
INTRODUCTION TO THE CREMONA GROUP
FOUR LECTURES AT CUERNAVACA, MEXICO

JANUARY 6-10, 2020

STÉPHANE LAMY

Abstract.
• Lecture 1: Birational maps, base points, resolution by blow-ups, examples,
intersection form.
• Lecture 2: Generators for the Cremona group: Noether and Castelnuovo’s
theorems with a Sarkisov flavor.
• Lecture 3: The Picard Manin space and the infinite dimensional hyper-
boloid, dynamical degree and translation length.
• Lecture 4: Tits alternative, Normal subgroup theorem, and more...

Lecture 1. The Cremona group

1.1. Affine vs homogeneous coordinates. We work over the field C of complex
number. The Cremona group is the group Bir(P2) of birational maps P2 99K P2. A
rational map can be given in homogeneous coordinates as

f : [x : y : z] 7→ [P0(x, y, z) : P1(x, y, z) : P2(x, y, z)]
with the Pi homogeneous of the same degree d, and without common factor. One
can also describe a map f ∈ Bir(P2) by working in a affine chart, say z = 1:

f(x, y) = (f0(x, y), f1(x, y))
with f0, f1 rational fractions. By definition such a rational map is birational if it
admits an inverse of the same form.

Here follows a few examples of natural subgroups in Bir(P2) :
(1) The group PGL3(C) corresponds to the biregular subgroup Aut(P2) in Bir(P2).
(2) The group PGL2×PGL2 is the component of the identity of Aut(P1 × P1).

Given a choice of birational map P1 × P1 99K P2, PGL2×PGL2 can be identified
to the following subgroup of Bir(P2):

(x, y) 7→
(
αx+ β

γx+ δ
,
ay + b

cy + d

)
.

(3) The group PGL2(C(y)) o PGL2 can also be seen as a subgroup of Bir(P2):

(x, y) 7→
(
α(y)x+ β(y)
γ(y)x+ δ(y) ,

ay + b

cy + d

)
.

These transformations are called Jonquières, geometrically these are the transfor-
mations preserving the pencil of lines y = constant.

(4) The group GL2(Z) can be seen as the subgroup of monomial transformations:
(x, y) 7→ (xayb, xcyd).
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(5) The group Aut(C2) of polynomial automorphisms, such as the Hénon map
(x, y) 7→ (y, y2 − x).

1.2. Base locus, exceptional set, linear system. A birational map between two
surfaces S1 99K S2 is defined as an isomorphism between two Zariski open subsets
U1 ⊂ S1 → U2 ⊂ S2. The complement of the maximal such subset U1 is called the
exceptional set. The set where the map is not defined is called the indeterminacy
set, or the base locus when equipped with the natural scheme structure. This is a
finite number of points.

For simplicity assume now that S2 = P2. The preimage of lines is a two-
dimensional family of curves on S1, called the linear system associated with the
map S1 99K P2.

Consider the example of the standard quadratic involution f : (x, y) 7→ ( 1
x ,

1
y ),

or in homogeneous coordinates
f : [x : y : z] 7→ [yz : xz : xy].

The base locus is defined by the vanishing of yz, xz and xy, and so is equal to the set
{[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}. The exceptional set corresponds to the complement
of (C∗)2 inside P2, and so is equal to the union of three lines. The linear system
is the system of conics passing through the three base points (including the three
singular ones).
Exercise 1.1. Viewing P2 and P1 × P1 as compactifications of the same C2, we
get a birational map P1 × P1 99K P2. Determine the base locus, exceptional locus
and linear system of this map.
1.3. Blow-ups. The map from C2 to C2 given by (x, y) 7→ (x, xy) is injective
outside the line x = 0, and maps the line x = 0 to the point (0, 0). This simple
quadratic map plays an important role in the theory of birational maps on surfaces,
and is called a blow-up.

Formally :
Proposition 1.2. Let S be a smooth surface, and p ∈ S a point. Then there exists
a (unique) birational morphism π : S′ → S from a smooth surface S′, such that
π−1(p) = E is a smooth rational curve, and π is an isomorphism from S′ r E to
S′ r {p}.

One way to construct blow-ups is by taking graphs of rational functions, the
following exercise gives the main idea:
Exercise 1.3. Let g : C2 → P1 be the rational function defined by g(x, y) = [x : y].
Let S′ ⊂ C2 × P1 be the (closure of the ) graph of g, and let π : S′ → C2 be the
natural projection on the first factor. Find some affine charts on S′ such that the
expression of π is the simple quadratic map given above.

The importance of blow-ups:
Theorem 1.4. Let f : S1 99K S2 be a birational map between smooth projective
surfaces. Then there exist a smooth surface S and compositions of blow-ups π1 : S →
S1, π2 : S → S2 such that the following diagram commutes:

S

S1 S2

π1 π2

f
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The proof of this result relies on the notion of intersection between divisors.

1.4. Intersection form on surfaces. We work on S a smooth projective surface.
A divisor D on S is a finite collection of irreducible curves Ci, with multiplicity
ai ∈ Z. We write

D =
∑

aiCi.

Equivalently, D is defined by zeros and poles of local equations fα, where (Uα) is
a (Zariski) open covering of S, and fα is a rational function on Uα (with obvious
compatibility assumption on each Uα∩Uβ). We say that D is effective if all ai > 0,
or equivalently if all fα are regular.

Example 1.5. • Given a rational function f : S 99K P1, the divisor div f :=
(f)0 − (f)∞ given by zeros and poles of f is called a principal divisor.

• Given a rational 2-form ω written locally ω = fαdz1 ∧ dz2, the divisor
defined by the zeros and poles of the fα is called a canonical divisor on S.
(Fact: the difference of any two canonical diviors is a principal divisor).

• Given a hyperplane H ⊂ PN ⊃ S, the hyperplane section H ∩ S is called a
very ample divisor.

Two divisors D1, D2 are linearly equivalent if there exists a rational function f
such that D1 −D2 = div f .

Let D1, D2 be two effective divisors on S with non common component, x ∈ S,
and f1, f2 ∈ Ox some local equations of D1, D2. We define the local intersection of
D1 and D2 at x by

(D1 ·D2)x := dimCOx/(f1, f2).
We define the global intersection of D1 and D2 by

D1 ·D2 :=
∑

x∈SuppD1∩SuppD2

(D1 ·D2)x.

We can extend these definition to non effective divisors by linearity. This is an
exercise to check that this definition corresponds to the intuitive notion of “inter-
section number with multiplicity”. In particular:

Exercise 1.6. Prove that
• (D1 ·D2)x = 0 ⇐⇒ x does not belong to the support of D1 or D2.
• (D1 ·D2)x = 1 ⇐⇒ f1, f2 are local parameters at x.

Lemma 1.7. Let D1, D2, D
′
2 be three divisors on S. Assume D2 ∼ D′2 and D2, D

′
2

have non commom component with D1. Then
D1 ·D2 = D1 ·D′2.

Lemma 1.8. Let D1, D2 be two divisors on S. Then there exists a divisor D′2
linearly equivalent to D2 such that D1 and D′2 have no common component in their
supports.

Idea of proof. One shows that given finitely points x1, . . . , xn ∈ S, there exists
D′2 ∼ D2 such that xi 6∈ SuppD′2 for each i. �

With these two lemmas we can define the intersection number of two arbitrary
divisors on S, in particular we can define the self-intersection D2 = D · D of any
divisor.
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Exercise 1.9 (Bezout theorem). Prove as a corollary of the above discussion that
if C1, C2 ⊂ P2 are two plane curves of respective degrees D1, D2, with no common
component, then C1 · C2 = d1.d2.

An important property of the intersection number is:

Proposition 1.10. Let f : S′ → S be a birational morphism, and D1, D2 two
divisors on S. Then

D1 ·D2 = f∗D1 · f∗D2.

Proof. First if D ∼ D′ on S, then f∗D ∼ f∗D′ on S′: D − D′ = div g =⇒
f∗D− f∗D′ = div g ◦ f . Then we can move D1 and D2 using linear equivalence to
avoid the finitely many points in the base locus of f−1. �

Another important tool is the behaviour of intersection under blow-up:

Proposition 1.11. Let π : S′ → S be the blow-up of a point x ∈ S, with exceptional
divisor E.

(1) For any divisor D on S, we have E · π∗D = 0.
(2) If C ⊂ S is a curve with multiplicity m at x, then π∗C = C ′ +mE, where

C ′ := π−1(C r {x} is called the strict transform of C.
(3) E2 = −1.
(4) If C ⊂ S is a curve with multiplicity m at x, E · C̄ = m.
(5) If C1, C2 ⊂ S are curves with multiplicity m1,m2 at x, and strict transforms

C ′1, C
′
2 on S′, then

C ′1 · C ′2 = C1 · C2 −m1 ·m2.

(6) The canonical divisors on S and S′ are related by the formula
KS′ = π∗KS + E.

Finally we have the Castelnuovo contraction criterion:

Lemma 1.12. Let S′ be a smooth projective surface, and E ⊂ S′ a smooth curve
isomorphic to P1, with E · E = −1. Then there exists a morphism π : S′ → S to
another smooth projective surface S such that π is the blow-up of a point x ∈ S,
with exceptional divisor E.

Lecture 2. Castelnuovo and Noether’s Theorems (with Sarkisov
flavor)

2.1. Hirzebruch surfaces. We call Hirzebruch surface any surface S with a mor-
phism S → P1 such that all fibers are isomorphic to P1. We denote Fn, n > 1, a
Hirzebruch surface admitting a section s with self-intersection −n. We say that s is
the exceptional section of Fn, and we denote by f the class of a fiber (up to linear
equivalence).

We denote F0 = P1 × P1, where the notation F0 also implies a choice between
the two rulings, which plays the role of the fiber f , whereas any rule of the other
ruling plays the role of the section s. In any case we have

f · f = 0, s · s = −n and f · s = 1.

Exercise 2.1. We admit that any divisor on Fn is linearly equivalent to af + bs
for some a, b ∈ Z.

(1) Show that any curve C ⊂ Fn is linearly equivalent to af + bs with a, b ∈ N.
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P1

F1

F1

P1

P2

Figure 1

(2) If n > 1, show that s is the only curve on Fn such that s · s < 0.

Using blow-ups one can construct Hirzebruch surfaces of any index:
(1) The blow-up of a point on P2 produces F1.
(2) An elementary transformation from Fn (blow-up a point, contract a fiber)

changes the index by 1: we get Fn+1 if the blown-up is on the exceptional
section of Fn, and Fn−1 otherwise.

It is a classification result that up to isomorphism there exists a unique surface
Fn for each n > 0.

2.2. Statements. We want to prove:

Theorem 2.2 (see [KSC04, Theorem 2.24]). Any birational map ϕ : P2 99K P2

can be reduced to a linear automorphism by a sequence of the following 4 types of
transformations:

(I) A blow-up P2 ← F1;
(II) An elementary transformation Fn 99K Fn±1;
(III) A contraction (inverse of blow-up) F1 → P2;
(IV) The involution τ : P1 × P1 → P1 × P1 exchanging the two rulings.

This is a factorization theorem for selfmaps of P2 via transformations between
other surfaces: this is a modern point of view that generalizes in any dimension as
the Sarkisov program. We can deduce the following result of Castelnuovo (1901) :

Corollary 2.3 (Castelnuovo [Cas01]). Any birational map of P2 is a composition
of Jonquières maps and linear automorphisms.

Proof. First, using the commutative diagram of Figure 1, an elementary transfor-
mation F1 99K F0 followed by τ can be rewritten

F1 99K F0 → F0 = F1 → P2 ← F1 99K F0.

So in Theorem 2.2 we can use only the first three types of generators.
Now a map with a factorization of the form (no P2 in the middle)

P2 ← F1 99K · · · 99K F1 → P2

is Jonquières (up to linear automorphisms on the left and right, to identify the
fibrations on the Fn to the pencil y = constant on P2). �

In turn, the motivation for Castelnuovo to state this result was to fill a gap in a
Theorem by M. Noether:
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Theorem 2.4 (Noether). Any birational map of P2 is a composition of quadratic
and linear maps (and one can even only use the quadratic map (x, y)→ ( 1

x ,
1
y )).

I leave the reduction from Theorem 2.3 to 2.4 as an exercise (not so easy!) (for
the solution on can look at [KSC04]). The difficulty is almost completely contained
in the following special case:

Exercise 2.5 (**). What is the minimal number of quadratic maps necessary to
factorize the Jonquières map (x, y) 7→ (x+ y3, y)?

2.3. Degrees and multiplicities. Let ϕ : S 99K P2 be a birational map, where
S = P2 or Fn for some n > 0. The map ϕ corresponds to a linear system ΓS on S
(pull-back of the system Γ of lines on P2):

(1) If S = P2, ΓS ⊂ |d`|, where ` is the class of a line and d > 1 is the ordinary
degree of ϕ (d = 1 iff ϕ is an automorphism).

(2) If S = Fn, ΓS ⊂ |af + ds|, where d > 1 and a > nd (take the intersection
with s, which must be > 0).

With these notations, we define the (“Sarkisov”) degree of ϕ:
(1) If S = P2, degϕ := d/3;
(2) If S = Fn, degϕ := d/2.

Unified definition: “usual degree normalised by the canonical divisor”:
(1) If S = P2, degϕ = ΓS ·`

−KS ·` ;
(2) If S = Fn, degϕ = ΓS ·f

−KS ·f .
Observe that the set of possible degrees is contained in 1

6N and so is discrete, and
the minimal one 1

3 corresponds to the case of an automorphism on P2: we are in
good shape to try a proof by induction.

For the proof of Theorem 2.2, we consider a resolution of ϕ by a sequence of
blow-ups of points pi, each pi being a point of multiplicity mi > 1 for the linear
system ΓS .

M

S P2

π

Then we have integers ai, bi > 1 defined by the relations:

KM = π∗KS +
∑
i

aiEi

ΓM = π∗ΓS −
∑
i

biEi

KM + 1
degϕΓM = π∗

(
KS + 1

degϕΓS
)

+
∑
i

λiEi

where λi = ai −
bi

degϕ . Observe that

ai −
bi

degϕ < 0 ⇐⇒ degϕ < bi
ai
.

Lemma 2.6.
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(1) If pi is a proper base point, then ai = 1 and bi = mi, hence bi

ai
is the usual

multiplicity of pi.
(2) If pj is infinitely near from pi, then bj

aj
< bi

ai
.

Proof. (1) follows from the definition, and (2) follows from Exercise 2.7. �

Exercise 2.7. Let S = P2 or Fn, and ϕ : S 99K P2 a birational map. Assume that
p1, p2 are two base points of ϕ, with p2 infinitely near to p1 (meaning p2 lies on the
exceptional divisor E1 produced by blowing-up p1). Let m1, m2 be the respective
multiplicities of p1 and p2. Show that m1 > m2. (Hint: m1 = H · E1, where H is
any member of the linear system associated with ϕ, and (H · E1)p2 > m2).

2.4. Not nef case. A divisor D on a surface is nef if D · C > 0 for any curve C.
One can extend this definition to Q-divisors, i.e. formal sums of irreducible curves
with coefficients in Q instead of Z.

Lemma 2.8. The divisor KS + 1
degϕΓS is not nef iff we are in one of the following

situations:
(1) S = F0, and ΓS ⊂ |af + ds| with a < d;
(2) S = F1, and ΓS ⊂ |af + ds| with a

3 <
d
2 .

Proof. First observe that if S = P2 then KS + 1
degϕΓS is trivial hence nef: so we

can assume S = Fn. As before let f, s be a fiber and an exceptional section of Fn.
By adjunction

KS · s = −2− s2 = n− 2.
In particular if n > 2 we have(

KS + 1
degϕΓS

)
· f = 0;(

KS + 1
degϕΓS

)
· s > 0;

so that KS + 1
degϕΓS is nef (because any curve on Fn is equivalent to af + bs with

a, b > 0). So the condition KS + 1
degϕΓS not nef is equivalent to n = 0 or 1, with(

KS + 1
degϕΓS

)
· s < 0,

which we rewrite
ΓS · s < −

d

2KS · s.

If n = 0, we have ΓS · s = (af + ds) · s = a and KS · s = −2, we get a < d. If n = 1,
we have ΓS · s = (af + ds) · s = a− d and KS · s = −1, we get a

3 <
d
2 . �

Remark 2.9. In both cases of Lemma 2.8, it is easy to decrease the degree of ϕ
using one of the operation of Theorem 2.2, namely:

• If S = F0 and a < d, we apply (IV): exchange of the rulings. The new degree
is a

2 < degϕ = d
2 .

• If S = F1 and a
3 < d

2 , we apply (III): contraction of the exceptional section.
The new degree is a

3 < degϕ = d
2 .
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2.5. Nef case.

Lemma 2.10. Let S = P2 or Fn, and ϕ : S 99K P2 a birational map, with linear
system ΓS. Assume ϕ is not an isomorphism, and KS + 1

degϕΓS is nef. Then ΓS
admits at least one proper base point of multiplicity > degϕ.

Proof. Take a resolution
M

S P2

π σ

Let ` be a general line on the target P2, we also denote ` its pull-back on M . Since
ϕ is not an isomorphism, we have

degϕ > 1
3 = ` · `

−KP2 · `
,

which we rewrite as
0 >

(
KP2 + 1

degϕ`
)
· `.

On the other hand, denoting Ei, E′j the respective exceptional divisors of π, σ:

KM + 1
degϕΓM = π∗

(
KS + 1

degϕΓS
)

+
∑
i

(
ai −

bi
degϕ

)
Ei

= σ∗
(
KP2 + 1

degϕH
)

+
∑
j

?E′j .

Since ` is general, Ei · ` > 0 for all i, and E′j · ` = 0 for all j. Intersecting with ` on
M we get

0 > nef · `+
∑
i

(
ai −

bi
degϕ

)
Ei · `.

So there is at least one index i such that
(
ai − bi

degϕ

)
< 0, or equivalently bi

ai
>

degϕ. By Lemma 2.6 we can assume that this negative coefficient corresponds to
a proper base point. This gives ai = 1, bi = mi and finally mi > degϕ. �

Lemma 2.11. Let ϕ : S 99K P2 be a birational map with linear system ΓS. Assume
that ΓS admits a base point p with multiplicity > degϕ.

(1) If S = P2, let π : F1 → P2 be the blow-up of p. Then deg(ϕ ◦ π) < degϕ;
(2) If S = Fn, let α : Fn 99K Fn±1 be the elementary transformation associated

with p. Then deg(ϕ ◦ α−1) = degϕ, and the sum of multiplicities of the
resolution of ϕ ◦ α−1 is strictly less than the one of ϕ.

Proof. If S = P2, the system Γ′S on F1 corresponds to π∗d` −mE. The class of a
fiber on F1 is given by f = π∗`− E, and so

deg Γ′S = Γ′S · f
2 = d−m

2 <
3d− d

6 = d

3 = deg ΓS .

If S = Fn the elementary transformation α is an isomorphism in a neighborhood
of a general fiber f , so

deg Γ′S = Γ′S · f
2 = ΓS · f

2 = deg ΓS .
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The sum of multiplicities goes down because we replaced a point of multiplicity m
by a point of multiplicity d−m, and m > d/2. �

2.6. Proof of Theorem 2.2. Let ϕ : S 99K P2 be a birational map, with S equal
to P2 or a Hirzebruch surface Fn. Assume ϕ is not an isomorphism. We explain
how to make the degree smaller by applying one of the 4 operations given in the
statement, so that we can conclude by induction.

If all base points have multiplicity 6 degϕ, we are in one the special situations
of Lemma 2.10, and we saw in Remark 2.9 that an operation of type III or IV
decreases the degree:

• If S = F0, then (IV) changing the projection we exchange the role of a and d,
so the degree goes down since a < d.

• If S = F1 then (III) we contract the section s. The degree of the new map
P2 99K P2 is a/3, and a/3 < d/2.

Assume now that there is a base point p of multiplicity m > degϕ. We apply
Lemma 2.11.

• If S = P2, then (I) we consider F1 → P2 the blow-up of p. The degree of the
new map F1 99K P2 is d−m

2 < d
3 = degϕ.

• If S = Fn, then (II) we apply the elementary transformation associated with p.
The degree stays the same, but the sum of multiplicities goes down. After finitely
many such steps, we must be in one the three previous cases.

Lecture 3. Action on the Picard-Manin space

3.1. Construction of the infinite dimensional hyperboloid. Different models
for the hyperbolic 2-space: disk model, half-plane model, Klein model, hyperboloid
model. The latter one generalizes to give a model of the hyperbolic n-space.

Let S be a smooth projective surface with Picard number ρ = n + 1, N1(S) '
Rn+1 the Néron-Severi space (divisors with real coefficients, up to numerical equiv-
alence). The intersection form gives a symmetric bilinear form on N1(S) with
signature (1, n). In general this follows from the Hodge Index Theorem, which is a
consequence of Riemann-Roch Formula, see [Har77, p.364]. Observe however that
when S is the blow-up of P2 along n points, this is an easy direct observation. By
considering divisors D ∈ N1(S) satisfying D2 = 1, we obtain a 2-sheeted hyper-
boloid, and by adding the condition D ·H > 0 for any choice of ample divisor H
we select one of the sheets (the one containing nef divisors) and get a model H(S)
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of the hyperbolic space Hn. Recall that the distance on Hn is given by

d(D1, D2) = arcosh(D1 ·D2),

and that geodesics are obtained by intersecting H(S) with a hyperplane in N1(S).
Now consider π : S′ → S a birational morphism (for instance the blow-up of a

point). The pull-back map defines a map from N1(S) to N1(S′) that preserves
intersection forms:

π∗D1 · π∗D2 = D1 ·D2.

In particular we get an isometric embedding of H(S) into H(S′).
Now if S1 → S and S2 → S are two birational morphisms, there exist a third

surface S3 and morphisms S3 → S1 and S3 → S2 such that the following diagrams
commute:

S3

S1 S2

S

H(S3) ⊂ N1(S3)

H(S1) ⊂ N1(S1) H(S2) ⊂ N1(S2)

H(S) ⊂ N1(S)

We are ready to consider simultaneously all possible surfaces S′ dominating S,
and to take an injective limit

H∞C (S) = lim
←

H(S′) ⊂ lim
←
N1(S′) = ZC(S).

The C in index is for “Cartier”, and ZC(S) is sometimes called the space of Cartier
b-divisors. One could similarly consider a projective limit, and obtain ZW (S) which
is called the space of Weil b-divisors. The space that will really be useful to us is
an intermediate space H∞(S), which is the L2 completion of H∞C (S). In concrete
terms we have

ZC(S) = {D = D0 +
∑
p

apEp; D0 ∈ N1(S), ap = 0 except finitely many};

ZW (S) = {D = D0 +
∑
p

apEp; D0 ∈ N1(S)};

Z(S) = {D = D0 +
∑
p

apEp; D0 ∈ N1(S),
∑

a2
p <∞};

H∞(S) ⊂ Z(S) = {D ∈ Z(S); D2 = 1};

3.2. Action of the Cremona group. Observe that if π : S2 → S1 is a birational
morphism, then we get a canonical isometry π∗ (and not simply an embedding!)
between H∞(S1) and H∞(S2). This allows to define an action by iometry of Bir(P2)
on Z(P2), and so also on H∞ = H∞(P2). If f ∈ Bir(P2) and

S

P2 P2

π σ

f

is a resolution of f , then we set f∗ := (σ∗)−1 ◦ π∗.
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Let ` denote the class of a line in Z(P2), and let ep denotes the class corresponding
to the exceptional divisor of the blow-up of a point p ∈ P2.

Z(P2) = {D = a0`+
∑
p

apep; a0 ∈ N1(S),
∑

a2
p <∞}.

To be more concrete we now describe the action of a particular element.
Let f be a birational quadratic map, with three proper base points p1, p2, p3,

and q1, q2, q3 the proper base points of f−1. (Numerotation such that if Lij is the
line through pi and pj , then f(Lij) = qk where {i, j, k} = {1, 2, 3}.)

Let L be a line not passing through any of the pi. Then C = f(L) is a smooth
conic passing through each qi. We have

σ∗C = C̄ + Eq1 + Eq2 + Eq3 = π∗L+ Eq1 + Eq2 + Eq3 ,

so
f∗(`) = 2`− eq1 − eq2 − eq3 .

On the other hand

f∗(`− epi
− epj

) = eqk
;

f∗(epk
) = `− eqi

− eqj
.

If p is not on any of the Lij , then

f∗(ep) = ef(p).

Exercise 3.1. Check that

f∗` · f∗` = 1, f∗ep · f∗ep = −1, f∗` · f∗ep = 0.

Exercise 3.2 (**). Can you find an example of g ∈ Bir(P2), such that the action
of g on H∞ is elliptic, and the set Fix(g) ⊆ H∞ is bounded?

3.3. Dynamical degree and translation length. Let f : P2 99K P2 be a domi-
nant rational map. One defines the dynamical degree of f as the limit

λ(f) = lim
n→∞

(deg fn)1/n
.

More generally, if f : X 99K X is a dominant rational map on any projective surface
X, ‖·‖ is any norm on the Néron-Severi real vector space N1(X), and f∗ is the
induced action by f on N1(X), we can define

λ(f) = lim
n→∞

‖(fn)∗‖1/n.

This quantity does not depend on the choice of the norm, and is a birational
invariant, that is, if ϕ : X 99K Y is a birational map, and g = ϕfϕ−1, then λ(f) =
λ(g):

X X

Y Y

f

ϕ ϕ

g

Now let f ∈ Bir(P2) be a map with λ(f) > 1, and let D ∈ H∞ be an arbitrary
point. The sequence (fn)∗(D)/λn converges to a point ω ∈ ∂H∞, which corre-
sponds to a class in the isotropic cone of the intersection form: ω ·ω = 0. Similarly
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(f−n)∗(D)/λn converges to α ∈ ∂H∞. We can normalize such that α · ω = 1
2 , and

then the set
{uα+ vω; uv = 1} ∈ H∞

is a geodesic line Γ invariant by f . Moreover, since f∗α = 1
λα and f∗ω = λω, we

can compute the distance L between P = α+ ω ∈ Γ and fP = 1
λα+ λω:

eL + 1
eL

= 2 coshL = 2 cosh d(P, fP ) = 2P · fP = λ+ 1
λ
,

so that L = log λ: the logarithm of the dynamical degree (sometimes called algebraic
entropy) is equal to the translation length for the action on H∞.

Exercise 3.3. Let f = fA : P2 99K P2 be a monomial map, associated with the
matrix A ∈ M2(Z). Show that λ(f) is equal to the spectral radius ρ of A. (hint:
view fA as an element of Bir(P1×P1), and consider the action onN1(P1×P1) = R2).

Classification of elements in Bir(P2) (see [Can11, §2.3]).

Definition 3.4. One says that g ∈ Bir(P2) is
• Virtually isotopic to the identity if there is a positive iterate gn and a birational

map ϕ : S 99K P2 such that ϕgnϕ−1 is in the connected component of the identity
of Aut(S).

• A Jonquières twist if g preserves a pencil of rational curves and is not virtually
isotopic to the identity.

• A Halphen twist if g preserves a pencil of elliptic curves and is not virtually
isotopic to the identity.

Definition 3.5. One says that g ∈ Bir(P2) is
• elliptic if g admits (at least) one fixed point in H∞.
• parabolic if g is not elliptic and admits exactly one fixed point on ∂H∞.
• loxodromic if g is not elliptic and admits exactly two fixed point on ∂H∞. In

this case the geodesic between these two fixed points is called the axis of g, and g
acts by translation of length L(g) > 0 on its axis.

Theorem 3.6. Any g ∈ Bir(P2) belongs to one of the following mutually exclusive
four classes:

(1) g is virtually isotopic to the identity, or equivalently g is elliptic, or equiv-
alently the sequence deg gn is bounded.

(2) g is a Jonquières twist, which is the first kind of parabolic elements, equiv-
alently the sequence deg gn grows linearly.

(3) g is a Halphen twist, which is the second kind of parabolic elements, equiv-
alently the sequence deg gn grows quadratically.

(4) g is loxodromic, or equivalently λ(g) > 1, and we have L(g) = log λ(g).

Lecture 4. Some results

4.1. Tits alternative.

Theorem 4.1 ([Can11], [Ure18]). Let G ⊆ Bir(P2) be a subgroup of the Cremona
group. Then

(1) either G contains a solvable subgroup of finite index;
(2) or G contains a free group Z ∗ Z.

A first step is to establish a geometric Tits alternative:
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Proposition 4.2. Let G ⊆ Bir(P2) be a subgroup, and consider the action of G on
H∞. Then

(1) Either G fixes at least one point in H∞,
(2) or G fixes exactly one point in ∂H∞,
(3) or G fixes, or exchanges, exactly two points in ∂H∞,
(4) or G contains a free group over two generators.

Idea of proof for (1), (2), (3). The difficult case is when any h ∈ G is elliptic. If G
admits a bounded orbit, the circumcenter of the orbit (well defined in any CAT (0)
space) is fixed, so we are in Case (1). If G admits an orbit with limit set a single
point in ∂H, this point is fixed and we are in Case (2). Now assume that G admits
an orbit with limit set containing two distinct points a, b ∈ ∂H. So there exists
x ∈ H, fn, gn ∈ G such that fnx→ a and gnx→ b. Then one can prove that for n
large fngn is hyperbolic, hence a contradiction: This is easy in a tree, and one can
treat the general case by an approximation argument reducing to the case of a tree
(see [GdlH90, Lemme 8.35]). �

Now we explain how to produce a free group Z ∗ Z in case (4) of the theorem.
Recall the following criterion (see [dlH00, §II.B]) for finding free products.

Lemma 4.3 (Ping-Pong). Let G be a group acting on a set X, let Γ1, Γ2 be two
subgroups of G and let Γ = 〈Γ1,Γ2〉 be the subgroup of G generated by Γ1 and Γ2.
Assume there exists X1, X2 two disjoint non empty subsets of X such that

γ(X2) ⊆ X1 for all γ ∈ Γ1, γ 6= 1
γ(X1) ⊆ X2 for all γ ∈ Γ2, γ 6= 1

Assume moreover that one of the Γi has order at least 3. Then Γ is isomorphic to
the free product Γ1 ∗ Γ2.

Exercise 4.4. Apply the Ping-Pong Lemma to the action by homography of
PSL2(Z) on the real projective line R∪{∞} to show that PSL2(Z) ' Z/2Z∗Z/3Z.
(hint: use the homographies x 7→ − 1

x and x 7→ 1− 1
x ).

Exercise 4.5. What is the trouble if we allow both groups Γ1 and Γ2 to be of
order 2 in the Ping-Pong Lemma 4.3?

Lemma 4.6. Let g1, g2 ∈ Bir(P2) be two loxodromic elements with axis Γ1,Γ2.
Assume that the endpoints of the Γi are distincts. Then there exists an integer
n > 1 such that gn1 , gn2 generate a free subgroup Z× Z ⊂ Bir(P2).

Idea of proof. Let O1 ∈ Γ1 and O2 ∈ Γ2 be the points realizing the distance between
Γ1 and Γ2. Let B > 0, and for i = 1, 2 define Xi ⊂ H∞ as the set of points whose
projection onto Γi is at distance > B from Oi. Then the claim is that for B
sufficiently large X1 ∩ X2 = ∅, and by choosing n sufficiently large we can apply
the Ping-Pong Lemma to Γ1 = 〈gn1 〉 and Γ2 = 〈gn2 〉.

Alternative way of setting-up a ping-pong: Γ1 and Γ2 are contained in a unique
copy of H3 (or H2 is they are secant), one can consider the action on the boundary
sphere of this H3 (or boundary circle of this H2). �

4.2. Normal subgroups. Let G a group acting by isometry on a metric space X.
Let A ⊆ X be a subset, and let η > 0. We define the η-stabilizer of A in G as

Fixη A = {g ∈ G; d(a, ga) 6 η for all a ∈ A}.
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Observe that Fixη A is stable under taking the inverse, but in general not under
composition, so a priori this is not a subgroup of G!

Now let g ∈ G. We say that g satisfies the WPD property if
∃x ∈ X,∀η > 0,∃M ∈ N such that Fixη{x, gMx} is finite.

Proposition 4.7 ([Lon16]). For any n > 2, the polynomial automorphism (x, y) 7→
(y, yn − x) is an example of WPD element in Bir(P2) with respect to the action on
H∞.

Theorem 4.8 ([CL13], [Lon16], [DGO17]). Let g ∈ Bir(P2) be a WPD element.
Then for any C > 0, there exists an integer n > 1 such that any element h 6= id in
the normal subgroup 〈〈gn〉〉 is loxodromic with translation length L(h) > C.

4.3. Gap property. If f ∈ Bir(P2) is a map with λ(f) > 1, then the dynamical
degree λ(f) is an algebraic integer with all Galois conjugates in the unit disk. More
precisely, we distinguish between the two following situations:

• All Galois conjugates are in the open unit disk: λ(f) ∈ Pis is a Pisot number,
• At least one Galois conjugate has modulus 1: λ(f) ∈ Sal is a Salem number.

It is known that Pis = Pis ⊂ Sal. The smallest Pisot number is the plastic number
λP ' 1.324718, which is a root of X3 −X − 1. The smallest known Salem number
is the Lehmer number λL ' 1.176280, which is a root of X10 + X9 −X7 −X6 −
X5 −X4 −X3 +X + 1.

Theorem 4.9 (Gap property, [BC16, Corollary 2.7]). Let f ∈ Bir(P2). Then
λ(f) 6∈ ]1, λL[.

Two main ingredients of the proof are as follows.
If λ(f) > 1 is a Salem number for some f ∈ Bir(P2), then f is birationally

conjugate to an automorphism of a rational surface S ([BC16, Theorem A]).
If f : S → S is an automorphism of a (rational) surface with λ(f) > 1, then

λ(f) > λL ([McM07]).

4.4. Centralizer of hyperbolic elements. We can use the gap property and
the action on the Picard-Manin space to get a description of the centralizer of a
hyperbolic element.

Proposition 4.10 ([BC16, Corollary 4.7]). Let h ∈ Bir(P2) be an element of
hyperbolic type (that is, λ(h) > 1). Then the cyclic group 〈h〉 has finite index in
the centralizer group of h in Bir(P2). In particular Cent(h) ' Zo F with F finite,
and if g, h ∈ Bir(P2) are two hyperbolic maps that commute, there exist n,m > 0
such that gm = hn.

Proof. We have a morphism Cent(h)→ R∗ that sends f to λ(f).
By the gap property, the image of this morphisms is a discrete subgroup of R∗.
We are reduced to prove that the kernel F is finite. Any element in the kernel

fixes the axis of h point-wise. In particular, if d is the distance from the class `
of a line to Ax(h), then d(`, f`) 6 2d, and this implies that deg(f) is uniformly
bounded.

By a result of Blanc and Furter [BF02], the Zariski closure of F is an algebraic
subgroup of Bir(P2) (so in fact F is equal to its Zariski closure).

If F is not finite, it contains a 1-dimensional algebraic subgroup A whose orbits
are preserved by h: this contradicts λ(h) > 1. Indeed if L is an orbit of A we have
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h∗L = L, but when λ(h) > 1 there are exactly two eigenclasses in the Picard-Manin
space, which are multiplied by λ(h)±1 under the action of h∗. �
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