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Generating the plane Cremona groups by involutions

Stéphane Lamy and Julia Schneider

Abstract

We prove that over any perfect field, the plane Cremona group is generated by involu-
tions.

1. Introduction

The plane Cremona group over a field k is the group Birk
(
P2
)
of birational transformations of

the projective plane. In concrete terms, a map g ∈ Birk
(
P2
)
can be written in homogeneous

coordinates as

g : [x : y : z] 99K [P0 : P1 : P2] ,

where the Pi ∈ k[x, y, z] are homogeneous polynomials of the same degree and without non-
constant common factor, and such that g admits an inverse of the same form. In a more geometric
way, over an algebraically closed field, any birational map between surfaces can be understood
as a sequence of blow-ups and inverses of blow-ups. Similarly, in the context of surfaces defined
over a perfect field, the elementary operations to factorize birational maps are blow-ups of Galois
orbits. It is remarkable that a single class of elementary transformations allows one to reconstruct
any birational map. However, a blow-up is a transformation between two non-isomorphic surfaces,
so it leaves open the question of finding a natural generating set for the group Birk

(
P2
)
. Over an

algebraically closed field, Noether’s theorem gives a neat answer: the Cremona group is generated
by Autk

(
P2
)
= PGL3(k) and by a single extra generator, the standard quadratic involution

σ : [x : y : z] 99K [yz : xz : xy]. Since in this case PGL3(k) is generated by involutions, we obtain
in particular that the Cremona group is generated by involutions.

The main result of the present paper is a generalization of this last statement to the case of
an arbitrary perfect field k.

Theorem 1.1. Let k be a perfect field. The Cremona group Birk
(
P2
)
is generated by involutions.

One motivation for this result was to understand the abelianization of the Cremona group,
or in other words the possible surjective homomorphisms from the Cremona group to an abelian
group. Over many perfect fields including all number fields, finite fields, or the real numbers, we
know [Zim18, LZ20, Sch22] that the abelianization of the Cremona group contains an infinite
direct sum of groups of order 2. An immediate corollary of Theorem 1.1 is that there is no
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surjective homomorphism from Birk
(
P2
)
to Z, or to Z/nZ for n ⩾ 3. We can rephrase this

remark as follows.

Corollary 1.2. Let k be a perfect field. The abelianization of the Cremona group Birk
(
P2
)
is

a group of exponent 2 (any non-trivial element has order 2).

In contrast, in higher dimension it was recently proved by E. Shinder and H.-Y. Lin [LS22]
that BirQ

(
P3
)
and BirC

(
P4
)
are not generated by involutions, as a consequence of the fact that

these groups admit homomorphisms to Z. In another direction, C. Shramov has proved that
some Severi–Brauer surfaces (forms of P2 without any rational point) admit an infinite group of
birational maps without any involution [Shr20, Theorem 1.2]. So it was not clear a priori whether
the groups Birk

(
P2
)
should always be generated by involutions. In retrospect the result seems

to be an accident of low dimension, and this might justify that the proof cannot be completely
conceptual: even if we use the Sarkisov program as a general framework, at some points some
combinatorial miracles have to occur in order for the result to hold true.

We mention that over the field of real numbers, the generation of BirR
(
P2
)
by involutions

was proved by S. Zimmermann in her Ph.D. thesis [Zim16, Corollary II.4.12]; she has also given
a complete description of the abelianization of BirR

(
P2
)
[Zim18]. Over the field with two ele-

ments, the generation of BirF2

(
P2
)
by involutions was established by the second author [Sch21],

with a strategy similar to that in the present paper, but with some cases relying on an exhaustive
search assisted by computer.

We now explain our strategy of proof for Theorem 1.1. To obtain a set of generators for
Birk

(
P2
)
, our first step is to apply the Sarkisov program. As a byproduct of the Sarkisov fac-

torization, we get a natural invariant associated with each element f ∈ Birk
(
P2
)
, namely the

minimal number sl(f) ⩾ 0 of Sarkisov links necessary to factorize f . Then we can define a notion
of irreducible element with respect to this Sarkisov length, and we obtain in Proposition 2.3 an
abstract factorization result in terms of irreducible elements.

Then we look more closely at the geometry of the involved links. There is a known list of
possible Sarkisov links between rational surfaces, due to V. Iskovskikh [Isk91]; see also [Cor95]
and [Isk96]. Here we face the same problem as with blow-ups: a Sarkisov link is (in general)
not a birational map between two isomorphic surfaces, so to deduce a set of generators for the
Cremona group, we have to explain how to concatenate Sarkisov links. This was also done by
V. Iskovskikh but resulted in very long lists that are not easy to use (see for instance [Isk96,
Theorem 2.6], whose statement runs over eight pages). In Theorem 2.4 and Proposition 2.5,
we propose a compact way to express these results; we also provide in Appendix A a mostly
self-contained proof of the classification of Sarkisov links between rational surfaces.

We can distinguish two kinds of irreducible elements in Birk
(
P2
)
: those involving links be-

tween conic bundles, and so preserving a rational fibration, and other sporadic cases with no
such fibration. In Section 3.1, we describe the possible fibrations, which turn out to be of one of
the following types: pencil of lines through a rational point, or pencil of conics through a Galois
orbit of size 4, or two Galois orbits of size 2. Then in Proposition 3.7, we get a more geometric
set of generators. We can see this as an analog of another classical result, Castelnuovo’s theorem,
which asserts that over an algebraically closed field, the Cremona group is generated by linear
automorphisms and Jonquières maps.

The last step towards the proof of Theorem 1.1 is to factorize each of these generators into
a product of involutions. For some generators, we identify some matrix groups to which they
belong, such as a projective linear group or an orthogonal group. Then we use classical results

112



Generating the plane Cremona groups by involutions

about the generation of these groups by involutions, such as the Cartan–Dieudonné theorem.
For the remaining sporadic generators, in Section 4, we manage to write them as products of
quadratic, Geiser, or Bertini involutions. To find these involutions we use elementary relations
between Sarkisov links, which we can visualize as polygonal pieces encoded by Del Pezzo surfaces
of Picard rank 3. In Appendix B, we give an exhaustive list of all such pieces, even if in the present
paper we only use a few of them.

2. Sarkisov links

In this section, we recall the notion of Sarkisov link and state the classification of Sarkisov links
for rational surfaces over a perfect field. We also introduce the notion of irreducible element in the
Cremona group, and in Proposition 2.5, we get a first description of such irreducible elements.

2.1 Generation by irreducible elements

Let k be a perfect field and ka an algebraic closure of k. Let X be an algebraic variety de-
fined over k, and denote by X(k) the set of k-rational points on X. The absolute Galois group
Gal(ka/k) acts on X×SpeckSpeck

a through the second factor, and in particular it acts on X(ka).
We call d-point on X an orbit of size d in X(ka) under the action of Gal(ka/k). When d = 1
we keep the terminology rational point instead of 1-point. If p = {p1, . . . , pd} is a d-point on
a surface X, we say that each pi ∈ X(ka) is a geometric component of p (or simply a compo-
nent). Given g ∈ Gal(ka/k), we denote by pgi the image of the component pi under the action
of g.

Following [LZ20], we now recall the definition of a rank r fibration, which unifies the con-
cepts of Del Pezzo surfaces and conic bundles, of Sarkisov links between such surfaces, and of
elementary relations between such links.

By a surface we always mean a smooth projective surface defined over a perfect field k. We
say that a surface X is rational if it is birational to P2 over k. Let X be a rational surface
and r ⩾ 1 an integer. We say that X is a rank r fibration if there exists a surjective morphism
X B with connected fibers, relatively ample anticanonical divisor, and relative Picard rank
equal to r, where B is a point or a smooth curve. Since we assume X rational, there are only
two possibilities for B: either B = pt is a point and X is a Del Pezzo surface of Picard rank r
over k, or B = P1 and X P1 is a conic bundle with r−1 orbits of singular fibers. In particular,
a rank 1 fibration is the same as a rational surface with a structure of Mori fiber space. Since
in this paper we are only interested in rational surfaces, we put the rationality condition in the
definition in order to avoid repeating “rational” rank r fibration everywhere.

A marked rank r fibration is a rank r fibration X/B together with a birational map φ :
X 99K P2. Let (X/B,φ) and (X ′/B′, φ′) be two marked fibrations, of respective ranks r and r′,
and consider the birational map φ′−1 ◦φ : X 99K X ′ induced by the markings. We say that X/B
factorizes through X ′/B′, or that X ′/B′ is dominated by X/B, if this induced map is a morphism
and if there exists a morphism B′ B such that the following diagram commutes:

X B

X ′ B′ .
φ′−1◦φ

This implies r ⩾ r′. If B′ B and φ′−1 ◦φ : X X ′ are both isomorphism, we say that the two
fibrations are equivalent. The Cremona group acts on equivalence classes of marked fibration, via
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post-composition:

f · (X/B,φ) = (X/B, f ◦ φ) .
From here on, all rank r fibrations are supposed to be marked, but we usually keep the marking
implicit.

We say that a d-point on a Del Pezzo surface (respectively, on a conic bundle) is general if
the blow-up of the orbit is still a Del Pezzo surface (respectively, a conic bundle over the same
base curve).

Lemma 2.1. Assume that X/B is a rank r + 1 fibration that factorizes through a rank r fibra-
tion X ′/B′. Then one of the following holds:

(1) either B ≃ B′, and there exists a general d-point on X ′ such that X X ′ is the blow-up
of p;

(2) or B = P1, B′ = pt, and X X ′ is an isomorphism.

Proof. By the additivity of the relative Picard rank, one of the morphisms X X ′ or B′ B
is an isomorphism, and the other one has relative Picard rank 1. This gives the two cases of the
statement.

The piece of a rank r fibration X/B is the (r − 1)-dimensional combinatorial polytope con-
structed as follows: Each rank d fibration dominated by X/B is a (d−1)-dimensional face, and for
each pair of faces Xi/Bi, i = 1, 2, the face X2/B2 lies in X1/B1 if and only if X1/B1 dominates
X2/B2. We write (r−1)-piece when we want to emphasize the dimension of the piece (associated
with a rank r fibration). We now consider more closely the case of 1-pieces, which turn out to
encode Sarkisov links.

Let Y/BY be a rank 2 fibration. As a consequence of the two-rays game, there are exactly
two rank 1 fibrations X/B and X ′/B′ dominated by Y/BY . We say that the induced birational
map X 99K X ′ is a Sarkisov link. Using Lemma 2.1, we can distinguish between four types of
Sarkisov links, depending on whether the domination of X/B (respectively, X ′/B′) by Y/BY is
a blow-up or a change of base. In Table 2.1, we describe these four types. The first column is
the usual numbering in the literature, where for type II we moreover distinguish between the
cases where the common base of the fibrations is P1 or a point. Observe here that, by definition,
a link of type II over P1 sends a general fiber of X/P1 to a fiber of X ′/P1. The second column
shows the classical diagram, which is often taken as a definition for the Sarkisov links. Here an

arrow
d

refers to the blow-up of a general d-point. The third column shows the 1-piece with
the rank 2 fibration in the center of the edge, dominating the two rank 1 fibrations X/B and
X ′/B′ on the left and right vertices. Finally, the last column shows the shorthand that we shall
use in the text.

In [LZ20, Proposition 2.6], it was shown that a 2-piece (or rather its geometric realization) is
homeomorphic to a disk, and we will draw it as a regular polygon. The boundary of the polygon
corresponds to a sequence of Sarkisov links whose product is an automorphism: we say that
the piece encodes an elementary relation between Sarkisov links. See Appendix B for a list of
all 2-dimensional pieces given by a rank 3 fibration X/pt, where X is a Del Pezzo surface. It
is in fact true that for any d, a d-piece is homeomorphic to a convex polytope of dimension d,
with vertices correspond to Mori fiber spaces, edges to Sarkisov links, and 2-dimensional faces
to elementary relations. We do not give details since in this paper we shall only use d-pieces
with d = 1 or 2.
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Table 2.1. Sarkisov links

Type Diagram Piece Short notation

I

X ′

X P1

pt

d

X/pt X ′/pt X ′/P1d
X

d
99K X ′

II/pt

Y

X X ′

pt

d d′

X/pt Y/pt X ′/pt
d d′

X
d d′
99K X ′

II/P1

Y

X X ′

P1

d d

X/P1 Y/P1 X ′/P1d d
X

d d
99K X ′

III

X

P1 X ′

pt

d

X/P1 X/pt X ′/pt
d

X
d

X ′

IV

X

P1 P1

pt

X/P1 X/pt X/P1 X
IV

X

We define BirMorik
(
P2
)
as the groupoid of birational maps between rank 1 fibrations (or

equivalently, between rational Mori fiber spaces, hence the name). The Sarkisov program can be
phrased as follows (see [LZ20, Proposition 3.14]).

Proposition 2.2. The groupoid BirMorik
(
P2
)
is generated by Sarkisov links and automor-

phisms.

Given g ∈ BirMorik
(
P2
)
, we call Sarkisov length of g, denoted by sl(g), the minimal number

of Sarkisov links necessary to factorize g. Now assume f ∈ Birk
(
P2
)
. We say that f is reducible

if we can write f = f2 ◦ f1 with fi ∈ Birk
(
P2
)
and sl(fi) < sl(f) for i = 1, 2. Otherwise, we say

that f is irreducible. In particular, sl(f) = 0 if and only if f ∈ Autk
(
P2
)
, and such elements

are trivially irreducible. As an immediate consequence of Proposition 2.2 and of the definition of
irreducible elements, we have the following.

Proposition 2.3. The Cremona group Birk
(
P2
)
is generated by its irreducible elements.
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2.2 The graph of Sarkisov links

Let D be the set of isomorphy classes of k-rational Del Pezzo surfaces of Picard rank 1 and C
the set of isomorphy classes of k-rational conic bundles of relative Picard rank 1. We now define
several subsets Di ⊂ D and Cj ⊂ C. The index always refers to the degree of the corresponding
surfaces, by which we mean the self-intersection of the canonical divisor. Starting from P2 ∈ D,
each definition is in terms of explicit Sarkisov links, from an already defined class of surfaces.

• Let D8 ⊂ D be the set of surfaces obtained by blowing up a 2-point on P2 and then blowing
down the transform of the line through this point. Observe that any X ∈ D8 is isomorphic
to P1 ×P1 over ka, and so we can speak of the bidegree of a divisor on X. We call diagonal
any curve on X of bidegree (1, 1). Similarly, we call vertical ruling (respectively, horizontal
ruling) any curve of bidegree (1, 0) (respectively, (0, 1)), necessarily defined over ka but not
over k.

• Let D5 ⊂ D be the set of surfaces obtained by blowing up a general 5-point on P2 and then
blowing down the transform of the smooth conic through this point.

• Let D6 ⊂ D be the set of surfaces obtained by blowing up a general 3-point on a surface
X ∈ D8 and then blowing down the transform of the smooth diagonal through this point.

• Let C5 ⊂ C be the set of conic bundles obtained by blowing up a general 4-point on P2 and
taking the transform of conics through this point.

• Let C6 ⊂ C be the set of conic bundles obtained by blowing up a general 2-point on X ∈ D8,
and taking the transform of diagonals through this point. Observe that when we think of
X as coming from the blow-up of a 2-point on P2 followed by the contraction of a line, the
conic bundle on a surface in the set C6 corresponds to the transform of conics in P2 passing
through two 2-points.

• Let C8 = {Fn | n ⩾ 0} ⊂ C be the set of Hirzebruch surfaces, with their structure of conic
bundle (precisely, of P1-bundle over P1, with a section of self-intersection −n).

We say that a surface X ∈ D8 is of type D8, and similarly with the other subsets. In Ap-
pendix A, we give a proof of the following theorem, which can also be extracted from [Isk96].
The content of the theorem is summed up in Figure 2.1, adapted from [Sch22]. The label on each
edge indicates the type of Sarkisov link (according to the numbering in Table 2.1) and the size
of the blown-up Galois orbits.

Theorem 2.4. Let k be a perfect field.

(1) Given any (marked) rank 1 fibration X/B, the surface X lies in one of the following seven
pairwise disjoint sets, which form the vertices of the graph in Figure 2.1:{

P2
}
, D5 , D6 , D8 , C5 , C6 , C8 .

In particular, D = D5 ∪ D6 ∪ D8 ∪
{
P2
}
and C = C5 ∪ C6 ∪ C8.

(2) Let X 99K X ′ be a Sarkisov link of type I or II between rank 1 fibrations. Then the type
of X ′ is uniquely defined by the type of X and the size of the blown-up Galois orbit, as
indicated by the edges on the graph in Figure 2.1.

(3) Let X 99K X ′ be a Sarkisov link of type IV between rank 1 fibrations. Then X = Y = F0 =
P1 × P1, and the link is the change of ruling.

From Theorem 2.4, any factorization into Sarkisov links of a birational map between rank 1
fibrations corresponds to a path in the graph of Figure 2.1. In particular, any factorization of an
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{P2}

D5

D8

D6

C5 C6{F0,F1, . . .} = C8

I or
III:1

I
or

II
I:
4

II
:1
:5

II:2:1
II
:3
:3

II
:6
:6

II
:7
:7

II
:8
:8

II
:2
:5

I
o
r
II
I:
2

II
:1
:3

II
:4
:4

II
:6
:6

II
:7
:7

II
:3
:3

II
:4
:4

II
:2
:2

II
:3
:3

II
:4
:4

II
:5
:5

II:d:dII:d:dII:d:d

IV

Figure 2.1. Sarkisov links between rational surfaces over a perfect field

element of Birk
(
P2
)
corresponds to a closed path based at the vertex

{
P2
}
. A natural question

is to ask about the converse: is any path in the graph realized by at least one composition of
Sarkisov links? We shall use the following partial positive answer to this question, which follows
from the definition of the sets Di and Ci:

• Given X ∈ D8 ∪ D5 ∪ C5, there exists a Sarkisov link from X to P2.

• Given X ∈ D6 ∪ C6, there exists a composition of two Sarkisov links from X to P2, via an
intermediate surface X ′ ∈ D8;

• Given X ∈ C8, there exists a Sarkisov link from X to P2 if and only if X = F1.

Let f ∈ Birk
(
P2
)
be an irreducible element. We say that f is of Del Pezzo type if it admits

a minimal factorization using only links of type II over pt, and f is of fibering type if it admits
a minimal factorization containing a link of type I (and so also a link of type III). In other words,
in terms of the closed path associated with a minimal factorization, f is of Del Pezzo type if the
path visits at most the vertices

{
P2
}
, D8, D6, D5, and is of fibering type if the path visits at

least one of the vertices C8, C6, or C5. Observe that these two classes of irreducible elements have
no reason to be disjoint since a minimal factorization into Sarkisov links is not unique. (From
Figure B.11 the interested reader can cook up an example of a map f ∈ Birk

(
P2
)
with sl(f) = 3

and admitting two minimal factorizations of distinct types.)

Proposition 2.5. Let f ∈ Birk
(
P2
)
be an irreducible element.

(1) A minimal factorization of f never contains a link of type IV.

117



S. Lamy and J. Schneider

Table 2.2. Irreducible generators of Del Pezzo type in Proposition 2.5(4) (the last column
corresponds to the study in Section 4)

sl(f) Factorization type Note

0 − Automorphism

1

P2 3 3
99K P2 Quadratic simplification

P2 6 6
99K P2 See Lemma 4.12

P2 7 7
99K P2 Geiser simplification

P2 8 8
99K P2 Bertini simplification

2
P2 2 1

99K D8
1 2
99K P2 Quadratic simplification

P2 5 1
99K D5

1 5
99K P2 See Lemma 4.6

3

P2 2 1
99K D8

4 4
99K D8

1 2
99K P2 See Lemma 4.8

P2 2 1
99K D8

6 6
99K D8

1 2
99K P2 Geiser simplification

P2 2 1
99K D8

7 7
99K D8

1 2
99K P2 Bertini simplification

P2 5 1
99K D5

3 3
99K D5

1 5
99K P2 Geiser simplification

P2 5 1
99K D5

4 4
99K D5

1 5
99K P2 Bertini simplification

P2 5 1
99K D5

2 5
99K D8

1 2
99K P2 See Lemma 4.11

P2 2 1
99K D8

5 2
99K D5

1 5
99K P2 inverse of the previous one

4 P2 2 1
99K D8

3 1
99K D6

1 3
99K D8

1 2
99K P2 See Lemma 4.7

5

P2 2 1
99K D8

3 1
99K D6

2 2
99K D6

1 3
99K D8

1 2
99K P2 See Lemma 4.10

P2 2 1
99K D8

3 1
99K D6

3 3
99K D6

1 3
99K D8

1 2
99K P2 See Lemma 4.9

P2 2 1
99K D8

3 1
99K D6

4 4
99K D6

1 3
99K D8

1 2
99K P2 Geiser simplification

P2 2 1
99K D8

3 1
99K D6

5 5
99K D6

1 3
99K D8

1 2
99K P2 Bertini simplification

(2) A minimal factorization of f never contains a link of type III immediately following a link
of type I.

(3) If f is of fibering type, then f admits a minimal factorization of one of the following forms:

(i) P2 1
99K F1 ∈ C8, followed by a certain number r ⩾ 1 of links of type II between Hirzebruch

surfaces, and a final link F1
1 P2, so in particular sl(f) = 2 + r ⩾ 3;

(ii) P2 4
99K C5 d d

99K C5
4 P2, so sl(f) = 3;

(iii) P2 2 1
99K D8

2
99K C6 d d

99K C6
2 D8

1 2
99K P2, so sl(f) = 5.

(4) If f is of Del Pezzo type, then sl(f) ⩽ 5, and f admits a minimal factorization of one the
forms listed in Table 2.2.

Proof. (1) By Theorem 2.4(3), we know that a link of type IV is the change of ruling on F0.
Assume that f admits a minimal factorization f = α−1 ◦ χ ◦ β, where χ : F0 F0 is a link of
type IV and α, β : P2 F0 are compositions of Sarkisov links. Observe that P2 and F0 cannot
be connected by a single link, so sl(α) ⩾ 2 and sl(β) ⩾ 2. Let γ−1 : F0 99K P2 be the composition
of two Sarkisov links, corresponding to the blow-up of a rational point x ∈ F0 followed by the
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contraction of the two rules through x. Then we can write

f =
(
α−1 ◦ χ ◦ γ

)
◦
(
γ−1 ◦ β

)
.

We have sl
(
α−1 ◦ χ ◦ γ

)
⩽ sl(f) and sl

(
γ−1 ◦ β

)
< sl(f), so by the irreducibility of f , the first

inequality must be an equality, and this gives sl(β) = sl(γ) = 2. Similarly, sl(α) = 2, and both α
and β are composition of two links P2 99K F1 99K F0. But then α−1χα ∈ Autk

(
P2
)
, and writing

f =
(
α−1 ◦ χ ◦ α

)
◦
(
α−1 ◦ β

)
,

we contradict our assumption that f is irreducible.

(2) IfX ∈ Ci with i ∈ {5, 6, 8}, the Picard rank ofX is 2, and the two extremal rays correspond

respectively to the fibration to P1 and to a link of type III. In particular, if X1
d

99K X
d

X2 is
a composition of a link of type I followed by a link of type III, then X1 X2 is an isomorphism,
and this contradicts the fact that such a composition of two such links can be part of a minimal
factorization.

(3) and (4). Let m = sl(f), and consider the successive vertices

v0 =
{
P2
}
, v1 , . . . , vm−1 , vm =

{
P2
}

visited by the closed path associated with a minimal factorization of f . So each pair of ver-
tices vi, vi+1 are joined by an edge (which can be a loop) in the graph of Figure 2.1. Since f
is irreducible, any intermediate vertex vi, 1 ⩽ i ⩽ m − 1, is distinct from

{
P2
}
. If one of the

vertices is in C8, then since we know by assertion (1) that we cannot use any link of type IV, by
inspection of the graph, the factorization is as described in item (i). Since the factorization of f
is minimal, if the path does not visit the vertex C8, then by the remark after Theorem 2.4, the
associated path is unimodal in the following sense:

• For each index i such that 1 ⩽ i ⩽ 1
2m, we have d(vi, v0) = d(vi−1, v0) + 1, where d(·, ·) is

the distance in the graph.

• For each index i such that 1
2m+ 1 ⩽ i ⩽ m, we haved(vi, v0) = d(vi−1, v0)− 1.

• If m = 2n+ 1 is odd, then d(vn, v0) = d(vn+1, v0).

Then the possible factorization types in each case (fibering or Del Pezzo type) are obtained
by inspection of Figure 2.1, together with assertion (2).

Remark 2.6. We do not claim that any factorization of the forms given in Table 2.2 is auto-
matically minimal, or even that there exists an irreducible element corresponding to a given line
of the table (in particular, the existence can depend on the field k we are working with). See

Figure B.10 for an example of a map with a factorization of type P2 2 1
99K D8

3 1
99K D6

1 3
99K D8

1 2
99K P2

which is not minimal because it also admits a factorization of type P2 3 3
99K P2.

3. Subgroups of matrix type

Over an algebraically closed field, it is a classical result that any element in Bir
(
P2
)
preserving

a pencil of rational curves is conjugate to a Jonquières map, that is, a map preserving a pencil of
lines. Over a perfect field, we have to introduce two more types of normal forms, which we call
Jonquières type 2+ 2 and Jonquières type 4, and we call Jonquières maps of type 1 the classical
ones. In Proposition 3.7, we obtain a set of generators: first, automorphisms and Jonquières
maps of type 1, which are easily seen to be compositions of involutions; second, Jonquières maps
of type 2 + 2 or type 4, which are studied in the rest of this section; and finally, irreducible
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elements of Del Pezzo type, which will be studied in Section 4. The proof that type 4 and
type 2 + 2 Jonquières maps are compositions of involutions is the most technical part of this
paper. The argument naturally splits into two parts: Jonquières maps that preserve the fibration
fiberwise correspond to an orthogonal group, and by explicit computations we obtain Jonquières
involutions whose compositions can realize all possible permutations between fibers.

3.1 Three types of fibrations

We call any dominant rational map π : P2 99K P1 a rational fibration on P2. We say that f ∈
Birk

(
P2
)
preserves the fibration if there exists an α ∈ Autk

(
P1
)
such that π ◦ f = α ◦ π, and we

say that it fixes the fibration if α = idP1 :

P2 P2

P1 P1 .

π

f

π

α

We write Birk
(
P2, π

)
for the group that preserves the fibration, Birk

(
P2/π

)
for the one that

fixes the fibration, and Autπk
(
P1
)
for the image in Autk

(
P1
)
of the application f α. So by

definition we have an exact sequence

1 Birk
(
P2/π

)
Birk

(
P2, π

)
Autπk

(
P1
)

1 . (Seq)

We say that f ∈ Birk
(
P2
)
is of

• Jonquières type 1 if f preserves the fibration given by the pencil of lines through a rational
point,

• Jonquières type 2 + 2 with residue fields L and L′ if f preserves the fibration given by the
pencil of conics through two general 2-points with respective residue fields L and L′,

• Jonquières type 4 with residue field F if f preserves the fibration given by the pencil of
conics through a general 4-point with residue field F .

Note that when we speak about “the” residue field we always mean up to k-isomorphism.
For Jonquières type 1, the sequence (Seq) splits and gives a description as a semidirect product
PGL2(k) ⋉ PGL2(k(x)). For Jonquières type 2 + 2 and 4, it is not clear whether the sequence
always splits.

Remark 3.1. A field extension F/k is the residue field of a general 4-point if and only if it is the
residue field of an irreducible polynomial of degree 4:

Choosing a conic C defined over k going through the general 4-point p, and applying a k-
coordinate change, we can assume that C is given by y2−xz = 0. Hence, the components of p are
of the form [a2i : ai : 1] ∈ P2(ka), and its residue field is k(a1) ≃ k(a2) ≃ k(a3) ≃ k(a4), which
equals the residue field of the irreducible polynomial f = (x− a1) · · · (x− a4) ∈ k of degree 4.

For the converse direction, Example 3.5 shows how one can construct a general 4-point given
an irreducible polynomial of degree 4.

Lemma 3.2. Let f ∈ Birk
(
P2
)
be an irreducible element of fibering type. Then there exists an

α ∈ PGL3(k) such that α ◦ f is of Jonquières type 1, 2 + 2, or 4.

Proof. We consider each of the three cases given by Proposition 2.5(3).

An irreducible element going through C8 is a map that sends the pencil of lines through
one point onto the pencil of lines through possibly some other point. Hence, there exists an
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α ∈ PGL3(k) such that α ◦ f preserves the pencil of lines through a point, and so f is of
Jonquières type 1.

If f has factorization type P2 4
99K X

d d
99K X ′ 4 P2 with X,X ′ ∈ C5, then f maps the pencil

of conics through the 4-point associated with X onto the one through the 4-point associated
with X ′. By Lemma A.10, the surfaces X and X ′ are isomorphic, and the associated 4-points
are equivalent under the action of PGL3(k). This gives the existence of α.

Finally, if f has factorization type P2 2 1
99K Y

2
99K X

d d
99K X ′ 2

Y ′ 1 2
99K P2 with X,X ′ ∈ C6

and Y, Y ′ ∈ D8, then f send the pencil of conics through the two 2-points associated with X
and Y onto the one associated with X ′ and Y ′. By Lemma A.11, we know that the two surfaces
X,X ′ ∈ C6 of the middle link are dominated by isomorphic surfaces Z, Z ′, each of which is the
blow-up of P2 at two 2-points, and the two sets of four geometric points are equivalent under the
action of PGL3(k).

Let f , g be two elements of Jonquières type 1, 2 + 2, or 4, preserving fibrations πf , πg. We
say that f and g are equivalent if there exists an α ∈ PGL3(k) such that α−1 ◦g ◦α preserves πf .

In order to classify Jonquières maps up to equivalence, we first need a reinforcement of [Sch22,
Lemma 6.11], which states that any Galois equivariant bijection between two Galois-invariant
sets of four points can be realized by an element of Autk

(
P2
)
.

Lemma 3.3. Let k be a perfect field, and let p, q ∈ P2 be two general 4-points. Then the following
are equivalent:

(1) There exists an α ∈ PGL3(k) such that α(pi) = qi for i = 1, . . . , 4.

(2) For every g ∈ Gal(ka/k), there exists a σ ∈ S4 such that g(pi) = pσ(i) and g(qi) = qσ(i) for
i = 1, . . . , 4.

(3) The residue fields of p and q are k-isomorphic.

Proof. The fact that assertion (2) implies assertion (1) is [Sch22, Lemma 6.11]. As elements of
PGL3(k) do not change the residue field, assertion (1) implies assertion (3). It remains to see
that assertion (3) implies assertion (2). As in Remark 3.1, there exist α, β ∈ PGL3(k) such that
α(pi) =

[
ai : a

2
i : 1

]
and β(qi) =

[
bi : b

2
i : 1

]
, where a1, . . . , a4 and b1, . . . , b4 are the roots of two

irreducible polynomials f, f ′ ∈ k[x] of degree 4. In particular, the residue field of pi is Fi = k(ai),
and that of qi is F ′

i = k(bi). The residue field F of f is k-isomorphic to Fi, and the residue
field F ′ is k-isomorphic to F ′

i .

Let L/k be a finite Galois extension containing a1, . . . , a4, b1, . . . , b4. Having that Fi and F ′
i

are k-isomorphic means that there exists an h ∈ Gal(L/k) (with corresponding τ ∈ S4 such
that h(bi) = bτ(i)) such that F ′

τ(i) = k(bτ(i)) = k(ai) = Fi. Therefore, after exchanging bi
with bτ(i), we find Fi = F ′

i . By the fundamental theorem of Galois theory, this is equivalent to
Gal(L/Fi) = Gal(L/F ′

i ). In other words, for every g ∈ Gal(L/k), there exists a σ ∈ S4 such that
g(ai) = aσ(i) and g(bi) = bσ(i) for i = 1, . . . , 4.

Therefore, we also have α(g(pi)) = g(α(pi)) = g
([
ai : a

2
i : 1

])
=
[
aσ(i) : a

2
σ(i) : 1

]
= α(pσ(i)),

and so by applying α−1, we find g(pi) = pσ(i). Similarly, we find β(g(qi)) = β(qσ(i)) and so
g(qi) = qσ(i).

Lemma 3.4. The classification up to equivalence of elements of Jonquières type is as follows:

(1) All elements of Jonquières type 1 are equivalent.
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(2) Two elements of Jonquières type 2 + 2 are equivalent if and only if the pairs of associated
residue fields are k-isomorphic (and in fact equal).

(3) Two elements of Jonquières type 4 are equivalent if and only if the associated residue fields
are k-isomorphic.

Proof. Assertion (1) is clear, Assertion (2) follows directly from [Sch22, Lemma 6.11], and asser-
tion (3) follows from Lemma 3.3.

With Lemma 3.4, for each fibering type and each (pair of) residue field(s), we choose one
fibration π : P2 99K P1. We will denote it by π× (Jonquières type 1), πL,L′ (Jonquières type 2+ 2
with residue fields L, L′), πF (Jonquières type 4 with residue field F ). Such a choice can be made
explicit, as follows.

Example 3.5.

Jonquières type 1. Set

π× : P2 99K P1 , [x : y : z] [x : z] ,

which is the fibration corresponding to the pencil of lines through [0 : 1 : 0].

Jonquières type 2 + 2. Let L = k(a1) and L′ = k(a′1) be two quadratic extensions over k with
respective minimal polynomials (t−a1)(t−a2), (t−a′1)(t−a′2) ∈ k[t]. Let p = {[ai : 1 : 0]}i=1,2

and p′ = {[a′i : 0 : 1]}i=1,2, and set

πL,L′ : P2 99K P1 , [x : y : z]
[
(x− a1y)(x− a2y) + (x− a′1z)(x− a′2z)− x2 : yz

]
,

which is a fibration corresponding to the pencil of conics through p, p′.

Jonquières type 4. Let L = k(a1, a2, a3, a4) be a splitting field of an irreducible polynomial of
degree 4 over k with minimal polynomial (t− a1)(t− a2)(t− a3)(t− a4) = t4 + at3 + bt2 +
ct+ d ∈ k[t]. Then p =

{[
a2i : ai : 1

]}
i=1,...,4

is a general 4-point, and we set

πF : P2 99K P1 , [x : y : z]
[
x2 + axy + by2 + cyz + dz2 : y2 − xz

]
,

which is a fibration corresponding to the pencil of conics through p. The associated residue
field is F = k(a1) ≃ k(a2) ≃ k(a3) ≃ k(a4), all of which are k-isomorphic.

Remark 3.6. Note that two d-points with d ⩽ 3 have k-isomorphic residue fields if and only if
they have isomorphic splitting fields. For d = 4 this is not true: Let k = Q and consider the 4-

points given by p1 =
[

4
√
2 :

√
4
2
: 1
]
∈ Q

[
4
√
2
]
, respectively q1 =

[
4
√
2(1− i) :

(
4
√
2(1− i)

)2
: 1
]
∈

Q
[

4
√
2(1 − i)

]
. They both have the splitting field Q

[
4
√
2, i
]
, but their residue fields are not k-

isomorphic. However, one can show that this can happen only if the Galois group over the
splitting field is isomorphic to the dihedral group D8.

3.2 A geometric generating set

We can now describe a generating set for the Cremona group, valid over any perfect field.

Proposition 3.7. Let k be a perfect field. The Cremona group Birk
(
P2
)
is generated by the

following elements:

• Autk
(
P2
)
≃ PGL3(k),

• irreducible elements f of Del Pezzo type with 1 ⩽ sl(f) ⩽ 5,

• the Jonquières group Birk
(
P2, π×

)
of type 1,
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• the Jonquières groups Birk
(
P2, πL,L′

)
of type 2 + 2, for each pair of quadratic exten-

sions L/k, L′/k,

• the Jonquières groups Birk
(
P2, πF

)
of type 4, for each residue field F/k of an irreducible

polynomial of degree 4.

Proof. By Proposition 2.3, the Cremona group Birk
(
P2
)
is generated by the irreducible elements,

which are of Del Pezzo type and/or of fibering type. An irreducible element of Del Pezzo type
has Sarkisov length at most 5 by Proposition 2.5(4), and the case sl(f) = 0 corresponds to the
case f ∈ Autk

(
P2
)
. If an irreducible element is of fibering type, then by Lemma 3.2, up to an

automorphism, it is equal to an element of Jonquières type 1, 2+2, or 4. Then Lemma 3.4 implies
the statement, where we use Remark 3.1.

Our aim in the rest of the paper is to study each type of generator in Proposition 3.7 and
show that it can be written as a product of involutions.

We shall use the basic remark that in any group, the subgroup generated by involutions is
a normal subgroup. This implies that if G is a simple group containing an involution, then G is
generated by involutions. For instance, for any field k and any n ⩾ 2 (except for n = 2 and |k| = 2
or 3), the group PSLn(k) is simple and contains the involution (x1, x2, . . . , xn) (−x1,−x2,
x3, . . . , xn) (in characteristic different from 2) or (x1, x2, . . . , xn) (x2, x1, x3, . . . , xn) (in char-
acteristic 2), so it is generated by involutions. Observe that PSL2(F2) ≃ S3 also is generated
by involutions even if it is not simple, but PSL2(F3) ≃ A4 is not generated by involutions. On
the other hand, it is known that PGLn(k) is not always generated by involutions: for instance, a
necessary and sufficient condition for PGL3(k) to be generated by involutions is that all elements
in k are cubes. However, using the ambient birational group, we have the following.

Lemma 3.8. Let k be any field. The group Autk
(
P2
)
= PGL3(k) and the Jonquières group

Birk
(
P2, π×

)
= PGL2(k)⋉PGL2(k(x)) are contained in the subgroup of Birk

(
P2
)
generated by

involutions.

Proof. The group PGL3(k) is generated by the involutions in PSL3(k) and by the subgroup of
dilatations of the form [x : y : z] [ax : y : z], with a ∈ k∗. But in affine coordinates, we have

(ax, y) =

(
1

x
, y

)
◦
(

1

ax
, y

)
,

so we see that any dilatation is a composition of two birational involutions.

Similarly, over any field k with |k| ≠ 3, the Jonquières group is generated by the involutions
in PSL2(k)⋉PSL2(k(x)) and by dilatations of the form (x, y) (ax, y) and (x, y) 99K (x, a(x)y),
which we can write as a product of two birational involutions as above.

Finally, we can handle the case k = F3 by noticing that PSL2(F3) ⊂ PSL2(F3(y)) ⊂
BirF3

(
P2
)
and using that PSL2(F3(y)) is generated by involutions.

3.3 Study of Birk
(
PPP2/π

)
via quadratic forms

In this subsection, we show that in the context of Jonquières groups of type 4 or 2+2, Birk
(
P2/π

)
is isomorphic to a special orthogonal group SO

(
k(t)3, q

)
, where q is a quadratic form on k(t)3

corresponding to the conic fibration.

3.3.1 Quadratic forms and the Cartan–Dieudonné theorem. Here, after recalling basic facts
about quadratic forms in arbitrary characteristic, we give a short proof of the Cartan–Dieudonné
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theorem in the special case of anisotropic quadratic spaces.

LetK be an arbitrary field, and consider the vector space E = Kn for n ⩾ 1. Given a symmet-
ric (or skew-symmetric) bilinear form b : E×E K, we set E⊥ = {x ∈ E | b(x, y) = 0 ∀y ∈ E}.
We say that b is non-degenerate if E⊥ = {0}.

A quadratic form on E is a homogeneous polynomial q ∈ K[x1, . . . , xn]2 of degree 2. To treat
the cases of charK ̸= 2 and charK = 2 simultaneously while keeping the classical notation in
each case, we set

δ =

{
2 if charK ̸= 2 ,

1 if charK = 2 .

We say that the symmetric bilinear form b given by

b(x, y) =
1

δ
(q(x+ y)− q(x)− q(y))

is the polar form of the quadratic form q. Note that

b(x, x) =
1

δ
(q(2x)− 2q(x)) =

1

δ
(2q(x)) =

{
q(x) if charK ̸= 2 ,

0 if charK = 2 .

We call (E, q) a quadratic space and say that it is non-degenerate if b is. A non-zero vector x ∈ E
is isotropic if q(x) = 0 and anisotropic otherwise. Similarly, a quadratic space (E, q) is isotropic
if E contains an isotropic vector, and anisotropic otherwise. We say that q has defect d ⩾ 1
if d = dimE⊥ and E⊥ is anisotropic. Defect d ⩾ 1 occurs only in characteristic 2 and can be
thought of as a weaker form of non-degeneracy.

The quadratic spaces we are interested in will turn out to be non-degenerate or with defect 1,
and anisotropic (see Lemma 3.16).

Example 3.9. Consider q(x) = x21 + x0x2 as a quadratic form on E = K3, where K is an
arbitrary field. The polar form of q is given by b(x, y) = 2x1y1 − 1

δ (x0y2 + x2y0). If charK ̸= 2,
q is non-degenerate. If charK = 2, we have E⊥ = {(0, a, 0) | a ∈ K}. Since q((0, a, 0)) ̸= 0 for
a ∈ K∗, the quadratic space (E, q) has defect 1.

The orthogonal group O(E, q) of the quadratic space (E, q) is the group consisting of maps
φ ∈ GL(E) such that q(φ(x)) = q(x) for all x ∈ E. For an anisotropic vector a ∈ E, we define
the map τa : E E by

τa(x) = x− δ
b(x, a)

q(a)
a .

Note that τa(a) = −a, and τa(x) = x if and only if x ∈ a⊥. When (E, q) is not totally degenerate,
that is, b ̸= 0, the kernel a⊥ of the linear map b(a, ·) has codimension 1 for a /∈ E⊥. In this case,
we use the following terminology for τa:

• If charK ̸= 2, the linear map τa is the orthogonal reflection along a. In particular, τa ∈
O(E, q) is an involution with determinant −1; see [Gro01, Chapter 5].

• If charK = 2, assume a /∈ E⊥. Then τa is the transvection with fixed hyperplane a⊥.
In particular, τa ∈ GL(E) is an involution with determinant 1; see [Gro01, Chapter 1].
Observe that τa ∈ O(E, q). Indeed, setting λ = b(x, a)/q(a), we have q(τa(x)) = q(x+λa) =
b(x, λa) + λ2q(a) + q(x) = λ(b(x, a) + λq(a)) + q(x) = q(x) because λq(a) = b(x, a). We will
call τa an orthogonal transvection.
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Also note that a quadratic space (E, q) of dimension n is not totally degenerate as soon as q
is non-degenerate or with defect less than n.

Lemma 3.10. Let x, y be two anisotropic elements in the quadratic space (E, q) such that
q(x) = q(y) and x− y is anisotropic. Then τx−y(x) = y.

Proof. Using q(x) = q(y) = q(−y) and δb(x, x) = 2q(x), in any characteristic we have

q(x− y) = q(x) + q(−y) + δb(x,−y) = δb(x, x)− δb(x, y) = δb(x, x− y) .

Hence,

τx−y(x) = x− δb(x, x− y)

q(x− y)
(x− y) = x− (x− y) = y .

The Cartan–Dieudonné theorem states that O(E, q) is generated by reflections, except when
the underlying field has two elements, the dimension of E is 4, and q is hyperbolic (see [Che97,
Theorem I.5.1]). When (E, q) is anisotropic, there is an elementary proof.

Lemma 3.11 (Anisotropic Cartan–Dieudonné theorem). Let (E, q) be an anisotropic quadratic
space that is not totally degenerate. Then every element φ of O(E, q) can be expressed as a
product of codim(F ) orthogonal reflections (or transvections), where F = Fφ ⊂ E is the space
of fixed points of φ.

Proof. First note that any product φ of k orthogonal reflections (or transvections) fixes a space of
dimension at least n−k, namely the intersection of all the fixed hyperplanes from the involution.
Hence, codim(F ) ⩽ k.

Let φ ∈ O(E, q). We proceed by induction on codim(F ). If codim(F ) = 0, then φ is the
identity. Assume that F has codimension k ⩾ 1 in E, and let v ∈ E \ F , so that v − φ(v) ̸= 0.
Since by assumption E is anisotropic, applying Lemma 3.10, we find that τv−φ(v)(v) = φ(v). In

particular, τv−φ(v) ̸= id, so v − φ(v) /∈ E⊥ and so the map is indeed an orthogonal reflection (or
transvection) since we assume q to be not totally degenerate.

Let x ∈ F ; that is, φ(x) = x. We compute

b(x, v − φ(v)) = b(x, v)− b(x, φ(v)) = b(x, v)− b(φ(x), φ(v)) = 0 .

Therefore, τv−φ(v)(x) = x, and so τv−φ(v) fixes F .

This implies that φ′ = φ−1◦τv−φ(v) fixes both F and v, hence it fixes a subspace containing F
and v, which has codimension at most k − 1. By the remark at the beginning of the proof, the
fixed space of φ′ has codimension exactly k − 1, and hence by induction φ′ is the composition
of k − 1 orthogonal reflections (or transvections), and so φ is the composition of k = codim(F )
such involutions.

3.3.2 Similitudes and the special orthogonal group. Let (E, q) be a quadratic space over a
field K. A similitude of (E, q) is a map f ∈ GL(E) such that there exists a λ ∈ K∗ with
q(f(x)) = λq(x) for all x ∈ E. The constant λ is called the multiplier of f . We denote the group
of similitudes by GO(E, q) ⊂ GL(E). The map GO(E, q) K∗ given by f λ is a group
homomorphism with kernel O(E, q). We define PGO(E, q) = GO(E, q)/K∗ to be the image of
GL(E) PGL(E) restricted to GO(E, q), so we can write

PGO(E, q) = {[A] ∈ PGLn(K) | A ∈ GO(E, q)}
= {[A] ∈ PGLn(K) | ∃λ ∈ K∗ : q ◦A = λq} ,
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where n is the dimension of E.

Lemma 3.12. The following hold:

(1) Let b be a (skew-)symmetric non-degenerate bilinear form on E, and let M ∈ GL(E) be
such that b(Mx,My) = b(x, y) for all x, y ∈ E. Then detM = ±1.

(2) Let (E, q) be a quadratic space that is non-degenerate or with defect 1. Then det(M) = ±1
for all M ∈ O(E, q).

Proof. In part (1), since b is a non-degenerate bilinear form. there exists an A ∈ GL(E) such
that b(x, y) = xtAy for all x, y ∈ E. The assumption on M implies that xtAy = xtM tAMy for
all x, y ∈ E. Therefore, A = M tAM . As A is invertible, this implies that 1 = det(M)2.

For part (2), observe that if M ∈ O(E, q), then b(Mx,My) = b(x, y) for all x, y ∈ E, where b
is the polar form of q. So if q is non-degenerate, part (1) implies the statement. Now assume
that q is with defect 1; that is, E⊥ is 1-dimensional and anisotropic. In particular, we are in
characteristic 2, and so we will show that det(M) = 1.

First of all, if M fixes a 1-dimensional subspace L on which q does not vanish outside the
origin, then it fixes L pointwise: Let x ∈ L, x ̸= 0, and let λ ∈ K be such that M(x) = λx. Since
M ∈ O(E, q), we have q(x) = q(M(x)) = q(λx) = λ2q(x), and as q(x) ̸= 0, this implies that
λ = ±1. Being in characteristic 2 implies that M fixes the point.

By extension of the basis, we can write E = E⊥⊕W for some (n−1)-dimensional subspaceW .
Writing M in this basis, we get a matrix

(
a B
0 M ′

)
with a ∈ K, M ′ ∈ GLn−1(K). Note that M

fixes E⊥. By the remark above, this implies that M fixes E⊥ pointwise; therefore, a = 1. Next, we
show that det(M ′) = 1. For this we consider M ′ as an endomorphism on the quotient Ē = E/E⊥.
Note that the polar bilinear form b on E induces a bilinear form b̄ on Ē by b̄(x̄, ȳ) = b(x, y) for
x̄, ȳ ∈ Ē. Now, b̄ is symmetric and non-degenerate, and for all x̄, ȳ, we have b̄(M ′x̄,M ′ȳ) = b̄(x̄, ȳ).
By part (1), the determinant of M ′ is 1. Therefore, det(M) = a det(M ′) = 1.

We set

SO(E, q) = {f ∈ O(E, q) | det f = 1} .

In odd dimensions, there is the following relationship between similitudes and the orthogonal
group.

Proposition 3.13 ([KMRT98, Propositions 12.4 and 12.6]). Let (E, q) be a quadratic space in
odd dimension over an arbitrary field K. Assume that q is non-degenerate or with defect 1. Then

GO(E, q) = SO(E, q) ·K∗ ≃ SO(E, q)×K∗ ,

PGO(E, q) ≃ SO(E, q) .

Lemma 3.14. Let (E, q) be an anisotropic quadratic space of odd dimension n over an arbitrary
field K. Assume that q is not totally degenerate. Then each element of SO(E, q) can be written
as the composition of at most n involutions (and in fact at most n− 1 when charK ̸= 2).

Proof. If charK = 2, then SO(E, q) = O(E, q) and the result is Lemma 3.11.

So now assume charK ̸= 2, and let A ∈ SO(E, q) ⊂ O(E, q). Lemma 3.11 implies that A is
a composition of at most n orthogonal reflections in O(E, q), all of which have determinant −1.
Hence, there exist B1, . . . , Bk ∈ O(E, q) with determinant −1 and k ⩽ n such that A = B1 · · ·Bk.
Taking the determinant on both sides gives that k has to be even, so k ⩽ n − 1. Since the
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dimension is odd, det(−A) = − det(A) for A ∈ GLn(K). Use the surjective group homomorphism
O(E, q) SO(E, q) given by

η : A

{
−A if det(A) = −1 ,

A if det(A) = 1 ,

which sends Bi onto involutions η(Bi) ∈ SO(E, q) whose composition is η(A) = A.

3.3.3 Conic fibrations and quadratic forms. The following lemma shows in particular that
defect 1 is a useful notion in characteristic 2, tightly related to the notion of “strange curves”
[Har77, Section IV.3].

Lemma 3.15. Let q ∈ K[x, y, z] be a homogeneous polynomial of degree 2 over an arbitrary
field K (not necessarily perfect). Assume that q is irreducible over Ka, and consider the conic
C = VP2

K
(q). Then the quadratic space (K3, q) is non-degenerate if charK ̸= 2 and has defect 1

if charK = 2.

Moreover, if charK = 2, the 1-dimensional kernel E⊥ corresponds to the point p ∈ P2(K)
where all tangent lines to C meet.

Proof. Write E = K3. Note that C contains a K-point if and only if there exists a non-zero
element x ∈ K3 such that q(x) = 0, that is, if (E, q) is isotropic.

If (E, q) is isotropic, then C contains a rational point and hence there is a linear K-automor-
phism of E sending C onto the conic V

(
x21−x0x2

)
from Example 3.9. Hence, q is non-degenerate

if charK ̸= 2 and with defect 1 if charK = 2.

Now consider the anisotropic case. If charK ̸= 2, having q(x) = b(x, x) ̸= 0 for all non-zero
x ∈ K3 directly implies that q is non-degenerate. Now assume charK = 2. Let B = (bij)1⩽i,j⩽3

be the matrix with bij = b(ei, ej), which has the form B =
(

0 a b
a 0 c
b c 0

)
∈ GL3(K). Since we are in

the anisotropic case, it is enough to show that dimE⊥ = 1. If B is the zero matrix, then q is
a sum of square monomials, hence q is reducible over Ka, giving a contradiction. So the kernel
E⊥ = {(cx, bx, ax) ∈ E | x ∈ K} is 1-dimensional.

Finally, note that in characteristic 2, all V (q) with the same polar form b have the same
tangent lines. With coordinates as above, we can assume up to a permutation that a ̸= 0, and
so the tangent lines are given by µx+ λy + 1

a(µc+ λb)z = 0 for [λ : µ] ∈ P1(Ka). All of them go
through the point [c : b : a].

The following lemma shows that any quadratic space
(
k(t)3, q

)
corresponding to a Jonquières

group Birk
(
P2/π

)
of type 2 + 2 or 4 is anisotropic and either is non-degenerate or has defect 1.

Lemma 3.16. Let {p1, . . . , p4} ⊂ P2(ka) be a Galois-invariant set of four points such that no
three are collinear, and let q1, q2 ∈ k[x, y, z] be two homogeneous polynomials of degree 2
such that C1 = V (q1), C2 = V (q2) are two distinct conics intersecting at the four points. Let
q = q1 + tq2 ∈ k[t, x, y, z] ⊂ k(t)[x, y, z] and C = VP2

k(t)
(q). Then the quadratic space

(
k(t)3, q

)
is

non-degenerate (chark ̸= 2) or has defect 1 (chark = 2), and the following are equivalent:

(1) The intersection C1 ∩ C2 contains a k-point.

(2) The subspace C ⊂ P2
k(t) contains a k(t)-point.

(3) The quadratic space
(
k(t)3, q

)
is isotropic.
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Proof. First, note that since no three of the four points are collinear, q is irreducible over k(t)a.
By Lemma 3.15, the polynomial q is non-degenerate if charK ̸= 2 and has defect 1 if charK = 2.

The equivalence (2) ⇐⇒ (3) is direct. Since k ⊂ k(t), part (1) implies part (2). We now show
the converse direction. Assume that C contains a k(t)-point. Hence, C is isomorphic to P1

k(t)

over k(t). In particular,

X = {([x : y : z], t) | q(t, x, y, z) = 0} ⊂ P2 × A1

contains sections that are defined over k. Note that the projection ρ : X P2 is the blow-up
at the four points p1, . . . , p4. We now assume that C1 ∩ C2 contains no k-point, and we will
show that X contains no sections defined over k, giving a contradiction. As none of the four
points p1, . . . , p4 ∈ P2(ka) is a k-point, they form either one 4-point or two 2-points (say {p1, p2}
and {p3, p4}). Let D ⊂ X be a curve, defined over k, and let D′ = ρ(D) ⊂ P2. The essential
remark is that all geometric components of a point have the same multiplicity on D′. Write d
for the degree of D′ and m for the multiplicity of D′ at p1, p2 and m′ for that at p3, p4. After
resolving the singularities x1, . . . , xr of D and writing L for the strict transform of a general line
in P2, and Ei for the exceptional divisor of pi, and Exi for that of xi, we can write the intersection
of D with a general fiber f of X as

D · f = (dL−m(E1 + E2)−m′(E3 + E4)−
∑

mxi(D)Exi)(2L− (E1 + · · ·+ E4))

= 2d− 2m− 2m′ .

As D · f is even, D is not a section.

Remark 3.17. For chark = 2, we have seen in Lemma 3.15 that the defect corresponds to the
point where all the tangent lines to C ⊂ P2

k(t) meet. This in turn corresponds to the line in P2
k

that is tangent to all conics that go through p1, . . . , p4. This line plays a crucial role in [Sch21],
where involutive generators of the groups BirF2

(
P2/πF4,F4

)
and BirF2

(
P2/πF16

)
are described

explicitly.

Lemma 3.18. Let {p1, . . . , p4} ⊂ P2(ka) be a Galois-invariant set of four points such that no
three are collinear, and let q1, q2 ∈ k[x, y, z] be two homogeneous polynomials of degree 2 such
that the pencil of conics through p1, . . . , p4 is given by π : P2 99K P1, π([x : y : z]) = [q1 : q2]. Let
q = q1 + tq2 ∈ k[t][x, y, z] ⊂ k(t)[x, y, z], which we see as a quadratic form of the 3-dimensional
vector space E = k(t)3 over k(t). Then

Birk
(
P2/π

)
≃ PGO

(
k(t)3, q

)
.

Proof. In Lemma 3.16, we have observed that the quadratic space
(
k(t)3, q

)
is non-degenerate

or with defect 1. By construction, the generic fiber C of π is given by the zero set of q in P2
k(t).

Note that the splitting field L of the four points p1, . . . , p4 is a Galois extension of k over which
the generic fiber C is non-empty. So [Sch21, Lemma 3.29] yields

Birk
(
P2/π

)
≃ Birk(P1)(C) =

{
f ∈ Autk(P1)

(
P2
)
| f(C) = C

}
.

We have f(C) = C if and only if V (q ◦ f) = f−1(C) = C = V (q), so the above group is equal to{
f ∈ Autk(P1)

(
P2
)
| ∃λ ∈ k

(
P1
)∗

: q ◦ f = λq
}
= PGO

(
k
(
P1
)3
, q
)
.

Since k
(
P1
)
≃ k(t), the statement follows.
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Proposition 3.19. The following hold:

(1) Let F/k be a residue field of an irreducible polynomial of degree 4. Then Birk
(
P2/πF

)
≃

SO
(
k(t)3, qF

)
.

(2) Let L, L′ be two field extensions of degree 2 over k. Then Birk
(
P2/πL,L′

)
≃ SO

(
k(t)3, qL,L′

)
.

In particular, each element of these groups is a composition of at most three (two if chark ̸= 2)
involutions.

Proof. None of the four geometric points where πF , respectively πL,L′ , is not defined is k-rational.
Therefore, Lemma 3.16 implies that in both cases, the associated quadratic space

(
k(t)3, q

)
is

anisotropic, and so by Lemma 3.14 each element in the group SO
(
k(t)3, q

)
is the product of at

most three (two if chark ̸= 2) involutions. With Lemma 3.18 and Proposition 3.13, we get

Birk
(
P2/π

)
≃ PGO

(
k(t)3, q

)
≃ SO

(
k(t)3, q

)
.

3.4 The image for Jonquières type 4

Here we study the image AutπF
k

(
P1
)
from the exact sequence (Seq) from page 120, for fibering

type 4. Denote by {p1, . . . , p4} ∈ P2(ka) the base points of πF and by Lij the line through pi
and pj . In the following lemma, we show that the permutation of the three singular fibers by
a map in Birk

(
P2, πF

)
is always achieved by an automorphism.

Lemma 3.20. Let F/k be a residue field of an irreducible polynomial of degree 4. Let φ ∈
Birk

(
P2, πF

)
. Then there exists an α ∈ Autk

(
P2
)
∩ Birk

(
P2, πF

)
such that πF ◦ α = πF ◦ φ.

Proof. The blow-up of the 4-point gives a link P2 4
99K X5 with X5 ∈ C5. Hence, φ ∈ Birk

(
P2, πF

)
factors through a birational map X5 99K X5 that preserves the fibration X5 P1. By [Sch22,
Corollary 3.2], the map φ sends the set of three singular fibers onto itself. As any element
of Autk

(
P1
)
is uniquely determined by its value at three points, the image of Birk

(
P2, π

)
in

Autk
(
P1
)
is isomorphic to a subgroup of the symmetric group S3 determined by the action

on the projection of the three singular fibers Lij ∪ Lkl for {i, j, k, l} = {1, 2, 3, 4}. Hence, it
is enough to find an α ∈ Autk

(
P2
)
∩ Birk(P2, πF ) such that α(Lij ∪ Lkl) = φ(Lij ∪ Lkl) for

{i, j, k, l} = {1, 2, 3, 4}. We show that there is an α that satisfies α(Lij) = φ(Lij).

We follow the proof of [Sch22, Proposition 6.12]. Write Fij = φ(Lij), and note that two
configurations are possible (see [Sch22, Lemma 6.5(4)]):

(1) for each i, the three lines Fij for j ̸= i intersect in one point, or

(2) for each i, the three lines Fjk for i /∈ {j, k} intersect in one point.

In both cases, write qi for the intersection point of the three lines, and note that qi ∈ {p1, . . . , p4}
since φ(Lij) = Lkl for some k, l. Let L be the Galois closure of F/k. For g ∈ Gal(L/k), let τ ∈ S4

be such that pgi = pτ(i). In case (1), qgi is the intersection of the lines φ(Lij)
g = φ(Lτ(i),τ(j)) for

j ̸= i, which is qτ(i). In case (2), qgi is the intersection of the three lines φ(Ljk)
g = φ(Lτ(j),τ(k))

for i /∈ {j, k}, which is again qτ(i). Hence, in both cases there exists an α ∈ Autk
(
P2
)
such

that α(pi) = qi; see [Sch22, Lemma 6.11]. In particular, α preserves the pencil of conics through
the pi, which concludes the proof.

Corollary 3.21. Let πF : P2 99K P1 be a rational fibration of type 4, associated with a residue
field F/k of an irreducible polynomial of degree 4 (see Example 3.5). Then Bir

(
P2, πF

)
is con-

tained in the subgroup of Birk
(
P2
)
generated by involutions.
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Proof. By the exact sequence (Seq) and Lemma 3.20, the group Bir
(
P2, πF

)
is generated by

Bir
(
P2/πF

)
and by Autk

(
P2
)
∩Birk

(
P2, πF

)
. By Proposition 3.19, any element in Bir

(
P2/πF

)
≃

SO3

(
k(t)3, qF

)
is a product of at most three (two if chark ̸= 2) involutions. On the other hand,

by Lemma 3.8, the full automorphism group Autk
(
P2
)
≃ PGL3(k) is contained in the subgroup

of Birk
(
P2
)
generated by involutions, which gives the result.

3.5 The image for Jonquières type 2+2

Let L/k and L′/k be two quadratic extensions, and write K = LL′ for the composite field.
The main result of this section is Proposition 3.25, which gives a family of involutions in
Birk

(
P2, πL,L′

)
that surject onto the image Aut

πL,L′
k

(
P1
)
.

3.5.1 The statement. Denote by π1, π2 : P1 × P1 P1 the projection onto the first, respec-
tively, second P1. We call the fibers of π1 vertical and the fibers of π2 horizontal curves. First,
we will describe geometrically a birational map ε : P2 99K P1 × P1 that is defined over K = LL′.
We will see that the fibration πL,L′ corresponding to the pencil of conics through the two points
of degree 2 is sent onto the fibration that is given by π1 : P1 × P1 P1 (see Lemma 3.22).
Next, we will describe the map ε explicitly on affine charts and keep track of the induced Galois
action εGal(K/k)ε−1.

Lemma 3.22. Let {p1, . . . , p4} ⊂ P2(ka) be four points in general position and π : P2 99K P1 be
the fibration corresponding to the pencil of conics through the four points. Denote by K the
splitting field of p1, . . . , p4. Let ε : P2 99K P1 × P1 be the composition γ ◦ β ◦ α of the following
maps, all defined over K:

• α : P2 99K P1×P1 is the blow-up of p1, p2 followed by the contraction of the strict transform
of the line through p1, p2;

• β : P1 × P1 ∼ P1 × P1 is an automorphism preserving the two rulings;

• γ : P1 × P1 99K P1 × P1 is the blow-up of β ◦ α(p3), β ◦ α(p4) followed by the contraction of
the strict transforms of the horizontal curves through β ◦ α(p3), respectively β ◦ α(p4).

Then, ε preserves the fibrations P2/π and P1×P1/π1; that is, there exists a φ ∈ Autka

(
P1
)
such

that π ◦ ε−1 = φ ◦ π1.

β◦α
99K

γ
99K

Figure 3.1. The birational map ε : P2 99K P1 × P1 from Lemma 3.22

Proof. The birational map β ◦ α sends the pencil of conics through p1, . . . , p4 onto the pencil of
diagonal curves going through β ◦ α(p3), β ◦ α(p4), which is sent by γ onto the pencil of vertical
curves (see Figure 3.1).
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Corollary 3.23. Take the notation from Lemma 3.22. Then

Birk
(
P2, π

)
≃ (PGL2(K)⋉ PGL2(K(x)))εGal(K/k)ε−1

.

Proof. Lemma 3.22 implies that Birk
(
P2, π

)
≃ BirK

(
P1 × P1, π1

)εGal(K/k)ε−1

. The statement
follows since

BirK
(
P1 × P1, π1

)
≃ PGL2(K)⋉ PGL2(K(x)) ,

using that the elements j ∈ BirK
(
P1 ×P1, π1

)
are of the form j(x, y) =

(
ax+b
cx+d ,

A(x)y+B(x)
C(x)y+D(x)

)
with

M =
(
a b
c d

)
∈ PGL2(K) and M ′ =

(
A(x) B(x)
C(x) D(x)

)
∈ PGL2(K(x)).

Setup 3.24. Let L/k, L′/k be two quadratic extensions with L = k(θ), L′ = k(θ′), and write
K = LL′ for the composite field.

(1) If L = L′, let g be the generator of Gal(K/k) = Gal(L/k) ≃ Z/2Z.

(2) If L ̸= L′, let h, h′ be the generators of the Galois groups Gal(L/k), Gal(L′/k), and set
g = hh′. So g, h generate Gal(K/k) = Gal(L/k)×Gal(L′/k) ≃ Z/2Z× Z/2Z.

We write xg for the action of g on x ∈ ka and Ag for the action of g on the coefficients of
A ∈ ka(x), and similarly for h, h′.

Note that θg = θh and θ′g = θ′h
′
for L ̸= L′. As in Example 3.5, we take πL,L′ to be the

fibration given by the pencil of conics through the 2-points p′ = {p1, p2} = {[θ′ : 1 : 0], [θ′g : 1 : 0]}
and p = {p3, p4} = {[θ : 0 : 1], [θg : 0 : 1]}. Hence, g ∈ Gal(K/k) acts on {p1, . . . , p4} as
the permutation (12)(34). In the case L ̸= L′, the elements h and h′ act as, respectively, the
transpositions (34) and (12).

We shall use Lemma 3.22 with the following maps α, β, γ, which we express in the affine
charts

A2 P2 and A2 P1 × P1 ,

(x, y) [x : y : 1] (x, y) ([x : 1], [y : 1]) .

We set

α(x, y) = (x− θ′y, x− θ′gy) , α−1(x, y) =

(
θ′gx− θ′y

θ′g − θ′
,

x− y

θ′g − θ′

)
,

β(x, y) =

(
x− θ

−x+ θg
,
y − θg

−y + θ

)
, β−1(x, y) =

(
θgx+ θ

x+ 1
,
θy + θg

y + 1

)
,

γ(x, y) = (xy, y) , γ−1(x, y) =

(
x

y
, y

)
.

The map α : P2 99K P1 × P1 blows up the two components p1, p2 of p′ and contracts the line at
infinity in P2. Moreover, α sends the components p3 = (θ, 0), p4 = (θg, 0) of p onto the points
(θ, θ), (θg, θg), which are then sent by β ∈ Aut

(
P1 × P1

)
onto ([0 : 1], [1 : 0]), ([1 : 0], [0 : 1]).

Observe that ε = γ ◦ β ◦ α is defined over K.

In the computations we shall use the notation of the following diagram for the action of g,
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and similarly for h, h′:

A2 A2 A2 A2

A2 A2 A2 A2 .

ε

α

g

β

gα

γ

gβ gγ

α β γ

(Dia)

In the rest of this section, we use the notation of Setup 3.24, and we prove the following.

Proposition 3.25. Denote by HL,L′ ⊂ BirK
(
A2
)
the group generated by involutions of the

form

(x, y) 99K

(
1

µx
,
1

λy

)
,

where µ = λλg and

(1) λ ∈ K∗ = L∗ if L = L′,

(2) λ ∈ K∗ such that λλh = 1 if L ̸= L′.

Then the group ε−1HL,L′ε ⊂ Birk
(
P2, πL,L′

)
surjects onto Aut

πL,L′
k

(
P1
)
.

3.5.2 The induced Galois action

Lemma 3.26. The induced Galois action ε ◦ g ◦ ε−1 is given by

gγ(x, y) =

(
xg,

xg

yg

)
.

Proof. We compute step by step the maps on diagram (Dia). First,

gα(x, y) = αgα−1(x, y) = α

(
θ′xg − θ′gyg

θ′ − θ′g
,
xg − yg

θ′ − θ′g

)
= (yg, xg) .

We observe that (yg, xg) commutes with β, so gβ(x, y) = βgαβ
−1(x, y) = (yg, xg). Finally,

gγ(x, y) = γgβγ
−1(x, y) = γgβ

(
x

y
, y

)
= γ

(
yg,

xg

yg

)
=

(
xg,

xg

yg

)
.

Lemma 3.27. Assume L ̸= L′. Then the induced Galois action ε ◦ h ◦ ε−1 is given by

hγ(x, y) =

(
1

xh
,
1

yh

)
.

Proof. We compute step by step the maps on diagram (Dia): Since θ′gh = θ′g and θ′h = θ′, we
have

hα(x, y) = αhα−1(x, y) =
(
xh, yh

)
.

On the other hand, θgh = θ and θh = θg, so we get

hβ(x, y) = βhαβ
−1(x, y) = βhα

(
θgx+ θ

x+ 1
,
θy + θg

y + 1

)
= β

(
θxh + θg

xh + 1
,
θgyh + θ

yh + 1

)
=

(
1

xh
,
1

yh

)
.
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Finally, since
(
1/xh, 1/yh

)
commutes with γ = (xy, y), we get

hγ(x, y) = γhβγ
−1 =

(
1

xh
,
1

yh

)
.

Lemma 3.28. Let M =
(
a b
c d

)
∈ PGL2(K) and M ′ =

(
A B
C D

)
∈ PGL2(K(x)). Then j = (M,M ′) ∈

PGL2(K)⋉ PGL2(K(x)) is gγ-invariant if and only if M = Mg in PGL2(K), and the equality(
A(x)x B(x)
C(x)x D(x)

)
=

(
Dg(x)(agx+ bg) Cg(x)(agx+ bg)
Bg(x)(cgx+ dg) Ag(x)(cgx+ dg)

)
(3.1)

holds in PGL2(K(x)).

Proof. Using the formula gγ(x, y) =
(
xg, xg/yg

)
from Lemma 3.26, we compute

gγ
(
j
(
xg, yg

))
= gγ

(
axg + b

cxg + d
,
A(xg)yg +B(xg)

C(xg)yg +D(xg)

)
=

(
agx+ bg

cgx+ dg
,
(agx+ bg)(Cg(x)y +Dg(x))

(cgx+ dg)(Ag(x)y +Bg(x))

)
,

j
(
gγ
(
xg, yg

))
= j

(
xg,

xg

yg

)
=

(
ax+ b

cx+ d
,
A(x)xy +B(x)

C(x)xy +D(x)

)

=

(
ax+ b

cx+ d
,
A(x)x+B(x)y

C(x)x+D(x)y

)
.

Therefore, j = (M,M ′) is gγ-invariant if and only if equation (3.1) holds, as well as
(
a b
c d

)
=(

ag bg
cg dg

)
in PGL2(K).

Remark 3.29. The condition Mg = M is equivalent to M ∈ PGL3(k) in the case L = L′, and to
M ∈ PGL3(L

′′), where k ⊂ L′′ ⊂ K is the fixed field of g = hh′, in the case L ̸= L′.

Lemma 3.30. Assume L ̸= L′. Then (M,M ′) =
((

a b
c d

)
,
(
A B
C D

))
∈ PGL2(K) ⋉ PGL2(K(x)) is

hγ-invariant if and only if the following equalities in PGL2(K), respectively PGL2(K(x)), are
satisfied: (

a b
c d

)
=

(
dh ch

bh ah

)
, (3.2)(

A
(
1
x

)
B
(
1
x

)
C
(
1
x

)
D
(
1
x

)) =

(
Dh(x) Ch(x)
Bh(x) Ah(x)

)
. (3.3)

Proof. Using the formula hγ(x, y) =
(
1/xh, 1/yh

)
from Lemma 3.27, we study the action of hγ :

hγ
(
j
(
xh, yh

))
=

(
chx+ dh

ahx+ bh
,
Ch(x)y +Dh(x)

Ah(x)y +Bh(x)

)
,

j
(
hγ
(
xh, yh

))
=

(
a 1
x + b

c 1x + d
,
A
(
1
x

)
1
y +B

(
1
x

)
C
(
1
x

)
1
y +D

(
1
x

)) =

(
bx+ a

dx+ c
,
B
(
1
x

)
y +A

(
1
x

)
D
(
1
x

)
y + C

(
1
x

)) .

Hence, hγ ◦ (M,M ′) = (M,M ′) ◦ hγ if and only if the matrix equalities (3.2) and (3.3) hold in
PGL2(K), respectively PGL2(K(x)).

Seeing PGL2 as a subvariety of P4, two matrices ( a1 a2
a3 a4 ),

(
b1 b2
b3 b4

)
are equal in PGL2 if and

only if aibj = ajbi for all i, j = 1, . . . , 4. If ai ̸= 0 for a fixed i, then this is equivalent to aibj = ajbi
for j = 1, . . . , 4.
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Corollary 3.31. Let a ∈ K and P (x) ∈ K(x). Then((
0 1
a 0

)
,

(
0 1

P (x) 0

))
∈ PGL2(K)⋉ PGL2(K(x))

is εGal(K/k)ε−1-invariant if and only if

(1) ag = a, P (x)P g(x) = a, and

(2) aah = 1 and P (1/x)P h(x) = 1 if L ̸= L′.

Moreover, under these conditions,
(
( 0 1
a 0 ) ,

(
0 1

P (µ) 0

))
is also εGal(K/k)ε−1-invariant for all µ∈k∗.

Proof. Note that if L ̸= L′, then g = hh′ and h generate Gal(K/k). The equations come from
Lemmas 3.28 and 3.30.

For the second part, write P (x) = A(x)/B(x) with two polynomials A,B ∈ K[x] without
common factor. Condition (1) implies that Bg(x) is a multiple of A(x). If µ ∈ k is a root
of B, then it is also a root of Bg (since Bg(µ) = Bg(µg) = (B(µ))g = 0), hence of A, giving a
contradiction to A, B being without common factors. Therefore, evaluating P (x) at µ ∈ k∗, we
get a constant function P (µ) again satisfying conditions (1) and (2).

Remark 3.32. Over k = Q and L = L′ = Q(i), taking a = 1 and P (x) = (x+ i)/(x− i) is
εGal(K/k)ε−1-invariant. More generally, if L = L′ = k(θ), one can take a = 1 and P (x) =
(x+ θ)/(x+ θg).

In the case L = k(θ) ̸= k(θ′) = L′, one can also construct a non-constant P ∈ K(x) with
a = 1: consider Q(x) = (x+ θ)/(x+ θg), and choose P (x) = Q(x)Q(1/x).

3.5.3 Proof of Proposition 3.25

Lemma 3.33. For A,B,C,D ∈ K[x] with AD −BC ̸= 0 and a, b, c, d ∈ K with ad− bc ̸= 0, the
following hold:

(1) If
((

a b
c d

)
,
(
A B
C D

))
is εGal(K/k)ε−1-invariant, then if A ̸= 0, the map

((
a b
c d

)
,
(
A 0
0 D

))
also

is εGal(K/k)ε−1-invariant, and if B ̸= 0, then
((

a b
c d

)
,
(

0 B
C 0

))
also is εGal(K/k)ε−1-

invariant.

(2) The map
((

a 0
0 d

)
,
(
A 0
0 D

))
is εGal(K/k)ε−1-invariant if and only if

((
0 a
d 0

)
,
(

0 A
D 0

))
is.

(3) The map
((

a 0
0 d

)
,
(

0 B
C 0

))
is εGal(K/k)ε−1-invariant if and only if

((
0 d
a 0

)
,
(
C 0
0 B

))
is. More-

over, this is equivalent to
((

0 d
a 0

)
,
(

0 xC(x)
B(x) 0

))
being εGal(K/k)ε−1-invariant.

(4) The map (( 0 1
1 0 ) , (

0 1
1 0 )) is εGal(K/k)ε−1-invariant.

(5) If A = D = 0 or B = C = 0, then either a = d = 0 or b = c = 0.

Proof. We use the conditions of εGal(K/k)ε−1-invariance from Lemma 3.28 (for the action of gγ)
and Lemma 3.30 (for the action of hγ if L ̸= L′). Note that (3.1) implies that A ̸= 0 if and only
if D ̸= 0, and B ̸= 0 if and only if C ̸= 0. Assertions (1) and (4) are then immediate. For
assertion (2), and similarly for assertion (3), one checks that the conditions given by (3.1) on the
two pairs of matrices in the statement are the same (the other equations are clear).

To prove assertion (5), we write δ(a) = 0 if a = 0, and δ(a) = 1 if a ̸= 0, and similarly for b,
c, d. Since

(
A B
C D

)
is invertible, we cannot have A = 0 and B = 0 simultaneously. Assume A ̸= 0,

B = C = 0 (the other case B ̸= 0, A = D = 0 is similar and left to the reader). Equation (3.1)
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gives

Ag(x)xAg(x)(cgx+ dg) = D(x)Dg(x)(agx+ bg) .

Taking the degree in x, we get

2 deg(A) + δ(c) + 1 = 2deg(D) + δ(a) .

Reducing this last equality modulo 2 gives two possibilities: either δ(c) = 0 and δ(a) = 1, hence
b = c = 0 and a, d ̸= 0; or δ(a) = 0 and δ(c) = 1, hence a = d = 0 and b, c ̸= 0.

Lemma 3.33 has the following corollary, which says that the diagonal and antidiagonal ele-

ments in (PGL2(K)⋉ PGL2(K(x)))εGal(K/k)ε−1

surject onto Aut
πL,L′
k

(
P1
)
, which is the image

of the projection

(PGL2(K)⋉ PGL2(K(x)))εGal(K/k)ε−1

PGL2(K) .

Corollary 3.34. Let
((

a b
c d

)
,
(
A B
C D

))
∈ PGL2(K)⋉ PGL2(K(x)) be εGal(K/k)ε−1-invariant.

Then one of the following holds:

(1) We have b = c = 0, and there exist A′, D′ ∈K(x) such that the map
((

a 0
0 d

)
,
(
A′ 0
0 D′

))
is

εGal(K/k)ε−1-invariant.

(2) We have a = d = 0, and there exist B′, C ′ ∈K(x) such that the map
((

0 b
c 0

)
,
(

0 B′
C′ 0

))
is

εGal(K/k)ε−1-invariant.

Proof. Up to multiplying by a common denominator, we can assume that A, B, C, D are
polynomials. If A ̸= 0, we can assume B = C = 0 by Lemma 3.33(1). By Lemma 3.33(5), either
b = c = 0 and we are in the diagonal case, or a = d = 0. In the latter case, Lemma 3.33(3)
implies that

((
0 b
c 0

)
,
(

0 xA
D 0

))
is invariant, and we are in the antidiagonal case.

If B ̸= 0, we proceed similarly: We can assume A = D = 0 and find that either a = d = 0
and we are in the antidiagonal case, or b = c = 0. In the latter case, the matrices are of the form((

a 0
0 d

)
,
(

0 B
C 0

))
. Lemma 3.33(3) implies that the antidiagonal

((
0 d
a 0

)
,
(

0 xC
B 0

))
is invariant, but

then
((

d 0
0 a

)
,
(
xC 0
0 B

))
also is, by Lemma 3.33(2). Note that this corresponds to the birational map

f : (x, y) (dx/a, xC(x)y/B). Finally, conjugating this with the Galois-invariant (( 0 1
1 0 ) , (

0 1
1 0 ))

(Lemma 3.33(4)), that is, the map ι : (x, y) (1/x, 1/y), we find

ι ◦ f ◦ ι(x, y) = ι(f(1/x, 1/y)) = ι

(
d

ax
,

C(1/x)

xB(1/x)y

)
=

(
ax

d
,
xB(1/x)y

C(1/x)

)
.

So
((

a 0
0 d

)
,
(

B(1/x)x 0
0 C(1/x)

))
is εGal(K/k)ε−1-invariant, and we are in the diagonal case again.

We are now ready for the proof of Proposition 3.25.

Proof of Proposition 3.25. First of all, observe that maps of the form f(x, y) = (1/µx, 1/λx) are
indeed involutions and that the conditions on λ, µ assert that f is gγ-invariant (see Lemma 3.26),
and also hγ-invariant if L ̸= L′ (see Lemma 3.27). So indeed εHL,L′ε−1 ⊂ Birk

(
P2, πL,L′

)
.

By Corollary 3.23, we have

Birk
(
P2, π

)
≃ (PGL2(K)⋉ PGL2(K(x)))εGal(K/k)ε−1

,

and Aut
πL,L′
k

(
P1
)
corresponds to the image of the projection onto PGL2(K). Corollary 3.34 gives

that diagonal and antidiagonal elements surject onto the image of the projection. The diagonal
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elements are generated by antidiagonal ones, namely((
µ 0
0 1

)
,
(

P (x) 0
0 1

))
= (( 0 1

1 0 ) , (
0 1
1 0 )) ◦

((
0 1
µ 0

)
,
(

0 1
P (x) 0

))
is a composition of two εGal(K/k)ε−1-invariant antidiagonal elements; see Lemma 3.33(2)
and (4). Corollary 3.31 describes the conditions on the entries of the antidiagonal matrices(
( 0 1
a 0 ) ,

(
0 1

P (x) 0

))
to be εGal(K/k)ε−1-invariant. In particular, it says that evaluating P at any

a ∈ k∗ gives again an εGal(K/k)ε−1-invariant antidiagonal matrix
(
( 0 1
a 0 ) ,

(
0 1

P (a) 0

))
. Setting

P (a) = λ ∈ K gives the conditions µg = µ, λλg = µ, and if L ̸= L′ also µµh = 1 = λλh. Note
that µ = λλg implies µg = µ, and so λλh = 1 implies µµh = 1. Hence, HL,L′ surjects onto the
image of the projection to PGL2(K), and the statement follows.

4. Irreducible elements of Del Pezzo type

In this last section, we study irreducible elements of Del Pezzo type, whose possible factorization
types in terms of Sarkisov links were given in Table 2.2. First, we identify some “easy cases”
where we can lower the Sarkisov length by composing with a quadratic, Geiser, or Bertini invo-
lution. Then, for the remaining “hard cases,” we produce factorizations into involutions by using
elementary relations between Sarkisov links. Most of these factorizations rely on an assumption
about the existence of points in general position, and in Section 4.3 we show that these con-
ditions are satisfied. Finally, in Section 4.4, we put everything together and finish the proof of
Theorem 1.1.

4.1 Easy simplifications

First, we discuss quadratic involutions, using the following result.

Lemma 4.1. Let f ∈ Birka

(
P2
)
be a quadratic map with three proper base points p1, p2, p3. For

each {i, j, k} = {1, 2, 3}, let qk = f(Lij), where Lij ⊂ P2 is the line through pi, pj . Then:

(1) There exists an α ∈ Autka

(
P2
)
that sends qi to pi for each i = 1, 2, 3.

(2) For any such automorphism α, the quadratic map α ◦ f is an involution.

(3) If the set {p1, p2, p3} is invariant under the Galois action, then in part (1) we can choose α
in Autk

(
P2
)
.

Proof. Assertion (1) is just the classical fact that PGL3(k
a) acts transitively on triple of non-

collinear points. For assertion (3), see [Sch22, Lemma 6.11].

To prove assertion (2), up to conjugation we can assume p1 = [1 : 0 : 0], p2 = [0 : 1 : 0],
p3 = [0 : 0 : 1]. Let π : X P2 be the blow-up of p1, p2, p3. Since by construction α ◦ f has the
same base points as its inverse, we have a commutative diagram

X X

P2 P2

π

g

π

α◦f

with g ∈ Autka(X). The automorphism group of the Del Pezzo surface X of degree 6 is well
known [Dol12, Theorem 8.4.2]:

Autka(X) = (Gm)2 ⋊ (S3 × Z/2) ,
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where (Gm)2 is the standard toric action [ax : by : z] with a, b ∈ ka∗, the symmetric group S3

permutes the homogeneous coordinates and the generator of Z/2 is the standard quadratic
involution σ = [yz : xz : xy]. In particular, the action of g on the six (−1)-curves of X uniquely
determines g up to composition by an element of (Gm)2. Finally, since pk = α◦f(Lij), we observe
that g has the same action as σ and that for any (a, b) ∈ (Gm)2, the map [ayz : bxz : xy] is an
involution, which ends the proof.

Corollary 4.2. Let f : P2 99K P2 be a map of minimal factorization type

(Q1) P2 3 3
99K P2 or

(Q2) P2 2 1
99K D8

1 2
99K P2.

Then there exists an α ∈ Autk
(
P2
)
such that α ◦ f is a quadratic involution.

Proof. In the case (Q1), we can directly apply Lemma 4.1. In the case (Q2), we take p = {p1, p2}
to be the 2-point blown up by the first link, and p3 to be the rational point on P2 corresponding
to the point blown up by the second link. Note that they are not collinear. Again, we conclude
by Lemma 4.1.

Now we discuss Geiser and Bertini involutions; see [Dol12, Sections 8.7.2 and 8.8.2] for de-
tails. Let X be a Del Pezzo surface of degree 1 (respectively, of degree 2). Then the linear system
| − 2KX | (respectively, | −KX |) corresponds to a 2-to-1 morphism X P2, and the deck trans-
formation σ : X X is an automorphism of X called a Bertini involution (respectively, a Geiser
involution). The involution σ acts on the Néron–Severi space Pic(X)⊗R preserving the class of
KX , and it acts as minus the identity on (KX)⊥.

Lemma 4.3. Let X be a Del Pezzo surface of degree 1 (respectively, of degree 2), and let σ ∈
Aut(X) be the Bertini involution (respectively, the Geiser involution). Then for any collection
{Ci}i∈I of rational curves with C2

i ∈ {−1, 0} and Ci · Cj = 0 for i ̸= j, we have σ(Ci) ̸= Cj for
all i ∈ I.

Proof. As mentioned above, the class of a curve C ∈ Pic(X) is fixed by σ if and only if C is
a multiple of −KX . In particular, any curve that is fixed by σ must have positive self-intersection.
So the assumption C2

i ⩽ 0 implies directly that σ(Ci) ̸= Ci for i = 1, . . . , r. Now to obtain a
contradiction, assume σ(Ci) = Cj for some indexes i ̸= j. Then Ci+Cj is fixed by the involution σ,
and since Ci · Cj = 0 by assumption, we get (Ci + Cj)

2 = C2
i + C2

j ⩽ 0, hence Ci + Cj is not
fixed by σ, giving a contradiction.

Corollary 4.4. Let P be the piece associated with a Del Pezzo surface of degree 1 (respectively,
of degree 2). Then the Bertini involution (respectively, the Geiser involution) acts on the piece
without fixing any proper face. If the piece is 1- or 2-dimensional, this means that the involution
acts on the piece as −id (“central symmetry”).

Proof. Let X be a Del Pezzo surface of degree 1 or 2, of Picard rank n ⩾ 2. So X/pt is a rank n
fibration giving rise to an (n−1)-dimensional piece. Let r ⩽ n, and let Y/B be a rank r fibration
that is dominated by X, giving rise to an (r − 1)-dimensional face. For r = n, there is nothing
to prove. Now assume r < n. Consider all the rank n− 1 fibrations Zj/Bj that dominate Y and
are dominated by X, with dominating maps fj : X Zj . Consider the set {Cj,i}i∈Ij of curves
on X that are contracted by fj if Bj = pt, or by πj ◦ fj , where πj : Zj Bj , if Bj = P1. So the
set of Cj,i is either a Galois orbit of pairwise disjoint (−1)-curves or the transform of fibers of
Zj Bj . Now take the union

⋃
j{Cj,i}i∈Ij . The curves satisfy Cji · Cj′i′ = 0 for Cji ̸= Cj′i′ . So
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the curves {Cji} are as in Lemma 4.3. Hence, the Bertini, respectively Geiser, involution does
not fix Y . This proves that no proper face is fixed by the involution.

If the piece has dimension n = 1 or 2, the combinatorial piece can be embedded into Rn as
an interval or a regular polygon centered at the origin, so that any combinatorial bijection comes
from the restriction of a Euclidean isometry of Rn. Since −id is the only Euclidean involution
preserving the polygon that does not fix any proper face, we get the result.

We say that ι ∈ Birk
(
P2
)
is conjugate to a Bertini involution (respectively, to a Geiser

involution) if there exists a birational map φ : P2 99K X, whereX is a Del Pezzo surface of degree 1
(respectively, of degree 2) such that ι = φ−1σφ, where σ : X X is the Bertini involution
(respectively, the Geiser involution) on X. The following result explains the meaning of “Bertini
simplification” or “Geiser simplification” in the last column of Table 2.2.

Proposition 4.5. Let f ∈ Birk
(
P2
)
be an irreducible map of minimal factorization type one of

the following:

(G1) P2 7 7
99K P2,

(G2) P2 2 1
99K D8

6 6
99K D8

1 2
99K P2,

(G3) P2 5 1
99K D5

3 3
99K D5

1 5
99K P2,

(G4) P2 2 1
99K D8

3 1
99K D6

4 4
99K D6

1 3
99K D8

1 2
99K P2,

(B1) P2 8 8
99K P2,

(B2) P2 2 1
99K D8

7 7
99K D8

1 2
99K P2,

(B3) P2 5 1
99K D5

4 4
99K D5

1 5
99K P2,

(B4) P2 2 1
99K D8

3 1
99K D6

5 5
99K D6

1 3
99K D8

1 2
99K P2.

Then we can write f = g◦ι, where ι is conjugate to a Geiser or Bertini involution and sl(g) < sl(f).

Proof. The diagram below explains the proof for the case (G3). By the minimality of the factor-
ization, we have sl(f) = 3.

X2 X2 P2

P2 X5 X5

P2

3

σ

3

φ−1

g with sl(g)⩽25 1

φ

ι = φ−1σφ

f

3 3
1 5

1 5

Here σ : X2 X2 is the Geiser involution on the fibration of rank 2 dominating the link
X5

3 3
99K X5; see Corollary 4.4. The cases (G2), (G4), (B2), (B3), (B4) are similar.

For the case (G1), we have to slightly adapt the argument since here g will be an automor-
phism that we usually keep hidden in the definition of Sarkisov link “up to isomorphism.” We
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use the diagram

X2 X2

P2 P2 P2 ,

7

σ

7

7 7
ι

f

g∈Aut
(
P2

)

where again σ is the Geiser involution on the Del Pezzo surface X2. The argument for the
case (B1) is similar.

4.2 Remaining cases

For the remaining cases of Table 2.2, we show that any map f with factorization type in the
following list is generated by involutions, provided that certain generality conditions are satisfied:

(i) P2 5 1
99K D5

1 5
99K P2,

(ii) P2 2 1
99K D8

3 1
99K D6

1 3
99K D8

1 2
99K P2,

(iii) P2 2 1
99K D8

4 4
99K D8

1 2
99K P2,

(iv) P2 2 1
99K D8

3 1
99K D6

3 3
99K D6

1 3
99K D8

1 2
99K P2,

(v) P2 2 1
99K D8

3 1
99K D6

2 2
99K D6

1 3
99K D8

1 2
99K P2,

(vi) P2 5 1
99K D5

2 5
99K D8

1 2
99K P2,

(vii) P2 6 6
99K P2.

If there exist an a-point and a b-point on X ∈ D such that the two points are in general
position, we denote by P

(
X; a, b

)
the piece of the corresponding relation involving the two links

starting at X associated with the blow-up of the a-point, respectively the b-point. (This is
coherent with the notation used in Appendix B.)

Lemma 4.6 (Case (i)). Let f be a map of minimal factorization type P2 5 1
99K D5

1 5
99K P2. The

following holds:

(1) Assume that the two rational points on X5 are general. Then the map f is a composition
of two maps of Jonquières type 1 (and an automorphism of P2 at the end).

(2) Assume that there is a 2-point on X5 that is general with the two rational points. Then
the map f is a composition of two Geiser involutions from Del Pezzo surfaces with Picard
rank 3 and a quadratic map (Q2).

Proof. Since the factorization is minimal, the two rational points on X5 are distinct. The as-
sumption in part (1) implies that the map f lies inside the piece P

(
X5; 1, 1

)
= P

(
P2; 1, 5

)
. It

can be glued with the piece P
(
P2; 1, 1

)
along the edge corresponding to the exchange of the

rulings of F0. This gives a decomposition of f into two maps of Jonquières type 1, up to an
automorphism; see Figure 4.1.

By the assumption in part (2), the map f fits into two pieces P
(
X5; 1, 2

)
= P

(
P2; 2, 5

)
glued along the edge D5

2 5
99K D8 that meets the factorization of f . By Corollary 4.4, the central

symmetry of P
(
P2; 2, 5

)
corresponds to a Geiser involution. Hence, the map f is given by the

Geiser involution of the first piece, followed by a quadratic map (Q2) followed by the Geiser
involution of the second piece.
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5

5

5

1

1

1

5

5

5

5

1

1

5

5

1

1

1 1

1

1

1

1
1

1

X3

P2

F1
F1/P1

X3/P1

F0/P1

F0

F0/P1

X3/P1

F1/P1
F1

P2

X4

X5

X ′
4

X7 P2

F1

F1/P1
X7/P1

X7/P1
F1/P1

F1

Jonquières

Jonquières

Figure 4.1. The two pieces of Lemma 4.6(1)

Lemma 4.7 (Case (ii)). Let f be a map of minimal factorization type P2 2 1
99K D8

3 1
99K D6

1 3
99K

D8
1 2
99K P2. Assume that the two rational points on X6 are general. Then f is the composition of

two quadratic maps (Q2) and one quadratic map (Q1).

Proof. By the minimality of the factorization, the two rational points on X6 are distinct, hence
general by the assumption. This implies that the middle part of f , namely D8

3 1
99K D6

1 3
99K D8, is

inside the piece P
(
X6; 1, 1

)
= P

(
P2; 2, 3

)
. Hence, the map f is given by a quadratic map (Q2),

followed by a quadratic map (Q1), followed by another quadratic map (Q2).

Lemma 4.8 (Case (iii)). Let f be a map of minimal factorization type P2 2 1
99K D8

4 4
99K D8

1 2
99K P2.

(1) Assume that there exists a rational point on X8 that is general with the 4-point. Then the
map f is the product of (at most) two quadratic maps (Q2) and a map of fibering type in
Birk(P2, πF ), where F/k is the residue field of the 4-point.

(2) Assume that there is a 2-point that is general with the 4-point on X8. Then the map f is
the product of a Geiser involution from a Del Pezzo surface of Picard rank 3 and a map of
Jonquières type 2 + 2 in Birk

(
P2, πL,L′

)
(and an automorphism of P2), where L/k is the

residue field of the 2-point on P2 and L′/k is the residue field of the 2-point on X8.

(3) Assume that there exists a 3-point on X8 that is general with the 4-point. Then the map f
is the product of a Bertini involution from a Del Pezzo surface of Picard rank 3 and a Geiser
simplification (G4).

Proof. For assertion (1), observe that the assumption implies that the middle part of f , namely

D8
4 4
99K D8, fits into a piece P

(
X8; 1, 4

)
= P

(
P2; 2, 4

)
. Two opposite vertices of this piece are

P2, and the map between these two P2 is of fibering type 4 with residue field F . The beginning
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and the end of f , that is, P2 2 1
99K D8 and D8

1 2
99K P2, are not necessarily contained in the piece.

However, composing it with a quadratic map (Q2) at the beginning and/or the end gives the
statement.

By the assumption in assertion (2), the middle part of f is part of a piece P
(
X8; 2, 4

)
, whose

central symmetry is a Geiser involution (Corollary 4.4). So f can be written as a Geiser involution

followed by a map P2 2 1
99K X8

2
99K D6

4 4
99K

2
X8

1 2
99K P2, which is a map of Jonquières type 2+ 2

in Birk
(
P2, πL,L′

)
(after composing with an automorphism of P2).

By the assumption in assertion (3), the middle part of f is part of a piece P
(
X8; 3, 4

)
. Observe

that by Corollary 4.4, its central symmetry is a Bertini involution. So f can be decomposed into
this Bertini involution and a Geiser simplification (G4).

Lemma 4.9 (Case (iv)). Let f be a map of minimal factorization type

P2 2 1
99K D8

3 1
99K D6

3 3
99K D6

1 3
99K D8

1 2
99K P2 .

Assume that there exists a rational point on X6 that is general with the 3-point on X6. Then
the map f is the composition of two maps of the form (ii) and a Geiser involution.

Proof. The assumption implies that the middle part of f , namely D6
3 3
99K D6, is part of a piece

P
(
X6; 1, 3

)
. By Corollary 4.4, the central symmetry of the piece is a Geiser involution. Choosing

a rational point on a D8 in the piece gives an edge D8
1 2
99K P2 going out of the piece, and the

central Geiser involution gives an opposite edge to P2. Therefore, the map f is the product of
a Geiser involution and maps of the form (ii) at the beginning and/or at the end.

Lemma 4.10 (Case (v)). Let f be a map of minimal factorization type

P2 2 1
99K D8

3 1
99K D6

2 2
99K D6

1 3
99K D8

1 2
99K P2 .

(1) Assume that there is a rational point on X6 that is general with the 2-point on X6. Then
the map f is the composition of (at most) two maps of the form (ii) and a map of fibering
type, more precisely a map in Birk

(
P2, πL,L′

)
, where L/k is the residue field of the 2-point

in X6 and L′/k is the degree 2 extension coming from the link P2 99K X8.

(2) Assume that there is a 3-point on X6 that is general with the 2-point on X6. Then the
map f is the composition of a Bertini involution of a Del Pezzo surface of Picard rank 3
and (if needed) a map of the form (iv).

Proof. The assumption in assertion (1) implies that the middle part of f , namely D6
2 2
99K D6,

is part of a piece P
(
X6; 1, 2

)
= P

(
X8; 2, 3

)
. We choose a rational point on one of the D8 in the

piece, obtaining an edge to P2 going out of the piece. On the opposite side of the piece, we can
choose an edge to P2 such that the induced map of the piece between the opposite copies of P2

is of fibering type. Hence, by composing this map, if needed, with a map of the form (ii) at the
beginning and/or the end, statement (1) follows.

The assumption in assertion (2) implies that the middle part of f is part of a piece P
(
X6; 2, 3

)
.

By Corollary 4.4, the central symmetry of the piece is a Bertini involution. Hence, the map f is
the composition of the central Bertini involution, followed by a map of the form (iv).

Lemma 4.11 (Case (vi)). Let f be a map of factorization type P2 5 1
99K D5

2 5
99K D8

1 2
99K P2. Assume

that there is a rational point on X5 that is general with the 2-point on X5. Then f is the
product of a Geiser involution of a Del Pezzo surface of Picard rank 3 and (if needed) maps of
the form (Q2) and (i).
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Proof. The assumption implies that the middle part of f , namely D5
2 5
99K D8, is part of a piece

P
(
X5; 1, 2

)
= P

(
P2; 2, 5

)
. By Corollary 4.4, the central symmetry of the piece is a Geiser invo-

lution. Hence, f can be written as the product of a Geiser involution and, if needed, a map of
the form (i) at the beginning and a quadratic map (Q1) at the end.

Lemma 4.12 (Case (vii)). Let f be a link P2 6 6
99K P2.

(1) Assume that there exists a rational point on P2 that is general with the 6-point on P2.
Then f is the composition of a Geiser involution, a map of Jonquières type 1, and an
automorphism of P2.

(2) Assume that there exists a 2-point on P2 that is general with the 6-point on P2. Then, the
map f is the composition of a Bertini involution of a Del Pezzo surface of Picard rank 3
and a Geiser simplification (G2).

Proof. The assumption in assertion (1) implies that f is part of a piece P
(
P2; 1, 6

)
whose central

symmetry is a Geiser involution. Hence, f can be decomposed into a Geiser involution and a
map of Jonquières type 1 (and possibly an automorphism of P2).

The assumption in assertion (2) implies that f is part of a piece P
(
P2; 2, 6

)
. Note that the

central symmetry is a Bertini involution. Hence, doing first the central Bertini involution and
then the Geiser simplification (G2) along the edge D8

6 6
99K D8 gives the statement.

4.3 General position

In this section, we show that the assumptions of general position in the lemmas in Section 4.2
are satisfied, at least for the first part of the respective lemmas. As always, the ground field k is
assumed to be an arbitrary perfect field.

Lemma 4.13 (Cases (i) and (ii)). Let X ∈ D5 ∪ D6. Then, any two rational points on X are
general.

Proof. See Appendix A and Lemmas A.6 and A.8.

Lemma 4.14 (Case (iii), Lemma 4.8(1)). Let p ∈ X8 be a general 4-point, where X8 ∈ D8. Then,
any rational point q ∈ X8 is general with p.

Proof. Recall that five points on P1×P1 are general if and only if no two lie on the same vertical
or horizontal curve and no four lie on a diagonal (see for example [Sch21, Lemma 4.3]). Denote
by s the horizontal curve through q and by f the vertical curve through q. Observe that s and f
form a Galois orbit. If p1 lies on s∪ f , then all four pi lie on s∪ f , hence (at least) two of the pi
lie on the same vertical or horizontal line, contradicting the generality of p.

If q lies on the diagonal through three of the pi, then q lies on all the diagonals through
three of the four pi. Since the diagonal through three points is unique, this means that all these
diagonals are equal and so that p lies on a diagonal, again contradicting the generality of p.

Lemma 4.15 (Case (iv), Lemma 4.9). Assume that the ground field k is not the field with two
elements, and let X6 ∈ D6. For any general 3-point p ∈ X6, there exists a rational point q on X6

that is general with p.

Proof. Consider the blow-up X3 X6 of X6 at p. It is enough to see that there is a rational
point that does not lie on any of the 27 (−1)-curves of the cubic surface X3. Since each (−1)-
curve contains at most one rational point (if it contains two, it is defined over k since two lines
intersect at most once), this is clear if k is infinite.
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Now assume that k is finite. We have (see Remark A.2)

|X3(k)| = |X6(k)| = |k|2 − |k|+ 1 .

In the following, we give a bound on the number of rational points that lie on the 27 (−1)-curves
of X3 and see that this number is smaller than |X3(k)|. Assume that p ∈ X3(k) lies on a (−1)-
curve that is defined over ka, and let E1, . . . , Ed be its Galois orbit. Since p is a rational point,
it lies on each Ei. The 27 (−1)-curves on X3 are such that at most three lines intersect in one

point. Hence, d ⩽ 3. Since the link given by p is of the form X6
3 3
99K X ′

6, the only Galois orbits
of pairwise disjoint (−1)-curves on X3 are two Galois orbits of size 3. In particular, there is no
(−1)-curve defined over k, and so d ⩾ 2. The exceptional divisors of the two points of degree 3
that come from the link give six (−1)-curves that do not contain a rational point. The hexagon of
the six (−1)-curves on X6 is one Galois orbit (in [SZ21, Figure 1, Section 4.1] all configurations
of the hexagon give rise to a birational morphism except when the hexagon forms one Galois
orbit). Similarly, the hexagon of the six (−1)-curves on X ′

6 also forms one Galois orbit, and its
strict transform on X3 is different from the hexagon on X6.

Hence, at most 27 − 18 = 9 (−1)-curves contain a rational point. Since each (−1)-curve
contains at most one rational point and each rational point lies on at least two (−1)-curves, the
total number of rational points lying on the set of (−1)-curves is at most 9/2, so it is at most 4.
We find

|k|2 − |k|+ 1− 4 ⩾ 3 .

Remark 4.16. Lemma 4.15 does not hold for k = F2: The blow-up of the two general 3-points on
X6 found in [Sch21, Lemma 4.33(2)] gives a cubic surface such that all three rational points of X6

lie on (−1)-curves. Hence, Lemma 4.9 is not applicable. Moreover, there is also no 2-point that is
general with the 3-point, and so also Lemma 4.10(2) is not applicable, which would have allowed

us to decompose a link of the form D6
3 3
99K D6 into a Bertini involution and a link D6

2 2
99K D6.

Therefore, this approach fails to give a decomposition of maps of the form (iv) into involutions.
Luckily, it was already proved in [Sch21, Corollary 1.3] that over F2, these maps are in fact
involutions.

Lemma 4.17. Let p ∈ X8 be a general 2-point, and let q ∈ X8 be a general 3-point. Assume that
the diagonal through q does not contain any of the components of p. Then q is general with p.

Proof. The Galois orbit of the horizontal and vertical curves containing p has four components.
Therefore, none of the vertical or horizontal curves through one of the pi contains any of the qi
since the latter is a component of a 3-point.

Assume that two points of q, say q2, q3, lie on one diagonal with p; call it D. Note that
since Gal(L/k) is a transitive subgroup of S3, it contains the cyclic group, where L/k is the
splitting field of q. Let σ be the generator of the cyclic group in Gal(L/k). So σ(D) contains p
as well as q1, q3, and therefore D = σ(D) is the diagonal through q, giving a contradiction.

Lemma 4.18 (Case (v), Lemma 4.10(1)). Let p be a general 2-point on X6 ∈ D6. Then any
rational point on X6 is general with p.

Proof. Let q ∈ X6 be a rational point, and denote the image of p under the link X6
1 3
99K X8

again by p. Write q = {q1, q2, q3} ⊂ X8 for the contracted 3-point. In particular, q as well as p
are general points in X8. Note that the diagonal through q is the exceptional divisor of the link.
Since the diagonal through the three geometric points of q is contracted by the link, it does not
contain any of the pi. Lemma 4.17 implies the statement.
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Lemma 4.19 (Case (vi), Lemma 4.11). Let p ∈ X5 be a general 2-point, where X5 ∈ D5. Then
any rational point q ∈ X5 is general with p.

Proof. Consider the link X5
1 5
99K P2 given by the rational point q, denote by r the 5-point in P2

(this is a general point), and denote the image of p in P2 again by p. Note that p on X5 is general
with q if and only if p on P2 is general with r because the surface obtained by blowing up p
and q on X5 is isomorphic to the one obtained by blowing up p and r on P2. Note that since the
exceptional divisor of q is sent onto the conic through the five geometric components of r, the
point p does not lie on this conic. Lemma A.5 implies the statement.

Lemma 4.20 (Case (vii), Lemma 4.12(1)). Let p ∈ P2 be a general 6-point. Then, all rational
points except finitely many are general with p. Moreover, if the ground field k is finite, then all
rational points except at most one are general with p.

Proof. Let r be a rational point. We first show that it does not lie on any conic through five
components of p. Assume that r lies on the conic through all components of p except pi, and call
that conic Ci. Let σ ∈ Gal(ka/k) be such that σ(pi) = pj ̸= pi. So σ(Ci) = Cj contains q and all
components of p except pj . So Ci and Cj have the five points q and p \ {pi, pj} in common and
are therefore equal. This contradicts the generality of p.

The lines Lij through two components pi, pj of p contain at most one rational point (if a line
contains two, then it is defined over k, which is not possible). Therefore, there are only finitely
many rational points that are collinear with two components of p. (In fact,

(
6
2

)
= 15 gives an

upper bound.)

Now assume that k is finite. We order the components of p cyclically and denote by σ the
generator of Gal(L/k), where L is the extension of k of degree 6. The lines Lij form three orbits;
namely, those of L12 and L13 are both of size 6, and that of L14 is of size 3. If q ∈ L12, then
q ∈ σ(L12) = L23, so L12 = L23 and so p1, p2 and p3 are collinear, contradicting the generality
of p. If q ∈ L13, then q ∈ σ2(L13) = L35 and so p1, p3, and p5 are collinear, again giving
a contradiction. If q ∈ L14, then q ∈ L25 ∩L36, and so q is the unique intersection point of these
three lines.

4.4 Proof of Theorem 1.1

We start from Proposition 3.7, and we want to show that each of the generators is contained in
the subgroup of Birk

(
P2
)
generated by involutions.

This is Lemma 3.8 for Autk
(
P2
)
and Birk

(
P2, π×

)
, and it is Corollary 3.21 for a Jonquières

group Birk
(
P2, πF

)
of type 4. For a Jonquières group Birk

(
P2, πL,L′

)
of type 2 + 2, this follows

from Propositions 3.19 and 3.25.

We are left with the case of an irreducible elements f of Del Pezzo type with 1 ⩽ sl(f) ⩽
5. Assume for a contradiction that there exists such an element that is not a composition of
involutions, and assume that sl(f) is minimal for this property. Then the factorization type of a
minimal factorization of f is not one of the 10 cases covered by Corollary 4.2 and Proposition
4.5, and we are left with the seven cases studied in Sections 4.2 and 4.3:

(i) P2 5 1
99K D5

1 5
99K P2 (see Lemmas 4.6(1) and 4.13),

(ii) P2 2 1
99K D8

3 1
99K D6

1 3
99K D8

1 2
99K P2 (see Lemmas 4.7 and 4.13),

(iii) P2 2 1
99K D8

4 4
99K D8

1 2
99K P2 (see Lemmas 4.8(1) and 4.14),

(iv) P2 2 1
99K D8

3 1
99K D6

3 3
99K D6

1 3
99K D8

1 2
99K P2 (see Lemmas 4.9 and 4.15 if |k| ⩾ 3; for

k = F2, see [Sch21, Corollary 1.3]),
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{P2} D8

{F0,F1, . . .} = C8 C6

I
or

II
I:
1

II:2:1

I
o
r
II
I:
2

II:1:1 or 2:2II:1:1 or 2:2

IV

Figure 4.2. Sarkisov links between rational surfaces over R

(v) P2 2 1
99K D8

3 1
99K D6

2 2
99K D6

1 3
99K D8

1 2
99K P2 (see Lemmas 4.10(1) and 4.18),

(vi) P2 5 1
99K D5

2 5
99K D8

1 2
99K P2 (see Lemmas 4.11 and 4.19),

(vii) P2 6 6
99K P2 (see Lemmas 4.12(1) and 4.20).

In each case, we obtain a factorization into involutions (using automorphisms, elements of
Jonquières type, quadratic, Geiser, and Bertini involutions), which gives the expected contradic-
tion and finishes the proof of the theorem.

We can be slightly more precise and give the following involutive generating set.

Proposition 4.21. The group Birk
(
P2
)
is generated by linear involutions, involutions of Jon-

quières type 1, 2 + 2, and 4, quadratic involutions, and maps conjugate to a Geiser or Bertini
involution on a Del Pezzo surface of Picard rank 2 or 3.

Proof. In the proof of Theorem 1.1, it is enough to give the composition into involutions of the
irreducible maps of Del Pezzo type, which the mentioned lemmas provide except in the case
of (G1)–(B4).

For the Geiser and Bertini simplifications f = g ◦ ι in Proposition 4.5, the map ι ∈ Birk
(
P2
)

is conjugate to a Geiser (or Bertini) involution on a Del Pezzo surface of degree 2 or 1 that has
Picard rank 2, and g has factorization type (Q2), (i), or (ii). It is enough to observe that g either
is an automorphism or has a minimal factorization (Q1), (Q2), (i), or (ii), as follows.

First, assume that g has sl(g) ̸= 0 and factorization type (Q2) or (i). If it is not minimal, then

sl(g) = 1, and hence g has a minimal factorization P2 d d
99K P2 with a d-point as base point. By

Figure 2.1, we have d ∈ {3, 6, 7, 8}, but g does not have any such d-point as base point, giving
a contradiction. Moreover, if g with sl(g) ̸= 0 has factorization type (ii), then g has as base
points at most one 2-point, one 3-point, and two rational points. Considering Figure 2.1, either
the factorization is minimal, or g has a minimal factorization as either (Q1) or (Q2).

Remark 4.22. For k = R, or more generally for any field k with [ka : k] = 2, the graph of Sarkisov
links reduces to Figure 4.2, and Proposition 3.7 becomes the following (compare with [Zim18,
Corollary 4.2]): the Cremona group is generated by Autk

(
P2
)
, by the Jonquières group of type 1,

and by the Jonquières group Birk
(
P2, πL,L

)
of type 2+2, with L = ka. So to prove that Birk

(
P2
)
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is generated by involutions, there is no need to consider sporadic cases of Del Pezzo type, and
then our proof reduces essentially to the one given in [Zim16, Corollary II.4.12].

Remark 4.23. Over k = F2, some miracles occur with the sporadic cases. For instance, it is
shown in [Sch21] that over F2, a link P2 6 6

99K P2 is always an involution (up to PGL3), but this is
certainly not the case for general fields. In fact, it can be observed from [DD19] that if the link
is an involution, then the cubic surface dominating the link must admit an Eckardt point (three
(−1)-curve meeting at a same point), and it turns out that over F2 all rational cubic surfaces of
Picard rank 2 admit Eckardt points.

Appendix A. Sarkisov links between rational surfaces over a perfect field

In this appendix, we provide a mostly self-contained proof of Theorem 2.4. Precisely, we use
some references such as [Sch22, SZ21], but we avoid any reference to the paper [Isk96].

One should keep in mind that the theorem does not say anything about the existence of the
links. In particular,

• over an algebraically closed field, the graph of Figure 2.1 reduces to only two vertices{
P2
}
, C8;

• over the field R, or more generally a field such that [ka : k] = 2, the graph of Figure 2.1
reduces to only four vertices

{
P2
}
, C8, D8, C6 (see Figure 4.2);

• over the field F2, it was shown in [Sch21] that all vertices appear, and all edges appear

except the loop D8
4 4
99K D8.

The following result holds in greater generality, with a proof almost as short; see [RY00,
Proposition A.6]. However, our argument allows a precise counting in the case of a finite field.

Lemma A.1. Let X 99K Y be a birational map between surfaces defined over k. Then X admits
at least one rational point if and only if the same holds for Y .

Proof. Since any birational map is a composition of blow-ups, it is sufficient to consider the case

of the blow-up of a d-point X
d

Y . If d ⩾ 2, the rational points of X and Y are in bijection, and
if d = 1, the exceptional divisor is isomorphic to P1 over k and so contains rational points.

Remark A.2. Over a finite field k = Fq, the above argument shows that the blow-up of a rational
point produces an exceptional divisor with q + 1 rational points. In particular, given a link

X
d 1
99K X ′ of type II with d ⩾ 2, we have |X ′(k)| = |X(k)| − q. This shows∣∣P2(k)

∣∣ = q2 + q + 1 , |X8(k)| = q2 + 1 ,

|X6(k)| = q2 − q + 1 , |X5(k)| = q2 + 1

for any Xi ∈ Di. Also observe that all these numbers are greater than or equal to 3.

In the next proposition, we gather some characterizations of the rank 1 fibrations involved in
our links (except for the class D5, where we could not find a reference).

Proposition A.3. Let X be a rational Del Pezzo surface defined over a perfect field k. Assume
that X has degree d and Picard rank 1.

(1) If d = 9, then X = P2.

(2) If d = 8, then X ∈ D8.
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(3) If d = 6, then X ∈ D6.

Let X/P1 be a rational conic bundle defined over a perfect field k. Assume K2
X = d and that the

relative Picard rank of X/P1 is 1.

(4) If d = 5, then X ∈ C5.
(5) If d = 6, then X ∈ C6.
(6) If d = 8, then X ∈ C8.
Proof. (1) This is a result of Châtelet; see for example [GS06, Theorem 5.1.3] or [Kol16, Corol-
lary 13].

(2) See [SZ21, Lemma 3.2].

(3) See [SZ21, Section 4].

(4) We follow [Sch22, Lemma 6.13]. The surface X admits 8−K2
X = 3 singular fibers. Since

the Picard rank of X/P1 is 1, for each singular fiber C + C ′, there is an element g ∈ Gal(ka/k)
that sends C onto C ′, and since the intersection form is preserved, the same g sends C ′ onto
C. Since X is rational, by Lemma A.1 it contains a rational point, and so we can apply [Sch22,
Lemma 6.5] and conclude that X is the blow-up of four points in P2, invariant under Gal(ka/k).
Moreover, since the Picard rank of X is 2, the four points form a single Galois orbit.

(5) The surface X admits 8 − K2
X = 2 singular fibers. A singular fiber contains at most

one rational point (the meeting point of the two components), so by Remark A.2 we can pick
a rational point p outside the singular fibers. Let Y X be the blow-up of p. Then as in
the previous case, we can apply [Sch22, Lemma 6.5] (with [Sch22, Observation 6.9]) to Y and
conclude that Y is the blow-up of P2 at four points. Since the Picard rank of Y is 3, the four
points are divided into two Galois orbits. The singular fibers correspond on P2 to pairs of lines
going through all four points. If one of the points is rational, none of these lines is defined over k.
This is not possible since one of them corresponds to the exceptional curve E of p, which is
rational. Therefore, Y P2 is the blow-up at two 2-points. Let F = {F1, F2} and F ′ = {F ′

1, F
′
2}

be the orbits of (−1)-curves on Y that can be contracted to P2. By [Sch22, Lemma 6.5(3)],
exactly one of them is pairwise disjoint with E, say F . We obtain a commutative diagram

Y X7 P2

X X8 .

F

E

F ′

E

F

In particular, X ∈ C6.
(6) Over ka, the surface X is isomorphic to a Hirzebruch surface Fn for some n ⩾ 0. If

n = 1, then X = F1 because the (−1)-curve is rational and hence can be contracted to a Del
Pezzo surface of degree 9 with a rational point, which is P2. For n ⩾ 2, we proceed by induction.
Since X P1 is defined over k, there exist fibers defined over k. Pick a rational point on such
a fiber that is not the intersection point with the (−n)-curve. Blowing it up and contracting
the transform of the fiber gives a birational map X 99K X ′ such that X ′ is isomorphic to Fn−1

over ka, and with a morphism X ′ P1 over k. By induction, we arrive at F1 after n− 1 steps.
Therefore, each step was a map Fi 99K Fi−1 and so X = Fn. Similarly, in the case n = 0, by
blowing up a rational point on a fiber defined over k and contracting the transform of the fiber,
we obtain F1, and we conclude as above.

We say that a Sarkisov link of type II X
d d′
99K Y is auto-similar if X and Y are of the same
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type. Comparing the Picard numbers of X and Y over ka, we see that in this case d = d′. On
the graph of Figure 2.1, a loop from one vertex to itself should be understood as the assertion
that any corresponding Sarkisov link is auto-similar. For instance, the loop P2 8 8

99K P2 means that
blowing up a general 8-point on P2, we should always come back to P2 after contracting an orbit
of eight disjoint (−1)-curves. In the following lemma, we check this assertion and other similar
ones.

Lemma A.4. Let X ∈ D, let d ⩾ 1, and let p ∈ X be a general d-point. Assume that X and
d are such that the corresponding edge on the graph of Figure 2.1 is a loop. Then the Sarkisov
link starting with the blow-up of p is indeed an auto-similar link.

Proof. Let Z X be the blow-up of the d-point p. If Z is a Del Pezzo surface of degree 1
or 2, then by Lemma 4.3, up to an automorphism, the link is induced by the Bertini or Geiser
involution on Z, and so the conclusion is clear (and in fact, we get a link X 99K X between two
isomorphic surfaces).

The Bertini case corresponds to the links

P2 8 8
99K P2 , D8

7 7
99K D8 , D5

4 4
99K D5 , D6

5 5
99K D6 .

The Geiser case corresponds to the links

P2 7 7
99K P2 , D8

6 6
99K D8 , D5

3 3
99K D5 , D6

4 4
99K D6 .

We now do a case-by-case analysis for the five remaining loops:

• P2 3 3
99K P2. We blow down the orbit of three lines through two of the pi; by Proposi-

tion A.3(1), the resulting surface is P2.

• P2 6 6
99K P2. We blow down the orbit of six conics through five of the pi; again by Proposi-

tion A.3(1), the resulting surface is P2.

• D8
4 4
99K D8. We blow down the orbit of four diagonals through three of the pi; by Proposi-

tion A.3(2), the resulting surface is in D8.

• D6
2 2
99K D6. On a Del Pezzo surface X of degree 4, given two disjoint (−1)-curves E1, E2,

there exists a unique pair of two other disjoint (−1)-curves E3, E4 such that
∑4

i=1Ei =
−KX . We apply this remark to the exceptional divisor of the blow-up of the 2-point, and
we find an orbit of two curves that we can contract. By Proposition A.3(3), the resulting
surface is in D6.

• D6
3 3
99K D6. On a Del Pezzo surface X of degree 3, given three pairwise disjoint (−1)-

curves E1, E2, E3, there exists a unique triple of other pairwise disjoint (−1)-curves E4,
E5, E6 such that

∑6
i=1Ei = −2KX : intersect the cubic surface X with the unique quadric

surface containing E1, E2, E3. We apply this remark to the exceptional divisor of the blow-
up of the 3-point, and we find an orbit of three curves that we can contract. Again, by
Proposition A.3(3), the resulting surface is in D6.

We now consider the remaining edges between the Del Pezzo type vertices.

Lemma A.5. Let r ∈ P2 be a general 5-point, and let p ∈ P2 be either a rational point or
a 2-point. Assume that p does not lie on the conic through r. Then p is general with r.

Proof. In [Sch21, Lemma 4.9], it was proved that given any general 5-point on P2 and any 2-point
on P2, either all seven components are in general position, or they all lie on the same conic. This
implies the statement when p is a 2-point.
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We now show that a rational point on P2 is never collinear with two geometric components
of r, which then implies the other part of the statement. The lines Lij through ri, rj do not
contain any rational point: There exist a σ ∈ Gal(k′/k) such that σ(ri) = rj and σ(rj) ̸= ri,
where k′/k is the splitting field of r. Hence, if a rational point p lies on Lij , then p = σ(p) ∈ Lj,σ(j)

and so Lij = Lj,σ(j) contains three components of r, contradicting the generality of r.

Lemma A.6. Let X ∈ D5, let p ∈ X be a rational point such that the blow-up of p corresponds
to a link X

1 5
99K P2, and let q ∈ X be an arbitrary rational point, distinct from p. Then:

(1) The points p and q are in general position.

(2) The Sarkisov link associated with the blow-up of q also is of type D5
1 5
99K P2.

In particular, any two rational points on X are in general position.

Proof. Let r ∈ P2 be the general 5-point that is contracted by the Sarkisov link X
1 5
99K P2

associated with p. The point q ∈ X corresponds to a rational point q′ ∈ P2, which does not lie
on the conic through r. By Lemma A.5, the blow-up of r and q′ is a Del Pezzo surface Z, and
since this is the same as the blow-up of X at p and q, this gives assertion (1).

The piece associated with the Del Pezzo surface Z is the piece P
(
D5; 1, 1

)
= P

(
P2; 1, 5

)
,

which is described in Lemma B.1. In particular, we get that the blow-up of q also gives a link
X

1 5
99K P2.

The last assertion is immediate.

Lemma A.7. Let X ∈ D5, and let p ∈ X be a rational point and q ∈ X a 2-point. Then:

(1) The points p and q are in general position.

(2) The Sarkisov link associated with the blow-up of q is of type D5
2 5
99K D8.

Proof. By Lemma A.6, the blow-up of p yields a link X
1 5
99K P2. Let r ∈ P2 be the general 5-point

that is blown up by the inverse of this link. The 2-point q ∈ X corresponds to a 2-point q′ ∈ P2,
which does not lie on the conic through r. By Lemma A.5, the blow-up of r and q′ is a Del Pezzo
surface Z, and since this is the same as the blow-up of X at p and q, this gives assertion (1). The
piece associated with the Del Pezzo surface Z is the piece P

(
D5; 1, 2

)
= P

(
P2; 2, 5

)
, which is de-

scribed in Lemma B.3. In particular, we get that the blow-up of q gives a link X
2 5
99K X ′ ∈ D8.

Lemma A.8. Let X ∈ D6, and let p ∈ X a rational point such that the blow-up of p corresponds
to a link X

1 3
99K X ′ with X ′ ∈ D8 and q ∈ X an arbitrary rational point, distinct from p. Then:

(1) The points p and q are in general position.

(2) The Sarkisov link associated with the blow-up of q also is of type D6
1 3
99K D8.

In particular, any two rational points on X are in general position.

Proof. The proof is similar to that of Lemma A.6, now using the piece P
(
D6; 1, 1

)
=P

(
D8; 1, 3

)
,

which is described in Lemma B.2.

Lemma A.9. Let X ∈ D, let d ⩾ 1, and let p ∈ X be a general d-point. Assume that the
corresponding edge on the graph of Figure 2.1 is of type II and is not a loop. Then the Sarkisov
link starting with the blow-up of p is as prescribed by Figure 2.1.

Proof. For the edges P2 2 1
99K D8, P2 5 1

99K D5, and D8
3 1
99K D6, this follows from the definition of

the classes Di. Now we consider the inverses of these links.
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If X ∈ D8 and p ∈ X is a rational point, after the blow-up of X at p, we can contract the
transform of the horizontal and vertical rulings through p. By Proposition A.3(1), the resulting

surface is P2, so we get a link D8
1 2
99K P2.

If X ∈ D5 and p ∈ X is a rational point, the existence of a link D5
1 5
99K P2 starting with the

blow-up of p is given by Lemma A.6. If X ∈ D6 and p ∈ X is a rational point, the existence of
a link D6

1 3
99K D8 is given by Lemma A.8. Similarly, if X ∈ D5 and p ∈ X is a general 2-point,

the existence of a link D5
2 5
99K D8 is given by Lemma A.7.

Finally, let X ∈ D8, and let p ∈ X be a general 5-point. We claim that any rational point
r ∈ X is general with p. Indeed, let C be the curve of bidegree (2, 2) passing through p, r, and

with a double point at r. Since p is general, C is irreducible. Consider the link X
1 2
99K P2 starting

with the blow-up of r, and let q ∈ P2 be the 2-point image of the horizontal and vertical rulings
through r. Then the image of C is a conic which does not contain q. We know by Lemma A.5
that q and the image of p are general, so q and r are also general, as claimed. We conclude the
existence of a link D8

5 2
99K D5 by using the piece P

(
D8; 1, 5

)
= P

(
P2; 2, 5

)
, which is described in

Lemma B.3.

We now turn to links involving the classes Ci. First, recall [Sch22, Lemma 6.12].

Lemma A.10. Let P,Q ⊂ P2(ka) be two sets of four points and XP P2, XQ P2 be the
corresponding blow-ups. Assume that P is either a general 4-point or the union of two 2-points
that are general. If there exists a birational map XP 99K XQ preserving the fibrations associated
with the pencils of conics through P and Q, respectively, then there exists an automorphism
α ∈ Autk

(
P2
)
such that α(P) = Q, and in particular XP and XQ are isomorphic.

Let p, p′ be two distinct 2-points in general position in P2, and let Y P2 be the blow-up of
p and p′. Then the transform of the pencil of conics through p, p′ gives the structure of a rank 2
fibration Y/P1. Contracting the transform of the line either through p or through p′, we obtain
two distinct surfaces X,X ′ ∈ C6. We say that X and X ′ are twin elements in C6 and that Y is
their parent. Observe that X and X ′ are not necessarily isomorphic and that they are uniquely
defined by Y .

Lemma A.11. Let X ∈ C5 ∪ C6, and let p ∈ X be a general d-point (here d can be arbitrary

large). Let χ : X
d d
99K X ′ be the Sarkisov link of type II over P1 constructed from the blow-up

of p.

(1) If X ∈ C5, then X ′ is isomorphic to X.

(2) If X ∈ C6, then X ′ is isomorphic to X or to the twin of X.

Proof. We know from Proposition A.3 that X and X ′ belong to the same class Ci, i = 5 or 6.
Then Lemma A.10 gives the result when X ∈ C5, and when X ∈ C6, it gives that X, X ′ have the
same parent, hence the result.

Lemma A.12. Let Fn ∈ C8 be a Hirzebruch surface. Then any Sarkisov link from Fn is one of
the following:

• a link Fn 99K Fm of type II over P1,

• when n = 1, a link F1 P2 of type III,

• when n = 0, a link F0 F0 of type IV.
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Proof. If Fn
d d
99K X is a link of type II over P1, the surface X/P1 is again a Hirzebruch surface by

Proposition A.3(6). Since Fn has Picard rank 2, it admits exactly two extremal rays, with one
corresponding to the given structure of rank 1 fibration Fn/P1. If n ⩾ 2, the second extremal ray
is generated by the exceptional section, which cannot be contracted to a smooth point. So the
only possibilities for a link of type III or IV are the cases n ∈ {0, 1}, as expected.

Proof of Theorem 2.4. (1) Let (X/B,φ) be a marked rank 1 fibration. By Proposition 2.2, we
know that the birational map φ : X 99K P2 admits a factorization into Sarkisov links. In the above
lemmas, we systematically explored all possible sequences of Sarkisov links starting from P2, and
we showed that we never leave the seven classes

{
P2
}
, D5, D6, D8, C5, C6, C8.

Similarly, statements (2) and (3) follow from the exhaustive description of links. A link of
type IV must occur on a rank 1 fibrationX/P1 such that the second extremal ray also corresponds
to a fibration, and F0 is the only candidate.

Appendix B. Elementary relations

In this appendix, we describe all elementary relations associated with a rank 3 fibrations Xd/pt,
where Xd is a Del Pezzo surface of Picard rank 3 and degree d. In some sense, this gives a modern
version of the results in [IKT93]. However, the point of view is slightly different since [IKT93]
describes a set of relations for the Cremona group Birk

(
P2
)
, whereas by [LZ20, Theorem 3.1] our

elementary relations constitute a set of relations for the groupoid BirMorik
(
P2
)
, with respect to

the Sarkisov links as generators.

Recall from Section 2.1, page 114, that with any rank 3 fibration we can associate a 2-piece,
which we represent as a polygon with vertices corresponding to some Mori fiber spaces and edges
to some Sarkisov links. There are two possibilities for the surface Xd:

• Either Xd is the blow-up of general a-point and b-point on Xi ∈ Di ⊂ D, with a+ b+d = i;
we write P

(
Di; a, b

)
for the corresponding 2-piece;

• or Xd is the blow-up of a general a-point on F0, with a + d = 8; we write P(F0; a) for the
corresponding 2-piece.

In total there are 27 distinct such 2-pieces; see Table B.1 and the figures below. We do not include
here the elementary relations associated with a rank 3 fibration Xd/P1 since these are always of
the same form: the corresponding piece is a square with all four vertices corresponding to conic
bundles in the same subset Ci ⊂ C, i = 5, 6, or 8.

In the pictures, we use the following convention. An edge labeled with d is the blow-up of
a general d-point, with one color associated with each d (from d = 1 to d = 7). A black edge
without label is a change of base, as in Lemma 2.1(2). A surface Xi is a Del Pezzo surface of
degree i. In particular, when a surface Xi corresponds to a vertex, it has Picard rank 1 and so
belongs to the class Di, with its structure of fibration to the point. Similarly, a surface Xi/P1 at
a vertex denotes a surface in Ci, with its structure of conic bundle. We put some prime such as
X ′

i when several surfaces with the same degree appear in the diagram and we see no good reason
why they should be isomorphic (a typical good reason is that they are related by a Geiser or
Bertini involution or that we can apply Lemma A.11(1)).

The proof that each piece has the form given in the pictures below can be done as follows. Over
ka, we know the number of (−1)-curves and of rational fibrations on Xd. Then we can study the
Galois action on these curves and find which orbits correspond to pairwise disjoint (−1)-curves
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and so correspond to a blow-down defined over k. We now give detailed statements for the pieces
P
(
P2; 1, 5

)
, P
(
P2; 2, 3

)
, P
(
P2; 2, 5

)
since these were used in our proof of Theorem 2.4 given in

Appendix A.

Lemma B.1 (P
(
P2; 1, 5

)
). Let p ∈ P2 be a rational point and q ∈ P2 a 5-point such that p, q

are in general position. Let X3 P2 be the blow-up of p and q. Then X3 is a Del Pezzo surface
of degree 3 and Picard rank 3 and admits exactly seven extremal rays described as follows (we
order them such that the intersection product of two consecutive rays is zero):

• the exceptional divisor E1 from p,

• the exceptional divisor E5 from q,

• the pencil of lines through p, giving a structure of rank 2 fibration X3/P1,

• the transform L5 of the five lines through p and one of the qi,

• the pencil of cubics through p, q and with a double point at p, corresponding to a second
structure of rank 2 fibration X3/P1,

• the transform O5 of the five conics through p and four of the qi,

• the transform O1 of the conic through q.

In consequence, the piece P
(
P2; 1, 5

)
does not depend on the particular choice of the blown-up

points and coincides with the piece P
(
D5; 1, 1

)
.

Proof. It is routine to check that the listed curves become smooth rational curves on X3:

• either of self-intersection 0, and so moving in a pencil,

• or a disjoint union of (−1)-curves, forming a single Galois orbit.

At this point, we know that the piece is a heptagon and that the surfaces corresponding to vertices
have respective degree 9, 5, 9, 8, 8, 8, 8. By Proposition A.3, the surfaces of degree 9 are P2. Then
since the surface of degree 5 is obtained by a Sarkisov link from P2, it belongs to D5. For the
four vertices corresponding to surfaces in C8, two of them come from the blow-up of a rational
point on P2 and so are F1, and the two other are related by a link of type IV and so are F0.

The proofs for the next two lemmas are similar, so we omit them.

Lemma B.2
(
P
(
P2; 2, 3

)
= P

(
D8; 1, 3

)
= P

(
D6; 1, 1

))
. Let X8 ∈ D8, and let q ∈ X8 be a general

3-point.

(1) For any rational point p not on the diagonal passing through q, the points p, q are in general
position.

(2) Let X4 X8 be the blow-up of such points p, q. Then X4 is a Del Pezzo surface of degree 4
and Picard rank 3 and admits exactly five extremal rays described as follows (we order
them such that the intersection product of two consecutive rays is zero):

• the exceptional divisor E3 from q,
• the exceptional divisor E1 from p,
• the transform D1 of the diagonal through q,
• the transform D3 of the three diagonals through p and two of the qi,
• the transform R2 of the horizontal and vertical rulings through p.

As a consequence, the piece P
(
D8; 1, 3

)
does not depend on the particular choice of the blown-up

points and coincides with the pieces P
(
P2; 2, 3

)
and P

(
D6; 1, 1

)
.
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Lemma B.3
(
P
(
P2; 2, 5

))
. Let q ∈ P2 be a 2-point. Let p ∈ P2 be a 5-point in general position

with q, and let X2 P2 be the blow-up of p, q. Then X2 is a Del Pezzo surface of degree 2 and
Picard rank 3 and admits exactly six extremal rays described as follows:

• the exceptional divisor E5 from p,

• the line L1 through q,

• the cubics C2 passing through p, q and singular at one of the qi,

• the cubics C5 passing through p, q and singular at one of the pi,

• the conic O1 through p,

• the exceptional divisor E2.

Let P2 2 1
99K X8 be the Sarkisov link starting with the blow-up of q, let r ∈ X8 be the rational

point image of the line through q, and still denote by p the image of the 5-point on X8. Then
we can see the surface X2 as the blow-up of r and p on X8, and in term of transform of curves
coming from X8, the above list of extremal rays becomes the following:

• the exceptional divisor E5 from p,

• the exceptional divisor E1 from r,

• the curves C2 of bidegree (1, 2) and (2, 1) through p,

• the curves C5 of bidegree (2, 2) through p and r, and singular at one of the pi,

• the curves O1 of bidegree (2, 2) through p and r, and singular at r,

• the vertical and horizontal rulings through r.

As a consequence, the piece P
(
P2; 2, 5

)
does not depend on the particular choice of the blown-up

points and coincides with the pieces P
(
D8; 2, 5

)
.

Remark B.4. Over the field k = R, a similar list of 2-pieces was used by Zimmermann in [Zim22],
where she calls “disc of type 1 to 6” our pieces involving only rational points or 2-points. The
correspondence is as follows:

• Disc of type 1: P
(
P2; 1, 2

)
,

• Disc of type 2: square relation between conic bundles in C6,
• Disc of type 3: P

(
P2; 2, 2

)
,

• Disc of type 4: P
(
D8; 2, 2

)
,

• Disc of type 5: P
(
P2; 1, 1

)
,

• Disc of type 6: square relation between Hirzebruch surfaces.
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Table B.1. The 27 elementary relations over a point

Piece Figure

P
(
P2; 1, 1

)
Fig. B.1

P
(
P2; 1, 2

)
Fig. B.2

P
(
P2; 1, 3

)
Fig. B.3

P
(
P2; 1, 4

)
Fig. B.4

P
(
P2; 1, 5

)
Fig. B.5

P
(
P2; 1, 6

)
Fig. B.6

P
(
P2; 1, 7

)
Fig. B.8

P
(
P2; 2, 2

)
Fig. B.9

P
(
P2; 2, 3

)
Fig. B.10

P
(
P2; 2, 4

)
Fig. B.11

P
(
P2; 2, 5

)
Fig. B.12

P
(
P2; 2, 6

)
Fig. B.7

P
(
P2; 3, 3

)
Fig. B.13

P
(
P2; 3, 4

)
Fig. B.15

P
(
P2; 3, 5

)
Fig. B.16

P
(
P2; 4, 4

)
Fig. B.17

Piece Figure

P
(
D8; 1, 1

)
Fig. B.2

P
(
D8; 1, 2

)
Fig. B.9

P
(
D8; 1, 3

)
Fig. B.10

P
(
D8; 1, 4

)
Fig. B.11

P
(
D8; 1, 5

)
Fig. B.12

P
(
D8; 1, 6

)
Fig. B.7

P
(
D8; 2, 2

)
Fig. B.18

P
(
D8; 2, 3

)
Fig. B.19

P
(
D8; 2, 4

)
Fig. B.22

P
(
D8; 2, 5

)
Fig. B.24

P
(
D8; 3, 3

)
Fig. B.14

P
(
D8; 3, 4

)
Fig. B.23

P
(
D5; 1, 1

)
Fig. B.5

P
(
D5; 1, 2

)
Fig. B.12

P
(
D5; 1, 3

)
Fig. B.16

P
(
D5; 2, 2

)
Fig. B.24

Piece Figure

P(F0; 1) Fig. B.2

P(F0; 2) Fig. B.25

P(F0; 3) Fig. B.3

P(F0; 4) Fig. B.26

P(F0; 5) Fig. B.5

P(F0; 6) Fig. B.27

P(F0; 7) Fig. B.8

P
(
D6; 1, 1

)
Fig. B.10

P
(
D6; 1, 2

)
Fig. B.19

P
(
D6; 1, 3

)
Fig. B.14

P
(
D6; 1, 4

)
Fig. B.23

P
(
D6; 2, 2

)
Fig. B.20

P
(
D6; 2, 3

)
Fig. B.21
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