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ABSTRACT. Letting Aut[C2] act on atree, we classify the subgroups of A
and show that the Tits alternative is true. Further we getheardormulation for
the notion of the Green function for a Hénon type automorphis

1. INTRODUCTION.

This article contains the detail of the results announcatémote 1.

It is well known that the group Auff?] of polynomial automorphisms of the
complex plane can be described as an amalgamated produce pvizisely fol-
lowing [5] we set:

E = {(xy)— (ax+P(y),By+y); a,B,ye C,ap #0,P € C[X]};
A = {(xYy) — (aax+b1y+cy,ax+byy+cp); a,bi,c € C,a1b, — aghy # 0};
S = ANE.

We call E the group of elementary automorphisms; of coutsis the group of
affine automorphisms. Then A@f]= AxsE. In the sequel by abuse of notation
we always notef = (f1(x,y), f2(x,y)) to refer to an element € Aut[C?] (instead

of f:(xy) — (f1(xY), f2(x,y))).

Following a strategy already used by Wrigh#] (in the context of the study of
abelian subgroups), we want to study subgroups in@&]thy means of the action
of Aut[C?] on a tree, which is provided by the theory of Bass and Sé&jteThe
idea is that questions such as “Dandg commute?” or “Dof andg generate a
free group?” will be easier to tackle by considering theaiof f andg on the
tree.

Friedland and Milnor §] classified the elements of A@f] up to conjugacy.
For f € Aut[C?] we have two possibilities:

(1) f is conjugate to an element it
(2) fis conjugate to a composition of generalized Hénon m.aps

¢fo t=gmo---om
1



whered € Aut[C?], gi = (y,R(y) — &x) with & € C*, andP, € C[X] has
degree> 2.

We say respectively thdtis of elementary or Hénon type.

This alternative may be rephrased as follows: dar Aut[C?] let us define the
dynamical degred(g) = limn_ .« (dog”)l/” whered®g" is the ordinary degree of
g". A good feature of the dynamical degree is its invariancesuednjugacy, and
we have:

d(g)=1 < gisconjugate to an element k;
d(g)>2 <« gisof Hénon type.

The article is organized as follows.

According to Bass-Serre theor§][ we can canonically associate a tree to any
amalgamated product. We recall this construction in Se@jcand we rephrase
once again the above alternative, this time in terms of fixdutrees. We also
introduce some normal forms which will be useful for compiotass. Then, we
state our main theorem, from which the Tits alternativeoioli immediately.

In Section3 we consider automorphisms of (dynamical) degree 1. We hisi's
that, except for some very special rotations, the fixed tredeuthe action of an
automorphismf with degree 1 is bounded; in particular this gives an obstrodo
arelationf og=go f with d(g) > 2. Similarly if we consider a group all elements
of which have degree 1, we show that except for some speaakaaf the same
nature as above, this group is conjugate to a subgro&pasfA.

In Section4 we consider the case of groups which contain elements of #HHéno
type. We characterize some pairsg of such automorphisms which generate a
free group, and we show that the centralizer of an automemphvith degree> 2
is a semi-direct product x Z/pZ. This terminates the proof of the main theorem.

Finally in Sections we establish a relation with the point of view developed for
instance by Bedford, Smillie and SibonyL([2], [10]): we characterize the auto-
morphisms with the same Green function, as well as the aufuhsms which
preserve an attracting basin. The resolution of these ignsstvith a dynamics
flavor was the main motivation to start this work.

2. PRELIMINARIES AND STATEMENT OF THE MAIN THEOREM.

In the beginning of this section we explain how the generaktrwiction in P]
works in our particular case.

We construct a simplicial treg as follows: we take the disjoint union of
Aut[C?] /A and Aut[C?]/E as the set of vertices, and AGH] /S as the set of
edges. All these quotients must be understood as beingoeéts; the cosets of
€ Aut[C?] are noted respectivelgA, gE andgS By definition, the edg@Slinks
the verticesfA andgE if hSc fA andhS c gE (and sofA = hAandgE = hE).
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In this way we obtain a grapfi; the fact thatA andE are amalgamated alor®js
equivalent to the fact that is a tree (seed]).

This tree is uniquely characterized (up to isomorphism)Hhgyfollowing prop-
erty: there exists an action of A@f] on 7, such that the fundamental domain of
this action is a segmerite. an edge and two vertices, withandA equal to the
stabilizers of the vertices of this segment (andSds the stabilizer of the entire
segment). This action is simply the left translatigihS) = (goh)S.

. 'e,a, E a,e,dA- .
FIGURE 1. Afew vertices in the tree (a,a € A\ E;e € € E\ A).

There exists a natural metric on the set of vertices oif p, g are two vertices,
dist(p,q) € N is the number of edges of the shorter (that is, without gosxktand
forth) path fromp to g. We will see in Sectior® that the left translation induces a
faithful representation of Au?] into the isometry group of . Thus in the sequel
we will identify an element in Aut[C?] with the corresponding isometry an.

It is easy to see that if the action dfadmits two fixed points, then all points on
the path that links these two points are also fixed bgo it makes sense to define
the subtree Fix{() fixed by f (do not confuse this set with the set of fixed points of
f as an automorphism @2...). Note that, by constructiork is the stabilizer of
IdE. This immediately implies that for arnye Aut[C?], gEg ! is the stabilizer of
gE (idemwith Aands).

Take nowf with Fix(f) = 0. Consider the set of vertices which realize the in-
fimum inf, dist(p, f p); these vertices define an infinite geodesic on wHichcts
as a translation (se@][ p. 88). We note Ged| this geodesic, and Igf ('length
of f’) the number infdist(p, fp). Note that the action of naturally induces an
orientation on Ged{); however we will not use this notion of an oriented geodesic
before Sectiorb.

Terminology. Given an element in Aut[C?] it is therefore equivalent to say that
f has elementary typei.€. is conjugate to an elementary automorphism), or that
d(f) =1, or that Fixf) is non empty. Similarly, the following three propertieg ar
equivalent: f is of Hénon typed(f) > 2 and Fix(f) is empty. In the text we use

these three points of view.
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Remark that an affine automorphism is always of elementamy thy the trian-
gulation of matrices).

Finally, we say that a subgroup of AGHf] has degree 1 if all its elements have
elementary type.

We gather some straightforward properties in the followpngposition:

Proposition 2.1. (1) If g has Hénon type then Ig(g) is always even, because a
vertex of typebE (resp.dA) is always sent on a vertex of same type by g;
(2) Ifd(g) > 2, and ne Z, then Geo() = Geo(g) and Ig(g) = |n|.lg(9).
(3) Ifd(f) =1and¢ € Aut[C?], then Fixf fd—1) = ¢.Fix(f).
(4) Similarly, if d(g) > 2, Geopgd ) = ¢.Geo(g).

Py - Py >

FIGURE 3. Action of an element with Fix(f) =0 and Ig(f) = 2.

We now come back to the notion of an amalgamated product. dttettiat
Aut[C?] = AxsE means that for eachin Aut[C?] we have a decomposition of the
form f =a,o0ey0---0a;0e; Whereg € A\ S g € E\ S(possibly f starts with an
g or ends with arg), and this decomposition is unique up to change of the type
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(gos1)o(sog) instead ofg og (Wheres € ). In particular the “size” off, i.e.
the number o§ anda; necessary to writé, is well defined (for instance here this is
2n). We say thaf is cyclically reduced iff has minimal size in its conjugacy class.
So we see that a difficulty in working with the notion of an agaahated product
is that we do not immediately have a normal form for each etarimeAut[C?] (as
it would be the case for a free product). However if we cha@gg,, and(ej),;
some representatives of the left cosgfSandE /S we obtain a normal form for
each element in Auf]?], and for each vertex and edgedfas well.

Given such system of representatives, consider thi#ls#tall (reduced) words
obtained by juxtaposition of a finite numbera&fande;:

M = {a,¢,...6j,a,; where alla;,e;, are non trivial except possibby, anda;, }.
Then we have a bijectionq], p. 9):
MxS — Aut[C?
(&,€j, - -&,,S) — @&,0€j,0---08&,0S.

hence the bijections:

M — edges ofr;

M€ — vertices of typepAin 7';

M2 — vertices of typedE in 7.

where byM€ (resp. M%) we denote the subset of wordshhthe last (non trivial)
element of which is ae; (resp. arg;).

All this will be particularly useful since, following Wrigh12], one can produce
very simple systems of representaties) and(e;) in our setting. For alh € C,
and for allP € Y?C[Y]\ {0} (i.e. Pis a non zero polynomial such thB{0) =
P’(0) = 0), we define:

aA) = (AX+y,x);

&(P) = (x+P(y),y)-
Then the(a(A)) e (resp. the(e(P))peyacyy joy) are systems of representatives of
the left coset#\/S (resp.E/S). Therefore an automorphisine Aut[C?] admits a
unique factorization as a compositionaifA) ande(P) (corrected on the right by
an automorphisns € S): we shall say that this is the normal form ¢of Similarly
we will speak of a normal form for a vertex or an edgezin

Example 2.2. Consider the Hénon map= (y,y? + ). We have
g=a(0) oe(y*) o (3x,y).

The automorphisng corresponds to an edggsand to two verticegE, gA which
admit respectively(0)e(y?)S, a(0)E anda(0)e(y?)A as normal forms.

Remark 2.3. (1) Giveng of Hénon type, it is equivalent to say thais cycli-
cally reduced or that Geg) contains the edgklS. Indeed it is clear that
dist(ldE, gE) = dist(IdA, gA) if and only if ldSC Geog), and in this situ-
ation this distance coincide with the sizegf
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(2) Allthe a(\) ande(P) fix the origin inC?, in consequencé € Aut[C?] fixes
0 if and only if its normal form isf = &, oej, o--- o0&, o swith s(0) =0,
i.e. s= (agx+ byy, boy).

We now state our main theorem. The proof will be the subje¢hemnext two
sections:

Theorem 2.4. Let G be a subgroup @fut[C?]. One, and only one, of the following
possibility occurs:

(1) Gis agroup of degree 1 conjugate to a subgroup of E or A.

(2) G is group of degree 1 but is not conjugate to a subgroup of E.ofkfen
G is abelian.

(3) G contains elements of Hénon type, and all such automorghiis@ share
the same geodesic. Then G is solvable.

(4) G contains two elements of Hénon type with distinct geodesihien G
contains a free subgroup over two generators.

From this we easily deduce the
Corollary 2.5. The groupAut[C?] satisfies the Tits alternative: If G is a subgroup
in Aut[C?] then one of the following possibilities occurs:
(1) G contains a solvable subgroup with finite index;
(2) G contains a non abelian free group.

Proof. In cases 2, 3 or 4 of the theorem the result is clear. We arevidit
the case 1, that is with a subgroup Bfor A. It is easy to compute the derived
subgroups oE:

EY = [E.E]={(x+P(y),y+V);PeCX],yeC};
E? = {(x+P(y),y);PeC[X]};
E® = {id}.

ThusE is solvable. On the other harlis clearly a subgroup d&L3(C) via the
injective morphism:

A — Glg(C)

a b o
(auX+bry+ci,ax+byy+cy) — a b o |.
0O 0 1

We conclude using the classical Tits alternative in theedndf linear groups, see
[6] for a presentation of this difficult result]

Note that there exist groups which act faithfully on a treedmnot satisfy the
Tits alternative. We refer tolfl] for such an example: it is an infinite group, of
finite type, all elements of which are finite (thanks to E. Gfoyghis reference).
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3. AUTOMORPHISMS OF ELEMENTARY TYPE

In this section we focus first on automorphisms with (dynaf)idegree 1. In
particular we characterize the automorphismghich admit a non bounded fixed
tree Fix(f). Such automorphisms appear naturally when we consideratmenu-
tator of two Hénon type automorphisms which share the saméegic (case 3 of
the main theorem), or when we consider automorphisms whicarfiend of the
tree (this will occur in the case 2).

Then we study the subgroups of degree 1, which corresporastscl and 2 of
Theorem2.4.

Note that it is not priori completely clear that there exist some automorphisms
(except the identity map) which fix a non bounded subtree ofThe following
lemma allows us to produce many such examples.

Lemma 3.1. Let f, ge Aut[C?], with d(f) = 1 and d(g) > 2. Suppose that
fog=go f. Then Geo(gC Fix(f).

Proof. Let p be a vertex in Fix{). Then for anyn € Z
f(g"(p)) =d"(f(p)) =9"(p)
i.e. d'(p) € Fix(f). Thus for allnthe subtree Fix{) contains the path fromg*(p)

to g"(p), and each of these paths containg)g{dges of Gea). The result follows
(Fig. 4). O

g (p) P . 8p)

Gedg)
FIGURE 4. Fix(f) contains they"(p) = Fix(f) contains Ged).

We remark now that for some very simple automorphisms we gaty ghe
previous lemma:

Example3.2. If f = (ax,By) with a, B roots of the unity of the same order, then it
is easy to construct examplesgivith d(g) > 2 such thaff og=go f. Lemma3.1
applies: Fixf) is a subtree of with infinite diameter, because it contains Ggo
e If a =B anda" =1, we can takeg = (y,y""! +x).
e If a # B then there existp, g > 2 such that? = 3, B9 =a. Setg; =
(V,YP+X), g2 = (¥, y*+X), then we can takg = g © .

The aim of the following proposition is to show that the exdsdisted in3.2
are the only one (up to conjugacy). This is a crucial resultife proof of Theorem
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2.4; we would like to emphasize that the result is not a mere apresece of Bass-
Serre theory but is very particular to the group AIf[. In fact we show that if
Fix(f) is bounded then Fix() is small (diameter at most 6), which allows us to do
a proof by brute force:

Proposition 3.3. Let f in Aut[C?] with degree 1. Then the diameter of Fix(f) is
infinite if and only if f is conjugate to a rotatiofoix, By) with a, B roots of the
unity of the same order.

Proof. Sinced(f) =1, up to conjugacy we can assurhe E. Conjugating
insideE we can assume thdthas one of the following form (seé&]):
(1) (ox,By) with a,p € C*;
(2) (x+1,By) or (Bx,y+1) with B € C*;
(3) (Bx+ B By) with d > 1,B € C*;
(4) (B9 + B%HAq(y"),By) with d > 1, g non constant with higher coefficient
equal to +1 r'" root of the unity.

We study now each of these cases, from the less to the mordicatagd Fix(f).

In case 4, and in case 3 with> 2, even if we allow conjugacy in Auf[?]
we cannot decrease the degreefafLemma 6—7 in §]). In particular f is not
conjugate to an element 8) so Fix(f) is reduced to a unique vertex (of typ&).

In all the remaining cases we havyec S thus Fix(f) contains the edg&dS.
Recall that Fixf) is a tree, so iff fixes another edge it fixes also the whole path
from this edge tddS. The idea is now to use the normal forms to obtain some
equations that must be satisfied byn order for a neighbor edge to be also fixed.
For instance we have:

f fixes the edga(\)S< f ca(\)SaA) L < a\)tfa\) e S

~aMe(Q)S . 1dS ePaw s
- ENEN - e(P)S -

FIGURE 5. Normal forms of the edges next S,

Consider Case 3 witl = 1,i.e. f= (Bx+ By,By). We have:

aA)Hfah) = (y,x—Ay)o (Bx+ By, BY) o (Ax+Y,)
= (Bx.By+Bx);
e(P)*fe(P) = (x—P(y),y)o (Bx+By,By) o (x+P(y),y)
(Bx-+ By + BP(y) — P(By), By).-

Thus f does not fix any edge of the forafA)S, becausépx, By -+ Bx) ¢ S. More-
over f fixes an edgee(P)S only if P(By) = BP(y). In such a cas@ is a root
of the unity, and we note tha(P)~1fe(P) = f. So by the previous computation
a(\)"te(P)~1fe(P)a(\) ¢ S thatisf does not fix any edge of the foreiP)a(\)S.
Finally Fix(f) contains only the eddel Sif (3 is not a root of the unity, and contains

IdS plus some edges of the foreiP)Sif (3 is a root. Thus Fix{) has diameter at
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most 2.

Consider now Case 2¢. f = (x+1,By) (the casef = (Bx,y+1) is similar, up
to conjugacy by, x)). We have:

a\)"tfa(\) = (Bx,A(1—B)x+y+1).

So f fixesa(A\)Sif A =0 or if = 1, and in both cases we hagé\)~1fa(\) =
(Bx,y+ 1). Conjugating bye(Q)~* we obtain:

e(Q) o (Bx,y+1)oe(Q) = (Bx+BQ(Y) — Q(y+1),y+1).

This automorphlsm is igif and only if B = 1 andQ(y) = ay?. In this case we have
e(Q)to(x,y+1)oe(Q) = (x—2ay—ay+1). A thlrd conjugacy yields:

a(W) to(x—2ay—ay+1)oa(y) = (x+1y—2ax—a—p)

and this automorphism cannot beSiregardless of the choice fpr Sof does not
fix any edge of the forna(A)e(Q)a(n)S. Consider now the edgesP)S:

e(P) *fe(P) = (x+1+P(y) —P(By). BY).

We see thatf fixes e(P)S as soon ad(y) = P(By) and in this case we have
e(P)~1fe(P) = f; that is we are reduced to the previous computation We cdaclu
again that Fix{) has finite diameter. The cafe= 1 gives the maximal possible
diameter; the computations above show that in this casgf Foontains edges of

the forma(A)e(Q)S a(A)S 1dS e(P)S e(P)a(n)S ande(P)a(l)e(Q)S: we see that
Fix(f) has diameter 6.

Finally let us study Case 1g. f = (ax,py). We compute as before:
a(\)"tfa(\) = (Bx,A(a — B)x+ay);

e(P) *fe(P) = (ax+aP(y) — P(By). By).-

Thusf fixesa(\)Sif a = B or if A = 0, and in both cases we hasf\) 1 fa(\) =
(Bx,ay). Moreoverf fixese(P)Sif P(By) = aP(y), which impliesa = 3", where
nis the degree oP. Note that in this case(P)1fe(P) = f.

Soe(Q)~ta(d)~1fa(l)e(Q) € SimpliesB = a™ wheremis the degree oQ. It
is clear that the existence ofm > 2 such thab™ = 3 anda = B" implies thata
andp are roots of the unity of the same order. We are in the setfitigeaexamples
3.2, and we have seen that all such examples admit an unbouneéeldstibtreel

Remark 3.4. The computations made in the above proof (in Case 1) allow us
to make precise which edges belong to Fjxvhen this subtree is unbounded.
Let f = (ax,By) with a, B roots of the unity of the same order, and ¢ =
a(A1)e(Py1)---a(An)e(Py)Sbe an edge. We distinguish two cases:
(1) a =B: Sc Fix(f) if and only if all P; satisfy Pj(ax) = aPj(x) (the A;
can be arbitrarily chosen). In other worlsommutes with each(A;) and

e(P)).
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(2) a#B: ¢Sec Fix(f) if and only if all A; are null and th@; satisfyPa1(ay) =
BPa+1(y) and P (By) = aPx(y). In other wordse(Py 1) (resp. e(Pax))
commutes withBx, ay) (resp.(ax,By)).

We have similar results when the factorizationgobegins with are(P) or ends
with ana(]).

Remark 3.5. It is now clear that the action of Aud] on the tree7 is faithful.
Indeed if f € Aut[C?] acts trivially on the tree, by Propositich3 f is conjugate
to a rotation(ax, By) with a, (3 roots of the unity of the same order, and by the
remark above such a rotation fixes the whole tree if and onilyisf the identity
map. Note that there exist amalgamated products where dloeen action is not
faithful: for instance iIlSW(2,Z) ~ Z/AZ 7,7, 7./ 6Z the matrix—Id acts trivially

on the Bass-Serre tree.

Corollary 3.6. Take f =(ax,By) with a, B roots of the unity of the same order,
and take g= Aut[C?] with degree> 2. Assume that Geo(g) Fix(f). Then there
existsd € Aut[C?] such that

e 0pgd 1 is cyclically reduced;
o ¢fd~"= (ax,By) or (Bx,ay).

Proof. One can take such thath~'Sc Geqg). Indeeddp1.Geopgd 1) =
Geog), soldSc Geofpgd 1) and we apply RemarR.3. Moreoverd f¢p—2 is still
diagonal by Remark.4. O

We will need the following elementary lemma:

Lemma3.7. Let fi, f, € Aut[C?], with Fix(f;) N Fix(f») unbounded. Then, find
f, commute; moreover they both admit the same unique fixed (@oi6e).

Proof. Up to conjugacy we can assume tHatand f, are inE (since they
both fix a vertex of typepE, in fact they even fix infinitely many such vertices).
Then the commutatdr.=f; f, ;1,1 has the form(x+ P(y),y+Y); since Fixf)
is unbounded by Propositidh3 h has finite order. We conclude that 1d.

Since f; and f, have unbounded fixed subtree, they are both conjugate to a ro-
tation (ax, By) with a, 3 roots of the unity of the same order. In particular each
one has a unique fixed point @7, and since they commute their fixed points must
coincide.Od

We are now in position to describe the subgroups of degreliiC?]. A first
idea could be that such a group must be conjugate to a subgf@éupr E. We will
see that this is not the case in general (examples of Wright)pnly true under
additional assumptions. We will need the following thremteas:

Lemma 3.8. Let G be a subgroup of degree 1, and let fe¢ . Then Fix(g)n
Fix(f) # 0.

Proof. The idea is to considgr € Fix(go f), andg the middle point of the path
from pto f(p). Thenq € Fix(f)n Fix(g) (see P], Proposition 26 p. 89)]
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Lemma3.9. Let X be atree, andX..., X, some subtrees with non empty pairwise
intersection. The); X; # 0.

Proof. See P], Lemma 10 p. 91.

Lemma3.10. Let X be a tree, andX;)ic; a family of subtrees of X, such that:
(1) XinX; #0 Vi,jel,
(2) There exists Y a bounded subtree of X, such\thatl,X; C Y.

Thenﬂi X 75 0.

Proof. We proceed by induction on the diameteof Y. If n=10 (i.e. if Y is
reduced to a single vertex), then for ave haveX; =Y and sq); X =Y. If n> 1,
then either there exists a terminal vertexyofi.e. a vertex which belongs to only
one edge) contained in alf, and we are done, or there is no such vertex and we
can do the same reasoning ¥h=Y \ { terminal vertices and edges ¥f}, X/:=
XinY'. O

We can now state

Proposition 3.11. Let G be a subgroup of degree 1Ait[C?]. Assume that one
of the following assumptions is satisfied:

(1) Gis finitely generated;
(2) G contains an element f with Fix(f) bounded.

Then G is conjugate to subgroup of Aor E.

Proof. Suppose first tha® is finitely generated, and writé = (gs,---,0n),

g € Aut[C?]. We setX; = Fix(g;). Lemma3.8says that the pairwise intersection
of the X; are non empty, and so by Lemri@ their global intersection contains at
last one verte®. This vertexP is equal tapA or GE (with ¢ € Aut[C?]), andG is
contained in the stabilizer &, i.e. GC ¢A¢ L or pEd 1.

Consider now Case 2g. there existsf € G with Fix(f) bounded. Fog e G
we setXy = Fix(g) N Fix(f). If g1, 9> € G, Lemma3.8 applid three times (to the
pairs @1, f), (92, f) and @1,92)) implies thatXy, N Xg, # 0. Since each element in
the family (Xg)geG is contained in the bounded tree Fi¥(we are exactly in the
setting of Lemma&3.10 ThusG is again contained in the stabilizer of a vertex
(whereP € My Xg). O

With respect to the existence of subgroups of degree 1 wh&het conjugate
to a subgroup oE or A, we refer to 2] where an explicit example is given. In the
following proposition we characterize such subgroups:

Proposition 3.12. Let G be a subgroup of degree 1 which is not conjugate to a
subgroup of A or E. Then:
(1) Gis abelian;
(2) G is equal to the union of an increasing sequence of groupsik N,
where each His conjugate to a finite cyclic group generated by a rotation

(ax, By) with a, B roots of the unity of the same order;
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(3) Each element of G admits a unique fixed point (as an automsmpbifC?)
and this point is the same for all elements of G;
(4) The action of G fixes an end of the trge

Proof. SinceG is not conjugate to a subgroup Afor E, it does not fix any
vertex By Propositior8.11we obtain that each element @fadmits an unbounded
fixed subtreei.e. is conjugate to a rotatiofox, By) with a, 3 roots of the unity of
the same order. Moreover, ff g € G then Fix(f) N Fix(g) is unbounded, indeed
otherwise we could apply Lemnta10with Y = Fix(f) N Fix(g), X5 = Fix(gi)
NY, and this would contradict the fact th@tis not contained in the stabilizer of
any vertex. By Lemma&.7, we get (1) and (3).

Let us now show the assertion (2). Again by Proposittoiil the groupG is
not finitely generated. Moreover ff, g € G have the same order then there exists
n € Z such thatf” = g. Indeed otherwise one could assume (up to conjugacy) that
f,g € E and we could findn € N such that

fMog = (ax+P(y),By+y) # Id

with a =1 or 3 = 1. But this is impossible because on one harghdf are roots
of the same order, so = 3 =1, and f™o g must be of finite order. Thus there
exists a strictly increasing sequence of inteder§<n such tham; is the order of
an element irG. DefineH; as the subgroup d& generated by all elements with
order less or equal tg. This groupH; is finite and contains at least one elemént
with maximal order. Let us show th&tgenerateéd;. Letg € H;; there exists1 € N
such thatf" andg have the same order. By the previous reasoning we I‘,’é\ﬁeg
for somen’ € N.

Finally it is clear that Fix{j;+1) C Fix(fi), moreover); Fix(f;) is empty, and we
obtain (4) (seeq, p. 92-93]).0

4. AUTOMORPHISMS OFHENON TYPE

Giveng € Aut[C?] of degree> 2 we want to characterize allwhich commute
with g, or on the contrary alf such that there is no relation betwekandg.

To make precise the relative positions of two geodesico¢ed with auto-
morphisms) we will use the following

Proposition 4.1. Let f, g€ Aut[C?] with d(g)> 2 and d(f) = 1. Suppose Geo(g)
N Fix(f) is unbounded. By Propositich3we can writep f¢—1 = (ax, By) with a,
B roots of the unity of the same order, and then:
(1) Ifa#B,a"=p,B"=aandlg(g) =2 mod 4, then gfd = o 1(Bx,ay)dp =
7 (and so f and §commute);
(2) In all other cases f and g commute.

In particular Gedg) C Fix(f).
12



Proof. Conjugating byp we can assumé = (ax,By), and sof (0) = 0. Recall
that Fixgfg™?) = g.Fix(f), and so:

Ged(g) NFix(f) unbounded=- Fix(gfg™) NFix(f) unbounded

By Lemma3.7 we deduce thag fg* fixes 0, and s@ also fixes 0.

So we can writeg = mos, wherem = a(Ap) oe(P,)o---oa(A1) oe(p1) and
s= (a1x+ byy,boy) (precisely we can assumm of this form up to conjugacy).
Up to conjugacy again, the edgesSand msgA,)S are in Fix(f), and we have
msgAn)S= ma ) Swherey, is such thag(p,) “tsaAn) € S

If a =B thenf commutes witts (easy) and withm (Remark3.4), and so also
with g.

If a # B then in the expression above we haye= A\, = 0 (Remark3.4), hence
s= (a1x,bpy). Thusf still commutes withs. Moreover, again by Remark4, we
havego (ax,By) og~* = (ax,By) (resp. (Bx,ay)) when Ig@) = 0 mod 4 (resp. 2
mod 4). Finally, in the second case, one checks that thestsexsuch that" = 3
andf"=a. O

Corollary 4.2. Let f and g be two automorphisms of Hénon type. Then either
Geo(f) = Geo(q), or Geo(fn Geo(g) is bounded (possibly empty).

Proof. Assume that Ged() N Geog) is unbounded. Then by taking powers of
f andg (this does not change the respective geodesics), one aamassat Igf)
=1g(g), lg(f) = 0 mod 4 and thaf andg induce the same orientation on GEp(
Geog).

Then the automorphismg = fixes an infinite number of vertices in Ged(so
by Proposition4.1 we get thag and fg~* commute, and so

g(fg ") f *=(fgHgf *=Id
In other wordsf andg commute, and by looking at the action on the tree we check
easily that Gedf) = Geog) (figure6). O

Gedf)
fP .
fogP
P/Q‘g
fP
\gp(g‘o

Gedo)
FIGURE 6. Geof) # Geof) and Geof) N Geof) unbounded

= fog#gof.
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If we havef, g € Aut[C?] of Hénon type with Gedi) = Geog), we deduce from
Proposition3.3that there exists a relation betwetandg. Indeedfgf—1g~1 fixes
Geo(), so there is & such that fg f*lgfl)” = ld. We now study the case G€9(
=+ GeoQ):

Proposition 4.3. Let f, ge Aut[C?] with degree> 2, with Geo(f)+# Geo(q).
Assume Ig(f)> N and Ig(g)> N where N is the diameter of Geo(f)Geo(Qg).

Then f and g generate a free group, moreover all elementgféxhe identity)
in (f,g) have degree> 2.

Proof. We must check that for antydefined by
h: fnp ogmpo... fnl ogml

where then;, m; are inZ\ {0}, we haved(h) > 2 (and so in particulan # 1d). This
is equivalent to check that such hmloes not fix any vertex i .

LetQbe avertexirr . We introduce the following notations: dij$Q) is the dis-
tance fromQ to Geo(f) (and similarly forg), and7; (resp.7y) is the subtree of
containing all vertice® such that dist(P) < disty(P) (resp. dist(P) > disty(P)).
We deduce the result, by induction gnfrom the two following assertions. Take
n, me Z\ {0} and se)) = (f"og™)Q.

(1) If Q € 7%, thenQ € 7t and dist(Q') > dist (Q).
Indeed the assumption (> N implies g™(Q) € 74 along with the
strict inequality:

distg(g™(Q)) < dist (g™(Q)).

The assumption Ig() > N then impliesQ’ = f"og™(Q) € 7;. Moreover
we have

disty(g™(Q)) = disty(Q) = dist; (Q);
The equality is clear, the inequality comes fr@e 7¢. Thus
dist; (@™(Q)) > dist; (Q) = distt (f" o g™(Q)) > dists (f"(Q)) = distt (Q).
(2) If Qe 7gandQ’ € 7y, then disg(Q’) < disty(Q).
It is clear thag™(Q) ¢ 74 (otherwisef" o g™(Q) € 7%); in other words
disty(9™(Q)) > dists (9™(Q))
and the result comes from the relations
disty(Q) = disty(9"(Q)):;
dist; (g™(Q)) = dist; (f"0g™(Q)) > disy(f"og™(Q)). O
Remark 4.4. This proof is essentially a “ping-pong” argument, which asslical
technical tool in this kind of problem (seé]]. However it seemed interesting to

us to make a few more computations to obtain #ihelements ofc have Hénon
type. In particular in SectioB we use the fact that(fgf—1g=1) > 2.

We obtain the two corollaries:

Corollary 4.5. Let f, g be of Hénon type. If Geo($) Geo(g), theng, f) contains

a non abelian free group.
14



Proof. LetN be the diameter of Ged] N Geog). If we taken such that Ig{")
> N and Ig@") > N, then we haveéf",g") =Z «Z. O

Corollary 4.6. Let f, g be of Hénon type. Ifgf = f og, then Geo(f) = Geo(g).
Our next aim is to compute the centralizer
Cen{g) = {f € Aut[C?]; fog=go f}
of an automorphisng of Hénon type.
Lemma 4.7. Take ge Aut[C?] with degree> 2. We set
H={f € Cen{g); d(f) =1}.

Then H is conjugate to a group generated by a rotafiar, By) with a, (3 roots of
the unity of the same order.

Proof. Note first that for eactf € H the tree Fixf) is unbounded, in fact by
Lemma3.1)it contains Gedy). Thus by Propositior3.3 f has finite order. More-
over the order off is bounded by the (dynamical) degreegofindeedf induces
a permutation on the set of fixed points (%) of g, which has cardinal equal to
the degree of if we count multiplicities (seef]). Let fo € H be an element of
maximal order. We now use similar arguments as in the pro&froposition3.12
If h € H then the order ofj is a multiple of the order ofi, moreover ith; andh,
are two elements ikl with the same order, then there exisitndm € N* such that
h} = hy andhl' = hy. Finally H = (fo) which gives the expected resut.

Proposition 4.8. Take ge Aut[C?] of degree> 2. Then Cent(g) is generated by
two elements h and f satisfying:
(1) d(h) > 2and Geo(g) = Geo(h);
(2) fisconjugate to a rotatiorjax, By) with a,  roots of the unity of the same
order;
(3) There exists n such thatoh = ho f".

In particular Centg) is isomorphic tdZ x Z/pZ, where p is the order of f.

Proof. The automorphisnf is given by Lemmat.7, and among all automor-
phisms of degree> 2 in Centf)) (which all share the same geodesic by Corollary
4.6) we chooséh which minimizes IgK).

If & € Cent@) has degree> 2, then Igh) divides Igg) (use an euclidean divi-
sion), so there existg € Z such thath o h? have degree 1,e. ¢ oh% € (f) and so
we haved € (h, f).

The integem comes from Propositiod.1, son is equal either to 1 or top+
1)/2.0

Remark 4.9. (1) We should compare this situation with the case of an auto-
morphism of degree 1 which always admits an uncountablealeat.
15



(2) Most of the time the integerof the proposition is equal to Le. the group
Cen{g) is often isomorphic t& x Z/pZ (or even taZ).

(3) Be warned that the converse of Corollang is false. For instance, if we
takeg = (y,y* +x) and f = (jx, j°y) wherej is a cubic root of the unity,
theng andgo f are both automorphisms of Hénon type which share the
same geodesic but do not commute.

To finish the proof of Theorem.4 it only remains to consider the case of a
subgroup all elements of which have Hénon type with the sagoelegic. Such
subgroups are always solvable as the following proposglmws.

Proposition 4.10. Letl" be an infinite geodesic, such that= Geo(g) for some
g € Aut[C?]. Then there exists a unique subgroup GAat[C?], maximal for the
property: “All elements of Hénon type in G adrfiitas a geodesic”.

Moreover G is solvable, and contains a subgroup of finitexridemorphic to
7.

Proof. If G exists it must contain all iterates gf Note first that anyp® in
such a grougis must globally preservE. Indeed assumg(I") # I, then we would
haved(ogo 1) > 2 with Geo(pogo Y1) = @I # I, which contradicts the
assumption oie.

So we are lead to s& equal to the group of all automorphisms which globally
preservd . We want to show thd is solvable. For this, let us find some generators
for G. We distinguish three subsets@which form a partition:

(1) The sefl of automorphisms that act dnby a (non trivial) translation;

(2) The groupF of automorphisms that fik;

(3) The setS of automorphisms that act dnby symmetry with respect to a
vertex.

Note thatFr is isomorphic taZ/pZ, indeedF C Cent{g?) (Proposition4.1) and
we can apply Lemma.7.

Chooseh € Tr which minimizes Igf), f € Fr a generator of and¢ € &
arbitrary ¢ = 1d if S = 0). We claim thatG = (h, f,$). Indeed ify € Tr, then
Ig(h) must divide Ig@), sop = h"o f9. On the other hand ib € S, eithery and
¢ have the same center anb ¢ € (f), or ¢ and¢$ do not have the same center
and@o¢ € Tr. In both caseg) e< h, f,$ >.

Let us show thaG is solvable. We have:

[Tr,Fr] C Fr,

TS| C T,
Fr.§] CFr,
where[Tr, Fr] is the set of commutators of the forg fohy * fo* with ho € Tr and
foe Fr.
ThusGY = [G,G] c< Tr,Fr >, andG?) ¢ Fr is abelian.

Linthe original paper this is @. | was young and nobody told me that we are not supposed to
use both\phi and\varphi in the same paper...
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Finally the quotient ofs by the finite group(f,¢) is isomorphic tdZ (the gen-
erator is the class dfin G/(f,¢)). O

Remark 4.11. If G is a group where all elements of degree2 share the same
geodesid’, if there existsh € G that acts by symmetry oh, let us show that all
elements of5 have a Jacobian determinant of module 1.

According to the proof of the proposition abote= (h, f,¢) with Geoh) =T,
I C Fix(f). Note that|detDd| = 1, indeedp? € (f) and|detDf| = 1. But we
can also writeG = (f,$,$ oh), and¢ o h acts by symmetry ofi. Thus all three
generators admit a Jacobian determinant of module 1.

A summary of the proof of Theoretl. Cases 1 and 2 have been taken care of
in Section3. Precisely Case 2 corresponds to the “groups of Wright” tvigice
described in Propositiod.12

Case 3is given by Propositiegh10, we see that these groups are solvable groups
of a very particular form.

Finally Case 4 corresponds to Corollaky; note that this result is a mere corol-
lary of Bass-Serre theory, on the contrary the more pret&ersentst.2 and4.3
are particular to Autf?].

In the way through the proof we obtained to auxiliary resiniteresting in their
own rights:

(1) Description of allf € Aut[C?] with Fix(f) unbounded (Propositio®.3);
(2) Description of the centralizer of an automorphism of bléitype (Propo-
sition 4.8).

5. GREEN FUNCTIONS ANDFATOU-BIEBERBACH DOMAINS

We first review a few facts and definitions about the dynamifieaitomorphisms
of degree> 2; for more details we refer td.[ 2] and [10].

Considerf € Aut[C?] of Hénon type; we have seen that we can wfite pgp 2
where¢ € Aut[C?] andg is a composition of generalized Hénon maps. We set:

Ky = {(xy)€C?suchthag"(x,y)} .y is bounded;
Jy = O0Kj (dis the topological boundaly

The seth C C? is the (positive) Julia set af. We introduce also the Green
function associated witb:

1
L
% =M d(gr

The mapGg is continuous, positive and plurisubharmonic, and sasigfie prop-
erties:

e Ky ={G§ =0};

e Gjog=d(g).Gy;

log" [1g"]|
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e Gj is pluriharmonic orC?\ K.
The Green current associated withs the positive closedl, 1)-current with po-
tential GJ .
i Gy
+ _ + — =
by = naaeg > aaaz,-dz NdZj.
ts support is exactly the Julia s&t. Note thatg*“pg = d(g).1yg -

We obtain similar notions by considering the backward tters: we define
in this wayKg',Jy, Gy andy . Itis interesting to consider the extensiongpfo
CP?; there is two particular points on the line at infinity. One thne hand we
havep_ = [1:0: 0 which is an indeterminacy point, on the other hand we have
p.+ =1[0:1:0 which is a superattracting fixed point with basin equa{JCBg > 0}
in C2.

We define the mass of a curréhton CP? by mean of the standard Kahler form

w:
7| :/ T Ao
CP?

The currenug (or more precisely its trivial extension @P?) has mass 1.
One can extend the definitions and properties abovehptaking

G =kG{od =k 1'G];

_1%* | — _1%*
u=ko? pg:k.ﬁaa@ YGy).

wherek > 0 is chosen in order to géfuf || = 1.
We have the following remarkable result (s&€]}:

Theorem 5.1 (Sibony) Let T be a positive closed, 1)-current in CP? with mass
1 and with support contained idg . Then T= ;.

From this we are able to deduce the following result:

Proposition 5.2. Let f be of Hénon type, andéhAut[C?]. Assume that Goh =
G;. Thendh) = 1.

Proof. Suppose thad(h) > 2. We know (seel]]) thath admits a periodic saddle
point p and thatJ;™ (resp. J;,) is the closure of the stable variety (resp. instable)
associated withp. We deduce from the relatid®; ch = G{ thatJ,” andJ;, belong
to a same leve{G{ = c}.

If ¢ =0 then the theorem of Sibony impligg = pf, henceh*uf = d(h).pf .
But the assumptio®; oh = G{ impliesh*uj = p;: a contradiction.

If ¢ > 0 we also want to get a contradiction. First the Bedf periodic saddle
points ofh does not contain any isolated point, indeed the closufisfthe sup-
port of the equilibrium measung A 1, (see B]), and the support of this measure
is nowhere locally polar (). Now G{ is pluriharmonic in a neighborhood pf so
locally G{ is the real part of an holomorphic functign Up to a small perturbation

of p one can assume thditis a submersion or the power of a a submersion in a
18



neighborhood of. Thus locally{G; = c} is diffeomorphic to a real hyperplane
or to n real hyperplanes meeting pt and each one of these hyperplanes contains
only one complex direction. In particular the stable andainie varieties associ-
ated withp cannot be contained in the levgb{ = c}. O

Remark 5.3. It might be well known that all levels of the Green functiore ar
smooth (except of course the level 0): this would simplifydral of the proof
above. However | do not know any simple demonstration offtgs

We can now state the main theorem of this section: we edtadtisequivalence
between the notions of (oriented) geodesics and of Greanifuns associated with
an automorphism of Hénon type.

Theorem 5.4. Let f, ge Aut[C?] of Hénon type. The following assertions are
equivalent:

(1) Geo(f) = Geo(g) with the same orientations;
(2) There exist )m € N* such that f = g™,
(3) Gy = GY.

Proof. Assume that Ggg) = Geq f) =T . In vienw of the proof of Proposition

4.10we know that there exist two automorphisimande such that:

e his of Hénon type and Gé¢h) =T;

e ehas order and fixed;

o f =hMeP, g=h"eP2, with ny,ny, p1, p2 € N.
By taking the square of andg we can assume that andn, are even, this by
Proposition4.1 e commutes withh™ andh™. Takingnh = rn, andm = rny, we
obtain:

fn — gm — hrn1n2.

We just proved1) = (2); moreover(2) = (3) is immediate. Let us sho(B) =
(1). AssumeG™ := GJ = G7. If Geo(f) # Geog) then up to taking powers of
f and g (which does not chang&™), one can assume thdtand g generate a
free group all elements of which (excdpt) have degree> 2 (Propositiorét.3) In
particularfgf~1g~! has degree> 2. The two relations

Gtof=d(f).G
Gtog=d(g).G*

imply G* o fgf~1g~! = G*. But then Propositios.2 impliesd(fgf-1g=) =1,
hence a contradictiorn]

Remark 5.5. In the same spirit it is possible to show that two automonpkis
Hénon type share the same geodesic if and only if they haveaime Julia sets,
or if and only if they admit the same invariant measure; hawdor the proof we
need to study more closely the notions of Green functionsGegn current, in
particular in the case whegeandg have the same indeterminacy points (sge [
Theorem 2.24).
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Consider nowg € Aut[C?] of degree> 2; assume thag admits an attracting
periodic pointp. Up to taking a power, and up to conjugacy by a translation, we
can assume that = 0 is an attracting fixed point. Defire the attracting basin
of 0: this is Fatou-Bieberbach domairge. a domain biholomorphic t&? strictly
included inC?. In the following proposition, which makes precise a resuli4],
we compute the group A of all f € Aut[C?] preserving:

Proposition 5.6. With the notations above, Al contained exactly all automor-
phisms which fix 0 (it©2) and which preserve globally Geo(g). Moreover it
does not contain any automorphism acting by symmetry origpebinally AufX]

is isomorphic to a semi-direct produtx Z/nZ pour some re N*.

Proof. To show that all elements in AJ] preserve Ge@) it is sufficient
to show that for anyf € Aut[XZ] of Hénon type we have Geb( = Geog) (see
poof Propositiord.10. Up to taking powers off andg it is sufficient to show
thatd(fgf~—tg~') = 1. Note thatfgf~! admits an attracting fixed poimt= f(0)
with basinZ, whereJJ = J;rgf,l = 0Z (see P]). Then by the theorem of Sibony

g = k.u;rgf,l (with k > 0), henceG§ = k.G;rgf,l (indeedaa(Gar - k.G?gf,l) =0,
so we have a pluriharmonic map null o&rhence everywhere null). Finally we
obtain the relatiorGj o fgf~*g™! = Gy, hnced(fgf~'g™*) = 1 by Proposition
5.2

Note thatf cannot act by symmetry on G@y); otherwise by Remark.11g
would have a Jacobian determinant of module 1 and this wantradict the ex-
istence of an attracting fixed point.

Let us show now that any € Aut[Z] fixes 0. We just showed thdt preserves
Gedqg), which implies thatf commutes wittg™ for somem (if d(f) = 1 then we
can takem= 2 by Propositior4.1; and if d f) > 2 we know thatf" = g™ for some

nandm). Considemw € Z, we havef (w) € %, and

; k ; km ; km
Jim g(f(w) =0= lim gM(f(w))=0= lim_f(g"(w))=0= f(0)=0.

Conversely assume th&t0) = 0, and thatf globally preserves G€g). There
existsm € N such thatf commutes witlg™, so f preservesk(af, in particularf acts
on the connected components of the interioKgf. Since f(0) = 0, we deduce
that the connected componenthj containing 0 is fixed byf, in other wordsx is
fixed by f.

The group of automorphisms that preserve @gavithout reversing the ori-
entation on Ge() is isomorphic toZ x Z/pZ for somep € N* (see proof of
Proposition4.10. The group Autk] is a subgroup of this group, and so is also a
semi-direct producZ x Z/nZ (in fact it is easy to show that= 1 or p). O

During the redaction of this article | benefited from numeraliscussions: |
thank M. Nicolau, W. Dicks, N. Sibony and more particularly ©erveau who
proposed me the problems studied in SectonThe idea to use the Bass-Serre

theory to study the subgroups of AGH] was suggested by E. Ghys.
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