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Abstract. We study the normal subgroup 〈f〉N generated by an element f 6= id in the
group G of complex plane polynomial automorphisms having Jacobian determinant 1.
On the one hand, if f has length at most 8 relative to the classical amalgamated product
structure of G, we prove that 〈f〉N = G. On the other hand, if f is a sufficiently generic
element of even length at least 14, we prove that 〈f〉N 6= G.

Introduction

Let Aut[C2] denote the group of complex plane polynomial automorphisms and
let G be the subgroup of automorphisms having Jacobian determinant 1. In this
paper we deal with normal subgroups of G generated by a single element.

It is easy to check that G is equal to the commutator subgroup of Aut[C2] and
to its own commutator subgroup as well (see Proposition 10). It is more difficult
to decide whether G is a simple group or not. There does not seem to exist any
natural morphism whose kernel is a proper normal subgroup of G. However, in
a short note published in 1974 that seems to have been quite forgotten, Danilov
[Dan74] proves that G is not a simple group. He uses results from Schupp [Sch71],
namely the so-called small cancellation theory in the context of an amalgamated
product. To be precise, he shows that the normal subgroup generated by the
automorphism (ea)13 where a = (y,−x) and e = (x, y + 3x5 − 5x4) is a strict
subgroup of G. In fact, he writes (ea)12 because he uses a slightly erroneous
definition of the condition C ′( 16 ) (see Subsection 3.1).

We now introduce the algebraic length of an automorphism in order to state
our main result. The theorem of Jung, Van der Kulk and Nagata asserts that
Aut[C2] is the amalgamated product over their intersection of the groups A and E
of affine and elementary automorphisms (see Subsection 1.1). Let f be an element
of Aut[C2]. If f is not in the amalgamated part A ∩ E, its algebraic length |f |
is defined as the least integer m such that f can be expressed as a composition
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f = g1 . . . gm, where each gi is in some factor (A or E) of Aut[C2]. If f is in the
amalgamated part, by convention we set |f | = 0 (see [Ser77, §1.3]).

The normal subgroup generated by an element f of G will be denoted by 〈f〉N .
Of course, 〈f〉N remains unchanged when replacing f by one of its conjugates in
G. So, one can assume f of minimal algebraic length in its conjugacy class (see
Subsection 1.4). If |f | 6= 1, this amounts to saying that |f | is even (indeed, if |f | is
even, it is clear that f is strictly cyclically reduced in the sense of Subsection 3.1
below). This is for example the case for the previous automorphism (ea)13 which
has length 26.

Here are the two main results of our paper.

Theorem 1. If f ∈ G satisfies |f | 6 8 and f 6= id, then 〈f〉N = G.

Theorem 2. If f ∈ G is a generic element of even length |f | > 14, then the

normal subgroup generated by f in Aut[C2] (or a fortiori in G) is different from G.

Here the genericness means that if we write f±1 = a1e1 . . . alel, where l > 7,
a1, . . . , al ∈ A \ E and each ei = (x + Pi(y), y), then there exists an integer D
such that for any sequence d1, . . . , dl of integers > D, (P1, . . . , Pl) can be chosen
generically (in the sense of algebraic geometry, i.e., outside a Zariski-closed hyper-
surface) in the affine space

∏
16 i6 l C[y]6 di

, where we have set C[y]6 d = {P ∈
C[y]; degP 6 d}.

Theorems 1 and 2 correspond to Theorems 32 and 45 in the text below. Note
that in the latter statements we use a geometric notion of length coming from Bass–
Serre theory (see Subsection 1.2). This geometric length allows us to obtain more
natural statements. In fact, Theorem 45 deals with automorphisms satisfying the
special condition (C2) (see Definition 27). The proof that this condition is indeed
generic is postponed to the annex. To convince the reader that such a condition
is necessary, we now give examples of automorphisms of arbitrary even length and
generating normal subgroups equal to G.

Example 3. Consider the three automorphisms

a = (y,−x), e1 = (x+ P (y), y), e2 = (x +Q(y), y),

where P (resp. Q) is an even (resp. odd) polynomial of degree > 2, and set
f = ae1(ae2)

n where n > 1 is an integer. If u = −id, we get au = ua, e2u = ue2
and e1u = ue−1

1 , so that the commutator [f, u] = fuf−1u−1 is equal to

[f, u] = ae1(ae2)
nu(ae2)

−n(ae1)
−1u−1 = ae1ue

−1
1 a−1u−1 = ae21a

−1.

Since [f, u] ∈ 〈f〉N , we get e21 ∈ 〈f〉N , so that 〈f〉N = G by Theorem 1 (or by
Lemma 30 below).

One motivation for this work is the still open question of the simplicity of
the Cremona group Cr2, i.e., the group of birational transformations of C2. For
instance, in [Giz94] the question is explicitly stated and Gizatullin gives several
criteria that would prove that Cr2 is simple. Recently Blanc [Bla10] proved that
Cr2 is simple as an infinite-dimensional algebraic group. In this respect we should
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mention that Shafarevich claimed that the group Aut1[C
n] of automorphisms of the

affine space Cn having Jacobian determinant 1 is simple as an infinite-dimensional
algebraic group for any n > 2 (see [Sha66, Theorem 5] and [Sha81, Theorem 5]).
However, it is known that these two papers contain some inaccuracies (see [Kam96],
[Kam03]), so the status of this question is not clear to us.

After studying the polynomial case, our opinion is that Cr2, view as an abstract
group, could be not simple as well. Indeed, it is known since Iskovskikh [Isk85]
that Cr2 admits a presentation as the quotient of an amalgamated product by the
normal subgroup generated by a single element. Take H1 = (PGL(2)×PGL(2))o
Z/2Z, the group of birational transformations that extend as automorphisms of
P1 × P1, and take H2 as the group of transformations that preserve the pencil of
vertical lines x = cte. Take τ = (y, x) ∈ H1 \H2 and e = (1/x, y/x) ∈ H2 \H1;
then Cr2 is equal to the quotient

(H1 ∗H1∩H2
H2) /〈f〉N

where f = (τe)3. To prove that Cr2 is not simple it would be sufficient to find
an element g in the amalgamated product of H1 and H2 (that should correspond
to a sufficiently general birational transformation) such that the normal subgroup
〈f, g〉N is proper. This is similar to the results we obtain in this paper; but the
problem seems harder in the birational setting.

As a final remark on these matters, we would like to mention a nice rein-
terpretation of Iskovskikh’s result by Wright (see [Wri92, Theorem 3.13]). Let
H3 = PGL(3) be the group of birational transformations that extend as auto-
morphisms of P2. Then Wright proves that the group Cr2 is the free product of
H1, H2, and H3 amalgamated along their pairwise intersection in Cr2.

In this paper we chose to work over the field C of complex numbers, even if
most of the results could be adapted to any base field. Note that in the case
of a finite field the nonsimplicity result is almost immediate. Let Fq denote the
finite field of q = pn elements, where p is prime and n > 1. Let Aut[F2

q ] be the
group of automorphisms of the affine plane A2

Fq
= F2

q and let Aut1[F
2
q ] be the

normal subgroup of automorphisms having Jacobian determinant 1. If X is a
finite set, let Per(X) (resp. Per+(X)) be the group of permutations (resp. even
permutations) of X . Since the natural morphism φ : Aut[F2

q ] → Per(F2
q) induces a

nonconstant morphism Aut1[F
2
q ] → Per(F2

q) (consider the translations!), it is clear
that Aut1[F

2
q ] is not simple.

Remark 4. If q is odd (i.e., the characteristic p of Fq is odd), one can easily check
that φ(Aut1[F

2
q ]) = Per+(F2

q). Indeed, φ is surjective (see [Mau01]), so that
φ(Aut1[F

2
q ]) is a normal subgroup of Per(F2

q). However, if the cardinal of X is
different from 4, it is well known that Per+(X) is the only nontrivial normal sub-
group of Per(X) (see, e.g., [Rot95, Ex. 3.21, p. 51]). Therefore, it is enough to
show that φ(Aut1[F2

q ]) ⊆ Per+(F2
q). But on one hand, Aut1[F2

q ] is generated by
the elementary automorphisms (x + P (y), y) and (x, y + Q(x)) where P ∈ C[y],
Q ∈ C[x] are any polynomials. On the other hand, it is straightforward to check
that such automorphisms induce even permutations of F2

q .

As a final remark we would like to stress the importance of translations in
getting our results. Let Aut0[C2] be the group of automorphisms fixing the origin
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and let Jn be the natural group-morphism associating to an element of Aut0[C2]
its n-jet at the origin (for n > 1). For n > 2, the kernel of Jn is a nontrivial normal
subgroup of G0 = G∩Aut0[C2], so that this latter group is not simple. Of course,
for Aut[C2] the morphism Jn does not exist. This explains the fact that our paper
strongly relies on translations (see Lemmas 7 and 16).

Remark 5. It results from [Ani83] that the image of Jn is exactly the group of n-jets
of polynomial endomorphisms fixing the origin and whose Jacobian determinant
is a nonzero constant. The precise statement can be found in [Fur07, Prop. 3.2].

The paper is organized as follows.
In Section 1 we gather the results from the Bass–Serre theory that we need:

this includes some basic definitions and facts but also some quite intricate com-
putations, such as in the characterization of tripods (Subsection 1.7). This is also
the place where we define precisely the condition (C2) that we need in Theorem
45.

Section 2 is devoted to the proof of Theorem 1. This is the most elementary
part of the paper. We only use Lemma 7 from Section 1.

In Section 3 we deal with R-diagrams. This field of combinatorial group theory
has been introduced by Lyndon and Schupp in relation with condition C ′( 16 ) from
small cancellation theory (see Subsection 3.1). A noteworthy feature of our work
is that we use R-diagrams in a completely opposite setting (positive curvature).

In Section 4 we are able to give a proof of Theorem 2 using the full force of
both Bass–Serre and Lyndon–Schupp theories.

We briefly discuss in Section 5 the cases not covered by Theorems 1 and 2, that
is to say when the automorphism has length 10 or 12.

Finally, in the Annex, we prove that condition (C2) is generic and we also give
explicit examples of automorphisms satisfying this condition.

1. The Bass–Serre tree

1.1. Generalities

The classical theorem of Jung, van der Kulk and Nagata states that the group
Aut[C2] is the amalgamated product of the affine group

A = {(αx+ βy + γ, δx+ εy + ζ);α, . . . , ε ∈ C, αε− βδ 6= 0}

and the elementary group

E = {(αx + P (y), βy + γ);α, β, γ ∈ C, αβ 6= 0, P ∈ C[y]}

over their intersection (see [Jun42], [vdK53], [Nag72]). This is usually written in
the following way.

Theorem 6. Aut[C2] = A ∗A∩E E.

A geometric proof of this theorem and many references may be found in [Lam02].
Let us also recall that elements of E are often called triangular automorphisms.
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The Bass–Serre theory [Ser77] associates a simplicial tree to any amalgamated
product. In our context, let us denote this tree by T . By definition, the set of
vertices of T is the disjoint union of the left cosets modulo A (vertices of type A)
and modulo E (vertices of type E). The edges of T are the left cosets modulo
(A ∩ E). Finally, if φ ∈ Aut[C2], the edge φ(A ∩ E) links the vertices φA and
φE. Since Aut[C2] is generated by A and E, T is connected. Thanks to the
amalgamated structure, T contains no loop, so that it is indeed a tree.

The group Aut[C2] acts naturally on T by left multiplication: for any g, φ ∈
Aut[C2], we set g.φA = (gφ)A, g.φE = (gφ)E and g.φ(A ∩ E) = (gφ)(A ∩ E).
It turns out that this action gives an embedding of Aut[C2] into the group of
simplicial isometries of T (see [Lam01, Remark 3.5]). This action is transitive on
the set of edges, on the set of vertices of type A and on the set of vertices of type
E. The stabilizer of a vertex φA (resp. of a vertex φE, resp. of an edge φ(A∩E))
is the group φAφ−1 (resp. φEφ−1, resp. φ(A ∩ E)φ−1).

Following [Wri79], [Lam01], one can define systems of representatives of the
nontrivial left cosets A/A ∩ E and E/A ∩ E by taking

a(λ) = (λx + y,−x), λ ∈ C,

e(Q) = (x +Q(y), y), Q(y) ∈ y2C[y] \ {0}.

Note that the minus sign in the expression of a(λ) did not appear in [Wri79],
[Lam01]. We have to introduce it in the present paper in order to get automor-
phisms with Jacobian determinant 1 (see Subsection 1.4).

Then any element g ∈ Aut[C2] may be uniquely written g = ws where w is a
product of factors of the form a(λ) or e(Q), successive factors being of different
forms, and s ∈ A ∩ E (see, e.g., [Ser77, Chap. I, 1.2, Theorem 1]). Similarly, any
edge (resp. vertex of type A, resp. vertex of type E) may be uniquely written
w(A ∩E) (resp. wA, resp. wE) where w is as above.

We call a (directed) path a sequence of consecutive edges in T . To denote a
path we enumerate its vertices separated by −. For instance, the path P of two
edges containing the vertices idA, idE, eA, where e ∈ E \ A will be denoted
P = idA− idE − eA. If we are only interested in the type of the vertices we say,
for example, that P is of type A−E −A.

If two vertices of T are fixed by an automorphism of Aut[C2], then the path
relating them is also fixed. Therefore, the subset of T fixed by an automorphism
is either empty or a subtree. Up to conjugation, this subset has been computed
for any automorphism in [Lam01, Proof of Prop. 3.3]. In particular, it has been
computed for the translation (x+1, y). The following easy and technical lemma is
a slight variation of this computation. As in the latter paper, this analogous state-
ment turns out to be very useful. The proof is given for the sake of completeness.

Lemma 7. The subtree of T fixed by the translation (x+ c, y), c ∈ C∗, is exactly

the union of the paths

idE − e(P )A− e(P )a(λ)E − e(P )a(λ)e(Q)A,

where P ∈ y2C[y], λ ∈ C, and Q(y) = αy2, α ∈ C
∗.
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Note that we (exceptionally ) allow P to be zero. In that case, the path should

rather be written

idE − idA− a(λ)E − a(λ)e(Q)A.

In particular, the fixed subtree does not depend on c, has diameter 6 and contains

the closed ball of radius 2 centered at idE, i.e., the union of the paths

idE − e(P )A− e(P )a(λ)E, P ∈ y2C[y], λ ∈ C.

Proof. If P,Q ∈ y2C[y] and λ ∈ C we have

(x+ c, y) ◦ e(P ) = e(P ) ◦ (x+ c, y),

(x+ c, y) ◦ a(λ) = a(λ) ◦ (x, y + c),

(x, y + c) ◦ e(Q) = e(Q) ◦ f,

where f = (x+Q(y)−Q(y + c), y + c), so that

(x+ c, y)e(P )a(λ)e(Q) = e(P )a(λ)e(Q)f.

Therefore, the vertex e(P )a(λ)e(Q)A is fixed by (x + c, y) if and only if f ∈ A,
i.e., deg(Q(y) − Q(y + c)) 6 1, i.e., deg(Q) 6 2. If Q = αy2, this vertex is fixed.
Since the vertex idE is also (obviously) fixed, this shows that the following path
is fixed:

idE − e(P )A− e(P )a(λ)E − e(P )a(λ)e(Q)A.

If Q = αy2, where α 6= 0 and µ ∈ C, it remains to show that the vertex
e(P )a(λ)e(Q)a(µ)E is not fixed. Indeed, an easy computation shows that

(x+ c, y)e(P )a(λ)e(Q)a(µ) = e(P )a(λ)e(Q)a(µ)g,

where g = (x− c, 2αcx+ y + µc− αc2) /∈ E. �

1.2. Algebraic and geometric lengths

We will use two notions of length on Aut[C2].
The algebraic length has been defined in the Introduction: if g ∈ Aut[C2] is not

in the amalgamated part, |g| is defined as the least integer m such that g can be
expressed as a composition g = g1 . . . gm where each gi is in some factor of the
amalgam. If g is in the amalgamated part, we set |g| = 0.

The geometric length is defined by lg(g) = infv∈V dist(g.v, v), where V is the set
of vertices of T and dist(· , ·) is the simplicial distance on T .

By Lemma 8 we almost always have lg(g) = min{|φgφ−1|;φ ∈ Aut[C2]}, the
only exception being when g is conjugate to an elementary automorphism which
is not conjugate to an element in the amalgamated part.
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1.3. Elliptic and hyperbolic elements

Elements g of Aut[C2] may be sorted into two classes according to their action
on T .

If lg(g) = 0 (i.e., g has at least one fixed point on T ), we say that g is elliptic.
This corresponds to the case where g is conjugate to an element belonging to some
factor (A or E) of Aut[C2]. Since any element of A is conjugate to some element
of E, this amounts to saying that g is triangularizable (i.e., conjugate to some
triangular automorphism).

If lg(g) > 0, we say that g is hyperbolic. This corresponds to the case where g
is conjugate to a composition of generalized Hénon transformations h1 . . . hl (see
[FM89]). We recall that a generalized Hénon transformation is a map of the form

h = (y, ax+ P (y)) = (y, x) ◦ (ax+ P (y), y),

where a ∈ C∗ and P (y) is a polynomial of degree at least 2. Equivalently, g is
conjugate to an automorphism of the form

f = a1e1 . . . alel,

where each ai ∈ A \E and each ei ∈ E \A.
The set of points v ∈ T satisfying dist(g.v, v) = lg(g) defines an infinite geodesic

of T denoted by Geo(g). Furthermore, g acts on Geo(g) by translation of length
lg(g). It is not difficult to check that lg(g) = lg(f) = |f | = 2l and that the
geodesic of f is composed of the path idA−a1E−a1e1A−· · ·−a1e1 . . . alelA and
its translations by the fk’s (k ∈ Z). If g = φfφ−1 with φ ∈ Aut[C2], we have, of
course, Geo(g) = φ(Geo(f)).

The proof of the following easy result is left to the reader. Note that these
two sets of equivalent conditions correspond to the notions of strictly and weakly
cyclically reduced elements given in Subsection 3.1.

Lemma 8. Let g ∈ Aut[C2] be a hyperbolic element.

(1) The following assertions are equivalent:

(i) |g| = lg(g);

(ii) Geo(g) contains the vertices idA and idE.

(2) The following assertions are equivalent:

(iii) |g| 6 lg(g) + 1;

(iv) Geo(g) contains the vertex idA or idE.

1.4. The group G

In this subsection we prove two basic facts about G. Let us set A1 = A ∩ G and
E1 = E ∩G. Theorem 6 easily implies the following result.

Proposition 9. G = A1 ∗A1∩E1
E1.

Proof. By [Ser77, Chap. I, no. 1.1, Prop. 3] it is sufficient to prove that any g ∈ G is
a composition of affine and triangular automorphisms with Jacobian determinant
1. We know that we can write g as a composition of a(λ) and e(Q), with a
correcting term s ∈ A ∩ E. Note that the a(λ) and e(Q) are automorphisms with
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Jacobian determinant 1, so s is also of Jacobian determinant 1 and we are done.
�

As a consequence of this proposition the whole discussion of the previous subsec-
tion still applies to G. In particular, we can make the same choice of representatives
a(λ) and e(Q) to write edges and vertices, so that there exists a natural bijection
between the trees associated to Aut[C2] and to G.

Proposition 10. The group G is the commutator subgroup of the group Aut[C2],
and is also equal to its own commutator subgroup.

Proof. Using Proposition 9 it is sufficient to check that the commutator subgroup
of G contains SL(2,C) and all triangular automorphisms of the form (x+P (y), y).
But, on the one hand, it is well known that SL(2,C) is equal to its own commutator
subgroup; on the other hand, any triangular automorphism (x+λyn, y), with n > 2
and λ ∈ C, is the commutator of (x+ λ(1− b)−1yn, y) and

(
bx, b−1y

)
where b 6= 1

is a nth root of the unity. Finally, any translation (x+ c, y) is the commutator of
(−x,−y) and (x− c/2, y). �

1.5. The color

We now introduce the color of a path of type A − E − A. This notion will be
used to make precise the genericness assumptions we need. Note that any path of
type A − E − A can be written P = ψe1A − ψE − ψe2A where ψ ∈ Aut[C2] and
e1, e2 ∈ E.

Definition 11. The color of P is the double coset (A ∩ E)e−1
1 e2(A ∩ E).

One verifies easily that this definition does not depend on the choice of e1, e2.
The color is clearly invariant under the action of Aut[C2]. In fact, given two paths
of type A − E − A one could even show that one can send one to the other (by
an element of Aut[C2]) if and only if they have the same color. However, we will
not use this result. For an illustration of the notion of color we can note that the
color of the path e(P )A− e(P )a(λ)E− e(P )a(λ)e(Q)A appearing in Lemma 7 has
color (A ∩ E)e(Q)(A ∩ E).

If P ∈ C[y] is such that the color of P is equal to the double coset (A ∩
E)e(P )(A ∩ E), we say that P represents the color of P . The following lemma
implies that this notion does not depend on the orientation of the path. Its proof
is easy and is left to the reader.

Lemma 12. Let P,Q ∈ C[y] be polynomials of degree > 2. Then P and Q rep-

resent the same color if and only if there exist α, . . . , ε with αβ 6= 0 such that

Q(y) = αP (βy + γ) + δy + ε.

Remark 13. Note that any path of type A−E−A can be sent by an automorphism
to a path of the form idA − idE − e(P )A. It is easy to check that the vertices
e(P )A and e(Q)A are equal if and only if there exists α, β ∈ C such that Q(y) =
P (y) + αy + β.

Fundamental Example 14. Let g be a hyperbolic automorphism of geometric
length lg(g) = 2l. We know that g is conjugate to an automorphism of the form
f = a1e1 . . . alel where each ai ∈ A \ E and each ei ∈ E \ A. Then the geodesic
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of g (and f) carries the l colors (A ∩ E)ei(A ∩ E) (1 6 i 6 l) which are repeated
periodically.

1.6. General color

Definition 15. A polynomial P ∈ C[y] of degree d > 5 is said to be general if it
satisfies:

∀α, β, γ ∈ C, deg(P (y)− αP (βy + γ)) 6 d− 4 =⇒ α = β = 1 and γ = 0.

The color (A ∩ E)e(P )(A ∩ E) is said to be general if P is general. Lemma 12
implies that this notion does not depend on the choice of a representative P .

Lemma 16. Let Q ∈ y2C[y] be general. The stabilizer of the path P = e(Q)A −
idE − idA is equal to {(x + βy + γ, y);β, γ ∈ C}. Furthermore, if β 6= 0, the

automorphism (x+ βy + γ, y) does not fix any path strictly containing P.

Proof. We know that f ∈ Aut[C2] fixes the path idE−idA if and only if f ∈ A∩E.
In this case there exist constants α, . . . , ζ, with αε 6= 0 such that f = (αx + βy +
γ, εy+ ζ). Since fe(Q) = e(Q)g, where g = (αx+βy+αQ(y)−Q(εy+ ζ), εy+ ζ),
the vertex e(Q)A is fixed by f if and only if g ∈ A, i.e., deg(αQ(y)−Q(εy+ζ)) 6 1.
The polynomial Q being general, this is equivalent to α = ε = 1 and ζ = 0.

The second assertion comes from the following simple observation:

(x+ βy + γ, y)a(λ)E = a(λ − β)E.

Indeed, since (x+ βy + γ, y)e(Q) = e(Q)(x+ βy + γ, y), we also have

(x+ βy + γ, y)e(Q)a(λ)E = e(Q)a(λ− β)E.

Therefore, the vertices a(λ)E and e(Q)a(λ)E are fixed by (x + βy + γ, y) if and
only if β = 0. �

Remark 17. Lemma 16 is a kind of converse to Lemma 7. Precisely, we obtain
that if φ fixes a general path of four edges centered on idE, then φ = (x + c, y)
(here by general we mean that the color supported by the two central edges of the
path is general; see Definition 11 and below).

Note also that since (x, y + c) = a(0) ◦ (x− c, y) ◦ a(0)−1, the subset of T fixed
by (x, y + c) is the image by a(0) of the subset fixed by (x − c, y). In particular,
it contains the closed ball of radius 2 centered at a(0)E. Furthermore, if φ fixes a
general path of four edges centered at a(0)E, it can be written as φ = (x, y + c).

We now apply the notion of a general color to prove a technical result that
we need to prove Theorem 45. We consider a hyperbolic automorphism f and
g = ϕfϕ−1 6= f a conjugate of f . We want to show that if f is sufficiently general
then Geo(f)∩Geo(g) is a path of length at most 4. More precisely, we also describe
all possible types of such paths.

Definition 18. We say that a hyperbolic automorphism of geometric length 2l
satisfies condition (C1) if the l colors supported by its geodesic (see Example 14)
are general and distinct.

In the Annex we show that this condition is generic in a natural sense.
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Proposition 19. Let f and g = φfφ−1 be two distinct conjugate automorphisms

satisfying condition (C1). If the intersection Geo(f)∩Geo(g) contains at least one

edge then this path is of type

A−E, E −A−E, A−E −A or E −A−E −A−E.

Proof. There is no restriction to assume that P ′ = Geo(f) ∩ Geo(g) = Geo(f) ∩
φ(Geo(f)) contains a path of type A− E − A, because otherwise P ′ is at most a
path of type E −A−E.

Let us call v the central vertex of type E of this subpath of P ′. Since φ−1(v) ∈
Geo(f), there exists an integer k such that dist(f k(v), φ−1(v))=dist((φfk)(v), v)<
lg(f) = 2l. Replacing φ by φfk, we do not change g, but we now have dist(φ(v), v)<
2l. By condition (C1), the geodesic of f carries l distinct colors which are repeated
periodically. Therefore, dist(φ(v), v) ∈ 2lZ and finally we get φ(v) = v, so that φ
is elliptic.

Let us set P = φ−1(P ′) = Geo(f)∩ φ−1(Geo(f)). Equivalently, one may define
P as the maximal path such that P ⊆ Geo(f) and φ(P) ⊆ Geo(f).

The path P contains a path of type A−E−A whose central vertex is v. Without
loss of generality, one can now conjugate and assume that this subpath is of the
form e(Q)A− idE − idA. In particular, v = idE.

There are two subcases, depending on whether φ : P → φ(P) preserves the
orientation induced by Geo(f).

If φ preserves this orientation, then φ fixes P point by point. We may assume
that P is strictly greater than e(Q)A − idE − idA because, otherwise, there is
nothing to show. Then, by Lemmas 7 and 16, we get φ = (x + γ, y). Since the
colors of Geo(f) are general, Lemma 7 shows us that P is of the form e(Q)a(λ)E−
e(Q)A− idE − idA− a(µ)E, so that it is of type E −A−E −A−E.

If φ does not preserve this orientation, then φ fixes only the vertex v of Geo(f).
One can show that φ has to be an involution (see Lemma 20 below). This implies
that P contains an even number of edges and is centered on v. Since the l colors
supported by Geo(f) are distinct, P contains only one color, so that it is of type
A−E −A or E −A−E −A−E. �

Lemma 20. Let P be a path of type A − E − A carrying a general color. If

φ ∈ Aut[C2] exchanges the two ends of P then φ2 = id.

Proof. Without loss of generality, one can conjugate and assume that the path P is
of the form e(Q)A−idE−idA (see Remark 13). Note that φ1 = e(Q)◦(−x, y) is an
involution that exchanges the two vertices e(Q)A and idA. Thus φ1φ fixes the path
P point by point, and sinceQ is general by Lemma 16 we get φ = φ1◦(x+βy+γ, y).
Remark that φ1 ◦ (x+ βy + γ, y) = (x + βy + γ, y)−1 ◦ φ1, hence

φ2 = φ1 ◦ (x+ βy + γ, y) ◦ (x+ βy + γ, y)−1 ◦ φ1 = id. �

Example 21. Here we show that all cases allowed by Proposition 19 can be
realized. In the following examples we suppose that Geo(f) contains the path
a(0)E− idA− idE− e(Q)A− e(Q)a(µ)E where Q is a general polynomial and we
choose φ such that the path P has various forms.

(1) Examples with φ fixing at least one edge:
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• φ = (x+ P (y), y) with degP > 2, P = idA− idE;
• φ = (αx, βy) with αβ 6= 0 and (α, β) 6= (1, 1), P = a(0)E − idA− idE;
• φ = (x+ by, y) with b 6= 0, P = idA− idE − e(Q)A;
• φ = (x+ c, y) with c 6= 0, P = a(0)E− idA− idE−e(Q)A−e(Q)a(µ)E.

(2) Examples with φ reversing the orientation:

• φ = (y, x) exchanges a(0)E and idE, P = a(0)E − idA− idE;
• φ = (−x + Q(y), y) exchanges idA and e(Q)A, P is of length 4 or 2

depending if µ = 0 or not.

(3) Example with φ hyperbolic:

• φ = e(Q)a(µ)u with u = (−x,−y) sends P = a(0)E − idA − idE
to φ(P) = idE − e(Q)A − e(Q)a(µ)E (the reader should verify that
a(µ)ua(0) = (x− µy, y) ∈ A ∩ E).

1.7. Independent colors and tripods

Definition 22. A family of polynomials Pi ∈ C[y] (1 6 i 6 l) is said to be
independent if, given any αk, βk, γk ∈ C with αkβk 6= 0 and ik ∈ {1, . . . , l} for
1 6 k 6 3, we have

deg
∑

16k63

αkPik (βky + γk) 6 1 =⇒ i1 = i2 = i3.

The family of colors (A∩E)e(Pi)(A∩E) (1 6 i 6 l) is said to be independent if
the family Pi (1 6 i 6 l) is independent. Lemma 12 implies that this notion does
not depend on the choice of the representatives Pi.

Definition 23. Three paths P1, P2, P3 of the tree T define a tripod if

• For each i 6= j, Pi ∩ Pj contains at least one edge;
• The intersection P1 ∩ P2 ∩ P3 consists of exactly one vertex v.

The three paths Pi ∩ Pj are called the branches of the tripod. The vertex v is
called the center of the tripod.

If we have a center of type E, we can consider the three colors associated with
the three paths of type A−E−A containing the center and included in the tripod.
In this situation we say that any one of these colors is a mixture of the two other
colors.

Lemma 24. Let P1, P2, P3 ∈ C[y] be polynomials of degree > 2. The following

assertions are equivalent:

(1) (A∩E)e(P3)(A∩E) is a mixture of the (A∩E)e(Pi)(A∩E)’s (1 6 i 6 2);
(2) there exist α1, β1, γ1, α2, β2, γ2, δ, ε ∈ C with α1β1α2β2 6= 0 such that

P3(y) = α1P1(β1y + γ1) + α2P2(β2y + γ2) + δy + ε.

Proof. (1) ⇒ (2) Assume that there exists a tripod admitting the three colors
(A ∩ E)e(Pi)(A ∩ E) (1 6 i 6 3).

We may assume that the center of this tripod is idE and that one of its branches
is idE − idA. Let P̃1, P̃2 ∈ C[y] be such that the other two branches are idE −
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e(P̃1)A and idE−e(P̃2)A and such that (E∩A)e(P1)(A∩E) = (E∩A)e(P̃1)(A∩E)

and (E ∩ A)e(P2)(A ∩ E) = (E ∩ A)e(P̃2)(A ∩ E). By Lemma 12, for 1 6 i 6 2,
there exists αi, βi, γi, δi, εi with αiβi 6= 0 such that P̃i = αiPi(βiy + γi) + δiy + εi.

We then have (E∩A)e(P3)(A∩E) = (E∩A)e(P̃3)(A∩E), where P̃3 = P̃1− P̃2,
so (still by Lemma 12) this shows that P3 has the desired form.

(2)⇒ (1) Set P̃1 = α1P1(β1y + γ1), P̃2 = −α2P2(β2y + γ2) and P̃3 = P̃1 −

P̃2 = α1P1(β1y + γ1) + α2P2(β2y + γ2). By Lemma 12 we have (E ∩A)e(P̃i)(A ∩

E) = (E ∩ A)e(Pi)(A ∩ E) for 1 6 i 6 3. Since e(P̃2)
−1e(P̃1) = e(P̃3) /∈ A,

the vertices e(P̃1)A and e(P̃2)A are distinct. Consider the tripod with center idE

and branches idE − idA, idE − e(P̃1)A and idE − e(P̃2)A. Its three colors are
(E ∩ A)e(P̃i)(A ∩ E) for 1 6 i 6 3. This shows that (A ∩ E)e(P3)(A ∩ E) is a
mixture of (A ∩ E)e(P1)(A ∩ E) and (A ∩ E)e(P2)(A ∩ E). �

Remark 25. The second condition of Lemma 24 may be written under the following
symmetric form.

For 1 6 k 6 3, there exists αk, βk, γk ∈ C with αkβk 6= 0 such that

deg
∑

16k63

αkPk(βky + γk) 6 1.

Therefore, the following lemma is an easy consequence of the previous one.

Lemma 26. Consider three colors represented by P1, P2, P3 ∈ C[y] which are poly-

nomials of degree > 2. The following assertions are equivalent:

(1) The three colors (A ∩ E)e(Pi)(A ∩ E) (i = 1, 2, 3) are independent.

(2) For any i1, i2, i3 ∈ {1, 2, 3}, if (A ∩ E)e(Pi3)(A ∩ E) is a mixture of (A ∩
E)e(Pi1 )(A ∩ E) and (A ∩ E)e(Pi2)(A ∩E), then i1 = i2 = i3.

Definition 27. We say that a hyperbolic automorphism of geometric length 2l
satisfies condition (C2) if the l colors supported by its geodesic (see Example 14)
are general and independent.

In the Annex we show that this condition is generic in a natural sense.

Remark 28. One could easily check that independent colors are necessarily dis-
tinct. Therefore, condition (C2) is stronger than condition (C1).

By misuse of language, we will say that three hyperbolic automorphisms g1, g2,
g3 define a tripod if their geodesics Geo(g1),Geo(g2),Geo(g3) define a tripod.

Lemma 29. A tripod associated with three conjugates of a hyperbolic automor-

phism f satisfying condition (C2) admits branches of length at most 2.

Proof. If the center of the tripod is of type A, by Proposition 19 there is nothing
to do. Assume now that the center of the tripod is of type E. Without loss of
generality, one can conjugate and assume that the center is idE, and that Geo(f)
contains the vertices idA and a(0)E. We denote g = ufu−1 and h = vfv−1, the
two conjugates of f involved in the tripod.

By condition (C2) the three colors centered on idE in the tripod must be
equal. Indeed, if (A ∩ E)e(Pi)(A ∩ E), 1 6 i 6 l, are the l colors supported

588



NORMAL SUBGROUP GENERATED BY AN AUTOMORPHISM

by Geo(f), then there exist i1, i2, i3 ∈ {1, . . . , l} such that these three colors are
(A∩E)e(Pik )(A∩E), 1 6 k 6 3. By Definition 22 and Lemma 24 (see also Remark
25) we get i1 = i2 = i3, so that the three colors are equal.

Let us prove that u can be chosen fixing the center α = idE of the tripod.
Since α ∈ Geo(f)∩Geo(g) = Geo(f)∩u(Geo(f)) we get u−1(α) ∈ Geo(f), so that
there exists an integer k such that dist(fk(α), u−1(α)) < lg(f) = 2l. Replacing u
by ufk, we do not change g, but we now have dist(u(α), α) < 2l. By condition
(C1) (cf. Remark 28), the geodesic of g carries l distinct colors which are repeated
periodically. Therefore, dist(u(α), α) ∈ 2lZ and finally we get u(α) = α. We would
prove in the same way that v can be chosen fixing α = idE. In other words, we
have u, v ∈ E.

Let us now assume that there exists a branch, say Geo(f) ∩ Geo(h), of length
strictly greater than 2. Then, by Proposition 19, this branch has length 4, with
middle point a(0)E (see Figure 1). Since v fixes point by point the general path
Geo(f) ∩ Geo(h), by Remark 17 it can be written as v = (x, y + c).

Let e = e(P ) = (x+P (y), y) ∈ E be such that the vertex eA ∈ Geo(f)∩Geo(g).
Since Geo(h) = v(Geo(f)), the vertex veA ∈ Geo(h) and, finally, veA ∈ Geo(g) ∩
Geo(h).

We assume that the orientation induced by g on idE − eA is opposite to the
one of f , the other case being symmetric.

•
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•

•

• • • • •

eA

??
??

??
?
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�������

idE idA a(0)e(Q)A
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a(0)E
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??

??
?

f

dd

h

zz

g

��

Figure 1.

Since Geo(g) = u(Geo(f)), u sends the path idA − idE − eA to the path
eA− idE − veA.

On the one hand, u sends idA to eA, i.e., uA = eA, i.e., e−1u ∈ A, i.e., e−1u ∈
A∩E. Since e−1u ∈ A∩E it can be written as s1s2, where s1 = (a1x, b1y+c1), s2 =
(x+ βy + γ, y) ∈ A ∩ E and we have u = es1s2.

On the other hand, u sends eA to veA, i.e., ueA = veA, i.e., es1s2eA = veA.
Since s2e = es2, we have es1s2eA = es1eA, so that es1eA = veA. This last
equality is still equivalent to e−1v−1es1e ∈ A. We compute

e−1v−1es1e = (a1x+ a1P (y) + P (b1y + c1)− P (b1y + c1 − c), b1y + c1 − c).

We should have deg(a1P (y) + P (b1y + c1) − P (b1y + c1 − c)) 6 1. Since a1 6= 0
and deg(P (b1y + c1)− P (b1y + c1 − c)) < degP , this is impossible. �
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2. Proof of Theorem 1

We start by looking at the case of an automorphism of algebraic length 6 1,
i.e., a triangular or affine automorphism. Note that similar results in the context
of birational transformations are proved in [Giz94] and [CD08].

Lemma 30. If f ∈ G satisfies |f | 6 1 and f 6= id, then 〈f〉N = G.

Proof. Let g, h ∈ G. Note that if g or h belongs to 〈f〉N , then so does the
commutator [g, h] = ghg−1h−1. We show that G = 〈f〉N by making the following
observations:

• If f ∈ SL(2,C) and f 6= ±id, we obtain SL(2,C) ⊆ 〈f〉N . We used the fact
that {±id} is the unique nontrivial normal subgroup of SL(2,C). Indeed, if H is a
normal subgroup of SL(2,C) not included in {±id}, we get SL(2,C) = H ∪ (−H)
by simplicity of PSL(2,C). Therefore, if g = (y,−x), we get g ∈ H or −g ∈ H , so
that −id = g2 = (−g)2 ∈ H and, finally, H = SL(2,C).

Now, if α, β ∈ C, we get

[(x + α, y + β), (−x,−y)] = (x+ 2α, y + 2β)

so that A ⊆ 〈f〉N .
If b 6= 1 is an nth root of the unity (n > 2) and λ ∈ C, we get

[(x+ λ(1− b)−1yn, y), (bx, b−1y)] = (x+ λyn, y)

and we are done.

• If f is a translation, then, conjugating by SL(2,C), we see that 〈f〉N contains
all translations. So it contains the commutator

[(x, y + 1), (x+ y2, y)] = (x− 2y + 1, y)

and also the linear automorphism (x− 2y, y). We conclude by the previous case.

• If f is an affine automorphism which is not a translation, then there exists a
translation g which does not commute with f . Therefore, the commutator [f, g] is
a nontrivial translation belonging to 〈f〉N and we conclude by the previous case.

• Finally, if f = (ax+ P (y), a−1y + c) is a triangular nonaffine automorphism,
then, up to replacing f by [f, g], where g is a triangular automorphism noncom-
muting with f , we may assume that a = 1. Still replacing f by [f, g], where g is a
triangular automorphism noncommuting with f , we may even assume that c = 0.
Therefore, f is of the form (x+ P (y), y). Remark then that the commutator

[(x, y + 1), (x+ P (y), y)]

is a triangular automorphism of the form (x+R(y), y) with degR = degP −1. By
induction on the degree we obtain the existence of a nontrivial translation (x+c, y)
in 〈f〉N . This case has already been done. �
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Corollary 31. If f∈G is elliptic (i.e., triangularizable) and f 6=id, then 〈f〉N = G.

We are now ready to prove Theorem 1. In fact, we will prove the following
stronger and more geometric version.

Theorem 32. If f ∈ G satisfies lg(f) 6 8 and f 6= id, then 〈f〉N = G.

Proof. The crucial fact we use here is the knowledge of the subtree fixed by trans-
lations (x+ c, y). We know that this subtree is of diameter 6, centered in idE, and
that the closed ball of radius 2 and center idE is contained in this subtree (see
Lemma 7). In consequence, given an arbitrary path of type E − A −E − A− E,
there exists a conjugate ψ of (x+ 1, y) fixing this path point by point.

Let us choose such a path contained in the geodesic of f and let us set g =
ψfψ−1. Then if lg(f) = 2 or 4, it is clear that f ◦ g−1 is elliptic, so we can
conclude by Corollary 31. If lg(f) = 6, then lg(f ◦ g−1) 6 4 so we are done by the
previous case.

The case where lg(f) = 8 is more subtle and we have to refine the above
argument. Replacing f by one of its conjugates, we may assume |f | = lg(f) = 8.
We can then assume (maybe replacing f by f−1) that

f = e1a1e2a2e3a3e4a4

where ai ∈ A \ E, ej ∈ E \ A. Without loss of generality, we can further assume
that each ej is of the form ej = e(Pj) = (x+ Pj(y), y) and that deg(e1) 6 deg(ej)
for j = 2, 3, 4.

We know that any translation (x+c, y) fixes the closed ball of radius 2 and center
idE. Note also that for any s ∈ A ∩ E, s(x + 1, y)s−1 is still a translation of the
form (x+ c, y). In consequence, if we write e1a1 under the form e1a1 = e(P )a(λ)s
with s ∈ A ∩ E, the automorphism

ẽ1 = e1a1(x+ 1, y)a−1
1 e−1

1

= (x+ P (y), y) ◦ (λx + y,−x) ◦ (x+ c, y) ◦ (−y, λy + x) ◦ (x− P (y), y)

= (x+ λc+ P (y − c)− P (y), y − c)

fixes the closed ball of radius 2 and center e1a1E. Note that deg ẽ1 = deg e1 − 1.
Consider

g = ẽ1fẽ
−1
1 and h = g−1f.

By construction the geodesics Geo(g) and Geo(f) have at least four edges in com-
mon. By Lemma 7 we also know that they have at most six edges in common.
Then we can check (see Figure 2) that h sends the vertex v = a−1

4 e−1
4 a−1

3 E to a
vertex at distance at most 8 (and at least 6) of v. Explicitly, one can compute

h = ẽ1a
−1
4 e−1

4 a−1
3 ẽ3a3e4a4,

where ẽ3 = e−1
3 a−1

2 (x − 1, y)a2e3 is a triangular automorphism with deg(ẽ3) =
deg(e3)− 1.

If deg(ẽ1) = deg(ẽ3) = 1, then lg(h) = 4. This corresponds to the case when
Geo(g) and Geo(f) share six edges. Note that a−1

3 ẽ3a3 and a4ẽ1a
−1
4 are indeed

nontriangular affine automorphisms.
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If deg(ẽ1) = 1 and deg(ẽ3) > 2, then lg(h) = 6. In this case, Geo(g) and Geo(f)
share five edges: the vertices idA and ẽ1A coincide.

In the two cases above we are done by the first part of the proof.
Finally, if deg(ẽ1) > 2, then h admits a factorization similar to the one of the

f we started with except that the first triangular automorphism has a strictly
smaller degree. By induction we can produce an element of length 8 in 〈f〉N with
the first triangular automorphism of degree 2, and we are done by the previous
argument. �
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Figure 2. Proof of Theorem 32

3. R-diagrams

3.1. Generalities on small cancellation theory

In this subsection we consider H = H1 ∗H1∩H2
H2 a general amalgamated product

of two factors. Of course our motivation is to apply the theory to the group Aut[C2]
of plane automorphisms.

The following definitions are taken from [LS01, Chap. V, §11, p. 285]. If u is an
element of H , not in the amalgamated part H1 ∩ H2, a normal form of u is any
sequence x1 · · ·xm such that u = x1 · · ·xm, each xi is in a factor of H , successive
xi come from different factors of H , and no xi is in the amalgamated part. The
length of u is defined by |u| = m. This definition does not depend on the chosen
normal form, but only on u. If u is in the amalgamated part of H , by convention
we set |u| = 0.

We call a word an element u ∈ H given with a factorization u = u1 · · ·uk,
where ui ∈ H for i = 1, . . . , k. A word u = u1 · · ·uk is said to have reduced form

if |u1 · · ·uk| = |u1|+ · · ·+ |uk|.
Suppose u and v are elements of H with the normal forms u = x1 · · ·xm and

v = y1 · · · yn. If xmy1 is in the amalgamated part, we say that there is cancellation

between u and v in forming the product uv. Equivalently, this means that |uv| 6
|u| + |v| − 2. If xm and y1 are in the same factor of H and xmy1 is not in the
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amalgamated part, we say that xm and y1 are consolidated in forming a normal
form of uv. Equivalently, this means that |uv| = |u|+ |v| − 1.

A word is said to have semireduced form u1 · · ·uk if there is no cancellation in
this product. Consolidation is expressly allowed.

A word u = x1 · · ·xm in normal form is strictly (resp. weakly) cyclically reduced

if m 6 1 or if xm and x1 are in different factors of H (resp. the product xmx1 is
not in the amalgamated part). These two notions correspond to the two sets of
equivalent conditions given in Lemma 8

A subset R ofH is symmetrized if all elements of R are weakly cyclically reduced
and for each r ∈ R, all weakly cyclically reduced conjugates of both r and r−1

belong to R.
If f is strictly cyclically reduced, R(f) denotes the symmetrized set generated

by f , i.e., the smallest symmetrized set containing f . It is clear that R(f) is equal
to the set of conjugates of f±1 of length 6 |f |+ 1.

We now discuss briefly the condition C ′(λ) (mostly used with λ = 1
6 ). We do

not need this notion in our construction, but this was the original setting where
the notion of an R-diagram (see next subsection) was introduced. Let R be a
symmetrized subset of H . A word b is said to be a piece (relative to R) if there
exists distinct elements r1, r2 of R such that r1 = bc1 and r2 = bc2 in semireduced
form.

Lemma 33. If 0 < λ < 1 and ∀ r ∈ R, |r| > 1/λ, the following assertions are

equivalent:

(1) If r ∈ R admits a semireduced form r = bc, where b is a piece of R, then

|b| < λ|r|;
(2) for all r1, r2 ∈ R such that r1r2 6=1, |r1r2|> |r1|+|r2|−2λmin{|r1|, |r2|}+1.

Proof. The equivalence is easily obtained from the following claim.
Let r1 = bc1 and r2 = bc2 be semireduced expressions with b 6= 1 and r1 6= r2.

Claim. There exists b′, c′1, c
′
2 such that:

(a) the equalities r1 = b′c′1 and r2 = b′c′2 hold;
(b) these expressions are semireduced;
(c) exactly one of these expressions is reduced;
(d) the expression (c′1)

−1c′2 is reduced; and
(e) |b′| > |b|. �

Definition 34. When the equivalent assertions of Lemma 33 are satisfied, we say
that R satisfies condition C ′(λ).

The first assertion is the one used by Lyndon and Schupp. The second one is
used by Danilov, except that he forgets the +1 in the formula. This leads to the
slight error in his statement that we mentioned in the Introduction. Let us finish
this subsection by recalling one of the main theorems of small cancellation theory
(see [LS01, Theorem 11.2, p. 288]).

Theorem 35. Let R be a symmetrized subset of the amalgamated group H. Sup-

pose that R satisfies condition C ′(λ) with λ 6 1
6 , then the normal subgroup gener-

ated by R in H is different from H.
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3.2. Construction of an R-diagram

The idea of associating diagrams in the Euclidean plane to some products in amal-
gamated groups appears in [VK33].

In 1966 Lyndon independently arrived at the same idea and Weinbaum redis-
covered van Kampen’s paper (see [Lyn66], [Wei66] and [LS01, p. 236]). For the
basic definition of a diagram, we refer to [LS01, Chap. V, §1, p. 235]. Here follows
a quick review of this notion.

A diagram is a plane graph (or, more generally, a graph on an orientable sur-
face, we will consider spherical diagrams in Lemma 42). Vertices are divided into
two types, primary and secondary. Any edge joining two vertices gives rise to two
directed edges (according to the chosen directions) which we call half-segments. If
e denotes one of these half-segments, e−1 will refer to the other one (obtained by
reversing the direction of e). The notation “edge” will be used later on to refer to
some special unions of half-segments (see the remark on terminology below). A
half-segment will always join vertices of different types. By definition, segments

will denote some special successions of two half-segments that we now describe.
If e1, . . . , er are the half-segments arriving at some secondary vertex v and taken
counterclockwise, then, by definition, the segments passing through v are the suc-
cessive half-segments ei, e

−1
i+1 and their inverses ei+1, e

−1
i for 1 6 i 6 r, where i and

i + 1 are taken modulo r. If two successive half-segments e, e′ define a segment,
the latter will be noted ee′. Note that the initial and terminal vertices of a seg-
ment have to be primary. By convention, each segment (resp. half-segment) has
length 1 (resp. 1

2 ). Each oriented half-segment e will be labeled by an element φ(e)
belonging to a factor of Aut[C2], with the labels on successive half-segments at a
secondary vertex belonging to the same factor. The identity φ(e−1) = φ(e)−1 is
required. This labeling gives a labeling on segments, by taking φ(ee′) = φ(e)φ(e′).
The label on an individual half-segment may be in the amalgamated part, but if
e, e′ are the two half-segments of a segment, we will usually insist that φ(ee′) is
not in the amalgamated part (in fact, there will be only one exception to this rule,
see Step 4 in the proof of Theorem 36). We call a region a bounded connected
component of the complement of the graph in the surface. A boundary cycle of
a region D is a collection of half-segments that run along the entire boundary of
D (say counterclockwise in the case of the plane, or in a way compatible with the
orientation in general) with initial vertex of primary type. Similarly, a boundary
cycle of the diagram is a collection of half-segments that run along the boundary
of the diagram. Let us note that a segment necessarily belongs to the boundary
of some region and/or to the boundary of the diagram.

Now let f be an element of Aut[C2] and consider R(f) the associated sym-
metrized set. We say that a diagram is an R(f)-diagram if for any region D and
any boundary cycle e1 . . . es of D, we have φ(e1) . . . φ(es) ∈ R(f).

Terminology. Note that we use two kinds of graph in this paper: the Bass–Serre
tree and the diagrams of Lyndon and Schupp. In the context of the Bass–Serre
tree we have already used the term edge, and we have called a path the union of
several edges. In the context of the Lyndon–Schupp diagrams we have segments

and half-segments. We call edge in this context a connected component of the
intersection of the boundary of two regions, which is a collection of half-segments.
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The following result will be the key ingredient for the proof of Theorem 2. Its
proof will occupy the rest of this subsection.

Theorem 36. Let f ∈ G be a strictly cyclically reduced element of G of (even )
algebraic length |f | > 2. Assume that the normal subgroup generated by f in

Aut[C2] is equal to G. Then there exists a planar R(f)-diagram M such that:

(1) M is connected and simply connected;

(2) The boundary of M has length 1
2 or 1;

(3) If e1e
′
1 . . . ete

′
t is a boundary cycle of some region of M , then t = |f | and

φ(e1e
′
1) . . . φ(ete

′
t) is a reduced form of a strictly cyclically reduced conjugate

of f .

Proof. We start by choosing an element g 6= id with lg(g) = 0. By assumption we
can write

g = (φ1f
±1φ−1

1 ) · · · (φnf
±1φ−1

n ),

with φi ∈ Aut[C2].
We assume that we have chosen g such that n is minimal. By Lemma 37

we may assume that each φif
±1φ−1

i is expressed under reduced form ψiriψ
−1
i

(i.e., |ψiriψ
−1
i | = |ψi| + |ri| + |ψ−1

i |) where ri ∈ R(f). There is no restriction to
assume that |ψi| = 0 if and only if ψi = id. Note also that the four following
assertions are equivalent:

(a) ri is strictly cyclically reduced;
(b) |ri| = |f |;
(c) |ri| is even;
(d) |ψiriψ

−1
i | is even.

If any one of these assertions is satisfied, we necessarily have ψi = id (since the
expression ψiriψ

−1
i is reduced).

Let us now explain the construction of M , that we perform in several steps.

Step 1. We associate a diagram to each ψiriψ
−1
i .

Our construction will involve a base point O which will be considered as a
primary vertex. Let ri = x1 . . . xm be a normal form of ri.

• Assume that ri is strictly cyclically reduced, i.e., m = |f |.
The diagram for ψiriψ

−1
i = ri is the loop at the base point O consisting of 2m

half-segments d1, d′1, . . . , dm, d
′
m such that φ(djd′j) = xj for each j.

• Assume that ri is not strictly cyclically reduced, i.e., m = |f |+ 1. Note that
in this case (xmx1)x2 · · ·xm−1 is strictly cyclically reduced.

The diagram for ψiriψ
−1
i is a loop at a vertex v joined to the base point O by

a path.
Let ψi = z1 . . . zk be a normal form of ψi.
The path Ov consists of 2k half-segments e1, e′1, . . . , ek, e

′
k such that φ(eje′j) = zj

for each j and an additional final half-segment e.
The loop at v consists of 2m− 2 half-segments b, d2, d′2, . . . , dm−1, d

′
m−1, c such

that φ(djd′j) = xj for each j.
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The three half-segments e, b, c which meet at the secondary vertex v are labeled
to satisfy the necessary (and compatible) conditions φ(eb) = x1, φ(ce−1) = xm
and φ(cb) = xmx1. For instance, we can take φ(b) = x1, φ(c) = xm and φ(e) = id.

Step 2. The initial diagram for the composition

g = (ψ1r1ψ
−1
1 ) · · · (ψnrnψ

−1
n )

consists of the initial diagrams for each ψiriψ
−1
i arranged, in counterclockwise

order, around the base point O. This initial diagram has the desired properties
(1) and (3).

Step 3. We will now proceed to the identification of some half-segments of M until
the boundary length of M is 6 2.

Note that in these identifications:

• We shall always identify primary vertices with primary vertices and secondary
vertices with secondary vertices, preserving this distinction.

• The label of a segment will never be in the amalgamated part.
• The number n of regions of M will not change and (1) and (3) will be satisfied

at each stage.
• If α is a boundary cycle of M , then φ(α) is conjugate to g.

For grounds of brevity, the tiresome and easy verification of the second point
(on label of segments) has been omitted in the two cases below.

If the boundary length of M is > 3, there necessarily exist successive segments
ee′ and ff ′ in ∂M such that the labels φ(ee′) and φ(ff ′) are in the same factor
of Aut[C2]. Indeed, otherwise, any boundary cycle α = e1e

′
1 . . . eie

′
i of M would

have even length i > 4 and its label φ(α) = φ(e1e
′
1) . . . φ(eie

′
i) would be a strictly

cyclically reduced conjugate of g, a contradiction.
So we consider the element s = φ(ee′)φ(ff ′) which lies in a factor of Aut[C2].

Case 1. Assume that s is not in the amalgamated part.
Change the label on the half-segment e′ to 1, readjusting the labels on the other

half-segments at the secondary vertex separating e and e′. In other words, this
amounts, for each half-segment g ending at this secondary vertex, to replacing its
label φ(g) by φ(ge′).

In the same way, change the label on the half-segment f to 1, readjusting the
labels on the other half-segments at the secondary vertex separating f and f ′.

Then we identify the (oriented) half-segments e′ and f−1 (which now have the
same labels) (see Figure 3 where the • are primary vertices and the ◦ are secondary
vertices).
Case 2. Assume that s is in the amalgamated part.

Note first that the diagram has no loop of length 6 2 with total label in one of
the factors of Aut[C2]. Indeed, such a loop α would be a boundary cycle of some
strictly smaller subdomain so that, by Lemma 38 below, φ(α) would be the product
of strictly less that n conjugates of f . This would contradict the minimality of n.

Therefore, if u is the initial vertex of ee′, v its terminal vertex (as well as the
initial vertex of ff ′) and w the terminal vertex of ff ′, then the vertices u, v, w are
distinct.
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• • •◦ ◦

• •

//
φ(e)

//
φ(e′)

//
φ(f)

//
φ(f ′)

GG����
φ(g)

���� ��
//

//

φ(h)
//

//

• • •◦ ◦

• •

//
φ(ee′)

//1 //1 //
φ(ff ′)

GG����
φ(ge′)

���� ��
//

//

φ(fh)
//

//

•

•

•◦

• •

//
φ(ee′)

1

//
φ(ff ′)

CC����
φ(ge′)

���� ��
88

88

φ(fh)
88

88

relabel
//

identify





Figure 3. Relabelings and identifications in Case 1.

Recall that φ(f)φ(f ′) = φ(e′)−1φ(e)−1s. We change the labels in the following
way (see Figure 4):

• we change the label of f to φ(e′)−1, readjusting the labels on the other half-
segments at the secondary vertex separating f and f ′;

• we change the label of f ′ to φ(e)−1;
• for each half-segment g having w as initial vertex, we replace its label φ(g)

by sφ(g).
Then we identify the (oriented) segments e, e′ and f ′−1, f−1 (which now have the
same labels).

• • •◦ ◦ ◦

•

u
//

φ(e)
//

φ(e′)

v
//

φ(f)
//

φ(f ′)

w
//

φ(g)

��
//

//

φ(h)
//

//

• • •◦ ◦ ◦

•

u
//

φ(e)
//

φ(e′)

v
//

φ(e′)−1

//
φ(e)−1

w
//

sφ(g)

��
//

//

φ(e′fh)
//

//

•

•

◦

◦

•

u=w

�� φ(e)

v

��
φ(e′)

//
sφ(g)

//

φ(e′fh)

relabel
44

identify

��

Figure 4. Relabelings and identifications in Case 2.

Note that after performing the identification in Case 1 (resp. in Case 2) the
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boundary length drops by 1 (resp. by 2). Note also that if two regions D1 and
D2 share at least one half-segment, and if r1, r2 are two boundary cycles of these
regions with respect to a common starting point, then we cannot have r1 = r−1

2 .
Indeed, if this was the case, removing the two regions from the diagram and ap-
plying Lemma 38 we would obtain a new element in R(f) that would contradict
the minimality of n. In fact, by Lemma 39, two regions in the diagram never share
an edge of length greater than 4.

Step 4. By induction, the previous step gave us a diagram with a boundary length
6 2. We now perform one last identification to obtain that the boundary length of
M is at most 1. If the last identification falls under Case 1 there is no particular
problem. However, if we are in Case 2, then we can no longer assume that the
vertices u and w are disjoint. So we slightly modify the procedure: we keep the
label of f ′ to be φ(e)−1s and we only identify the half-segments e′ and f . It may
happen that after this identification the label of the segment ef ′ on the boundary
of M is in the amalgamated part: apart from being slightly non aesthetic, this will
not be a problem in the proof of Theorem 45. �

Lemma 37. Any conjugate of f (notation as in Theorem 36) can be written under

reduced form ψrψ−1, where r is a weakly cyclically reduced conjugate of f .

Proof. Recall that a hyperbolic element of Aut[C2] is strictly (resp. weakly)
cyclically reduced if and only if its geodesic contains (resp. intersects) the edge
e = id(A ∩E) in the Bass–Serre tree (see Lemma 8). Let now g be a conjugate of
f . If the geodesic of g intersects e, we can just set ψ = id , r = g. Therefore, let
us assume that this geodesic does not intersect e.

Let d be the natural distance on the Bass–Serre tree and let I be the middle of
the edge e. For any element h of G, we have |h| = d(I, h(I)).

Let p ∈ Geo(g) be the unique vertex such that d(Geo(g), e) = d(p, e). Since
d(p, e) > 1, there exists a unique point I ′ on the geodesic [p, I ] such that d(p, I ′) =
1
2 . The group G acting transitively on the middle of the edges of the Bass–Serre
tree, there exists an element ψ of G such that ψ(I) = I ′. Let us set r = ψ−1gψ.
We have Geo(r) = ψ−1(Geo(g)) and d(Geo(g), I ′) = 1

2 , so that d(Geo(r), I) = 1
2

and Geo(r) meets e, i.e., r is weakly cyclically reduced. Finally, we have |g| =
d(I, g(I)) = lg(g)+2d(I,Geo(g)) = |f |+2d(I, I ′)+1, |ψ| = d(I, I ′) and |r| = |f |+1,
so that |g| = |ψ|+ |r|+ |ψ−1|. �

The following result can be proven similarly as in [LS01, Chap. V, §1, Lemma
1.2, p. 239] (i.e., by induction on the number m of regions).

Lemma 38. Let M be an oriented connected and simply connected diagram with

m regions D1, . . . , Dm. Let α be a boundary cycle of M (beginning at some vertex

of ∂M) and let βi be a boundary cycle of Di (beginning at some vertex of ∂Di),
for 1 6 i 6 m. Then φ(α) belongs to the normal subgroup generated by the φ(βi),
1 6 i 6 m. More precisely, there exist u1, . . . , um in Aut[C2] such that

φ(α) = (u1 φ(β1)u
−1
1 ) . . . (um φ(βm)u−1

m ).
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3.3. A dictionary between the Bass–Serre and Lyndon–Schupp theories

Let α be a boundary cycle of some region of M (as in Theorem 36) beginning
at some vertex v. If v is primary (resp. secondary), φ(α) is a reduced form of a
strictly cyclically reduced (resp. nonstrictly cyclically reduced) element of R(f).

Lemma 39. If D1, D2 are two distinct regions of a diagram M having a common

edge, there exists a primary vertex v of ∂D1 ∩ ∂D2 such that the labels g1, g2 of

the boundary cycles of D1, D2 beginning at v satisfy

|Geo(g1) ∩Geo(g2)| > |∂D1 ∩ ∂D2|.

Proof. If k is the largest integer such that k < |∂D1 ∩ ∂D2|, there exists a path
of k segments s1, . . . , sk included into ∂D1 ∩ ∂D2. We can just take for v the
initial or terminal vertex of this path (if k = 0, these two vertices coincide).
Indeed, we may assume that g1 has the normal form g1 = φ(s1) . . . φ(sk)x1 . . . xm
(where each xi is in some factor of G). Therefore, g−1

2 has the normal form
g−1
2 = φ(s1) . . . φ(sk)y1 . . . ym (where each yi is in some factor of G).

The geodesics Geo(g1) and Geo(g−1
2 ) = Geo(g2) contain the k + 1 consecutive

edges,
id (A ∩ E), φ(s1) (A ∩ E), . . . , φ(s1) . . . φ(sk) (A ∩ E). �

Example 40. Assume that M contains the two regions depicted in Figure 5 (the
• are primary vertices, the secondary vertices are denoted by ◦ only when they
have valence > 3).

• •◦ ◦

• •

• •
D1

D2��????e4

????
oo

a3

??��
��

e3
��

��

����
��e1

��
��

//
a2

__????

e2

????

id idoo
a1 v

Figure 5.

We get g1 = a1e1a2e2, g2 = e3a3e4a
−1
1 and Figure 6 gives the picture in the

Bass–Serre tree. Note that here for simplicity we took D1 and D2 with boundary
length 4, but in the context of Theorem 36 any region has boundary length at
least 10.

•

•

• • •

•

•

e
−1

2
A

??
??

??
?

e3A

�������

idE idA

a1e1A

��
��

��
�

a1e
−1

4
A

???????

a1E

g1

::

g2
zz

Figure 6.
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Lemma 41. If v is a vertex of valence 3 of M with regions D1, D2, D3 meeting at

v and if g1, g2, g3 are the labels of the boundary cycles of these regions beginning

at v, then the geodesics of the gi’s form a tripod in the Bass–Serre tree and for all

i, j’s,

|Geo(gi) ∩Geo(gj))| > |∂Di ∩ ∂Dj |.

Proof. The vertex v is necessarily secondary. Let e1 (resp. e2, resp. e3) be the
(oriented) half-segment having v as initial vertex and included into ∂D2 ∩ ∂D3

(resp. ∂D1 ∩ ∂D3, resp. ∂D1 ∩ ∂D2). The φ(ei)’s are in the same factor of G and
if i 6= j, φ(ei)φ(ej)−1 is not in the amalgamated part. As in Lemma 39, let k be
the largest integer such that k < |∂D1 ∩ ∂D2| and let s1, . . . , sk be segments such
that the path e3, s1, . . . , sk is included in ∂D1 ∩ ∂D2. We may assume that g1 has
the normal form

g1 = φ(e3)φ(s1) . . . φ(sk)x1 . . . xmφ(e2)
−1,

where each xi is in some factor of G. Therefore, g′1 = φ(e3)
−1g1φ(e3) is strictly

cyclically reduced and has the normal form

g′1 = φ(s1) . . . φ(sk)x1 . . . xm+1,

where xm+1 = φ(e2)
−1φ(e3). Since the geodesic of g′1 contains the consecutive

edges
id(A ∩ E), φ(s1)(A ∩ E), . . . , φ(s1) . . . φ(sk)(A ∩ E),

it is clear that the geodesic of g1 contains the consecutive edges

φ(e3)(A ∩ E), φ(e3)φ(s1)(A ∩ E), . . . , φ(e3)φ(s1) . . . φ(sk)(A ∩ E).

One would show in the same way that these edges are also contained in the
geodesic of g2, so that we get |Geo(g1) ∩ Geo(g2)| > |∂D1 ∩ ∂D2|. The other
inequalities are proven similarly. We finish the proof by noting that Geo(g1) ∩
Geo(g3) contains the edge φ(e2)(A ∩ E) and that Geo(g2) ∩Geo(g3) contains the
edge φ(e1)(A ∩E). If the φ(ei)’s are in the factor A (resp. E), it is clear that the
three edges φ(ei)(A ∩ E) intersect at the vertex idA (resp. idE). �

4. Proof of Theorem 2

4.1. A result about curvature

Let us recall some notations from [LS01]. If v is a vertex of a diagram M , the
degree d(v) (or valence) of v will denote the number of oriented edges having v
as initial vertex (thus, if an edge has both endpoints at v, we count it twice). If
D is a region, the degree d(D) of D will denote the number of edges of D. The
following formula defines a curvature contribution for each region:

δ(D) = 2− d(D) +
∑

v∈D

2

d(v)
.
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Lemma 42. For any diagram on the 2-sphere we have

4 =
∑

D

δ(D).

Proof. Let V , E, and F be the numbers of vertices, edges and faces of the diagram.
The formula is a direct consequence of Euler’s formula on the sphere 2 = V −E+
F and of the obvious relations 2E =

∑
(v,D) 1, V =

∑
(v,D) 1/d(v) and F =∑

(v,D) 1/d(D):

4 = 2V + 2F − 2E =
∑

(v,D)

(
2

d(v)
+

2

d(D)
− 1

)
=

∑

D

δ(D),

where the first sum runs over the couples (v,D) with v a vertex and D a face such
that v ∈ D. �

Corollary 43. For any planar diagram homeomorphic to the disk we have

2 6
∑

D

δ(D).

Proof. Let K be this diagram. Let L be the spherical diagram obtained by sticking
along their boundaries two copies K1 and K2 of K. Since L is homeomorphic to
the sphere, we have 4 =

∑
D∈L δ(D), i.e.,

4 =
∑

D∈K1

δ(D) +
∑

D∈K2

δ(D) = 2
∑

D∈K1

δ(D) 6 2
∑

D∈K

δ(D).

The last inequality comes from the fact that for each boundary region D in K
the contribution curvature δ(D) computed in the disk diagram is bigger than the
contribution computed in the spherical diagram. �

Remark 44. Here is a (noncomplete) list of faces D having negative or zero curva-
ture:

• D with d(D) > 6;
• D with d(D) = 5 and at most three vertices of D are tripods;
• D with d(D) = 4 and each vertex of D has valence at least 4;
• D with d(D) = 4 and D admits a tripod, two vertices of valence at least 4

and a fourth vertex of valence at least 6;
• D with d(D) = 3 and each vertex of D has valence at least 6.

4.2. End of the proof

We are now in a position to prove Theorem 2. As in Theorem 1, we will prove a
stronger and more geometric version.

Theorem 45. If f ∈ G is a hyperbolic element of geometric length lg(f) > 14
satisfying conditions (C2), then the normal subgroup generated by f in Aut[C2] is

different from G.
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Proof. We can assume that f is a strictly cyclically reduced element of length
lg(f) = |f | = 2l > 14. If the normal subgroup generated by f in Aut[C2] was
equal to G then, by Theorem 36, there would exist an Aut[C2]-labeled oriented
diagram M such that:

(1) M is connected and simply connected;
(2) the perimeter of M is 6 1; and
(3) if e1e′1 . . . ete

′
t is a boundary cycle of some region of M , then t = |f | and

φ(e1e
′
1) . . . φ(ete

′
t) is a reduced form of a strictly cyclically reduced conju-

gate of f .

Let D1, D2 be two distinct regions of M having a common edge. By Proposition
19 and Lemma 39 we have |∂D1 ∩ ∂D2| 6 4. Since |∂D1| > 14, we conclude that
any interior region has at least four edges.

Furthermore, if D1, D2, D3 are three distinct regions of M having a common
vertex of valence 3, by Lemmas 29 and 41, we know that each edge ∂Di ∩ ∂Dj is
at most of length 2. In consequence, if an interior region has at least one interior
vertex of valence 3, then this region has at least five edges. Similarly, if an interior
region has at least three interior vertices of valence 3, then this region has at least
six edges.

By the previous observations, and using Remark 44, we conclude that the cur-
vature contribution δ(D) of any interior region D is nonpositive. Let us examine
now the contribution of the boundary regions. Since the perimeter is at most 1
(i.e., at most two half-segments), there are at most two boundary regions.

Suppose there are exactly two boundary regions. Since the boundary edge of
such a region D is a half-segment, it is easy to check that D has at least five edges,
and that if at least one interior vertex is of valence 3 then D has at least six edges.
Thus δ(D) 6 0.

Assume now that there is only one boundary regionD. Then the only boundary
vertex of D (which has to be counted twice) has valence at least 4. So D has at
least five edges and if D has exactly five edges, then the three interior vertices
cannot be of valence 3, and again we obtain δ(D) 6 0.

In conclusion we have
∑
δ(D) 6 0, which is contradictory to Lemma 43. We

conclude that the normal subgroup generated by f in Aut[C2] cannot be equal to
G. �

5. The remaining cases: Lengths 10 and 12

In this section we present some of the problems that await the reader who would
like to extend our results to the case of an automorphism of length 10 or 12, along
with two striking examples of configuration in the Bass–Serre tree.

5.1. Length 12

The main problem in adapting our strategy to the case of f with lg(f) = 12 is
that we have to deal with regions in an R(f)-diagram that are triangles with three
edges of length 4. Then we would have to study not only tripods coming from
three conjugates of f , but their generalization, which we call n-pods, coming from
n conjugates fi (0 6 i 6 n− 1) of f . This is the case where the geodesics Geo(fi)
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have a common vertex and where each pair, Geo(fi),Geo(fi+1), has at least one
edge in common (where i = 0, ..., n − 1 and the indices are taken modulo n). To
be sure precisely that the curvature of such a triangle is nonpositive it would be
sufficient to have the following

Lemma/Conjecture 46. If n conjugates of f form an n-pod in the Bass–Serre

tree, with two consecutive branches of length 4, then n > 6.

We believe that this result is true, but the verification seems to have to involve
a very long list of cases: that is why we do not think it reasonable to try to present
a proof. However, it is interesting to note that there exist 6-pods with branches
of length 4.

Example 47 (6-pod with all branches of length 4). Let us consider the following
automorphism f0 of length 2l > 8,

f0 = e1ae2a · · · ela

where a = a(0) = (y,−x). We suppose that e1 = (x+ P (y), y) and we set e = e1.
We are going to construct f1, . . . , f5 five conjugates of f0 such that their geodesics
form a 6-pod (see Figure 7).
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Figure 7. A 6-pod with all branches of length 4 (example 47)

For i = 1, . . . , 5 we choose constants ci 6= 0 and we set ti = (x, y + ci). We take
fi = φif0φ

−1
i where

φ1 = et1e
−1,

φ2 = et1e
−1t2,

φ3 = et1e
−1t2et3e

−1,

φ4 = et1e
−1t2et3e

−1t4,

φ5 = et1e
−1t2et3e

−1t4et5e
−1,

are all elements of E.
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We claim that for each i = 0, · · · , 4, the geodesics of fi and fi+1 share a path
of four edges with idE as an extremity.

Consider the case i = 0. We have Geo(f1) = φ1(Geo(f0)). Recall that t1 fixes
the ball of radius 2 centered on a(0)E (Remark 17), so φ1 fixes the ball of radius
2 centered on ea(0)E, hence the claim.

Now take i = 1. Note that f2 = φ1t2f0t
−1
2 φ−1

1 = φ1t2φ
−1
1 f1φ1t

−1
2 φ−1

1 and
φ1t2φ

−1
1 fixes the ball of radius 2 centered at φ1a(0)E. Thus the geodesic of f1

and f2 share four edges. We can make a similar computation for i = 2, 3, 4.
Suppose now that the constants ci satisfy

c1 + c2 + c3 = 0,

c2 + c3 + c4 = 0,

c3 + c4 + c5 = 0.

For instance, one can take (c1, c2, c3, c4, c5) = (1, 1,−2, 1, 1).
A straightforward computation shows that

φ5 = et1e
−1t2et3e

−1t4et5e
−1

=
(
x+ P (y + c1 + c2 + c3 + c4 + c5)− P (y + c2 + c3 + c4 + c5)

+ P (y + c3 + c4 + c5)− P (y + c4 + c5) + P (y + c5)− P (y),

y + c1 + c2 + c3 + c4 + c5
)
= (x, y − c3).

Since (x, y − c3) fixes the ball of radius 2 centered at a(0)E, this implies that the
geodesics of f0 and f5 share four edges, as shown in Figure 7.

5.2. Length 10

The case of f of length 10 seems even more doubtful. For instance, one could have
pentagonal regions with all edges of length 2 and all vertices of valence 3. It is
probably easy to rule out this case, but there are some harder ones. One could have
triangular regions with edges of length 4, 4, 2. Example 47 allows us to glue six such
triangles along their edge of length 4 to obtain an R(f)-diagram with boundary
length 12. One can wonder if it is possible to glue two such diagrams to obtain
an R(f)-diagram on a sphere (in this case our strategy would fail). One would
need to have 4-pods with branches 4, 2, 4, 2. We do not know if this is possible,
but the following example shows again that we would have to rely on very careful
computations to exclude this case (note also that the assumption “consecutive”
was crucial in the statement of Lemma 46).

Example 48 (4-pod with branches of length 4, 1, 4, 1). Similarly to the previ-
ous example, we take fi = φif0φ

−1
i where

φ1 = et1e
−1,

φ2 = et1e
−1t2,

φ3 = et1e
−1t2et3e

−1,
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with t1 = t3 = (x + c, y) and t2 = (−x, y − c). Then one can verify that φ3 =
(−x, y + c) and the geodesics of the fi form a 4-pod as in Figure 8.

•

•

• • • • • ••••
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Figure 8. A 4-pod with branches 4, 1, 4, 1 (Example 48).

Annex: Genericness of condition (C2)

We begin with a reformulation of Theorem 45.

Theorem 49. Let l > 7 be an integer. Assume that the polynomials P1, . . . , Pl ∈
C[y] are general and independent. If the element f of G can be written f =
a1e1 . . . alel where ei = e(Pi) and ai ∈ A \E for each i, then the normal subgroup

generated by f in Aut[C2] is different from G.

In this Annex we will show that if P1, . . . , Pl are generic (in some sense), then
they are general and independent. We will also finish by giving explicit examples.

A. Genericness of condition (C1)

The aim of this subsection is to show that condition (C1) is generic (see Corollary
57 and Remark 58). For technical purposes we introduce a variation of the notion
of a general polynomial (see Definition 15).

Lemma 50. Let Q ∈ C[y] be a polynomial. The following assertions are equiva-

lent:

(1) for all α, β, γ ∈ C, Q(y) = αQ(βy + γ) ⇒ α = β = 1 and γ = 0;

(2) for all α, β, γ ∈ C, Q(y) = αQ(βy + γ) ⇒ β = 1.

Proof. (1)⇒(2) is obvious. Let us prove (2)⇒(1). If Q satisfies (2), note that Q
cannot be constant. If Q(y) = αQ(y + γ), it is enough to show that γ = 0. Let ζ
be a root of Q. Since ζ + nγ is also a root of Q for any integer n we must have
γ = 0. �

Definition 51. We say that Q is weakly general if it satisfies the equivalent as-
sertions of Lemma 50.

Remark 52. Clearly, if Q
′

is weakly general, then Q is also weakly general. Fur-
thermore, Q(k) is weakly general if and only if the following equivalent assertions
are satisfied:
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(1) for all α, β, γ ∈ C, deg(Q(y)− αQ(βy + γ)) < k ⇒ α = β = 1 and γ = 0;
(2) for all α, β, γ ∈ C, deg(Q(y)− αQ(βy + γ)) < k ⇒ β = 1.

In other words, a polynomial Q of degree d > 5 is general if and only if Q(d−3) is
weakly general.

Lemma 53. The following assertions are equivalent:

(1) Q is not weakly general;

(2) there exists c ∈ C, R ∈ C[y], k > 0, n > 2, such that Q(y + c) = ykR(yn).

Proof. (1)⇒(2) If Q is not weakly general, there exists α, β, γ with β 6= 1 such that
Q(y) = αQ(βy+γ). If we set c = γ/(1− β), then the polynomial P (y) = Q(y+ c)
satisfies P (y) = αP (βy). Writing P =

∑
i piy

i, the last equation is equivalent to,
for all i, (1− αβi)pi = 0. If β is not a root of unity, this implies that there exists
k > 0 such that P = pky

k. Assume now that β is a primitive nth root of unity. If
P 6= 0, there exists k > 0 such that pk 6= 0 and so α = β−k. Since pi 6= 0 implies
i ≡ k (mod n), we get P = ykR(yn) where R(y) =

∑
i pk+niy

i.
(2)⇒(1) This is a consequence of the previous computation. �

Proposition 54.

(1) If d > 3, the generic element of C[y]6 d is weakly general.

(2) If d > 5, the generic element of C[y]6 d is general.

Proof. If u ∈ R, we denote its integer part by [u].
(1) If Q ∈ C[y]6 d is not weakly general, by Lemma 53 we can write

Q(y) = (y − c)kR ((y − c)n) ,

where 0 6 k 6 d, 2 6 n 6 d, c ∈ C, e = [d/n] and R ∈ C[y]6 e. Therefore, Q
belongs to the image of the following morphism:

ϕk,n : C× C[y]6 e → C[y], (c, R(y)) 7→ (y − c)kR((y − c)n).

However,

dim Imϕk,n 6 dim(C× C[y]6 e) = e+ 2 6
d

n
+ 2 6

d

2
+ 2 < d+ 1 = dimC[y]6 d.

Part (2) is a direct consequence of (1), by considering the map Q 7→ Q(d−3),
and using Remark 52. �

Proposition 55. If d1, d2 > 5 and (P1, P2) is a generic element of C[y]6 d1
×

C[y]6 d2
, then P1, P2 represent different colors.

Proof. By Lemma 12, if P1, P2 represent the same color, then (P1, P2) belongs to
the image of the following morphism:

ϕ : C[y]6 d1
×C

5 → C[y]×C[y], (P1, (α, β, γ, δ, ε)) 7→ (P1, αP1(βy+γ)+δy+ε).

However,

dim Imϕ 6 d1 + 6 < dimC[y]6 d1
× C[y]6 d2

. �
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Remark 56. If d1 6= d2, Proposition 55 is still more obvious. Indeed, the generic
element Pi of C[y]6 di

has degree di. Therefore, if (P1, P2) is a generic element
of C[y]6 d1

× C[y]6 d2
, then degP1 6= degP2, which clearly implies that P1, P2

represent different colors.
Propositions 54 and 55 give us the following result.

Corollary 57. Fix a sequence of integers d1, . . . , dl > 5. If (P1, · · · , Pl) is a

generic element of
∏

16 i6 l C[y]6 di
, then the polynomials Pi are general and rep-

resent distinct colors.

Remark 58. In other words, if ai ∈ A \ E and ei = e(Pi) for 1 6 i 6 l, then the
automorphism a1e1 . . . alel satisfies condition (C1).

B. Genericness of condition (C2)

The aim of this subsection is to show that condition (C2) is generic (see Corollary
61 and Remark 62).

Proposition 59. If d1, d2, d3 > 8 and (P1, P2, P3) is generic in
∏

16 i6 3 C[y]6 di
,

then the polynomials P1, P2, P3 are independent.

Proof. By permutations, it is enough to show the following two points:

(1) If (P1, P2) is generic in C[y]6d1
×C[y]6d2

, then (A∩E)e(P2)(A∩E) is not
a mixture of (A ∩ E)e(P1)(A ∩ E) and (A ∩ E)e(P1)(A ∩ E).

(2) If (P1, P2, P3) is generic in C[y]6d1
×C[y]6d2

×C[y]6d3
, then (A∩E)e(P3)(A∩

E) is not a mixture of (A ∩ E)e(P1)(A ∩ E) and (A ∩ E)e(P2)(A ∩ E).

Proof of (1). Define φ : C[y]6d1
× C8 → C[y]6d1

× C[y],

(P1, (α, . . . , θ)) 7→ (P1, αP1(βy + γ) + δP1(εy + ζ) + ηy + θ).

We have dim Imφ 6 d1 + 1 + 8 < dimC[y]6d1
× C[y]6d2

. If (P1, P2) ∈ (C[y]6d1
×

C[y]6d2
) \ Imφ, it is clear that (A ∩ E)e(P2)(A ∩ E) is not a mixture of (A ∩

E)e(P1)(A ∩ E) and (A ∩ E)e(P1)(A ∩ E).

Proof of (2). Define ψ : C[y]6d1
× C[y]6d2

× C8 → C[y]6d1
× C[y]6d2

× C[y],

(P1, P2, (α, . . . , θ)) 7→ (P1, P2, αP1(βy + γ) + δP2(εy + ζ) + ηy + θ).

We have dim Imφ 6 (d1 +1) + (d2 +1) + 8 < dimC[y]6d1
×C[y]6d2

×C[y]6d3
. If

(P1, P2, P3) ∈ (C[y]6d1
×C[y]6d2

×C[y]6d3
)\Imψ, it is clear that (A∩E)e(P3)(A∩

E) is not a mixture of (A ∩ E)e(P1)(A ∩ E) and (A ∩ E)e(P2)(A ∩ E). �

Corollary 60. Fix a sequence of integers d1, . . . , dl > 8. The generic element

(P1, . . . , Pl) of
∏

16i6l C[y]6di
is an independent sequence.

Combining Corollaries 57 and 60 we get

Corollary 61. Fix a sequence of integers d1, . . . , dl > 8. The generic element

(P1, . . . , Pl) of
∏

16 i6 l C[y]6 di
defines a sequence of general and independent poly-

nomials.
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Remark 62. In other words, if ai ∈ A \ E and ei = e(Pi) for 1 6 i 6 l, then the
automorphism a1e1 . . . alel satisfies condition (C2).

C. Explicit examples

Lemmas 63 and 66 below will allow us to give explicit examples of polynomials
P1, . . . , Pl ∈ C[y] which are general and independent (see Example 67).

Lemma 63. Let P ∈ C[y] be a polynomial of degree d > 3 and let M = −pd−1/dpd
be the arithmetic mean of its roots. If there exist two consecutive integers k > 0
such that P (k)(M) 6= 0, then P is weakly general.

Proof. If P (y) = αP (βy + γ), then the automorphism f of the affine line given
by f(y) = βy + γ permutes the roots of P . Since f is affine, we must have
f(M) =M . By substituting M for y in the equality P (k)(y) = αβkP (k)(f(y)), we
get (1− αβk)P (k)(M) = 0, whence the result. �

Remark 64. We always have P (d−1)(M) = 0. Therefore, if P has degree 2, it
is not possible to find two consecutive integers k such that P (k)(M) 6= 0. As
a consequence, it is not possible to show that P is weakly general by using an
analogous version of Lemma 63. In fact, it is easy to check that no polynomial of
degree 2 is weakly general!

Example 65. Let P =
∑

i piy
i be a polynomial of degree d > 5.

(1) If pd−1 = 0 and pd−2pd−3 6= 0, then P is general.
(2) If pd−1 6= 0 and pd−2 = pd−3 = 0, then P is general.

Lemma 66. A family (Pi)i of general polynomials satisfying |deg Pi−deg Pj | > 3
for any i 6= j is independent.

Proof. Let us assume (by contradiction) that deg
∑

16k63 αkPik (βky + γk) 6 1
and that we do not have i1 = i2 = i3.

First case. i1, i2, i3 are distinct.
By the assumption, degPi1 , degPi2 , degPi3 are distinct, this is impossible.

Second case. i1, i2, i3 are not distinct.
We may assume that i1 = i2 6= i3.
Since Pi1 is general, for any α, β, γ, the polynomial Pi1(y)−αPi1 (βy+γ) either

has degree > deg Pi1 − 3 or is null. More generally, the same result holds for
Q(y) =

∑
16k62 αkPi1(βky + γk). But |degPi3 − degPi1 | > 3 by the assumption,

so that degQ 6= degPi3 . Therefore, we cannot have deg(Q+α3Pi3 (β3y+γ3)) 6 1.
�

Example 67. By Example 65 the polynomial yd + yd−1 is general for d > 5.
Therefore, if we set Pd = y4d+1 + y4d, the polynomials P1, . . . , Pl are general
and independent (for any l). As a consequence, if ai ∈ A \ E and ei = e(Pi) for
1 6 i 6 l, then f = a1e1 . . . alel satisfies condition (C2). If we assume, furthermore,
that f ∈ G and l > 7, then 〈f〉N 6= G by Theorem 45.
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