal singularities); as

a consequence the denominator of the degreeµ is not easy to control either,
especially in the case of Fano varieties with Picard number 1.
• From the previous observation it is not clear why the programshould stop,

since we are trying to make an induction argument using rational numbers
with poor control on the denominator (the proof by Corti in the 3-dimensional
case is quite tricky for this reason).
• As a final remark, Mori fiber spaces in higher dimension are quite compli-

cated. There are plenty of smooth (or terminal...) Fano 3-folds (n-folds...)



FIVE LECTURES ON SARKISOV PROGRAM AT LES DIABLERETS 14

with Picard number 1, and aP1-bundle over an arbitrary blow-up ofP2 is a
rational Mori fiber space(so the Picard number can be arbitrary large)... Thus
the factorization is less satisfying than in dimension 2.

4. MORI DREAM SPACES ANDSARKISOV LINKS

4.1. Cones. Consider a projective toric (or Fano, or log Fano...) variety X: these are
special cases of “Mori dream spaces” [HK00, McK10]. The finite dimensional vec-
tor spaceN1(X) of Q-divisors modulo numerical equivalence contains the following
interesting cones:

• Because of the assumption (X toric or Fano), the cone Eff(X) of effective
divisors is closed and for anyD ∈ Eff(X) we can define

φD : X 99K XD = Proj
⊕

m≥0

H0(X,⌊mD⌋).

• Thebig cone Big(X) is the cone of divisorsD such that dimXD = dimX. It is
a general fact that Big(X) is the interior of Eff(X).
• thenef cone Nef(X) is the cone of divisorsD such thatD ·C≥ 0 for any curve

C∈ X.
• theamplecone Amp(X) is the cone of ample divisors; by Kleiman criterion it

corresponds to divisorsD such thatD ·C> 0 for any 1-cycleC∈NE(X). The
ample cone is the interior of the nef cone, and the nef cone is the closure of
the ample cone.
• The movable cone Mov(X) is the cone of divisorsD without any divisor in

the base locus of|D|.

4.2. Chamber decomposition.

Definition 11. We say that two divisorsD1,D2 ∈ Eff(X) areMori equivalent if there
exists an isomorphisms betweenXD1 and XD2 which makes the following diagram
commutes:

X
φD2φD1

Proj⊕H0(X,⌊mD1⌋)
≃

Proj⊕H0(X,⌊mD2⌋)

Taking equivalence classes we obtain a chamber decomposition of the cone Eff(X).
For instance the cone of ample divisors is a (open, and maximal dimensional) chamber.
If C1,C2 are the closure of chambers of maximal dimension, we say that:

• W= C1∩C2 is aninternal wall if dimW= dimC1−1;
• W=C1rBig(X) is awindow if W is a maximal convex subset ofC1rBig(X)

(hence dimW = dimC1− 1). In this case I say thatC1 is (the closure of) an
external chamber with windowW.

The chambers admit the following description ([HK00]):
There exists a finite number of small birational mapsfi : X 99K Xi such that the

f ∗i (Nef(Xi)) are exactly the maximal dimensional chambers inside Mov(X). All others
maximal dimensional chambers have the formg∗j (Nef(Xj))+Exc(g j) whereg j : X 99K
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Xj is a finite collection of birational contractions. All (closure of) chambers are poly-
hedral cones.

4.3. Minimal Model Program. Fix D a divisor onX (for instance the canonical
divisor KX). ChooseA an ample generic divisor onX, and consider the segment
[A,D]∩Eff(X). The generic assumption onA is to be sure that this segment never
cross two walls or windows simultaneously. Every wall-crossing (when going fromA
to D) corresponds to either aD-flip or aD-divisorial contraction. This MMP ends with
a D-nef model ifD is in the interior of Eff(X) (i.e. D big), or with a Mori Fiber space
otherwise.

The key proposition here is (see proof next lecture,16):

Proposition 12. ConsiderAi,A j two chambers, andCi,C j their closures. IfCi ∩A j 6=
/0, there exists fi, j : Xi → Xj a morphism such that fj = fi, j ◦ fi . Furthermore the
relative Picard number of Xi/Xj is equal to the difference in the dimensions ofCi and
Ci ∩C j .

In particular, ifAi is an external chamber andA j is its window, fi, j : Xi → Xj is a
Mori fiber space structure.

An internal wall corresponds to a flip if the correspondingXi,Xj have the same
Picard number. This is in particular the case when the wall isinside the movable cone.

When the Picard numbers differ by one, we have a divisorial contraction.

Thus on such a space (a “Mori dream space”), the MMP works withrespect to
any divisorD (whereas in generalD as to be the canonical divisorKX, or a small
enough perturbationKX +∆). In particular we can apply this toD = KX. Note that
the anticanonical divisor−KX is effective for a toric variety, so it is easier to picture
−KX. Depending on the position of−KX in the effective cone, it is not always possible
to reach any external chamber by aK-MMP. These not-reachable chambers typically
correspond to varietiesXi with singularities worst than terminal.

4.4. Sarkisov program. Suppose thatCi,C j are two external chambers with adjacent
windowsWi,W j (meaningWi ∩W j has codimension 1 inWi andW j ).

We have a diagram
Z

Xi Xj

Ti Tj

I claim that the induced birational mapXi 99K Xj is a Sarkisov link. There are
several cases to consider:

• If Wi∩W j ,Wi andW j all belong to distinct chambers. Then there is a rational
mapZ 99K Ti, j corresponding to the chamberWi ∩W j , andXi, Xj have the
same Picard number (because the relative Picard number overTi, j is 2 in both
cases). This is a link of type IV.
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NB: in this case, it is possible to haveCi = C j (see example below).
• If Wi ∩W j , Wi andW j all belong to the same chamber. AgainXi, Xj have the

same Picard number. This is a link of type II.
• If Wi ∩W j andWi are in a same chamber, andW j in another. Then the Picard

number ofXj is one more than the Picard number ofXi. This is a link of type
I. In the obvious symmetric situation we get a link of type III.

4.5. Example. P3 blown-up at two distinct points
For those who know some toric geometry (if not, the book [CLS] is a great place

to start with), I give below the fan (inZ3, with canonical basis(v1,v2,v3)) of the toric
varietyX obtained fromP3 by blowing-up the two points[0 : 1 : 0 : 0] and[0 : 0 : 1 : 0]:

•
• •

• •

•v1

−v1−v2−v3

v2v3

−v2 −v3

The dotted line corresponds to a flopping curve.

Now I describe divisors onX (without using toric geometry).
NoteDx (resp. Dy,Dz,Dt the strict transform onX of the planex = 0 in P3 (resp.

y= 0, etc...). NoteD1,D2 the exceptional divisors obtained by blowing-up[1 : 0 : 0 : 0]
and[0 : 1 : 0 : 0] respectively.

Note l1, l2 lines inD1,D2 andl the transform of the linez= t = 0 through the two
blown-up points.

The divisorsDz,D1,D2 generate the cone Eff(X) of effective divisors, and the
curvesl , l1, l2 generate the cone of curves.

z

l
y

x
D1

D2

From the following intersection table, we see thatDx∼ Dz+D1,Dy∼Dz+D2 and
Dz+D1+D2 generate the nef cone.
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Dz Dx Dy Dt D1 D2 Dz+D1+D2

l1 +1 0 +1 +1 −1 0 0
l2 +1 +1 0 +1 0 −1 0
l −1 0 0 −1 +1 +1 +1

We have the following chamber decomposition in the coneNE(X):

•

•

•

• •

•
(iv)

(ii)

Dz (v) D1(iii )

Dy

Dx

D2

(i)

◦
−KX

The five external faces of this cone correspond to all Mori fiber spaces that we can
obtain fromX by running a MMP:

• (i): The trivial fibrationP3→ pt;
• (ii) and(iii ): The twoP1-fibrations toP2 obtained by blowing-upP3 at one of

the two points;
• (iv) and(v): The twoP1-fibrations to the Hirzebruch surfaceF1 that exist on

Y (which is obtained fromX by the flop ofl ).

Two adjacent windows correspond to Sarkisov links. Note that the anticanonical divi-
sor−KX is equivalent toDx+Dy, and is nef, movable but not ample. Thus Mori fiber
spaces(i),(ii),(iii ) can be obtained byK-MMP, whereas(iv) and(v) cannot.

5. SARKISOV PROGRAM AFTERHACON-MCKERNAN: OVERVIEW

As it is often the case, the global features that we observed on projective toric vari-
eties partially generalize to more general projective varieties.

We start with a classical example that shows the difficulty; and then we review the
construction by Hacon and McKernan that leads to a proof of existence of a Sarkisov
program in any dimension.

5.1. A surface with infinitely many −1-curves. See [Fri98, p. 131], or [McK10].

Proposition 13. Consider S the blow-up ofP2 at 9 general points. Then there is a
bijection between the set of exceptional curves on S andZ8.

Proof. First step: consider the 9 base points of a pencil of ellipticcurves onP2. Note
that these points are in special position, because (by a dimension argument), by 9 gen-
eral points passes only one cubic. The surfaceSobtained by blowing-up these 9 points
is an elliptic fibration overP1, and the 9 exceptional divisors are sections. Taking one
of the exceptional divisor to define a neutral element on eachelliptic curve of the fibra-
tion, the 8 other define automorphisms ofS. We obtain a subgroupZ8⊂ Aut(S) (if the
pencil is sufficiently general). The orbit under this group of any exceptional divisor
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gives infinitely many−1-curves.

Second step: consider perturbationpi,t of the 9 points in the first step, and the sur-
faceSt obtained by blowing-up these points. The exceptional curves onS=S0 persists
on the nearby fibers, because they are characterized topologically by their intersection
numbers :KS·E = E2 =−1.

An alternative proof would be to show that, fixingE0 an exceptional curve of a
generalS, and denoting byE the set of exceptional curves onS, the map

E→ (KS)
⊥/KS

E→ E−E0

is a bijection. Then since(KS)
⊥/KS= Z8 and any classe satisfyinge2 = KS·e= −1

can be represented by an effective curve (Riemann-Roch), weobtain the result. �

5.2. Minimal and canonical models. [KM98, §3.8]
A birational mapφ : X 99K Y is called abirational contraction if φ−1 does not

contract any divisor.
Let (X,∆) be a log canonical pair andφ : (X,∆) 99K (Y,φ∗∆) a birational contrac-

tion.
We call(Y,φ∗∆) aweak canonical modelof (X,∆) if

(1) KY +φ∗∆ is nef;
(2) a(E,X,∆)≤ a(E,Y,φ∗∆) for everyφ-exceptional divisorE ⊂ X.

There are two ways in which this definition can be strengthened.
If in (1) we put “ample” instead of “nef”, we say that(Y,φ∗∆) is acanonical model.

If a canonical modelY of (X,∆) exists then it is unique and is given by

Y = Proj
⊕

m≥0

H0(X,⌊m(KX +∆)⌋).

If in (2) we ask for a strict inequality then we say that(Y,φ∗∆) is aminimal model.
If KX +∆ is big and we run a log MMP starting fromX, the end product will be a
minimal model.

Note the following result from [BCHM10, Corollary 1.1.2]:

Corollary 14. Let (X,∆) be a projective Kawamata log terminal pair, where KX +∆
isQ-Cartier. Then the ring

⊕

m≥0

H0(X,⌊m(KX +∆)⌋)

is finitely generated.

In particular taking the Proj we obtain the canonical model (we also say anample
model, in particular when the dimension of the model is strictly less than the dimen-
sion ofZ) of KX +∆.
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5.3. Shokurov polytopes. Let Z be a smooth projective variety,V ⊂ WDivR(Z) a
finite dimensional vector subspace which generatesN1(Z), A≥ 0 an ampleQ-divisor.

We define

EA(V) = {D = λ(KZ +A+B);

λ≥ 0,B≥ 0∈V,(Z,A+B) log canonical,D pseudo-effective}.

A key result from [BCHM10, Theorem E] is

Theorem 15(Finiteness of models). There are finitely many birational contractions
ψ j : Z 99K Xj such that ifψ : Z 99K X is a weak canonical model for KZ +∆, with
KZ+∆ ∈ EA(V), thenψ = ψ j up to an isomorphism X≃ Xj .

Using Corollary14 it makes sense to consider the equivalence relation onEA(V)
given by Definition11.

We noteAi the equivalence classes,fi : Z 99K Xi the associated ample models, and
Ci the closure ofAi.

Proposition 16([HM09, Theorem 3.3]). TheAi are in finite number, with the follow-
ing properties:

(1) {Ai ;1≤ i ≤m} is a partition ofEA(V). EachCi is a rational polyhedral cone,
and is the disjoint union of some of theA j .

(2) If i, j are two indices such thatCi ∩A j 6= /0, there exists fi, j : Xi → Xj a mor-
phism such that fj = fi, j ◦ fi .

(3) fi is birational and Xi is Q-factorial iff Ci is of maximal dimension.
(4) The relative Picard number of fi, j : Xi → Xj is equal to the difference in the

dimensions ofCi andCi ∩C j .

Proof. (1) is essentially a consequence of Theorem15, but I skip the details.
(2) Pickθ0∈ Ci∩A j , andθ1∈Ai , such thatθt = tθ1+(1−t)θ0∈Ai for all t ∈]0,1].
We may assume that there exists a birational contractionf : Z 99K X which is a

weak canonical model fort ∈]0,1].
Set∆t = f∗θt . The Base Point Free Theorem17 implies thatKX +∆t is semiample,

and so by unicity of the ample model we have a morphismgi : X → Xi and ample
divisorsH1/2 andH1 such that

KX +∆1/2 = g∗i H1/2 andKX +∆1 = g∗i H1.

One can verify thatKX +∆t = g∗i Ht for all t ∈ [0,1].
SinceKX +∆0 is semiample we also have a morphismg j : X→ Xj .
The curves contracted pargi are the curvesC such that(KX+∆t) ·C= 0 for t ∈]0,1],

and so also fort = 0. Hence NE(gi) ⊂ NE(g j), and the rigidity Lemma18 gives a
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morphism fi, j : Xi→ Xj such that the following diagram commutes:

Z

f jfi X

gi gj

Xi fi, j
Xj

(3) I skip details.
(4) Let us prove this whenCi = Nef(Z) (closure ofAi = Amp(Z)). In fact the

statement is equivalent to a dual statement (Cone Theorem),which says that to any
K +A negative face in the cone of curveNE(Z) corresponds a contraction morphism
with relative Picard number the dimension of the face. �

Theorem 17(Base Point Free, see [Deb01, Theorem 7.32]). Let X be a smooth pro-
jective variety, and let D be a nef divisor on X such that aD−KX is nef and big for
some positive a. Then the linear system|mD| is base point free for all m sufficiently
large.

Lemma 18 (Rigidity, see [Deb01, Proposition 1.14]). Let X,Y,Y′ be projective vari-
eties and letπ : X→Y, π′ : X→Y′ be morphisms with connected fibers. IfNE(π) ⊂
NE(π′), there is a unique morphism f: Y→Y′ such thatπ′ = f ◦π.

5.4. Sarkisov program again. We start with a birational mapf : X/S99K X′/S′ be-
tween (smooth) Mori fiber spaces. For instanceX = X′ = P3, in which caseS= S′ is
a point. Consider a smooth resolution off :

W
π σ

X
f

X′

Now we consider the chamber decomposition ofEA(V), for a small ample and effec-
tive divisor A on W, andV ⊂WDiv(W) a finite dimensional vector subspace which
generateN1(W) and contains all effective divisors we need in what follows.

ConsiderH a divisor onX such thatKX +H is ample. IfH is chosen to be a sum
of divisor with small enough coefficients and simply normal crossing support, then
(W,π∗H) is klt andKW +π∗H ∈ EA(W). So we see thatX corresponds to an external
chamberCX, andX can be reached fromW by running aK-MMP; i.e. there existsBX

an ample divisor onW such that the segment[BX,KW] pass through the chamberCX.
The same is true forX′, by the same argument (so there existsBX′ ample onW, etc...).
There is a sequence of adjacent external chambers fromCX to CX′ (consider all the
K-MMP starting fromB ∈ [BX,BX′ ]). This gives a finite sequence of Sarkisov links,
by the same argument as in §4.4.
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Exercises

Exercises you can try to do after LECTURE I.

Exercise 1. Find the canonical divisor ofP1×P1 by computing explicitely the zeros
and poles of a 2-form (for instance, you can work with the formdx∧ dy in a local
affine chartA2⊂ P1×P1).

Do the same computation again starting with another 2-form (say dx
x ∧

dy
y ). Check

that you find a divisor linearly equivalent to the previous one.

Exercise 2. Prove (or take for granted) that a smooth quadric surfaceS in P3 is iso-
morphic toP1×P1. Compute the canonical divisor ofSusing the adjunction formula.
Compare with the previous exercise.

Exercise 3. Consider a smooth plane curveC⊂ P2 of degreed: the equation ofC is
F(X,Y,Z) = 0 whereF is homogeneous of degreed.

(1) In the affine chartx = X/Z,y = Y/Z, consider the 1-formω = dx
∂y f , where

f (x,y) = F(x,y,1).
Prove thatω is regular on this chart (hint: note thatd f ≡ 0 onC).

(2) Consider now the chartu= X/Y,v= Z/Y, and denote byg(u,v) = F(u,1,v)
the equation ofC in this chart.

Prove that(ω) admits a zero of orderd− 3 along the hyperplane section
v= 0.

(3) Is this result coherent with the adjunction formula ?

Exercise 4. Prove that if an exceptional divisorE over a (normal,Q-factorial) variety
X satisfiesa(E,X)<−1, then one can find a sequence of exceptional divisorsEn over
X such thata(En;X)→−∞.

Hint: suppose first thatX is a surface, and thatE is a divisor witha(E,X) < −1.
Blow-up a point onE to produce an exceptional curveE1. Blow-up again the point
E1∩E. Compute discrepancies...

Exercise 5. If C is a projective curve, recall the relation between the genusof C and
the degree of the canonical divisor: 2g(C)−2= degKC. Use the adjunction formula
to compute the genus of a smooth curve of degreed in P2. Same question for a smooth
curve of bidegree(m,n) in P1×P1. Same question for a smooth curve which is the
complete intersection of two smooth surfaces of degreesp andq. Conclude that some
curves inP3 are not complete intersections.

Exercise 6. If C⊂ X is a smooth curve in a smooth 3-fold, we want to establish

deg(NC/X) = 2g(C)−2−KX ·C

whereNC/X = TX|C/TC is the normal bundle ofC in X (vector bundle of rank 2).

(1) If C=S1∩S2 is a complete intersection (both surfaces smooth), use adjunction
formula.



(2) In general, recall that if we have an exact sequence of vector bundles onC

0→V →V ′→V ′′→ 0

then the first Chern class is additive: degc1(V ′) = degc1(V) + degc1(V ′′).
Apply this to the sequence

0→NC/X → TX|C→ TC→ 0

and conclude.

Exercise 7. Let Y→ X be the blow-up of a smooth curveC in a smooth projective
3-fold X. Let E be the exceptional divisor andL ⊂ E a contracted curve. Show that

KY ·L = E ·L =−1.

Exercise 8. Let Q⊂ Pn be a smooth quadric hypersurface. Show thatQ is the com-
pactification ofAn by an irreducible divisor as soon asn≥ 3 (hint: consider a tangent
hyperplane section).

Exercise 9. Consider the blow-up of a cuspidal cubic inP3 (sayz= y2− x3 = 0 in a
local affine chartA3⊂ P3).

(1) Check that the resulting 3-fold has exactly one isolatedsingular point.
(2) Consider the blow-up of this singular point. What is the exceptional divisor ?

Compute the discrepancy.

Exercises you can try to do after LECTURE III.

Exercise 10. On P1×P1, considerF1 = {x = 0}, F2 = {y = 0}. ComputeφD for
D = F1, D = F1+F2 andD = F1+2F2.

Exercise 11.Consider a smooth cubic surfaceS⊂ P3.

(1) What is the dimension of the real vector spaceN1(S)?
(2) How many extremal rays are there inNE(S)?
(3) Running the Minimal Model Program fromS, how many different ways are

there to reach a Mori fiber space?

Exercise 12.What is the result of the Sarkisov links starting fromP3 with the blow-up
of (i) a point or (ii) a line?

Exercise 13. (1) What is the result of the Sarkisov link starting fromP3 with the
blow-up of a smooth conic?

(2) Show that with two such links we can construct a Cremona map of bidegree
(2,2) (i.e. a birational mapf : P3

99K P3 of degree 2 such thatf−1 has also
degree 2).

(3) Can you produce an example of a quadratic birational mapf : P3
99K P3 such

that f−1 has degree 3? 4? 5?
(4) Back to the first question: what happen if we start with theblow-up of a plane

curve of higher degree?

Exercise 14. Apply the Sarkisov program to the following two quadratic birational
maps ofP2:



(1) σ : [x : y : z] 99K [yz: xz: xy].
(2) f : [x : y : z] 99K [xz+y2 : yz: z2].

Exercise 15. Show that a smooth cubic 3-foldX is unirational, i.e. there exists a
dominant rational mapP3

99K X:

(1) Show that there exists a lineL0 in X.
(2) Consider the varietyB of lines which are tangent toX in a pointx∈ L0. Show

thatB is rational (i.e., birational toP3).
(3) Show that there exist a dominant mapB 99K X and conclude (hint : ifL is one

of the lines parametrized byB, considerL∩X).

Exercise 16.What are the Sarkisov links starting from a smooth cubic 3-fold with the
blow-up of a point; a line; a conic; a plane smooth cubic?

Exercise 17.Prove that the exceptional locus of an extremal divisorial contraction is
irreducible.

Hint: you’ll probably need a version of the negativity lemmawhich says: ifE =

∑aiEi is aπ-nef exceptional divisor of a morphismπ : Y→ X, thenai ≤ 0 for all i.
NB: for a small contraction, the exceptional locus might be reducible (see next

exercise)!

Exercise 18. ConsiderS⊂ P3 a smooth cubic surface, and a morphismf : S→ P2

(given by blowing-up 6 points).

(1) If C⊂ S is the pull-back byf of a general conic, what is the degree ofC (as a
curve inP3)?

(2) Prove that any quadrisecant ofC (line intersectingC 4 times) lies insideS.
How many such quadrisecants are there?

(3) Consider the blow-up ofP3 alongC. What are the two extremal rays of the
resulting nef cone?

(4) Prove that if we perform an Atiyah flop on one of the (stricttransform of the)
quadrisecants, we end up with an algebraic but non projective 3-fold. Compare
with the cover illustration of Shafarevic, vol 2...

Exercise you can try to do after LECTURE IV.

Exercise 19.Consider the following two situations:

(1) X = P3 blown-up at a point and an infinitely near line;
(2) X = P2 blown-up at a point and an infinitely near point.

In each case compute the chamber decomposition of Eff(X): you should find some-
thing like the following picture.
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•

•

•

•

•

•

(ii)

(iii )

(i)

(v)

(iv)

Identify the Mori fiber spaces corresponding to the windows(i-v). Where is the
anticanonical divisor−KX ? Which chambers correspond to varieties with terminal
singularities ? Verify that these can be reached via aKX-MMP.
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