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Abstract. We prove that the plane Cremona group over a perfect field with at least one Galois
extension of degree 8 is a non-trivial amalgam, and that it admits a surjective morphism to a free
product of groups of order 2.
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Introduction

The Cremona group Birk(P2) is the group of birational symmetries of the projective plane
defined over a field k. Its elements are of the form

[x : y : z] 799K [f0(x, y, z) : f1(x, y, z) : f2(x, y, z)]

where f0, f1, f2 ∈ k[x, y, z] are homogeneous polynomials of equal degree with no
common factor, and such that there exists an inverse of the same form. Equivalently,
working in an affine chart one can define the Cremona group as the group of birational
selfmaps of the affine plane, which is also (anti-)isomorphic to the group Autk k(x, y) of
k-automorphisms of the fraction field k(x, y). The Cremona group contains the group
of polynomial automorphisms of the affine plane over k. In particular, it is a rather
huge group. It is neither finitely generated (see [Can17, Proposition 3.6]), nor finite-
dimensional, even when working over a finite base field. It was recently shown that
Birk(P2) is not a simple group, over any base field k [CL13, Lon16]. Then it is natural to
ask for nice quotients of Birk(P2), for instance abelian ones. Over an algebraically closed
field, it is known (see also §4.3) that the automorphism group Autk(P2) = PGL3(k) and
the Jonquières group PGL2(k(T ))oPGL2(k) both embed in any quotient of the Cremona
group. In particular in this situation any morphism from Birk(P2) to an abelian group, or
to a finite group, is trivial. On the other hand, it was shown by the second author [Zim18]
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that the situation is drastically different over the field R of real numbers. The real Cre-
mona group admits an uncountable collection of morphisms to Z/2Z, and precisely we
have the following result about the abelianization of BirR(P2):

BirR(P2)/[BirR(P2),BirR(P2)] '
⊕
(0,1]

Z/2Z. (†)

One consequence is that BirR(P2) is a nontrivial amalgamated product of two factors
along their intersection [Zim17].

In this paper we explore a similar question, over any perfect base field k that admits at
least one Galois extension of degree 8. Observe that this condition corresponds to a large
collection of fields, which includes the case of all number fields and finite fields.

The special role of degree 8 extensions is explained by their relation to Bertini invo-
lutions. Indeed, given a point of degree 8 on P2, that is, an orbit of cardinality 8 under the
natural action of the absolute Galois group of the base field k, we can consider the sur-
face S obtained by blowing up this orbit. If the point is sufficiently general, the surface S
is del Pezzo and admits another birational morphism to P2, and the induced birational
selfmap of P2 is an example of a Bertini involution. Let B ⊂ Birk(P2) be a set of rep-
resentatives of such Bertini involutions with a base point of degree 8, up to conjugacy
by automorphisms. We prove that if k admits at least one Galois extension of degree 8,
then the set B is quite large: it has at least the same cardinality as k, and in the case of a
finite field Fq one can be more precise and give a lower bound for that cardinality which
is polynomial in q (see §4.2).

These Bertini involutions are part of a system of elementary generators E for the
group Birk(P2) which was found by Iskovskikh [Isk91]. The set E is always huge, be-
cause for instance it contains all Jonquières maps (up to left-right composition with auto-
morphisms).

Before stating our results we introduce a bit more notation. For each Bertini involution
b ∈ B, we set Gb = 〈Autk(P2), b〉. Moreover, we denote by Ge = 〈Autk(P2), E r B〉
the subgroup generated by automorphisms and all non-Bertini elementary generators.
Our first result gives an amalgamated product structure for Birk(P2), in terms of these
subgroups.

Theorem A. Let k be a perfect field admitting at least one Galois extension of degree 8.
Consider the subgroups Gi as defined above, for i ∈ B ∪ {e}. Then Gi ∩Gj = Autk(P2)

for all i 6= j , and the Cremona group is the amalgamated product of the Gi along their
common intersection:

Birk(P2) ' ˚
Autk(P2)

Gi .

Moreover, Birk(P2) acts faithfully on the corresponding Bass–Serre tree.

It was shown by Cornulier [CL13, appendix] that the Cremona group over an algebraically
closed field is not a non-trivial amalgam of two groups. In contrast, we deduce from the
above theorem the following structure result, where we denote by GB = 〈Autk(P2),B〉
the subgroup generated by all Gb:
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Corollary B. Let k be a perfect field admitting at least one Galois extension of degree 8.
Then Ge ∩GB = Autk(P2), and

Birk(P2) ' GB ∗Autk(P2) Ge,

and Birk(P2) acts faithfully on its Bass–Serre tree.

It turns out that each subgroup Gb admits a structure of free product, and this allows one
to obtain a lot of morphisms from the Cremona group to Z/2Z:

Theorem C. Let k be a perfect field with at least one Galois extension of degree 8.

(1) For each b ∈ B we have Gb ' Autk(P2) ∗ Z/2Z, and we can write the Cremona
group as a free product:

Birk(P2) ' Ge ∗
(

˚
B

Z/2Z
)
.

(2) In particular, there is a surjective morphism

Birk(P2)→ ˚
B

Z/2Z

whose kernel is the smallest normal subgroup containing Ge, and which sends each
b ∈ B to the corresponding generator on the right-hand side.

(3) In particular, the abelianization of the Cremona group over k contains a subgroup
isomorphic to

⊕
B Z/2Z.

We see that even if no Bertini involutions were involved in [Zim18], we obtain a similar
looking (even if less precise) result. In particular, the Z/2Z in the target group in (†) have
nothing to do with the fact that the absolute Galois group of R has order 2, but rather with
the fact that we are able to produce a natural set of generators for the Cremona group that
contains involutions. In this sense, we like to think of the above morphisms Birk(P2)→

Z/2Z as some analogues of the classical signature morphism on the symmetric group. The
huge collection of such morphisms corresponds to the existence of a system of generators
with a lot of non-conjugate involutions. In this paper, we focus on Bertini involutions
associated to a base point of degree 8 because they seem to be the easiest to handle
technically. When the base field is R, a similar role was played by the so-called “standard
quintic involutions”. It seems quite plausible that other “signature morphisms” exist on
the Cremona group, associated to other type of involutions, such as the Geiser involution
associated to a base point of degree 7. Also, we see no obvious obstruction why such
morphisms could not exist in higher dimension, even over the field of complex numbers.

The strategy to prove the above results is to use the Sarkisov program. The Sarkisov
program is a way to factorize a given birational map between Mori fiber spaces into
elementary links. We recall that even if the starting map is a birational selfmap of a given
variety X (for instance X = P2), the elementary links are not in general elements of the
group Bir(X). In other words, even if one is primarily interested in the group Bir(X),
the Sarkisov program naturally produces generators for the groupoid of birational maps
Y 99K Z, where Y,Z can be any Mori fiber spaces birational to X. Nevertheless the
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Sarkisov program turns out to be an efficient tool to produce some systems of generators
for Birk(P2), and also to describe relations between them [Isk91, IKT93, Isk96]. The
Sarkisov program was revisited recently in light of the progresses in the theory of the
Minimal Model Program, and is now established in any dimension (over C) [HM13].
Moreover the relations between Sarkisov links were described by Kaloghiros [Kal13].

In Section 2 we encode Sarkisov links and relations between them in a square com-
plex X on which the group Birk(P2) acts naturally. Then in Section 3 we give an account
of the proof of the Sarkisov program in the simpler case of surfaces, but working over
an arbitrary perfect field. This allows us to prove that the square complex X is connected
and simply connected.

In Section 4 we recall the notion of elementary generators for the group Birk(P2), fol-
lowing the work of Iskovskikh. Among the elementary generators we discuss in particular
the Bertini involutions and prove their existence (and in fact abundance). We also discuss
the Jonquières maps, and in any dimension we recall the following basic dichotomy: given
a morphism ϕ from the Cremona group to another group H , either the subgroup gener-
ated by the Jonquières maps lies in the kernel, or ϕ induces an embedding of the subgroup
into H .

Finally, in Section 5 we use Bass–Serre theory to prove our results. The general idea
is that the Bass–Serre trees of the various amalgams appearing in Theorem A, Corol-
lary B and Theorem C are realized either as a quotient or as a subcomplex of the square
complex X .

When one encounters a cube complex in geometric group theory, a natural question is
whether this complex has non-positive curvature. It turns out that this is not the case for
our square complex X , but we should mention that X is essentially a subcomplex of an
infinite-dimensional CAT(0) cube complex associated with the Cremona group that was
constructed by Lonjou in her PhD thesis.

1. Birational maps between surfaces over an arbitrary field

In this section we review some results of the birational geometry of surfaces, with a focus
on the case of an arbitrary perfect base field.

1.1. Factorization into blow-ups

Let k be a perfect field, and ka an algebraic closure. All field extensions of k that we
shall consider will be supposed to lie in ka . By a surface (over k) we shall mean a smooth
projective surface defined over k. We denote by S(k) the set of k-rational points on S.
The Galois group Gal(ka/k) acts on S ×Spec k Spec ka through the second factor. In par-
ticular, Gal(ka/k) acts on the set S(ka) of ka-rational points. By a point of degree d on
S we mean an orbit p = {p1, . . . , pd} ⊂ S(ka) of cardinality d under the action of
Gal(ka/k). Observe that the points in S(k) are exactly the fixed points for the action of
Gal(ka/k) on S(ka), or in other words the points of degree 1. Let L/k be a field extension
such that the pi are L-rational points. We define the blow-up of p to be the blow-up of
these d points, which is a morphism π : S′ → S defined over k, with exceptional divisor



Signature morphisms from the Cremona group 3137

E = C1+· · ·+Cd , where the Ci are disjoint (−1)-curves defined over L, and E2
= −d .

We shall refer to this situation by saying that E is an exceptional divisor of degree d.
We recall the following classical factorization results (see e.g. [Liu02, Theorems 9.2.2

and 9.2.7]).

Proposition 1.1. Let π : S′ → S be a birational morphism between surfaces defined
over k. Then π = π1 ◦ · · · ◦ πn, where each πi : Si → Si−1 is the blow-up of a point
of degree di ≥ 1 on Si−1, with exceptional divisor Ei on Si satisfying E2

i = −di (in
particular S = S0, and S′ = Sn).

Proposition 1.2. Let ϕ : S 99K S′ be a birational map between surfaces defined over k.
Then there exist a surface Z defined over k, and sequences of blow-ups π : Z → S,
π ′ : Z→ S′ of orbits of points under Gal(ka/k) such that π ′ = ϕ ◦ π .

We should mention that even if the Cremona group was explicitly defined in the intro-
duction in terms of homogeneous polynomials, in practice we almost always think of an
element of Birk(P2) as given by two sequences of blow-ups defined over k, as provided
by Proposition 1.2.

Remark 1.3. Over a non-perfect field k, there is no reason why the base points of a
birational map should be defined over a separable closure of k, and so we can no longer
identify closed points with Galois orbits as we did in the statements of Propositions 1.1
and 1.2. As a simple example of this phenomenon, consider k = F2(t), and denote by t1/2

the unique square root of t in ka . Then k(t1/2)/k is a non-separable extension. Now
consider the birational involution f ∈ Birk(P2) given by

f : [x0 : x1 : x2] 799K [x0x2 : x1x2 : x
2
0 + tx

2
1 ].

As a quadratic birational map, f admits three base points defined over ka , which are

p1 = [0 : 0 : 1], p2 = [t
1/2
: 1 : 0],

and a point p3 infinitely near to p2. In particular p2 is not defined over a separable exten-
sion of k.

1.2. Negative maps, minimal and ample models, scaling

Let S be a surface defined over k, and Sa the same surface over ka . We define the Néron–
Severi space N1(Sa) as the space of numerical classes of R-divisors:

N1(Sa) := Div(Sa)⊗ R/≡.

The action of Gal(ka/k) on N1(Sa) factors through a finite group, and we denote
by N1(S) the subspace of invariant classes. Since we only consider surfaces with
S(k) 6= ∅ and ka[Sa]∗ = (ka)∗, N1(S) is also the space of classes of divisors defined
over k (see [San81, Lemma 6.3(iii)]). The dimension of this finite-dimensional R-vector
space is called the Picard number of S over k, and denoted by ρ(S).
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Remark 1.4. When working on a surface S, we can identify the space N1(S) of divisors
and the spaceN1(S) of 1-cycles, and similarly the subspaces Eff(S) or NE(S) of effective
divisors or 1-cycles. We shall use the notation that seems most natural in view of the
extension of the results in higher dimension. For instance the Cone Theorem 1.7 is about
1-cycles, so there we use the notation NE(S).

Let π : S′ → S be a birational morphism between surfaces defined over k, and D′ a
Q-divisor on S′ with push-forward D = π∗(D′). By Proposition 1.1, we can write π =
π1 ◦ · · · ◦ πn, where πi : Si → Si−1 is the blow-up of a point of degree di , with S = S0
and S′ = Sn. For any i, we denote by Ei the exceptional divisor of πi , and by Di the
push-forward of D′ on Si . We say that π is D′-negative if Di · Ei < 0 for all i. Observe
also that on S′ we can write

D′ = π∗D +
∑

aiEi

for some ai ∈ Q, where the Ei denote strict transforms on S′.

Lemma 1.5. With the above notation, the morphism π is D′-negative if and only if
ai > 0 for all i.

Proof. On Si , we have Di = π∗i Di−1 + aiEi , so that

0 = π∗Di−1 · Ei = Di · Ei − aiE
2
i .

Since E2
i = −di , where di ≥ 1 is the degree of the point blown up by πi , we get

ai = −
Di ·Ei
di

, so that ai and Di · Ei have opposite signs as expected. ut

If π : S′ → S is a D′-negative birational morphism, and D = π∗(D′) is nef, we call S a
D′-minimal model of S′. Such a model, if it exists, is unique:

Lemma 1.6 ([Mat02, p. 94]). Let S1, S2 be two D′-minimal models of S′. Then the in-
duced map S1 99K S2 is an isomorphism.

We shall use the above setting for divisors D′ of the form D′ = KS′ + A, with A an
ample Q-divisor (or A = 0). Observe that a (KS′ + A)-negative birational morphism is
also a KS′ -negative morphism, hence simply a sequence of inverse of blow-ups. There
exist surfaces with infinitely many (−1)-curves: a classical example is given by P2 blown
up at (sufficiently general) nine points. This gives a countable collection of curves Ci with
KS′ · Ci < 0 and C2

i < 0. However, after perturbing KS′ by adding any Q-ample divisor,
we get a finite collection:

Theorem 1.7 ([Rei97, Cone Theorem D.3.2]). Let S be a surface defined over ka . Then
if ρ(S) ≥ 3, all KS-negative extremal rays of the cone NE(S) are of the form R>0C with
C a (−1)-curve. Moreover, for any ample Q-divisor A on S, there are only finitely many
(−1)-curves Ci such that (KS + A) · Ci < 0.

Comments on the proof. In the Cone Theorem, the main delicate point to check when
working in arbitrary characteristic is vanishing. If A is ample, by Serre duality we have
H 2(S,KS +A) = H

0(S,−A)∗ = 0. So by Riemann–Roch on a surface we have, for the
divisor D = K + A,

h0(S,D) ≥ h0(S,D)− h1(S,D) = 1
2D(D −KS)+ χ(OS). (1)



Signature morphisms from the Cremona group 3139

In fact when S is rational, we even have H 1(S,KS + A) = 0 (Kodaira vanishing in
positive characteristic can only fail for surfaces of Kodaira dimension ≥ 1, see [Ter99,
Theorem 1.6]). But this extra information is not necessary in the argument given by Reid,
as inequality (1) is enough. ut

Remark 1.8. (1) Over an arbitrary perfect field k, we have an equivariant version of the
Cone Theorem with respect to the action of Gal(ka/k) [KM98, p. 48]. Essentially we
only have to change “(−1)-curve” to “orbit of pairwise disjoint (−1)-curves under the
action of Gal(ka/k)”. By the Castelnuovo Contraction Theorem, we can contract such an
orbit and obtain a new smooth projective surface. Thus by running the Minimal Model
Program with respect to the canonical divisorK , or more generally with respect toK+A
with A ample, we stay in the category of smooth surfaces, and a posteriori this justifies
that we restrict ourselves to this setting.

(2) In the case where the Picard number ρ(S) is equal to 2, NE(S) is a convex cone
in a real 2-dimensional vector space, thus we have at most two extremal rays, which
correspond either to the contraction of an exceptional divisor or to a Mori fibration. This
case is particularly interesting in a relative setting, and is then often referred to as a two
rays game. More precisely, we start with a morphism π : S → Y from a surface S,
with relative Picard number equal to 2. We assume that any curve C contracted by π
satisfiesKS ·C < 0. Then there exist exactly two morphisms of relative Picard number 1,
πi : S → Yi , i = 1, 2, such that π factors through each of the πi :

S
π1
~~

π2
  

π

��

Y1

  

Y2

~~

Y

Theorem 1.9 (Base Point Free Theorem, see [Rei97, D.4.1]). Let S be a surface, and
let D be a nef divisor on S such that D − εKS is ample for some ε > 0. Then the linear
system |mD| is base point free for all sufficiently large m.

If D is nef and of the form D = K + A with A ample, we denote by ϕD the morphism
from S associated to the linear system |mD| for m � 0. This morphism has connected
fibers, and it contracts precisely the curves C such that (K +A) ·C = 0. Now we extend
the definition of ϕD to any pseudo-effective divisor D = K + A, by using the notion of
scaling.

Let S be a surface, and A, 1 ample Q-divisors on S (we also admit the case A = 0).
The K + A minimal model program with scaling of 1 is a sequence of birational mor-
phisms πi : Si−1 → Si defined iteratively as follows. We set S0 = S. If Si is constructed,
we denote by Ai and 1i the direct images of A and 1 on Si , and we consider ti such that
Di = KSi + Ai + ti1i is nef but not ample on Si . Then the morphism πi+1 from Si is
obtained by applying Theorem 1.9 to Di . If πi+1(Si) = Si+1 is a surface, we repeat the
construction. At some point, πi+1 is a fibration to a curve or a point, in which case we
have reached a Mori fiber space and the program stops. In particular, this process gives
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a finite sequence of rational numbers

t0 > t1 > · · · > tn

such that KSi + Ai + t1i is ample on Si for any t > ti . We shall say that a birational
morphism π : S → S′ is (K + A)-negative with scaling of 1 if S′ is one of the Si in the
above process.

Now assume that D is a pseudo-effective Q-divisor on S of the form D = K + 1,
with 1 ample. We run the K minimal model program with scaling of 1, and we look
where the coefficient t = 1 corresponding to D fits into the sequence t0 > t1 > · · · > tn.
More precisely, we set j = max {i; ti ≥ 1} and we denote ϕD = πj ◦ · · · ◦ π1. Observe
that the morphism ϕD is birational if and only if j ≤ n − 1, and in any case ϕD(D) is
ample. We say that ϕD is the ample model of D.

Remark 1.10. (1) The above construction only depends on the numerical class of D,
which would not be the case for more general D (that is, not of the form K +1 with 1
ample) [KKL16, Example 4.8].

(2) The morphism ϕD coincides with the morphism from S to Proj(
⊕
H 0(Z,mD))

[KKL16, Remark 2.4]. In particular, if we write D = K +11 +12 with 11,12 ample,
and run the K + 11 minimal model program with scaling of 12, we will get the same
morphism ϕD , but possibly by another sequence of contractions.

2. A square complex associated to the Cremona group

In this section we construct a square complex that encodes Sarkisov links and relations
between them. First we introduce the key notion of rank r fibration.

2.1. Rank r fibrations

If not stated otherwise, all varieties and morphisms are defined over k. Let S be a surface,
and r ≥ 1 an integer. We say that S is a rank r fibration if there exists a surjective
morphism π : S → B with connected fibers, where B is a point or a smooth curve, with
relative Picard number equal to r , and such that the anticanonical divisor −KS is π -
ample. The last condition means that for any curve C contracted to a point by π , we have
KS · C < 0. Observe that the condition on the Picard number translates as ρ(S) = r if B
is a point, and ρ(S) = r + 1 if B is isomorphic to P1. If S is a rank r fibration, we will
write S/B if we want to emphasize the basis of the fibration, and Sr when we want to
emphasize the rank. An isomorphism between two fibrations S/B and S′/B ′ (necessarily
of the same rank r) is an isomorphism S

∼
→ S′ such that there exists an isomorphism on

the bases (necessarily uniquely defined) that makes the following diagram commute:

S
∼ //

π
��

S′

π ′
��

B
∼ // B ′
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As the following examples make it clear, there are sometimes several choices for
a structure of rank r fibration on a given surface, that may even correspond to distinct
ranks.

Example 2.1. (1) P2 with the morphism P2
→ pt, or the Hirzebruch surface Fn with the

morphism Fn→ P1, are rank 1 fibrations.
(2) F1 with the morphism F1 → pt is a rank 2 fibration. Idem for F0 → pt. The

blow-up S2
→ Fn → P1 of a Hirzebruch surface along a point of degree d , such that

each point of the orbit is in a distinct fiber, is a rank 2 fibration over P1.
(3) The blow-up of two distinct points on P2, or of two points of Fn not lying on

the same fiber, give examples of rank 3 fibrations, with morphisms to the point or to P1

respectively.

Remark 2.2. Observe that the definition of a rank r fibration puts together several well-
known notions. If B is a point, then S is a del Pezzo surface of Picard rank r (over the
base field k). If B is a curve, then S is a conic bundle of relative Picard rank r: a general
fiber is isomorphic to P1, and (over ka) any singular fiber is the union of two (−1)-curves
secant at one point. Note also that rank 1 fibrations are exactly the usual 2-dimensional
Mori fiber spaces.

We will be only interested in rational surfaces, and we define a marking on a rank r
fibration S/B to be a choice of a birational map ϕ : S 99K P2. Observe that if S is ra-
tional and B is a curve, then B is isomorphic to P1. We say that two marked fibrations
ϕ : S/B 99K P2 and ϕ′ : S′/B ′ 99K P2 are equivalent if ϕ′−1

◦ϕ : S/B → S′/B ′ is an iso-
morphism of fibrations. We denote by (S/B, ϕ) an equivalence class under this relation.
The Cremona group Birk(P2) acts on the set of equivalence classes of marked fibrations
by post-composition:

f · (S/B, ϕ) := (S/B, f ◦ ϕ).

If S′/B ′ and S/B are marked fibrations of respective ranks r ′ > r ≥ 1, we say that
S′/B ′ factorizes through S/B if the birational map S′ → S induced by the markings is a
morphism, and moreover there exists a (uniquely defined) morphism B → B ′ such that
the following diagram commutes:

S′
π ′ //

!!

B ′

S
π // B

<<

(2)

In fact, if B ′ = pt the last condition is empty, and if B ′ ' P1 it means that S′ → S is a
morphism of fibrations over a common basis P1.

2.2. Square complex

We define a 2-dimensional complex X as follows. Vertices are equivalence classes of
marked rank r fibrations, with 3 ≥ r ≥ 1. There is an oriented edge from (S′/B ′, ϕ′)
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to (S/B, ϕ) if S′/B ′ factorizes through S/B. If r ′ > r are the respective ranks of S′/B ′

and S/B, we say that the edge has type r ′, r . For each triplet of pairwise linked vertices
(S′′3/B ′′, ϕ′′), (S′2/B ′, ϕ′), (S1/B, ϕ), we glue a triangle. In this way we obtain a 2-
dimensional simplicial complex X on which the Cremona group acts.

Lemma 2.3. For each edge of type 3, 1 from S′′/B ′′ to S/B, there exist exactly two tri-
angles that admit this edge as a side.

Proof. In short, the proof is a two rays game (see Remark 1.8). By assumption S′′/B ′′

factorizes through S/B, so by setting Y = S (if B ' B ′) or Y = B (if B ' P1 and
B ′ = pt), we obtain via diagram (2) a morphism π : S′′→ Y with relative Picard number
ρ(S′′/Y ) equal to 2. We have exactly two extremal rays in the cone NE(S′′/Y ), and since
ρ(S′′) = 3 or 4, both correspond to divisorial contractions. Denote by S′′ → S′ and
S′′→ S̃′ these two contractions. Then the two expected triangles are S′′/B ′′, S′/B ′, S/B
and S′′/B ′′, S̃′/B ′, S/B. ut

In view of the lemma, by gluing all the pairs of triangles along edges of type 3, 1, and
keeping only edges of types 3, 2 and 2, 1, we obtain a square complex that we still de-
note X . Let vertices of type P2 be the vertices in the orbit of the vertex (P2/pt, id) under
the action of Birk(P2). When drawing subcomplexes of X we will often drop part of the
information which is clear by context, about the markings, the equivalence classes and/or
the fibration. For instance S/B must be understood as (S/B, ϕ) for an implicit marking
ϕ, and (P2, ϕ) as (P2/pt, ϕ).

Example 2.4. Let S be the surface obtained by blowing up P2 in two distinct points a
and b of degree 1. Denote by F1,a/P1

a , F1,b/P1
b the two intermediate Hirzebruch surfaces

with their fibrations to P1. Finally, denote by F0 the surface obtained by contracting the
strict transform on S of the line through a and b. All these surfaces fit into the subcomplex
of X pictured in Figure 1, where the dotted arrows are the edges of type 3, 1 that we need
to remove from the simplicial complex in order to get a square complex.

S/pt

S/P1
a S/P1

b

F0/P1
a F0/P1

b

F0/pt

F1,a/pt F1,b/pt

F1,a/P1
a F1,b/P1

b

P2/pt

yy

��

%%

��

��

yy %%

ee

yy

99

%%

99 ee

ee 99

oo //

�� ��

OO

Fig. 1
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Example 2.5. Consider the blow-ups of three points a, b, c on P2. These give three
squares around the corresponding vertex of type P2 (see Figure 2). In particular, the square
complex X is not CAT(0), as mentioned in the introduction.

Sa,b/pt

Sb,c/ptSa,c/pt

F1,a/pt F1,b/pt

F1,c/pt

P2/pt

ff 88

��

88 ff

��
OO

&& xx

88 ff

��

Fig. 2

2.3. Sarkisov links and elementary relations

In this section we show that the complex X encodes the notion of Sarkisov links, and of
elementary relations between them.

First we rephrase the usual notion of Sarkisov links between 2-dimensional Mori fiber
spaces. Let (S/B, ϕ), (S′/B ′, ϕ′) be two marked rank 1 fibrations. We say that the induced
birational map S 99K S′ is a Sarkisov link if there exists a marked rank 2 fibration S′′/B ′′

that factorizes through both S/B and S′/B ′. Equivalently, the vertices corresponding to
S/B and S′/B ′ are at distance 2 in the complex X , with middle vertex S′′/B ′′:

S′′/B ′′

ww ((

S/B S′/B ′

This definition is in fact equivalent to the usual definition of a link of type I, II, III or IV
from S/B to S′/B ′ (see [Kal13, Definition 2.14] for the definition in arbitrary dimension).
Below we recall these definitions in the context of surfaces, in terms of commutative
diagrams where each morphism has relative Picard number 1 (such a diagram corresponds
to a “two rays game”), and we give some examples. Note that these diagrams are not part
of the complex X : in each case, the corresponding subcomplex of X is just a path of two
edges, as described above.

• Type I: B is a point, B ′ ' P1, and S′→ S is the blow-up of a point of degree d ≥ 1
such that we have a diagram

S′

��   

S

��

P1

~~

pt

Then we take S′′/B ′′ := S′/pt.
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Examples are given by the blow-up of a point of degree 1, or a general point of de-
gree 4, on S = P2. The fibration S′/P1 corresponds respectively to the lines through the
point of degree 1, or to the conics through the point of degree 4.
• Type II: B = B ′, and there exist two blow-ups S′′ → S and S′′ → S′ that fit into a

diagram of the form
S′′

��   

S

  

S′

~~

B

Then we take S′′/B ′′ := S′′/B.
An example is given by blowing up a point of degree 2 on S = P2, and then by

contracting the transform of the unique line through this point. The resulting surface S′ is
a del Pezzo surface of degree 8, which has rank 1 over k, but has rank 2 over ka (being
isomorphic to P1

ka × P1
ka ). Other examples, important for this paper, are provided by

blowing up a point of degree 8 on P2: see §4.2.
• Type III: a situation symmetric to a link of type I.
• Type IV: (S, ϕ) and (S′, ϕ′) are equal as marked surfaces, but the fibrations to B

and B ′ are distinct. In this situation B and B ′ must be isomorphic to P1, and we have a
diagram

S

��   

B

��

B ′

~~

pt

Then we take S′′/B ′′ := S/pt.
For rational surfaces, a type IV link always corresponds to the two rulings on F0 =

P1
× P1, that is, S/B = F0/P1 is one of the rulings, S′/B ′ = F0/P1 the other one,

and S′′/B ′′ = F0/pt. See [Isk96, Theorem 2.6 (iv)] for other examples in the context of
non-rational surfaces.

A path of Sarkisov links is a finite sequence of marked rank 1 fibrations

(S0/B0, ϕ0), . . . , (Sn/Bn, ϕn)

such that for all 0 ≤ i ≤ n− 1, the induced map gi : Si/Bi 99K Si+1/Bi+1 is a Sarkisov
link.

Proposition 2.6. Let (S′/B, ϕ) be a marked rank 3 fibration. Then there exist finitely
many squares in X with S′ as a corner, and the union of these squares is a subcomplex
of X homeomorphic to a disk with center corresponding to S′.

Proof. Since ρ(S′) = 3 or 4, we can factorize the fibration S′/B into

S′→ S → Y → B,
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where S′→ S is a divisorial contraction, and Y is either a surface or a rational curve. By
playing the two rays game on S′/Y (see Remark 1.8), we obtain another surface S̃ and a
divisorial contraction S′→ S̃ that fits into a commutative diagram

S

''
S′

66

''

Y // B

S̃

77

If Y is a surface, we obtain the following square in X :

S′/B

{{ ##

S/B

##

S̃/B

{{

Y/B

On the other hand, if Y ' P1 is a curve (and so B is a point), then we obtain the following
two squares in X :

S′/pt
ww ''

��

S/pt

��

S̃/pt

��

S′/P1

ww ''

S/P1 S̃/P1

Now in both cases we consider the two rays game on S̃/B: this produces Ỹ , which is
either a surface or a curve, and which fits into a diagram

S

''
S′

66

''

Y

''
S̃

77

&&

B

Ỹ

77

Then by considering the two rays game on S′/Ỹ , we produce one or two new squares
in X that are adjacent to the previous ones. After finitely many such steps, the process
must stop and produce the expected disk, because by Theorem 1.7 there are only finitely
many divisorial contractions that we can use to factor S′/B. ut

Remark 2.7. If B ' P1, then at each step Y is a surface, and in this case the disk
produced by the proof consists of exactly four squares in X .

More precisely, with the notation of the proof, the morphisms S/Y and S̃/Y corre-
spond to the blow-ups of points p and p̃, and S′ is the blow-up of both. Observe that
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p, p̃ can have arbitrary degrees, but they are not on the same fiber of Y/P1 because other-
wise S′/P1 would not be a rank 3 fibration (the anticanonical divisor would not be ample
because of the presence of (−2)-curves). Let Ep, Ep̃ be the corresponding exceptional
divisors in S′, and Fp, Fp̃ the strict transforms of the fibers through p and p̃ respectively.
Then the four squares correspond to the four possible choices of contraction of two divi-
sors from S′ over P1: either Ep or Fp, and independently either Ep̃ or Fp̃.

On the other hand, if B is a point the number of squares might vary: for instance in
Example 2.4 we saw five squares.

In the situation of Proposition 2.6, by going around the boundary of the disk we obtain a
path of Sarkisov links whose composition is the identity (or strictly speaking, an automor-
phism). We say that this path is an elementary relation between Sarkisov links, coming
from S′

3
/B. More generally, any composition of Sarkisov links that corresponds to a loop

in the complex X is called a relation between Sarkisov links.

3. Relations in the Sarkisov program in dimension 2

In this section we prove that the complex X is connected and simply connected, which
will be the key in proving Theorem A. These connectedness results will follow from the
Sarkisov program, and more precisely from the study of relations in the Sarkisov program,
which we can state as follows:

Theorem 3.1 (Sarkisov program).

(1) Any birational map f : S 99K S′ between rank 1 fibrations is a composition of Sar-
kisov links (and automorphisms).

(2) Any relation between Sarkisov links is generated by elementary relations.

In arbitrary dimension over C, these results correspond to [HM13, Theorem 1.1] and
[Kal13, Theorem 1.3]. We give an account of the proof of these results in the simpler case
of surfaces, but working over an arbitrary perfect base field.

3.1. Polyhedral decomposition

Let {(S1/B1, ϕ1), . . . , (Sm/Bm, ϕm)} be a finite collection of marked rank 1 fibrations. In
the context of Theorem 3.1, we will take m = 2, S1 = S, S2 = S′ when proving (1),
or the entire collection of rank 1 fibrations visited by a relation of Sarkisov links when
proving (2).

By repetitively applying Proposition 1.2, we produce a marked surface Z dominating
all the Si , that is, such that all induced birational maps fi : Z → Si are morphisms.
We pick a sufficiently small ample Q-divisor A on Z such that for all i, fi is (K + A)-
negative, and −KSi − fi∗(A) is relatively ample over Bi . The point of choosing such an
ample divisorA is to ensure that there exist only finitely many (K+A)-negative birational
morphisms from Z (up to post-composition with an isomorphism). Indeed, this follows
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from Theorem 1.7, which says that at each step there are only finitely many possible
divisorial contractions. If there are only finitely many birational morphisms from Z (for
instance if Z is a del Pezzo surface), we also admit the choice A = 0.

For each i = 1, . . . , m, applying the following two steps we construct an (effective)
ample divisor1i on Z such that fi : Z→ Si is (K+A)-negative with scaling of1i , and
more precisely fi will be a (K + A+1i)-ample model of Z:

(1) If Bi ' P1, pick a large multiple Gi of the fiber of Si/Bi such that −KSi −
fi∗(A) + Gi is ample on Si . If Bi = {pt}, then −KSi − fi∗(A) is already ample, so we
just set Gi = 0. In both cases Gi is a nef divisor on Si .

(2) Now pick an effective Q-divisor Pi on Si , equivalent to the ample divisor−KSi −
fi∗(A) + Gi , and set 1i = A + f ∗i (Pi), which is ample as the sum of ample and nef
divisors. One checks that

fi∗(K + A+1i) = KSi + fi∗(A)+ fi∗(A)−KSi − fi∗(A)+Gi = fi∗(A)+Gi,

which is an ample divisor on Si as expected.

We can assume that the family {1i}mi=1 generates N1(Z) (throw in more ample di-
visors if necessary). We choose some rationals ri > 0 such that each K + A + ri1i is
ample. We say that a Q-divisor 1 is a subconvex combination of the ri1i if

1 =

m∑
i=1

tiri1i with ti ≥ 0,
∑

ti ≤ 1.

This family {1i}mi=1 of ample divisors being fixed, let {gj }sj=1 be the finite collection of
(K + A + 1)-negative birational morphisms (up to isomorphism on the range), for all
choices of a subconvex combination 1 as above. Observe that this collection is indeed
finite because of Theorem 1.7. Note also that the initial fi , i = 1, . . . , m, are part of
this collection by construction, and so is the identity id : Z → Z (corresponding for
instance to taking one of the ti equal to 1, and all the other equal to 0, because then
D = K + A + ri1i is ample by assumption, and the corresponding embedding ϕD is
equivalent to the identity morphism).

For any family {Di}i∈I ∈ N1(Z) of divisors in the vector space N1(Z), we denote by
Conv◦(Di; i ∈ I ) the cone over the convex hull of the Di . Now we intersect the cone

Conv◦(K + A,K + A+ r111, . . . , K + A+ rm1m)

with the pseudo-effective cone Eff(Z) to get a cone C◦. Explicitly,

C◦ =
{
D = λ

(
K+A+

m∑
i=1

tiri1i

)
; λ, ti ≥ 0,

∑
ti ≤ 1,D pseudo-effective

}
⊆N1(Z).

We denote by C the intersection of C◦ with an affine hyperplane defined by K + A:

C := {D ∈ C◦; (K + A) ·D = −1}.
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Recall from Proposition 1.1 that each gj : Z→ Sj is a finite sequence of contractions
of exceptional divisors, that is, orbits under Gal(ka/k) of pairwise disjoint (−1)-curves.
We denote by {Ci}i∈I the finite collection of classes in N1(Z) obtained as pull-back of
such exceptional divisors contracted by gj , for all j = 1, . . . , s. We introduce a notation
for the hyperplane and half-spaces defined by Ci in N1(Z):

C⊥i = {D ∈ N
1(Z); D · Ci = 0},

C
≥

i = {D ∈ N
1(Z); D · Ci ≥ 0},

and similarly for C>i , C≤i , C<i .
Let D ∈ C be a big divisor. Then we get a partition I = I+ ∪ I− such that

D ∈
⋂
i∈I+

C>i ∩
⋂
i∈I−

C
≤

i .

There exists j such that the morphism ϕD associated with D (see discussion after Theo-
rem 1.9) coincides with gj : Z → Sj . The classes Ci , i ∈ I−, correspond to the curves
contracted by ϕD = gj .

Lemma 3.2. The cone C◦ ⊂ N1(Z) is rational polyhedral and convex, hence so is the
affine section C.

Proof. First we prove that

nef(Z) ∩ C◦ =
⋂
i∈I

C
≥

i ∩ Conv◦(K + A,K + A+ r111, . . . , K + A+ rm1m),

from which it follows that nef(Z) ∩ C◦ is a rational polyhedral convex cone.
IfD = K+A+1 ∈ C◦ is not nef, then by construction of ϕD there exists i ∈ I such

that the exceptional divisor Ci is contracted by ϕD , and D · Ci < 0. On the other hand, if
D ∈ C◦ is nef, then for any irreducible component C in the support of one of the Ci we
have D · C ≥ 0, hence D · Ci ≥ 0 for all i.

Now we show that C◦ is a rational polyhedral convex cone. Let D ∈ C◦ be a big
divisor, and ϕD : Z → S the associated birational morphism. Up to reordering the Ci ,
we can assume that C1, . . . , Cr are the classes contracted by ϕD , where r is the relative
Picard number of Z over S. Then we can write

D = ϕ∗D(ϕD∗(D))+

r∑
i=1

aiCi,

where ϕ∗D(ϕD∗(D)) ∈ nef(Z) ∩ C◦, and the ai are positive by Lemma 1.5. Together with
K + A+ ri1i ∈ nef(Z) ∩ C◦ this gives

C◦ ⊆ Conv◦(nef(Z) ∩ C◦,K + A) ∩ Conv◦(nef(Z) ∩ C◦, Ci; i ∈ I ).

This inclusion is in fact an equality because the first cone on the right-hand side is just
Conv◦(K + A,K + A + r111, . . . , K + A + rm1m) and the second cone consists of
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pseudo-effective divisors, so the right-hand side is contained in C◦. It follows that C◦ is
rational polyhedral and convex, as expected. ut

We set
Aj :=

⋂
i∈I+

C>i ∩
⋂
i∈I−

C
≤

i ∩ C.

In particular, Aj is a rational polyhedral subset of C, and is equal to the set of divisors
D ∈ C such that ϕD = gj . Observe that the chamber A of ample divisors in C is one of
the Aj , associated to gj = id, and to the partition I+ = I , I− = ∅. Clearly the Aj form
a partition of the interior of C.

We have just re-proved [KKL16, Theorem 4.2] (which is stated in arbitrary dimension,
but over C):

Theorem 3.3. The interior of the cone C admits a finite partition into polyhedral cham-
bers, Int(C) =

⋃
j Aj .

For further reference we sum up the above discussion:

Set-Up 3.4. • We start with a finite collection {(S1/B1, ϕ1), . . . , (Sm/Bm, ϕm)} of
marked rank 1 fibrations.
• We pick Z a common resolution with Picard number ρ(Z) ≥ 4.
• We chooseA an ample Q-divisor on Z such that each map Z→ Si is (K+A)-negative

with scaling of an ample divisor 1i . We may add some ample divisors 1i so that the
family {1i}mi=1 generates N1(Z). If there are finitely many birational morphisms from
Z, we allow A = 0.
• We construct a convex cone C◦ in N1(Z), by considering the union of all seg-

ments [1,K + A] ∩ Eff(Z), for all convex combinations 1 of the ample divisors
K + A+ ri1i , i = 1, . . . , m, and by taking the cone over these. In practice, we work
with C, the section of C◦ by the affine hyperplane corresponding to classes D such that
(K + A) ·D = −1.
• Each class D in the interior of C corresponds to a (K + A)-birational morphism
ϕD : Z→ SD .
• Conversely, given a (K+A)-negative birational morphism gj : Z→ Sj , the divisorsD

in C such that gj = ϕD form a polyhedral chamber Aj with non-empty interior.

Remark 3.5. In higher dimension several complications arise that we avoided in the
above discussion. In particular in dimension ≥ 3 it is not true anymore that each Aj
spans N1(Z), because of the appearance of small contractions.

We should also mention that in dimension 2, the decomposition of Theorem 3.3 can be
phrased in terms of Zariski decompositions (see [BKS04]). Namely, in each chamber Aj
the support of the negative part of the Zariski decomposition is constant, and corresponds
to the support of the classes Ci with i ∈ I−.

Finally, as already noticed in Remark 1.10, since we only consider adjoint divisors of
the form K + 1 with 1 ample, we can work directly in the Néron–Severi space N1(Z)

instead of choosing a subspace of the space of Weil divisors, as in [HM13, Kal13].



3150 Stéphane Lamy, Susanna Zimmermann

Example 3.6. In [Kal13, Figures 1 and 6] the above construction is illustrated by the case
of P2 blown up at two or three distinct points. Here we consider the case of P2 blown up
at two points (of degree 1), with one infinitely near the other. More precisely, let Z be the
surface obtained from P2 by blowing up a point p = L ∩ L′ of intersection of two lines,
producing an exceptional divisor E, and then p′ = E ∩ L′, producing an exceptional
divisor E′ (see Figure 3, where the numbers in brackets denote self-intersection, and
where we use the same notation for a curve and its strict transforms).

L [+1]

L′ [+1]

H

L′ [0]

L [0]

H H

[−1] E

E [−2]

L′ [−1]

L [0]

p

p′ E′ [−1]

Fig. 3. P2 blown up at p and p′.

On Z, the curves E, E′ and L′ are the only irreducible divisors with negative self-
intersection, and they generate the pseudo-effective cone Eff(S). We also denote by H
the class of a generic line from P2, and as usual K is the canonical divisor. On Z we have

H = L′ + E + 2E′, −K = 3L′ + 2E + 4E′.

The classes Ci of contracted curves are

C1 = L
′, C2 = E

′, C3 = E + E
′.

In this simple example, it turns out that any class D in the pseudo-effective cone
Eff(Z) corresponds to a birational morphism ϕD . There are six possibilities for this mor-
phism ϕD , and Figure 4 shows the chamber decomposition for the whole Eff(Z).

• •

•

•

•

•

•

As
E,L′

As
E

H

E

L

E′

E+E′

L′

•
−K

Fig. 4
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However, Set-Up 3.4 only guarantees the chamber decomposition for classes in C,
which is pictured on Figure 5 (where we work with the choice A = 0). Observe in
particular that the chambers As

E and As
E,L′

in Figure 4 correspond to singular surfaces,
namely the blow-down of E, or the blow-down of E,L′. Equivalently, a wall between
chambers in Figure 4 does not always correspond to the contraction of a (−1)-curve. In
contrast, the chambers A1, . . . ,A4 in Figure 5 correspond to smooth surfaces, and the
chambers are delimited by the hyperplanes C⊥i .

C1 = L
′ C2 = E

′

H

−K

L

K + r212

K + r111

C⊥1

C⊥3

C⊥2
A4

A3

A2
A1

C

Fig. 5. The partition Int(C) =
⋃4
i=1 Ai (in gray).

The following two propositions correspond to [HM13, Theorem 3.3] in the case of sur-
faces.

Proposition 3.7. Assume Set-Up 3.4, let Aj be one of the polyhedral chambers given by
Theorem 3.3, and gj : Z→ Sj the associated birational morphism. If D ∈ ĎAj rAj with
associated morphisms ϕD : Z → Y , then there exists a unique morphism f : Sj → Y

such that ϕD = f ◦ gj . Moreover, the morphism ϕD only depends on the face F r
⊂ ĎAj

such that D is in the relative interior of F r .

Proof. Set D0 = D ∈ ĎAj r Aj , and pick D1 ∈ Aj . Then for all t ∈ (0, 1], we have
Dt := tD1 + (1− t)D0 ∈ Aj . The curves contracted by gj = ϕDt are the curves C such
that Dt · C ≤ 0 for t ∈ (0, 1], and so also for t = 0. Hence NE(ϕD) ⊂ NE(gj ), and the
Rigidity Lemma below gives the expected morphism f : Sj → Y .

Finally, the curves contracted by f are the curves C on Sj such that (gj )∗D · C = 0,
and these conditions on D define the minimal face F r containing D. ut

Lemma 3.8 (Rigidity Lemma, see [Deb01, Proposition 1.14]). Let X, Y, Y ′ be projec-
tive varieties and let π : X → Y , π ′ : X → Y ′ be morphisms with connected fibers. If
NE(π) ⊂ NE(π ′), then there is a unique morphism f : Y → Y ′ with connected fibers
such that π ′ = f ◦ π .

Proposition 3.9. Assume Set-Up 3.4. Let j, k be two indices such that ĎAj ∩Ak 6= ∅, and
let gj,k : Sj → Sk be the morphism (given by Proposition 3.7) such that gk = gj,k ◦ gj .
Then the relative Picard number of gj,k : Sj → Sk is equal to the codimension of ĎAj ∩ĎAk

in ĎAj .
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Proof. By definition there exist two partitions of the set of indices, I = I+j ∪ I
−

j =

I+k ∪ I
−

k , such that

Aj =
⋂
i∈I+j

C>i ∩
⋂
i∈I−j

C
≤

i ∩ C, Ak =

⋂
i∈I+k

C>i ∩
⋂
i∈I−k

C
≤

i ∩ C.

The condition ĎAj ∩Ak 6= ∅ means that I−j ( I−k . Let {i1, . . . , it } = I+j ∩ I
−

k . Then

ĎAj ∩ ĎAk =

⋂
i∈I+k

C
≥

i ∩

⋂
i∈{i1,...,it }

C⊥i ∩
⋂
i∈I−j

C
≤

i ∩ C.

The morphism gj,k corresponds to the contraction of the classes Ci1 , . . . , Cit , and t is by
construction the codimension of ĎAj ∩ ĎAk in ĎAj . ut

3.2. Boundary of C

Assuming Set-Up 3.4, we define ∂+C as the intersection of C with the boundary of the
pseudo-effective cone in N1(Z), or equivalently as the classes in C that are not big. If
ρ = ρ(Z) is the Picard number of Z, then by assumption C◦ is a cone of full dimension ρ,
hence the affine section C is homeomorphic to a ball Bρ−1 and ∂+C is homeomorphic
either to a ball Bρ−2, or to a sphere Sρ−2, depending on whether the pseudo-effective
cone is contained in C or not. For instance the sphere situation arises if Z is del Pezzo,
A = 0, and the initial collection of rank 1 fibrations Si/Bi is the full (finite) collection of
such fibrations dominated by Z.

Now we put a structure of polyhedral complex on ∂+C. We consider the set of cham-
bers Aj such that ĎAj ∩ ∂+C contains a codimension 1 face W of the closed polytope ĎAj .
We call such a face W a window of Aj . The collection of such W defines a unique struc-
ture of polyhedral complex on ∂+C such that the W are the maximal faces of the complex.
More generally, we denote by F r a (closed) codimension r face in ∂+C. Here the codi-
mension is taken relative to the ambient space N1(Z), in particular windows correspond
to codimension 1 faces. We say that F r is an inner face if it intersects the relative interior
of ∂+C. Equivalently, F r is inner if it can be written as the intersection of r windows.

For a window W of the chamber Aj , D in the relative interior of W , and sufficiently
small ε > 0, the divisor D′ := D − ε(K + A) is in Aj , and the images S = ϕD′(Z) and
B = ϕD(Z) correspond to a Mori fibration S/B that depends only on W (and not on the
particular choice of D or ε).

We see that the codimension 1 faces in ∂+C are in bijection with the rank 1 fibrations
S1/B dominated by a (K + A)-negative map from Z, and such that S1/B is (−K − A)-
ample. More generally, we have:

Proposition 3.10. (1) Let F r be an inner codimension r face in the polyhedral com-
plex ∂+C. Then there exists a rank r fibration Sr/B such that

• the induced map Z→ Sr is equal to gj for some j ∈ {1, . . . , s}, in particular this
is a (K + A)-negative birational morphism;
• the chamber Aj associated with gj satisfies ĎAj ⊇ F r .



Signature morphisms from the Cremona group 3153

(2) If moreover F r ′
⊂ F r is a strictly smaller face, then the rank r ′ fibration associated

to F r ′ factorizes through the rank r fibration associated to F r .

Proof. (1) Let D be a class in the relative interior of F r . By definition, there exists an
ample class1 ∈ C◦ such thatD lies in the segment [1,K+A]. Moreover for sufficiently
small ε,D′ = D−ε(K+A) lies in a chamber Aj (in fact in the interior of Aj , sinceK+A
is negative against the exceptional curves Ci), where j does not depend on D or ε. Let
Z → B be the morphism associated to D, and Z → S = Sj the morphism associated to
D−ε(K+A). The induced morphism (Proposition 3.7) S → B has connected fibers and
contracts curves which are trivial against a divisor of the form KS + ample, in particular
−KS is relatively ample. We deduce that S/B is a rank r ′ fibration for some r ′ ≥ 1, and
we need to show that r ′ = r . By running a relative MMP over B, we obtain a factorization
of one of the following forms:

S = Sr
′

→ Sr
′
−1
→ · · · → S1

→ B = P1 or pt, (†)

S = Sr
′

→ Sr
′
−1
→ · · · → S2

→ P1
→ B = pt, (‡)

where each Si+1
→ Si is the contraction of one exceptional curve. In case (†), by Propo-

sition 3.9, Aj and AS1 share a codimension r ′ − 1 face, and the intersection of this face
with the codimension 1 face F1

⊂ ∂+C corresponding to S1/B gives a codimension r ′

face F r ′ . The morphisms associated to F r
⊆ ĎAj and to F r ′

⊆ ĎAj are the same, equal to
S/B, so F r

= F r ′ , which gives r = r ′ as expected.
In case (‡), Aj and AS2 share a codimension r ′ − 2 face F r ′−2. Moreover the surface

S2 is a Hirzebruch surface and a del Pezzo surface, so S2 is isomorphic to F1 or F0. If
S2
' F1, then using the factorization F1 → P2

→ pt we are reduced to the previous
case. Finally, if S2

' F0, the face corresponding to the point is defined by D · C1 = 0
andD ·C2 = 0 for C1, C2 the two rulings of F0, hence it is a codimension 2 face in ∂+C.
Intersecting with F r ′−2 we obtain a codimension r ′ face in ∂+C and conclude as in the
previous case that r ′ = r .

(2) By the previous point, there exist chambers Aj , Aj ′ such that F r
⊂ ĎAj and

F r ′
⊂ ĎAj ′ , with corresponding rank r and r ′ fibrations Sj/B and Sj ′/B ′. Moreover, the

inclusions F r ′
⊂ F r

⊂ ĎAj imply that we also have a morphism Sj/B
′, which induces a

morphism B/B ′:

Sj ′

��

Sj

~~ ��

B ′ Boo

We need to show that the birational map Sj ′ → Sj induced by the maps Z → Sj ′ and
Z → Sj is a morphism. By the proof of the previous point, there exists an ample divi-
sor 1′ and real numbers t0 > t1 > 0 such that (1 − t)1′ + t (K + A) ∈ Aj ′ for all
t ∈ [t0, t1), and D′ = (1− t1)1′ + t1(K +A) ∈ F r ′ . Since any ball around D′ meets the
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face F r , hence also the chamber Aj , there exists a small perturbation 1 of 1′ such that

(1− t0)1+ t0(K + A) ∈ Aj ′ and (1− t1)1+ t1(K + A) ∈ Aj .

As explained after Theorem 1.9, moving along the segment [1,K+A] corresponds to
running a (K +A)-MMP with scaling, and in particular this gives the expected birational
morphism Sj ′ → Sj . ut

Corollary 3.11. If the intersection Wi ∩Wj of two windows has codimension 1 in Wi

(hence also in Wj ), then there is a Sarkisov link between the corresponding Mori fiber
spaces.

Proof. By Proposition 3.10, there exists a rank 2 fibration corresponding to the codi-
mension 2 face F2

= Wi ∩Wj that factorizes through the rank 1 fibrations associated
respectively to Wi and Wj . This is exactly our definition of a Sarkisov link. ut

Remark 3.12. The above corollary corresponds to [Kal13, Lemma 3.17], but the situa-
tion for surfaces is simpler (see Figure 6). Let Ai , Aj be the two chambers with windows
Wi , Wj , and Si/Bi , Sj/Bj the corresponding rank 1 fibrations. We write F2

=Wi ∩Wj .
We distinguish three cases in terms of the codimension of the intersection ĎAi ∩

ĎAj .
(a) If ĎAi =

ĎAj , that is, Wi and Wj are two windows of the same chamber, then we
have a link of type IV. In the case of a rational surface, the only possibility is the change
of ruling on F0 = P1

× P1; the fibrations Si/Bi and Sj/Bj correspond to the two rulings
on F0, and the codimension 2 face F2 to the rank 2 fibration F0/pt.

(b) If ĎAi and ĎAj share a codimension 1 face, then we have a link of type I or III. Up to
reordering we can assume that we have a blow-up map Sj → Si . Then Bj = P1, Bi = pt,
and F2 corresponds to the rank 2 fibration Sj/pt.

Si = Sj ' P1
× P1

P1 P1

Si Sj

pt P1

(a) Type IV (b) Type I or III

Si Sj

S2

B=P1

Si Sj
S2

B=pt

(c) Type II over P1 (c) Type II over pt

Fig. 6. Adjacent windows and Sarkisov links.
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(c) Otherwise, let S2/B be the rank 2 fibration associated to F2, as given by Proposi-
tion 3.10. The chamber AS2 is distinct from Ai and Aj , otherwise we would be in one of
the previous two cases. Then AS2 shares a codimension 1 face with ĎAi and with ĎAj , and
we have a link of type II. ut

Corollary 3.13. Let F3 be an inner codimension 3 face in ∂+C. Let S3/B be the associ-
ated rank 3 fibration, as given by Proposition 3.10. Then the elementary relation associ-
ated to S3/B corresponds to the finite collection of windows W1, . . . ,Wm containing F3

in their closure, and ordered so that Wj and Wj+1 share a codimension 1 face for all j
(where indices are in Z/mZ).

The following two propositions correspond to the two assertions in Theorem 3.1.

Proposition 3.14. Any birational map f : S 99K S′ between rank 1 fibrations is a com-
position of Sarkisov links, and in particular the complex X is connected.

Proof. We want to prove that two vertices in X corresponding to two rank 1 fibrations
are connected by a path. Let S1/B1 and S2/B2 be these two fibrations, and apply Set-
Up 3.4 to this collection of two fibrations. Let 11, 12 be ample divisors in C such that
for i = 1, 2, the fibration Si/Bi corresponds to a (K + A)-negative map with scaling
of 1i . Up to a small perturbation of 11 and 12, we can assume that the 2-dimensional
affine plane containing 11,12 and K +A intersects the faces of ∂+C transversally. This
means that the windows W1 and W2 corresponding to S1/B1 and S2/B2 are connected by
a finite sequence of windows, where two successive windows share a codimension 1 face.
By Corollary 3.11, this corresponds to a sequence of Sarkisov links, hence the expected
path in the complex X . ut

Proposition 3.15. Any relation between Sarkisov links is a composition of conjugates of
elementary relations, and in particular the complex X is simply connected.

Proof. Let γ be a loop in X . Without loss in generality, we can assume that the image
of γ lies in the 1-skeleton of X . We can also assume that the loop visits only vertices of
rank 1 or 2. Indeed, using elementary relations, that is, moving around the boundary of
disks as provided by Proposition 2.6, we can avoid all vertices of rank 3. Moreover, we
can assume that the base point is a vertex of rank 1, S1/B1. Now the sequence of vertices
of rank 1 visited by the loop corresponds to a sequence S1/B1, S2/B2, . . . , Sm/Bm =

S1/B1, where for each i, the map from Si/Bi to Si+1/Bi+1 is a Sarkisov link. Consider
the surface Z and the complex C associated to this collection, as in Set-Up 3.4, and denote
as above by ∂+C the non-big boundary with its induced structure of polyhedral complex.

Since ∂+C is homeomorphic to a ball or a sphere of dimension ρ(Z) − 2 ≥ 2, it is
simply connected. Now we construct a 2-dimensional simplicial complex B embedded
in ∂+C, as follows. For each face F r

⊂ ∂+C of codimension r with 3 ≥ r ≥ 1, we denote
by p(F r) the barycenter of the vertices of F r . The 2-simplices of B are defined as the
convex hulls of the p(F r), for each sequence of nested faces F3

⊂ F2
⊂ F1. If F3 is

an inner face (hence also all other faces of the sequence), we say that the corresponding
simplex is an inner simplex of B.
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∂+C B I

Fig. 7. The complexes ∂+C, B and I.

The complex B is homeomorphic to the barycentric subdivision of the 2-skeleton of
the dual cell complex of ∂+C, and so is also simply connected (recall that the 2-skeleton
of a simply connected CW-complex is simply connected [Hat02, Corollary 4.12]).

The inner simplices form a subcomplex I ⊆ B, and I is a deformation retract of
the interior of B: this follows from Lemma 3.16 below, with X = B, A = I and C the
boundary of B. It follows that I is also simply connected. Moreover, by Proposition 2.6,
each face F3 of codimension 3 in I is the center of a disk whose boundary corresponds to
an elementary relation. By construction, the interiors of these disks are pairwise disjoint,
and any triangle of I belongs to one of the disks. In conclusion, we can perform the
required homotopy of our initial loop to a constant loop inside this subcomplex of X by
using elementary relations. ut

Lemma 3.16 ([Mun84, Lemma 70.1]). Let A be a full subcomplex of a finite simplicial
complex X. Let C consist of all simplices of X that are disjoint from A. Then A is a
deformation retract of X r C.

4. Elementary generators

4.1. Definition

As in the previous section, we consider a path of Sarkisov links

(S0/B0, ϕ0), . . . , (Sn/Bn, ϕn),

that is, for each 0 ≤ i ≤ n − 1, there is a Sarkisov link gi : Si/Bi 99K Si+1/Bi+1. If in
such a path S0, Sn are both isomorphic to P2, but no intermediate vertex Si is isomorphic
to P2, we say that ϕngn−1 · · · g1g0ϕ

−1
0 ∈ Birk(P2) is an elementary generator.

We denote by E a choice of representatives of elementary generators in Birk(P2),
up to right and left composition with elements of Autk(P2). The Sarkisov program in
dimension 2 directly implies

Proposition 4.1. Any f ∈ Birk(P2) is a composition of elementary generators, up to an
automorphism. In particular, Birk(P2) = 〈Autk(P2), E〉.

Proof. By Theorem 3.1(1), there exists a sequence of Sarkisov links decomposing f .
Then we can cut this sequence at each intermediate surface isomorphic to P2. ut
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Remark 4.2. The set E contains the list of generators given in [IKT93], which contains
all Jonquières transformations. The set E is really huge: over an algebraically closed field,
in fact every element of Birk(P2) is in E , which does not seem a very clever choice of
generators. However, when working over a non-closed field, and since we never try to
work with an explicit presentation of Birk(P2) by generators and relations, the immensity
of E is not a drawback.

In the following sections we study two particular examples of elementary generators.

4.2. Bertini involutions

Let p = {p1, . . . , p8} ∈ P2 be a point of degree 8. We say that p is general, or equiv-
alently that the pi are in general position, if the blow-up of p is a del Pezzo surface of
degree 1, that is, no line (defined over ka) contains three of the pi , no conic contains six
of them, and no cubic is singular at one of them and contains all the others.

Let S be the surface obtained by blowing up such a general point p of degree 8.
Then S is a rank 2 fibration with exactly two outgoing arrows, and there exists another
contraction S → P2 that fits into a diagram

S

����

P2 b // P2

(3)

where b is a Bertini involution (this link is denoted χ8 in [IKT93]). Recall that geomet-
rically, b is defined as follows. Since p is general, the linear system 0 of cubics through
p is a pencil whose general member is smooth. The base locus of the pencil is equal to
p ∪ q, where q is a point of degree 1. For x ∈ P2 a general point, the unique member of
0 through x is a smooth cubic that we can see as an elliptic curve with neutral element q.
Then b(x) = −x, where −x means the opposite of x with respect to the group law on the
elliptic curve.

In particular, such a link b is an elementary generator as defined above. Now a crucial
but easy observation is

Lemma 4.3. In diagram (3), each contraction S → P2 corresponds to an edge in X
which is not contained in any square.

Proof. If S/pt → P2/pt corresponds to an edge of a square, we would have a rank 3
fibration S′/pt that factorizes through S/pt. But such a surface S′ would be a del Pezzo
surface, and would be a blow-up of S which is already a del Pezzo surface of degree 1;
a contradiction. ut

Up to changing the initial choice of representatives E , we can assume that a representative
of a Bertini involution is an involution. We denote by B ⊆ E the subset of representatives
of Bertini involutions.
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Example 4.4. Since the above construction relies on the existence of a Galois extension
of degree 8, we recall a few examples of such extensions:

(1) Q(
√

2,
√

3,
√

5)/Q is Galois with Galois group isomorphic to (Z/2Z)3. This is
the splitting field of (X2

− 2)(X2
− 3)(X2

− 5).
(2) The cyclotomic extension Q(e2iπ/15)/Q has degree ϕ(15) = 8 and Galois group

isomorphic to (Z/15Z)∗ ' Z/2Z×Z/4Z. This is the splitting field of the 15th cyclotomic
polynomial 815(X) ∈ Z[X] [Mor96, Corollary 7.8].

(3) Q( 4√2, i)/Q is Galois with Galois group isomorphic to the dihedral group D8.
This is the splitting field of (X4

− 2)(X2
+ 1). Generators for the Galois group are r, s

where
r(

4√2) = i 4√2, r(i) = i and s(
4√2) = 4√2, s(i) = −i.

(4) Let α = eiπ/4, and set k = Q(α). Then pick β ∈ k which is not a square in k;
for instance β = 3 is a possible choice, but β = 2 is not because α + α7

=
√

2. Then
k( 8
√
β)/k is a cyclic extension of degree 8, that is, Galois with Galois group isomorphic

to Z/8Z [Mor96, Corollary 9.6].
(5) Q(θ)/Q with θ2

= (2 +
√

2)(2 +
√

3)(3 +
√

6) is Galois with Galois group
isomorphic to the quaternionic group. This is the splitting field of X8

− 72X6
+ 180X4

−

144X2
+ 36 [Dea81].

(6) Let Fq be a finite field, and Fqn/Fq the (essentially unique) extension of degree n
(in particular one can take n = 8). Then this extension is Galois, with Galois group
isomorphic to Z/nZ, generated by the Frobenius automorphism x 7→ xq [Mor96, Corol-
lary 6.7].

Now we turn to the problem of proving that the set B is large, that is, there exist many
Bertini involutions, even modulo the action of PGL3(k). We shall produce points of de-
gree 8 in general position by using nodal cubics. The following set-up for the group
structure on the smooth locus of a nodal cubic is classical: see for instance [Sil09, §III.2,
Proposition 2.5], and also Remark 4.8. However, since we want to work over a perfect
field (typically non-algebraically-closed), we find it convenient to make a slightly differ-
ent choice of normal form.

Set-Up 4.5. Consider the plane nodal cubic curve CP defined over k, given by the equa-
tion

xyz = P(x, z),

where P(x, z) = c0x
3
− c0z

3, c0 ∈ k∗. In the affine chart z = 1, the equation becomes

y =
P(x, 1)
x

(
=
c0x

3
− c0

x

)
.

Observe also that the singular point [0 : 1 : 0] is the only intersection point between CP
and the line at infinity z = 0.

We shall be interested in nodal cubics up to the action of PGL3(k), and we shall use the
above set-up as a normal form. Observe that we cannot assume c0 = 1 even after applying
a diagonal element of PGL3(k), because c0 might not be a cube in k.
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Lemma 4.6. Let C ⊂ P2 be an irreducible nodal cubic with singular point at [0 : 1 : 0],
and tangent cone at this point given by xz = 0. Then C admits an equation of the form

xyz = c0x
3
+ c1x

2z+ c2xz
2
+ c3z

3, c0, c3 ∈ k∗, c1, c2 ∈ k,

and C is equivalent under the action of PGL3(k) to a cubic from Set-Up 4.5 if and only
if −c0/c3 is a cube in k.

Proof. The assumption on the singular point implies that C admits an equation of
the form xyz = P(x, z) with P a homogeneous polynomial of degree 3. Moreover
P(0, 1) 6= 0 and P(1, 0) 6= 0, otherwise C would be reducible. So P(x, z) =

c0x
3
+ c1x

2z+ c2xz
2
+ c3z

3 with c0, c3 ∈ k∗, and no condition on c1, c2.
By applying (x, y, z) 7→ (x, y + c1x + c2z, z) we can assume c1 = c2 = 0. Then, if

−c0/c3 = a
3 for some a ∈ k∗, by applying (x, y, z) 7→ (x, a−1y, az) we get c0 = −c3.

ut

Lemma 4.7. Assume Set-Up 4.5, and consider a collection of three or six pairwise dis-
tinct ai ∈ k∗. Then:

(1) The points pi = (ai, P (ai, 1)/ai) ∈ CP , i = 1, 2, 3, are on the same line if and only
if a1a2a3 = 1.

(2) The points pi = (ai, P (ai, 1)/ai) ∈ CP , i = 1, . . . , 6, are on the same conic if and
only if a1 . . . a6 = 1.

Proof. (1) The general equation of a line that does not intersect the cubic CP at infinity
is y + Ax + B = 0. If the pi are on the same line, then inserting y = P(x, 1)/x in the
equation of the line we get

P(x, 1)+ Ax2
+ Bx = c0(x − a1)(x − a2)(x − a3),

hence, by comparing the constant terms and dividing by −c0, we get 1 = a1a2a3 as
expected. Conversely, if a1a2a3 = 1, then the above relation allows us to define A,B in
function of the ai such that the line y + Ax + B = 0 contains the three points pi .

(2) The proof is similar, by working with the general equation of a conic that does not
intersect the cubic at infinity:

y2
+ Ayx + By + Cx2

+Dx + E = 0.

Setting y = P(x, 1)/x we get

P(x, 1)2 + Ax2P(x, 1)+ BxP (x, 1)+ Cx4
+Dx3

+ Ex2

= c2
0x

6
+ · · · + c2

0 = c
2
0

6∏
i=1

(x − ai),

and we conclude the proof as in the previous case. ut

Remark 4.8. On the smooth locus Csm of a nodal cubic C, with a choice of e a flex
point, recall that there exists a group law defined similarly to the case of an elliptic curve.
Given p, q ∈ Csm, define p ◦ q as the third point of intersection of C with the line
through p and q (or the tangent by p if p = q). Then by setting p · q := (p ◦ q) ◦ e,
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we get a group law · with neutral element e. The previous lemma shows that in the case
of CP given by Set-Up 4.5, where one can check that e = (1, 0) is a flex point, the map
x 7→ (x, P (x, 1)/x) is a group morphism from k∗ to Csm

P .

We shall need the following result about singular fibers of a pencil of cubic curves:

Lemma 4.9. Let 0 be a pencil of plane cubic curves. Then 0 contains at most 12 nodal
cubics.

Proof. Consider the surface S obtained by blowing up P2 at the nine base points of the
pencil. Then S admits an elliptic fibration and has Euler number c2(S) = 12, which by
Ogg’s formula is equal to the sum over the singular fibers of the valuation v(1) of the
minimal discriminant. Independently of the characteristic of the base field, each nodal
cubic contributes 1 to this sum, hence the result (see e.g. [Lie13, §5.3]). ut

Now we apply this set-up to the case of a field which admits a Galois extension of de-
gree 8.

Proposition 4.10. Assume Set-Up 4.5. Let L/k be a Galois field extension of degree 8,
b1, . . . , b8 ∈ L be an orbit under Gal(L/k), and λ ∈ k∗. Set ai = λbi , so that a1, . . . , a8
∈ L is also a Galois orbit. Then, except for at most six values of λ, the points pi =
(ai, P (ai, 1)/ai) ⊂ A2

⊂ P2 are in general position.

Before giving the proof we establish a corollary.

Corollary 4.11. Let k be an infinite field that admits at least one Galois extension of
degree 8. Then the set B of representatives of Bertini involutions up to conjugacy by
PGL3(k) has at least the same cardinality as the field k.

Proof. Assume that a1, . . . , a8 is a Galois orbit such that the points pi =

(ai, P (ai, 1)/ai) are in general position. It is sufficient to prove that for any λ ∈ k∗
except finitely many, the points qi = (λai, P (λai, 1)/(λai)) are also in general position
and are not equivalent to the pi under the action of PGL3(k). First by Proposition 4.10,
by avoiding six values of λ we can assume that the qi are in general position. Assume that
g ∈ PGL3(k) sends the pi to the qi . By assumption the nodal cubic CP from Set-Up 4.5
contains both the pi and the qi . Then g−1(CP ) is a nodal cubic through the pi , and by
Lemma 4.9 there are at most 12 of them. Moreover, a given nodal cubic is stabilized by
finitely many elements of PGL3(k), hence the result. ut

We separate the proof of Proposition 4.10 into the next three lemmas, where we always
assume Set-Up 4.5.

Lemma 4.12. There is no singular irreducible cubic passing through all the pi , with one
of them the double point.

Proof. If C is such a cubic, and C′ = σ(C) is the image of C under a non-trivial element
σ ∈ Gal(L/k), then C · C′ = 2+ 2+ 1+ · · · + 1︸ ︷︷ ︸

6

= 10, a contradiction. ut
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Lemma 4.13. No three points among the pi = (ai, P (ai, 1)/ai) lie on a line.
Proof. Assume the contrary, and denote by L a line containing three of the pi . Since
the pi lie on a nodal cubic, the line L contains exactly three points among the pi . Then
taking the Galois orbit of L we obtain a configuration of eight lines, each line containing
three of the pi , and with three lines through each pi . This is the classical Möbius–Kantor
configuration 83 (see Figure 8), where seven of the lines are represented as lines of the
plane, and the label of a vertex indicates the first coordinate of the corresponding point
in A2. More precisely, a, b, c are among the ai , and the other labels are expressed in terms
of a, b, c using Lemma 4.7.

•

• •

• •

• • •

1
bc

ac
b

1
ac

bc
a

c

a

b
a2c
=
a
b2c

b

Fig. 8. The Möbius–Kantor configuration 83.

Multiplying the labels of the bottom line we find c3
= 1. But a cubic root of unity

lives either in k or in a quadratic extension of k, in contradiction with the assumption
that c, being any one of the ai , should satisfy k(c) = L. ut

Lemma 4.14. Except for at most six values of λ, any six points among the points pi
associated to the orbit λbi are not on a conic.
Proof. Assume C is a conic through six of the pi . Since the pi lie on the cubic CP , the
Bézout Theorem implies that the remaining two points pi are not on the conicC. Consider
σ in the Galois group Gal(L/k). Then either σ(C) is equal to C, or it shares exactly four
intersection points with C. The only possibility is that the Galois orbit of C consists of
four conics, and we can group the pi into four pairs such that each conic passes through
three of the four pairs of points. Then the combinatorics is a configuration 43: through
each pair pass three conics, and each conic contains three pairs of points. Denote by
π1, π2, π3, π4 the product of the first coordinates of each pair of points. By Lemma 4.7
we have

π1π2π3 = 1, π1π2π4 = 1,
π1π3π4 = 1, π2π3π4 = 1.

It follows that π1 = π2 = π3 = π4, and then π3
i = 1 for all i. Finally, pick an element

λ ∈ k∗ such that λ6
6= 1. Now if we replace ai by λai , and the corresponding points

on CP are still in non-general position, then the same argument gives

λ6
= λ6π3

i = (λaiτ(λai))
3
= 1,
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a contradiction. We conclude that if there is a bad point of degree 8 associated to an
orbit ai , then for all λ ∈ k∗ except maybe the 6th roots of unity, the point of degree 8
associated with the orbit λai is in general position with respect to conics. ut

In the case of finite fields, for small cardinalities the previous statements are empty, and
anyway for arbitrary cardinalities one would like to estimate the cardinality of B. We
adapt the previous argument as follows.

Lemma 4.15. Assume Set-Up 4.5 for a finite field k = Fq . Let a1, . . . , a8 ∈ Fq8 be an
orbit under Gal(Fq8/Fq), and assume that the points pi = (ai, P (ai, 1)/ai) ∈ A2

⊂ P2

are in non-general position. For β ∈ F∗
q4 , set bi = βq

i−1
ai , so that b1, . . . , b8 ∈ Fq8 is also

a Galois orbit. If β 6∈ {x ∈ F∗
q4; x

6
= 1, x2

∈ Fq}, then the points qi = (bi, P (bi, 1)/bi)
are in general position.

Proof. Lemmas 4.12 and 4.13 are valid for any β, so the delicate point is only the general
position with respect to conics. With the same notation as in the proof of Lemma 4.14,
since six among the pi lie on a conic C, we find that the products πi are all equal to the
same third root of unity. Now we use the fact that over a finite field, τ : x 7→ xq

4
is

the only element of order 2 in Gal(Fq8/Fq). In particular, τ is the element of order 2 that
fixes C. It also fixes all conjugates of C and hence interchanges the two elements in each
pair of pi . Then the product πi is invariant under the Galois group Gal(Fq8/Fq), so we
have πi ∈ Fq . Pick β ∈ Fq4 r {x ∈ F∗

q4; x
6
= 1, x2

∈ Fq}, and replace the orbit of a1 by
the orbit of b1 = βa1, which still has cardinality 8. Then π1 ∈ Fq is replaced by β2π1,
which either is not a third root of the unity anymore, or is not an element of Fq . Thus
for each such choice of β the points qi = (bi, P (bi, 1)/bi) are in general position with
respect to conics. ut

Lemma 4.16. Let x, x′ be two conjugate elements in Fq8 r Fq4 that are also in the same
orbit under the action of F∗

q4 by left multiplication. Assume that one of the following
conditions holds:

(i) x is a generator of Fq8 ;
(ii) q = 2.

Then x = x′.

Proof. Assume x 6= x′. We have x′ = xq
i

for some 1 ≤ i ≤ 7, and x′/x = xq
i
−1
∈ F∗

q4 .
In particular x(q

i
−1)(q4

−1)
= 1, so that (qi−1)(q4

−1) is a non-zero multiple of order(x).
If x is a generator of Fq8 , we get (qi − 1)(q4

− 1) = d(q8
− 1) for some d > 0. This

implies 5 ≤ i ≤ 7, and reducing modulo q4 we find d ≡ −1 mod q4, hence d ≥ q4
− 1,

which gives a contradiction.
If q = 2, the group F∗28 is cyclic of order 255 = 3 · 5 · 17. Observe that an element

x ∈ F∗28 is in F28 rF24 if and only if order(x) is a multiple of 17 (namely, the possibilities
are 17, 51, 85 and 255). Then one checks that for 1 ≤ j ≤ 7, 2j − 1 is not a multiple
of 17, which gives the expected contradiction. ut
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Proposition 4.17. Let Fq be a finite field. Then the number of Bertini involutions with a
base point of degree 8, up to conjugacy by PGL3(Fq), is at least Mq , where M2 = 2,
M3 = 12, and for q ≥ 4,

Mq =
1

640
(q6
− 1).

In particular, Mq ≥ q for all q ≥ 2.

Proof. First we count the number of nodal cubics equivalent to the ones from Set-Up 4.5.
We need to choose a point in P2(Fq), and then two distinct lines defined over Fq

through this point. The number of such choices is

N1 = (q
2
+ q + 1)q(q + 1)/2.

Using the action of PGL3(Fq), we can assume that the two lines are x = 0 and z = 0, and
by Lemma 4.6 we need to count nodal cubics with equation of the form

xyz = c0x
3
+ c1x

2z+ c2xz
2
+ c3z

3, c0, c3 ∈ F∗q , c1, c2 ∈ Fq ,

and with −c0/c3 a cube in Fq . The number of choices is at least

N2 = (q − 1)2q2/3.

In fact, if 3 does not divide q − 1, then any element of Fq is a cube, and we do not need
to divide by 3 in the above formula (we shall use this remark below, for q = 2 or 3).

Consider a Galois orbit a1, . . . , a8, and the associated points pi = (ai, P (ai, 1)/ai).
If the pi are in non-general position, then Lemma 4.15 says that by multiplying by β ∈
F∗
q4 r {x; x6

= 1, x2
∈ Fq} we can produce Galois orbits in general position. Moreover,

if ai is a generator of F∗
q8 , by Lemma 4.16 these orbits are pairwise disjoint. The number

of such orbits in general position is bounded from below by the rational (q4
−7)/(q4

−1),
which is greater than 9/10 for q ≥ 3. In fact, for q = 2 the only third root of unity with
square in F2 is 1, so again we get the ratio (24

− 2)/(24
− 1) > 9/10.

The number of generators for F∗
q8 is equal to ϕ(q8

−1), where ϕ is the Euler function.
We have the following lower bound [RS62, Theorem 15]:

ϕ(n) ≥
n

eγ log(log n)+ 3
log(log n)

,

where γ is the Euler constant. One can check that for q ≥ 3, this implies ϕ(q8
− 1) ≥

q6
− 1. So we get at least

N3 =
9

10
q6
− 1
8

Galois orbits of cardinality 8 in general position on a given nodal cubic. Finally, by
Lemma 4.9, a given orbit belongs to at most 12 nodal cubics, and we also have to mod
out by the action of PGL3(Fq) whose cardinality is

|PGL3(Fq)| =
1

q − 1
(q3
− 1)(q3

− q)(q3
− q2) = q3(q3

− 1)(q2
− 1).



3164 Stéphane Lamy, Susanna Zimmermann

Finally,

Mq =
N1 ·N2 ·N3

12|PGL3(Fq)|

=
9

2 · 3 · 80 · 12
(q2
+ q + 1)q(q + 1) · (q − 1)2q2

· (q6
− 1)

q3(q3 − 1)(q2 − 1)
=

1
640

(q6
− 1).

For q = 3, we do not need the 3 in the denominator of N2, and we can replace the
coarse estimate 36

− 1 in the formula for N3 by the exact number ϕ(38
− 1) = 2560, so

that we get the better bound

M3 =
9 · 2560

2 · 80 · 12
(32
+ 3+ 1)3(3+ 1) · (3− 1)232

33(33 − 1)(32 − 1)
= 12.

Finally, for q = 2, by Lemma 4.16 we can use all 240 elements of F28 r F24 in the
estimate for N3, and not only the generators of F∗28 . Moreover, as above we can discard
the 3 in the denominator of N2, and we find

N1 = 21, N2 = 4, N3 = 27, |PGL3(F2)| = 168,

and

M2 =
21 · 4 · 27
12 · 168

=
9
8
> 1,

which we can round up to M2 = 2. ut

4.3. Jonquières maps

Let k be any field, and n ≥ 2 any dimension. We define the Jonquières subgroup J ⊂
Birk(Pn) as the subgroup isomorphic to PGL2(k(x2, . . . , xn)), via the choice of an affine
chart An ⊂ Pn and the formula

(x1, . . . , xn) 99K

(
A(x2, . . . , xn)x1 + B(x2, . . . , xn)

C(x2, . . . , xn)x1 +D(x2, . . . , xn)
, x2, . . . , xn

)
.

Recall that a group G is called perfect if it is equal to its commutator subgroup G(1). We
define the special Jonquières subgroup as the commutator subgroup of J ; this is a group
isomorphic to PSL2(k(x2, . . . , xn)). Let G be the subgroup of Birk(Pn) generated by the
special Jonquières subgroup J (1) and Autk(Pn)(1) = PSLn+1(k).

Proposition 4.18. (1) If g 6= id is an element in the special Jonquières subgroup or in
PSLn(k), then the normal subgroup�g� generated by g in G is equal to G;

(2) G is a perfect group.
Proof. (1) The groups PSL2(k(x2, . . . , xn)) and PSLn+1(k) are simple (recall that
we assume n ≥ 2, so we avoid the non-simple groups PSL2(F2) and PSL2(F3)),
and they have a non-trivial intersection, as they both contain for instance the trans-
lation (x1 + 1, x2, . . . , xn). From these facts it follows that �g� contains both
PSL2(k(x2, . . . , xn)) and PSLn+1(k), hence G.

(2) follows from the fact that PSL2(k(x2, . . . , xn)) and PSLn+1(k) are both perfect
groups (being simple and non-abelian). ut
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Corollary 4.19. (1) If ϕ : Birk(Pn) → A is a morphism to an abelian group A, then
G = 〈PSL2(k(x2, . . . , xn)),PSLn+1(k)〉 ⊂ kerϕ.

(2) If a morphism ϕ : Birk(Pn) → H sends a non-trivial element g ∈ G to 1H , then
G ⊂ kerϕ.

Now we come back to the case of dimension 2. An equivalent definition of Jonquières map
is that f ∈ Bir(P2

k) is Jonquières if it admits a base point q of degree 1 and f preserves
a general member of the pencil of lines through q. For instance a quadratic map with one
base point of degree 1 and one base point of degree 2 is Jonquières, but a quadratic map
with a unique base point of degree 3 is not Jonquières. With the identification (x, y) ∈ A2

7→ [x : y : 1] ∈ P2, a Jonquières map is written as (x, y) 799K
( A(y)x+B(y)
C(y)x+D(y)

, y
)

and admits
the degree 1 point q = [1 : 0 : 0] as a base point. Over a perfect field k one can factorize
such a map into Sarkisov links by first blowing up q to get a surface F1, then performing
a sequence of type II links over P1 between Hirzebruch surfaces, and a last contraction to
come back to P2. In particular, any Jonquières map f is an elementary generator, so that
E contains a representative equivalent to f .

Recall that by the Noether–Castelnuovo Theorem, over an algebraically closed field k
the Jonquières group J and the automorphism group PGL3(k) generate the Cremona
group Birk(P2). In this context Corollary 4.19 implies that J and PGL3(k) embed into
any non-trivial quotient of Birk(P2), in particular such a quotient cannot be finite, nor
abelian. Observe also that there exists some non-algebraically-closed field k such that
Bir(P2

k) = 〈J,PGL3(k)〉, so that the same remark applies: by [Isk91], it is sufficient that
k does not admit any extension of degree ≤ 8. For instance, one can take k to be the
composite (which in this case is also the union) of all towers of extensions of Q of degree
at most 8.

Finally, note that a Jonquières map can have base points of arbitrary degree, and in
particular of degree 8. For instance, over a suitable field k let p, q ∈ P2 be points of
respective degrees 8 and 1. Then blowing up the point q, and performing an elementary
link from F1 to F1 by blowing up p and contracting the orbit of eight fibers through p,
we get a Jonquières map j ∈ Birk(P2), which we can choose to be an involution (up
to composing with an automorphism of P2). On the other hand, by blowing up only p,
we construct a Bertini involution which has nothing to do with j . In fact, it follows from
Theorem A that b and j generate an infinite dihedral group Z/2Z ∗ Z/2Z.

5. Amalgamated structure and morphism to a free product

5.1. Bass–Serre tree of an amalgam

Our reference for this section is [Ser03]. Let G be a group, A a subgroup, and (Gi)i∈I a
collection of (proper) subgroups generating G and such that A ⊂ Gi for all i.

One constructs a graph G on which G acts as follows. The vertices are the left cosets
gA and gGi inG/A andG/Gi . For each g ∈ G and each i ∈ I , there is an edge between
the vertices gA and gGi . The group G acts on the resulting graph G by

f · gA := (fg)A, f · gGi := (fg)Gi .
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One says that G is the amalgamated product of the Gi over A, denoted G = ˚AGi ,
if it satisfies the following universal property: for any group H , and any collection of
morphisms ϕi : Gi → H that coincide onA, there exists a (necessarily unique) morphism
ϕ : G → H that extends all the ϕi . In this case, one can show that A = Gi ∩ Gj for all
i 6= j (see [Ser03, Remark after Theorem 1, p. 3]).

Gi1

Gik

Gi3

Gi2

A

Fig. 9. Fundamental domain for the Bass–Serre tree of the amalgam ˚AGi .

Recall that a star graph is a tree of diameter 2. We define the central vertex to be the
unique center of a star graph, and peripheral vertices the other vertices. When the groupG
is the amalgamated product of theGi overA then the graph G is a tree, and a fundamental
domain with respect to the action of G is the star graph pictured in Figure 9, where we
label each vertex by its stabilizer. Conversely, we have the following basic result from
Bass–Serre Theory:

Theorem 5.1 ([Ser03, §4, Theorem 10]). With the notation above, suppose that G acts
on a tree T with fundamental domain as in Figure 9 so that

• A is the stabilizer of the central vertex in the fundamental domain,
• the Gi are the stabilizers of the peripheral vertices in the fundamental domain.

Then G = ˚AGi is the amalgamated product of the Gi along A, and the graph G
constructed above is isometric to T .

Remark 5.2. If there are only two subgroupsG1 andG2 with intersectionA = G1∩G2,
it is customary to remove the vertices of valence 2 corresponding to the left cosets mod-
ulo A, and to view the fundamental domain a single edge with the following stabilizers:

• •
G1 A G2

5.2. Subcomplexes

First we define two subcomplexes of the complex X constructed in §2.2. Recall that we
say that a vertex in X has type P2 if it is of the form (P2, ϕ) for some ϕ ∈ Birk(P2).

Let XB ⊂ X be the subgraph whose edges correspond to blow-ups of degree 8 points
in P2. If b ∈ B, we denote by ηb : Sb → P2 the blow-up of the base point of degree 8
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of b. In particular, for any ϕ ∈ Birk(P2) and any α ∈ Autk(P2), we obtain the following
two edges in XB:

(Sb, ϕαηb)
ηb
ss ++

(P2, ϕ) = (P2, ϕα) (P2, ϕαb) = (P2, ϕαbα−1)

Conversely, any edge in XB has this form, and any two vertices of type P2 at distance 2
in XB differ by a Bertini involution αbα−1 for some b ∈ B and α ∈ Autk(P2).

We define another subcomplex Xe ⊂ X , by taking the closure of the complement
of XB in X .

Lemma 5.3. The intersection of the two subcomplexes XB and Xe is exactly the set of
vertices of type P2:

XB ∩ Xe = {(P2, ϕ); ϕ ∈ Birk(P2)}.

Proof. Lemma 4.3 states that an edge in X corresponding to the blow-up of a point in P2

of degree 8 is not contained in any square. Therefore, XB∩Xe contains only vertices. Now
as observed before, there are two types of vertices in XB. A vertex of the form (Sb, ϕαηb)

belongs to exactly two edges of X , which by definition are edges of the graph XB, there-
fore such a vertex does not belong to Xe. On the other hand, any vertex of type P2 belongs
to edges from both XB and Xe, associated to blow-ups of points of respective degrees 8
or distinct from 8. ut

We denote respectively X ◦B ⊂ XB and X ◦e ⊂ Xe the connected components containing
(P2, id).

Lemma 5.4. (1) Both Xe and XB are invariant under the action of Birk(P2).
(2) The graph X ◦B is a tree.

Proof. (1) An edge in XB has the form (S, ϕη)→ (P2, ϕ) for some ϕ ∈ Birk(P2) and η
a blow-up of a point of degree 8. Now g ∈ Birk(P2) sends this edge to (S, gϕη) →
(P2, gϕ), which is again an edge of the same form, hence in XB. This shows that XB is
invariant under the action of Birk(P2), thus the same is true for the closure of its comple-
ment.

(2) Assume that the graph X ◦B is not a tree. Then there exists a sequence of edges
e1, . . . , er in X ◦B that form an embedded loop. Recall that by Proposition 3.15 the com-
plex X is simply connected. By collapsing in X all edges of this loop except e1, we obtain
a space which is still simply connected, and which is the connected sum of a circle (cor-
responding to e1) and another space. By the van Kampen theorem such a space should
have fundamental group of the form Z ∗G for some G, a contradiction. ut

We recall the following definitions of subgroups of Birk(P2) that were given in the intro-
duction:

Ge := 〈Autk(P2), E r B〉, Gb := 〈Autk(P2), b〉, b ∈ B, GB := 〈Autk(P2),B〉.

Observe that GB = 〈Gb; b ∈ B〉.



3168 Stéphane Lamy, Susanna Zimmermann

Lemma 5.5. Let g ∈ Birk(P2). Then

(1) g(X ◦e ) = X ◦e if and only if g ∈ Ge;
(2) g(X ◦B) = X ◦B if and only if g ∈ GB.

Proof. (1) Let g ∈ Birk(P2) be such that g(X ◦e ) = X ◦e , and in particular g · (P2, id) =
(P2, g) ∈ X ◦e . Pick a path γ of edges connecting (P2, g) and (P2, id) inside X ◦e . By
Lemma 5.3, the path γ does not involve any edge from XB. By cutting at each interme-
diate vertex of type P2, we write γ as a composition of paths γi , where each γi links two
vertices of type P2 whose markings differ by an element of E rB. It follows that g ∈ Ge.

Conversely, if g ∈ Ge we write g = g1 · · · gn for some g1, . . . , gn ∈ Autk(P2)∪ErB.
Then for each i, there exists a path from (P2, g1 · · · gi) to (P2, g1 · · · gi+1) inside X ◦e . By
joining them we obtain a path in X ◦e starting at (P2, id) and ending at (P2, g) = g·(P2, id),
so that the connected component g(X ◦e ) coincides with X ◦e .

(2) The proof is entirely similar, and left to the reader. ut

For each b ∈ B, we define Tb to be the subgraph of X ◦B obtained as the orbit of the edge
between (P2, id) and (Sb, ηb), under the action of Gb = 〈Autk(P2), b〉. Since b stabilizes
(Sb, ηb) and Autk(P2) stabilizes (P2, id), we infer that Tb is connected, that is, Tb is a
subtree of X ◦B (which is a tree by Lemma 5.4(2)).

Lemma 5.6. Let b, b′ ∈ B and g, g′ ∈ Birk(P2). If g(Tb) and g′(Tb′) are distinct, then
g(Tb) ∩ g′(Tb′) is either empty or equal to a single vertex of type P2.

Proof. By using the action of Birk(P2), we can assume that g′ = id. If g 6∈ GB, then
by Lemma 5.5(2), g(Tb) and Tb′ are in distinct connected components of XB, and so are
disjoint. Now we assume g ∈ GB, so that g(Tb) and Tb′ are two subtrees of X ◦B.
• First we consider the case b 6= b′.
Suppose that g(Tb) and Tb′ contain a common edge. Then in particular they contain a

vertex of the form (Sb, ϕηb), and the two edges from this vertex. But then the markings of
the two corresponding vertices of type P2 should differ by composition with an element
of the form αbα−1

= α′b′α′−1 for some α, α′ ∈ Autk(P2), and this contradicts our
assumption that b, b′ are two distinct representatives of Bertini involutions. Now, since
g(Tb), Tb′ are two subtrees of X ◦B without a common edge, they cannot have more than
one common vertex, which has to be of type P2.
• Now we assume b = b′.
By definition of Tb, we have Tb = g(Tb) if and only if g ∈ Gb. So we can assume

that g ∈ GB rGb. Now if g(Tb)∩Tb contains a vertex of the form (Sb, ϕηb), then it also
contains the two neighbor vertices of type P2. But if (P2, ϕ) ∈ g(Tb)∩Tb, then we should
have ϕ = gf1 = f2 with f1, f2 ∈ Gb, in contradiction with g 6∈ Gb. So we conclude that
g(Tb) ∩ Tb is empty. ut

5.3. Quotients

Let Y be any connected subcomplex of X . We define a star graph star(Y) associated
with Y , by requiring that the peripheral vertices of star(Y) are in one-to-one correspon-
dence with the vertices of Y of type P2. Then we have a uniquely defined simplicial map
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from Y to star(Y), which is a bijection when restricted to the vertices of type P2, and
which sends any other vertex to the central vertex of star(Y). We call star(Y) together
with the map Y → star(Y) the star quotient of Y .

Now assume that (Yi) is a collection of connected subcomplexes of X such that X =⋃
i Yi , and for any i, j either Yi = Yj or Yi ∩ Yj contains only vertices of type P2. Then

we can put together all star quotients Yi → star(Yi) in order to get a map from X to a
well defined connected graph.

Now we check that we can apply this construction to the family of subcomplexes

(Yi)i = {g(X ◦e ); g ∈ Birk(P2)} ∪ {g(Tb); g ∈ Birk(P2), b ∈ B}.

First, the g(Tb), g ∈ GB, b ∈ B, form a cover of X ◦B: any vertex in X ◦B at distance 2
from (P2, id) has the form (P2, αb) for some b ∈ B and α ∈ Autk(P2), and any edge
of X ◦B can be mapped to an edge issued from (P2, id) by applying an element of GB.
Lemma 5.4(1) implies that the g(X ◦e ) are exactly the connected components of Xe, and
in particular they are pairwise equal or disjoint. The same lemma implies that the g(Tb)
cover XB. This implies that the family of complexes (Yi)i is a cover of X . Moreover, by
Lemma 5.3, any intersection g(X ◦e ) ∩ g′(Tb) contains only vertices of type P2. Finally,
by Lemma 5.6, any intersection g(Tb) ∩ g′(Tb′) between distinct subcomplexes is either
empty or equal to a single vertex of type P2.

We denote by TQ the resulting quotient graph, and by σ : X → TQ the associated
simplicial map. By a slight abuse of notation we shall use the same notation (P2, ϕ)

either for a vertex of type P2 in X , or for the corresponding vertex in TQ.

Lemma 5.7. The connected graph TQ is a tree.

Proof. Let γ be a loop in TQ. We can assume that γ is parametrized by arc length, with
base point a vertex of the form (P2, ϕ). For each even i, [γ (i), γ (i + 2)] is a segment
connecting two peripheral vertices in star(Y) for some connected subcomplex Y ⊂ X . In
particular, we can lift this segment as a path in Y . Thus we obtain a lift γ̃ of the entire
path γ , and this lift is also a closed loop because the map π is a bijection when restricted
to vertices of the form (P2, ϕ). Now by Proposition 3.15 the loop γ̃ is trivial in π1(X ),
hence the push-forward σ∗(γ̃ ) = γ is trivial in π1(TQ). ut

Lemma 5.8. The tree TQ inherits the action of Birk(P2) on X , and

(1) the group Autk(P2) is the stabilizer of (P2, id),
(2) the group Ge is the stabilizer of the central vertex of star(X ◦e ),
(3) for each b ∈ B, the group Gb is the stabilizer of the central vertex of star(Tb).

Proof. By construction, the family

(Yi)i = {g(X ◦e ); g ∈ Birk(P2)} ∪ {g(Tb); g ∈ Birk(P2), b ∈ B}

of subcomplexes involved in the construction of TQ is invariant under the action of
Birk(P2), hence the action descends to TQ. Since the quotient map σ : X → TQ is a
bijection when restricted to vertices of type P2, the stabilizers of these vertices remain
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(P2, id)

(P2, b)

(P2, α1bα
−1
1 )

(P2, α2bα
−1
2 )

(P2, bα1bα
−1
1 )

(P2, bα2bα
−1
2 )

(P2, bα2bα
−1
1 )

(P2, bα3bα2bα
−1
1 )

(P2, e2)

(P2, e1)

(P2, e3)

(P2, e4)

(P2, e5)

(P2, e6)

(P2, e7)

(P2, e1b)

(P2, e1α1bα
−1
1 )

(P2, e1α3bα2bα
−1
1 )

(P2, e1α2bα
−1
2 )

(P2, e1bα1bα
−1
1 )

(P2, e1bα2bα
−1
2 )

(P2, e1bα2bα1)

star(Tb)

star(e1(Tb))

star(Xe)

Fig. 10. A few vertices of the tree TQ, where ei ∈ Ge, b ∈ B and αi ∈ Autk(P2).

the same in TQ; this gives (1). The stabilizer of the central vertex of star(Yi) corresponds
to the stabilizer of the subcomplex Yi for the initial action on X . So the remaining two
assertions follow from Lemma 5.5(1) and the definition of Tb. ut

Observe that each vertex of TQ is either of the form (P2, ϕ), or is the central vertex of
star(Y) for some subcomplex Y in the family. These two types of vertices are preserved
by the action of Birk(P2), so that TQ has a natural structure of a bicolored tree.

5.4. Structure of the Cremona group

In this last section we prove the results stated in the introduction.

Proof of Theorem A. Since TQ is a bicolored tree, and the action of Birk(P2) on vertices
of type P2 is transitive, we can look for a fundamental domain of the action inside the ball
of center (P2, id) and radius 1. In fact, the whole ball is a fundamental domain, indeed
Autk(P2) is the stabilizer of (P2, id) (see Lemma 5.8), and we now check that Autk(P2)

also fixes each neighbor vertex. First, for each b ∈ B the central vertex of star(Tb) is a
neighbor of (P2, id), and by Lemma 5.8 the corresponding stabilizer is Gb. Then the last
remaining neighbor vertex is the central vertex of star(X ◦e ), whose stabilizer isGe, by the
same lemma.

By applying Theorem 5.1 to the action of Birk(P2) on the tree TQ, we find that
Birk(P2) is isomorphic to ˚Autk(P2)Gi where I = B ∪ {e}.
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Now we prove that the action of Birk(P2) on TQ is faithful, by proving that the in-
tersection of the stabilizers of (P2, id) and (P2, b) is trivial, for any b ∈ B. If g ∈
Stab(P2, id) ∩ Stab(P2, b), we have g ∈ Autk(P2) and bgb = g′ ∈ Autk(P2), so that
bg = g′b. But these two maps cannot have the same base points unless g = id, because
any automorphism of P2 preserving eight points in general position is the identity. ut

Remark 5.9. If the field k does not have any Galois extension of degree 8, i.e. if B is
empty, we have XB = ∅, X ◦e = Xe = X and TQ = star(X ◦e ). This reflects the fact that in
this case Birk(P2) = Ge. In fact, trivially Birk(P2) ' Autk(P2) ∗Autk(P2)∩Ge

Ge = Ge,
and TQ is its Bass–Serre tree, whose fundamental domain is the edge between (P2, id)
and the central vertex of star(X ◦e ).
Proof of Corollary B. Let I = B ∪ {e}. Then Theorem A gives

Birk(P2) = ˚
Autk(P2)

Gi =
(

˚
Autk(P2)

Gb

)
∗Autk(P2) Ge.

Now we have
˚

Autk(P2)
Gb = 〈Autk(P2),Gb | b ∈ B〉 = GB,

from which the claim follows. The reason why Birk(P2) acts faithfully on the Bass–Serre
tree of GB ∗Autk(P2) Ge is the same as in the proof of Theorem A. ut

Proof of Theorem C. (1) Let b ∈ B be a Bertini involution, and consider the edge in the
tree X ◦B between the vertices (P2, id) and (Sb, ηb), where ηb : Sb → P2 is the blow-up
of the base point of degree 8 of b. Recall from Lemma 5.5(2) that the group GB acts
on X ◦B. The involution b fixes the vertex (Sb, ηb) and exchanges the two edges attached
to it. In particular, b does not fix the vertex (P2, id). On the other hand, the subgroup
Autk(P2) stabilizes (P2, id), and any α ∈ Autk(P2) that also stabilizes (Sb, ηb) must be
the identity, because any automorphism of P2 preserving eight points in general position
is the identity. By definition the tree Tb is the orbit of the edge from (P2, id) to (Sb, ηb),
under the action of the subgroup Gb = 〈Autk(P2), b〉. Therefore the group Gb acts on
the tree Tb with fundamental domain a single edge, with stabilizer of vertices Autk(P2)

and 〈b〉, and trivial stabilizer for the entire edge. By Theorem 5.1 (or more precisely by
using the special convention for two subgroups, see Remark 5.2), it follows thatGb is the
free product

Gb ' Autk(P2) ∗ 〈b〉,

and Tb is the associated Bass–Serre tree.
There are natural injections of Ge and Gb ' Autk(P2) ∗ 〈b〉 in both groups

Birk(P2) ' ˚
Autk(P2)

Gi and Ge ∗
(

˚
b∈B
〈b〉
)
.

By the universal property of the free (or amalgamated) product we get morphisms in both
direction, which are inverse to each other, and thus give the expected isomorphism

Birk(P2) ' Ge ∗
(

˚
b∈B

Z/2Z
)
.
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(2) By the universal property of the free product, applied to the trivial morphism
from Ge and the identity map on the second factor, we get a surjective homomorphism
Birk(P2)→ ˚B Z/2Z.

(3) The result is immediate by composing the above morphism with the abelianization
morphism

˚
B

Z/2Z→
⊕
B

Z/2Z. ut

Remark 5.10. Another way to express point (2) of Theorem C is that we have isomor-
phisms

Birk(P2)/〈〈Ge〉〉
∼
−→ ˚

b∈B
(Gb/〈〈Autk(P2)〉〉)

∼
−→ ˚

b∈B
Z/2Z.
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