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ABsTRACT. We study the embeddings of lattices from simple LIE groups
into the group of polynomial automorphisms of the affine plane and answer
a question of Dekimpe concerning crystallographicc polynomial groups of the
plane.

1. INTRODUCTION

Which are the finite type groups that act by polynomial transformations on the
plane? Here we try to give a partial answer to questions of this kind. Of course
we only consider some specific groups of finite type, namely lattices in simple
connected LIE groups. This is motivated by some conjectures of ZIMMER (see
[18] and [9]) and by a question by DEKIMPE about polynomial crystallographic
groups (see [13]).

1.1. Polynomial automorphisms. If k is a field, the group Aut(k?) of poly-
nomial automorphisms of the affine plane k% contains two important subgroups:
the affine group A and the group of automorphisms that preserve the foliation of
k? by affine horizontal lines. These latter automorphisms are called elementary
and the group they composed is the elementary group E. By the theorem of
JUNG - VAN DER KULK, Aut(k?) is the amalgamated product of A and E along
their intersection S.

The BAss-SERRE theory allows us to associate a tree to this amalgamated
product structure and to embed the group Aut(k?) into the group of simplicial
automorphisms of this tree. The stabilizers of vertices are conjugate in Aut(k?)
to the group A or to the group E. Thus, when a group G is embedded in Aut(k?),
either it acts on the tree without fixed vertex, or it can be embedded in A or E.

From this we can study embeddings of KAZHDAN group, and in particular lat-
tices in real LIE groups of real rank at least 2. Using a recent result of SHALOM,
we obtain the following theorem.

Theorem A. Let k be a field. Let G be a real simple LIE group and I' a lattice
in G. If there exists an injective morphism p : T' — Aut(k?), the group G is
isomorphic to PSO(1,n) or to PSU(1,n) for some integer n; furthermore if G

is distinct from PSO(1,2) then the image of p is contained in a conjugate of the
1
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affine group.

This result was recently used by DESERTI to prove a rigidity result for the
group SL(3,Z) relatively to the group of birational transformations of the com-
plex projective plane (see [15]).

Since the group PSO(1,2) is isomorphic to PSL(2,R) it is easy to embed
lattices of this group into the group Aut(R?). On the other hand it is more
delicate to find embeddings whose image is not conjugate to a subgroup of the
affine group. The existence of such embeddings will be the main theme of this
text.

1.2. Fundamental groups of surfaces. Let I' be a lattice of PSL(2,R). We
want to know if there exists embeddings of T' into Aut(C?) or Aut(R?) which
are not conjugate to an embedding into the affine group.

If we replace I' by one of its finite index subgroups, the lemma of SELBERG
allows us to assume that I' is a lattice without torsion. The quotient of the
POINCARE disc by I' is then an orientable closed surface minus a finite number
of points. When this surface is compact, I' is isomorphic to the fundamental

group
1=g
Ty = (a1,by, ..., ag,bg | [ Jlai, bi] = 1)
=1

where ¢ is the genus of the surface and [a;, b;] is the commutator aibiai_lbi_l of
a; and b;. When the surface is obtained by removing p points, with p > 1, I" is
isomorphic to the free group Fj over k generators, with k£ equal to 2g +p — 1.

Before describing the embeddings of I'y or Fj in the group Aut(R?), let us
make precise some points of vocabulary (see §2.1). A generalized HENON trans-
formation is an automorphism that reads

(§>H<P<y>y—ax>

where P is a polynomial in one variable which degree is at least 2. It turns out
that any element h of Aut(C?) is conjugate either to an element of E or to a
composition of generalized HENON transformations (see [17]); we will say that
h is of elementary or HENON type. In a similar way, we say that h is of affine
type if it is conjugate to an element of the affine group. By [32], it is equiva-
lent to say that h is of HENON type or that the topological entropy of h, view
as a continuous transformation of C2, is strictly positive. On the other hand,
an element of Aut(R?) may be of HENON type but nevertheless conjugate to a
translation of R? ; such elements present a very rich dynamical behavior on C?
and a very poor one on R?.

Proposition. For every integer k > 1 there exists a subgroup T' in Aut(R?)
1isomorphic to the free group Fy such that:

o Any non trivial element in ' is an HENON type automorphism;

e any element in I is analytically conjugate to a translation;
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o I acts properly discontinuously on the plane R?.

This proposition is proved in part 4. The case of the fundamental groups Iy
of compact orientable surfaces of genus g is more delicate. The following the-
orem shows that there exists some embeddings of I'y into Aut(R?) which are
not conjugate to an affine embedding, but there exists some constraints on the
possible embeddings. We give the proof in two steps in paragraphs 5.2 and 5.3,
theorems 5.1 and 5.3.

Theorem B.

e For any integer g > 2 there ewists subgroups of Aut(R?) isomorphic to I,
that contain HENON type automorphisms.

o Any subgroup of Aut(R?) isomorphic to Ty (with g > 2) contains an element
distinct from the identity which possess a fized point in R2.

1.3. Crystallographic groups. A subgroup of Diff*(R") is a crystallographic
group if its action on R" is discrete and cocompact. Recently, DEKIMPE and
IcoDpT proved that for any polycyclic group I' there exists an integer n such that
I' is isomorphic to a crystallographic group of polynomial diffeomorphisms of R"
(see [14]). On the other hand, we can ask for a classification of the polynomial
crystallographic groups when n is small. The results above lead to the following
theorem that answers a question by DEKIMPE (see [13] or [6]). This result is
proved in paragraph 5.2.

Theorem C.

o [t is not possible to find a model of the universal covering of the compact
orientable surface of genus g > 2 such that the group of automorphisms would
act by polynomial transformations of the plane.

o Any polynomial crystallographic group of the plane admits o finite index
subgroup which is polynomially conjugate to the group of integral translations.

1.4. Acknowledgements. This text originates from a question by Frangois BE-
GUIN about BROUWER homeomorphisms (see paragraph 4.1); we would like to
thank Francois for his beautiful lecture on this subject. Thanks also to Do-
minique CERVEAU for his advice and to Etienne Guys for his encouragements.

2. ACTIONS OF GROUPS ON TREES

2.1. BASS-SERRE tree. Let k be a field. By the theorem of JUNG - VAN DER
KuLK (a proof of which we can find in [25]), Aut(k?) is the product of the affine

group
A={(z,y) — (@12 + a2y + a3, bix + by + b3); a;, b; € k,a1ba — agby # 0}

and of the elementary group
E={(z,y) = (az + P(y), By +7);, 3,7 € k, a3 # 0, P € k[X]}
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amalgamated along their intersection S. In particular, any polynomial automor-
phism of the affine plane is a composition of affine and elementary transforma-
tions.

Remark 2.1.

1.- The groups E and S are solvable of length 3 and 2 respectively.
2.- When £k is algebraically closed, any element of A is conjugate, in A, to
an element of S.

Since Aut(k?) is an amalgamated product, we can construct its BASS-SERRE
tree (|30]). The vertices of this tree are in bijection with right cosets modulo A
(type A vertices) and modulo E (type E vertices). Every element ¢ in Aut(k?)
thus gives to distinct vertices, A and ¢FE. The edges are in bijection with
cosets modulo S: an edge ¢S joins the vertices pA and ¢F. The CW-complex
so constructed is a tree. This is the BASS-SERRE tree of Aut(k?), that we will
denote by 7.

The group Aut(k?) acts on 7 by left translation; for instance, the image of
the vertex ¢A by the translation associated with 1 is the vertex (¢ o ¢)A. In
this way we embed Aut(k?) into the group of simplicial isometries of 7. This
action is transitive on the set of edges and on the set of type A vertices (resp.
type E vertices). The stabilizer of the vertex ¢ A (resp. of the vertex ¢E, resp.
of the edge ¢S) is the group ¢pA¢~! (resp. pE¢H~L, resp. pSo~1).

The elements g of Aut(k?) may be classified into two types according to their
action on 7. If g acts on the BASS-SERRE tree with at least one fixed point, then
g is conjugate to an affine or elementary automorphism. When £k is algebraically
closed, g is then conjugate to an elementary automorphism; we will say that an
element of Aut(k?) is of elementary type (even if k is not algebraically closed) if
it admits a fixed point on the BASS-SERRE tree. We will say that it is of affine
type if it is conjugate to an element in the affine group.

Let long(g) be the translation length of g, defined as the minimum of the
distances dist(g(s), s) where s runs on the set of all vertices of 7 and dist(., .) is
the simplicial distance on 7. Thus, an automorphism g is of elementary type if
and only if its translation length is zero. When the length is strictly positive, we
say that g is of HENON type. This is the case for the usual HENON automorphism

g(i):<x+y2y+o,35>' (2.1)

The justification of the terminology comes from the dynamics. Indeed, when
k = C, an automorphism is either of elementary type or of HENON type, and
the latter case corresponds exactly to the automorphisms with a non elementary
dynamics on C? (infinity of hyperbolic periodic points, etc...). If g is an HENON
type element, the set of vertices s in the tree 7 that satisfy dist(g(s), s) = long(g)
form a geodesic in 7 called geodesic of g and noted Geo(g).

2.2. The property (FA). Let X be a tree. We say that the action of a group
I' on X is without inversion if there does not exist a couple of adjacent vertices
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which are exchanged by an element of I'. A group I has the property (FA) if, for
any action without inversion of I" on a tree X, there exists a vertex of X which
is invariant for all the elements in I'. A countable group I' has the property (FA)
if and only if it satisfies the following three properties (see [30]):(¢) I" is not a
trivial amalgamated product, (ii) the abelianized group of T' is finite and (i)
the group I is of finite type.

Let T be a group with the property (FA). Note p : I' — Aut(k?) a morphism
from I" to the group of plane automorphisms. We thus obtain an action without
inversion of I on the tree 7 and by the property (FA) there exists a vertex
invariant for I. In other words there exists an element f of Aut(k?) such that
fp(I)f~1is contained in the affine or elementary group. We will use this remark
in the next section in order to classify the lattices in simple LIE groups that can
be imbedded into Aut(k?).

2.3. Graph of groups. (see [30, 29]) A graph of groups (G,G) is a graph G,
with a group Gy labelling every vertex s of G, and a group G, labelling every
(non oriented) edge a of G, and with two injective morphisms p,, : Go — Gg,
and pg, : G, — G, for every edge a with vertices ap and a; (possibly equal).

Consider a vertex sg in G. For every vertex s (resp. every edge a) we choose a
pointed topological space X (resp. X,) which is a K(Gg, 1) (resp. a K(Gg,1)).
The morphisms p,, are then realized by continuous applications between pointed
topological spaces fq, : X4 — Xg,, unique up to homotopy. Let X (G, G) be the
topological space obtained by gluing the spaces X with the spaces X, x [0, 1]
by means of the applications f,, : Xo x {i} — X,,. The fundamental group of
this topological space is then uniquely determined by the graph of groups (G, G)
and the choice of sg. When the graph G is connected, this group is unique up to
isomorphism and is noted 71 (G, G).

The two main examples of graphs of groups correspond respectively to the
notion of amalgamated product, when G is a segment, and to HNN-extension (for
HicMAN, NEUMANN, NEUMANN), when G is a loop; the fundamental group of
any graph of groups can be decomposed as a sequence of amalgamated products
and HNN-extensions.

2.4. Bass-Serre theory. There exists a bijective correspondence between groups
acting without inversion on trees and fundamental groups of graphs of groups.
If T' acts without inversion on a tree A, we construct the associated graph of
groups (G, @) as the quotient graph G = I'\ 4, labeled in the following way. We
choose a maximal subtree M in G that we lift as a tree M in A; if s (resp.
a) is a vertex (resp. an edge) of M we note 3 (resp. @) its lifting in M. For
every vertex s of G, s is in M and by definition the group G, is the stabilizer
of the associated vertex §. The construction extends to the edges of M and the
morphisms G, — G, are inclusions. If a is an edge of G which is not in M,
we first lift its vertices ag and aq, which are in M, to two vertices ay and a;
of M. Then we consider the edge a’ of A starting from dp that lifts a and we
define GG, as the stabilizer of this edge, the morphism from G, in G4, being the
inclusion. Let v be an element in I" that sends @7 on the end of @’ which is not
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in M; then we define the morphism pg, : Go — Ga, by pa, (@) = 7 'ay. This
construction done, it turns out that the morphism from (G, G) to I' induced
by the inclusions of the Gy and G, into I' is an isomorphism. This is the content
of the BASS-SERRE theory.

Thus BASS-SERRE theory shows that groups that act on a tree without global
fixed point may be decomposed as a sequence of amalgamated product and HNN-
extension. In order to embed a non solvable group into Aut(k?) but not into
the affine group, a necessary condition is that the group may be non trivially
decomposed as an amalgamated product or an HNN-extension.

V/
Fg F2

FIGURE 1. The fundamental group of the compact orientable sur-
face of genus 2, I'y = (ay, b1, ag, ba|[a1, b1] = [az, ba]), is isomorphic
to the fundamental group of the graph of groups pictured above.
In particular, the group I'y acts without inversion and without fixed
point on some trees.

2.5. Two examples. In this paragraph, we show that two classical examples of
amalgamated product and HNN-extension can not be embedded into Aut(C?).
They are the braid group B,, and the BAUMSLAG-SOLITAR group BS(2,3). This
will illustrate the technics used further in the article.

For any couple of strictly positive integers (p,q), the BAUMSLAG-SOLITAR
group BS(p,q) (non solvable except for p = 1 or ¢ = 1) may be defined by the
following presentation

BS(p,q) = (s,t| stPs™! =). (2.2)

When p = 2 and ¢ = 3, this finite type group is not residually finite and thus
can not be embedded into any GL(n, C) (see [2], [3]).

Proposition 2.2. Let p and q be two distinct strictly positive integers. Then
any morphism from BS(p,q) to Aut(C?) admits a solvable image. In consequence
the group Aut(C?) does not contain any subgroup isomorphic to BS(2,3).

Remark 2.3. By the main theorem of [1], a finite type subgroup of the poly-
nomial automorphisms of C™ is residually finite, and this is not the case for
BS(2,3). So part of this proposition is a corollary of [1].

Proof. Let p : BS(p,q) — Aut(C?) be a group morphism. Note a and b the
images of ¢ and s by this morphism. Since a® is conjugate to a?, the length of
translation of a is zero as soon as p is distinct from gq.

If a is of infinite order, proposition 3.3 from [24] and its proof show that the
fixed points of the tree 7 for the action of a” are a bounded subtree of diameter
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at most 6. This implies that the set of points of the tree 7 which are periodic
for a is a tree F' of diameter at most 6. If we conjugate the morphism p by an
element of Aut(C?), we can assume that F has its center on the vertex E, the
vertex A, or the edge S. Since baPb~! is equal to a?, the tree F and its center
are invariants under the action of b (see [30, p. 32]). Thus the image of p is
contained in £, in A or in S.

From this it is easy to deduce that the image of p is solvable. It is immediate
if it is contained in E. If it is contained in A the relation ba?b~! = a¢ implies
that the linear parts of a and b or b? share a common eigendirection; and so the
image of p is solvable.

When the order of « is finite, the image of p is an extension of Z by a finite
cyclic group and so is solvable.

Since BS(2, 3) is not solvable, it can not be embedded into Aut(C?). O

The braid group Bs admits the following presentation
By = (u,v|u? = v%). (2.3)

So this group is the product of two copies of Z amalgamated along Z and as
such it can be embedded into the automorphism group of a simplicial tree.

Proposition 2.4.

o If p is an injective morphism from Bs to Aut(C?), its image is contained in
some conjugate of the affine group.

e It does not evist any embedding of the braid group B, into Aut(C?) when
n > 4.

Remark 2.5. The BURAU representation gives a representation of B,, in GL(n, Q[tT!]).
This representation is reducible, it splits in a representation of dimension 1 and

a representation of dimension n — 1. For n = 3, this representation of dimen-

sion 2 is faithful; by replacing ¢ with a transcendant complex number we obtain

an injective irreducible representation of Bz in GL(2,C) (see [8] and references
therein).

Remark 2.6. The groups B3 and By are the only braid groups which admit a
non trivial decomposition into an amalgamated product (see [23]), but we will
not need this property.

Proof. Let p be a morphism from Bs to Aut(C?). The polynomial automorphism

h = p(u)? = p(v)? (2.4)

commutes with p(u) and with p(v). If h is of HENON type, the image of p is
then contained in a solvable group and p can not be injective (see [24], thm. 2.4
and prop.4.8).

If h is an automorphism of elementary type, p(u) and p(v) are also elementary
and so we can assume that the image of p is contained in A or E (apply a similar
argument as the one above). Since Bs is not solvable, the only morphisms that
can be injective are the ones with value in A.
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Now we show the second point. It is sufficient to consider the case n = 4
because By is contained in B, for all n greater than 4. The group B4 admits
the following presentation:

By = (a,b,c|ac = ca, aba = bab, beb = cbe) (2.5)

If we take u = aba and v = ab, or u = beb and v = be, we see that By contains
two copies of Bjs, one generated by a and b, and the other by b and c.

Suppose there exists an injective morphism p from By to Aut(C?). The study
of morphisms from Bs to Aut(C?) shows that, up to conjugacy, the image of
h = (ab)? by p is an element of the affine group which fixed points (on 7) are a
subtree of finite diameter and with center on A. This property remains true for
elements that commute with A, that is a and b, and then also for elements that
commute with a, for instance c. Thus, the image of p is contained in the affine

group.
It is easy to see that no representation of By in the affine complex group can
be injective (see [16]). So we obtain a contradiction that ends the proof. O

2.6. Modular groups. Let I' be the fundamental group of an compact ori-
entable surface with boundary. The group Out(I') can be embedded in the
automorphism group Aut(V') of a complex algebraic variety V' (see [1]), and it
would be interesting to know what are the smallest varieties which Out(I") acts
polynomially and faithfully on. Suppose that I' is a free group F,, with n > 3 or
that S is closed with genus at least 2. Then Out(I") has property (FA) (see [10]),
is not solvable and can not be embedded into the group Aff(C?). The arguments
of the previous paragraphs then show that Out(I') can not be embedded into
Aut(C?). We can also prove that Out(I') can not be embedded into Aut(X) if
X is a complex projective surface. So it seems that algebraic faithful actions of
these groups do not exist in dimension 2.

3. LATTICES IN SIMPLE LIE GROUPS
In this section we prove the following theorem.

Theorem 3.1. Let k be o field. Let G be a real simple LIE group and I' be a
lattice in G. If there erists an injective morphism p : I’ — Aut(k?), the group G
is isomorphic to PSO(1,n) or to PSU(1,n) for some integer n; furthermore if G
is distinct from PSO(1,2) then the image of p is contained in a conjugate of the

affine group.

3.1. The property (T). We are going to apply the remarks of the previous
section to groups satisfying the property (T) of KAZHDAN. We do not define
this property here, the interested reader should consult [12], chapter I, or [26],
chapter III. Let us simply recall some consequences of property (T). Let G be a
locally compact topological group with countable basis and I' be a lattice in G.
(a) G has property (T) if and only if " has property (T).
(b) If G has property (T), then any continuous morphism from G to a solv-
able group has a relatively compact image.
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(¢) If G has property (T), then G is generated by a compact neighborhood
of the identity element.

(d) If T has property (T) then it has property (FA).
Thus, when G is a locally compact topological group with countable basis that
has property (T), any lattice in G is of finite type (apply (c)) and has property
(FA). In particular, when T is a lattice in G and p : T' — Aut(k?) is a group
morphism, conjugating p by an element of Aut(k?) we can assume that the
image of p is contained in the affine group or in the group E of elementary
automorphisms. In the latter case, the image of p is finite because F is solvable.
If the image of p is contained in the affine group, the linear parts of elements
in p(vy) give a representation p’ : I' — GL(2,k) and, if we replace ' by finite
index subgroup, we can assume that the image of p’ is in SL(2, k). Using [19] we
deduce that the image of p’ (and of p) is finite.

Proposition 3.2. Let k be a field. Let G be a locally compact topological group
satisfying property (T), and let T be a lattice in G. Any morphism from T to
Aut(k?) has a finite image.

By this proposition we can manage all countable groups satisfying property
(T) and lattices in real simple LIE groups which are not locally isomorphic to
SO(1,n) or SU(1,n) (see [12]). These two groups do not have property (T), and
indeed some of their lattices act without inversion and without global fixed point
on trees.

3.2. A result by SHALOM, [31]. In order to conclude, we are going to apply a
result by SHALOM about the actions on trees of lattices in SO(1,n) or SU(1,n).
First, let us recall that these two LIE groups naturally act on the real or complex
hyperbolic space of dimension n. Note H this hyperbolic space, and fix a base
point o in H. We note d(.,.) the hyperbolic distance. For any discrete group I’
of isometries of H, the critical exponent of I' is the positive real number

5(F) = lnf s € R : Ze_Sd(O,’Y(O)) < 400
yel

The critical exponent of a lattice is equal to n—1 in the case of the real hyperbolic
space and to 2n for the complex hyperbolic space; the exponent of a solvable
group 1is zero.

Theorem 3.3 (SHALOM). Let X be a simplicial tree. Let " be a lattice in
SO(1,n) or in SU(1,n), with n € N*. Let I' x X — X be an action without
wversion nor fized point. Then there exists an edge o in X which stabilizer C
mn I satisfies

o(C) >4(T) — 1.

Thus, as soon as §(I") is strictly bigger than 1, the critical exponent of C' is
strictly positive and C' can not be a solvable group. Since stabilizers of edges
of the tree T associated with Aut(k?) are solvable groups, we deduce that any
representation of I' in Aut(k?) stabilizes a vertex. So, any faithful representation
of I' in Aut(k?) has value in the affine group.



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 10

3.3. Conclusion. The demonstration of theorem 3.1 is complete: we dealt with
lattices in LIE groups satisfying property (7') in paragraph 3.1, and with the
remaining case of lattices in SO(1,7n) and SU(1,n) in the paragraph above.

Remark 3.4. It could be that no lattice of SO(1,n) can be embedded in the
affine group of C? when n > 4. This would precise theorem 3.1. Unfortunately,
we do not know how to handle this problem.

4. FREE GROUPS

In this section and the next one we describe some embeddings of lattices in
PSL(2,R) into the group Aut(R?) which image contains HENON type elements.
As already mentioned in the introduction, there are two classes of lattices to
consider, the uniform (or cocompacts) lattices and the others. Any non uniform
lattice contains a finite index subgroup which is isomorphic to a free group Fy
over a finite number of generators.

Proposition 4.1. For any integer k > 1 there ewists a subgroup T' of Aut(R?)
1somorphic to the free group Fy such that:

o any non trivial element in I' is an HENON type automorphism;
o any element in I is analytically conjugate to a translation;
o I acts properly discontinuously on the plane R?.

Remark 4.2. Since the free group Fb contains a copy of every Fi, k > 1, we
will only consider the case k equal to 2.

Remark 4.3. The elements in the group we are about to construct preserve
the orientation and so are BROUWER homeomorphisms, that is to say they are
homeomorphisms without fixed point that preserve the orientation. By a theo-
rem of BROUWER, these elements do not have any periodic point. A priori, they
could nevertheless have some interesting dynamical behavior (see the introduc-
tion of [5]): for instance, there exists a BROUWER homeomorphism which does
not act properly discontinuously on any non empty invariant closed subset of
R? (see [11]). However, we show in the first paragraph of this section that any
automorphism of the plane which is a BROUWER homeomorphism is analytically
conjugate to a translation. This is the result that allows us to prove the second
point in the proposition. This result contrasts with the existence of analytic
BROUWER diffeomorphisms which have interesting dynamics.

Remark 4.4. The proposition above say nothing about the set of non-uniform
lattices since we put aside lattices with elements of finite order. Here are two
examples:

e there exists an embedding of the group PSL(2,Z) ~ Z/2%xZ/3 into Aut(R?)
which image contains HENON type automorphisms. For instance consider the
group generated by the automorphisms

(G)-4() «o(0)-(737)

and apply BASS-SERRE theory (see §5.3 for other reasonings of this kind).
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e any morphism of the triangular group
Timn = (a,bla™ = 0™ = (ab)l =1)

to the group Aut(k?) is conjugate to a morphism with value in the affine group
when [, m and n are positive integers (this group is a lattice in PSL(2, R) when
1/l +1/m + 1/n < 1), this comes from the fact that these groups have the
property (FA) (see [34] or [30]).

4.1. BROUWER automorphisms. In this paragraph we want to show the fol-
lowing proposition.

Proposition 4.5. Any polynomial BROUWER homeomorphism is analytically
conjugate to a translation.

Proof. In order to classify polynomial automorphisms which are not BROUWER
homeomorphisms, we consider three cases according if an automorphism, say g,
is of elementary, affine or HENON type (see paragraph 2.1 for the definitions). In
these three cases, the strategy is the same: the point is to show that the group
generated by g acts properly discontinuously on R?. Indeed, X(g) = R?/{g) is
then an orientable analytic surface homeomorphic to a cylinder. So this surface
is isomorphic, as a real analytic surface, to the standard cylinder obtained as
the quotient of the plane R? by the horizontal unitary translation (see [21],
p. 65 §IL.5). Thus there exists an analytic covering ® : R?> — X(g) which
automorphism group is the group of integral translations 7, : (x,y) — (x+n,y),
n € Z. We can lift this covering to an analytic map ¢ : R?> — R? which
conjugates g to the unitary translation:

¢ logogp=m. (4.2)
This is the conjugacy stated in proposition 4.5.

If g is an elementary type automorphism that preserves the orientation and
without fixed point, then g is conjugate to a transformation

(o)) @

where P is a polynomial in one variable and the quadruplet («, 3,7, P) satisfies
to one of the three following properties:
(1) B=1and vy #0;
(2) a =0 =1,7=0 and P does not have any real root.
(3) B#1, a=1and P(y/(1 —f)) is not zero. In this case if we conjugate
by a translation we can assume v = 0.

In each case it is easy to verify that (g) acts properly discontinuously on R2.

If g is an affine type automorphism that preserves the orientation and without
fixed point, g is conjugate to an affine automorphism which linear part admits
1 as an eigenvalue. By conjugacy in GL(2,R) we can obtain a triangular affine
automorphism, and so we are in the previous case.
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Suppose now that g is an HENON type automorphism which is also a BROUWER
homeomorphism. Note G the (positive) Green function of g, restricted to the
real affine plane R?. Tt is defined on C? by the following formula

G (z) = lim {ilog+ (Hg”(z)ll)}, (4.4)

n—+too | d"

where d > 2 is the (dynamical) degree of g (see [22]). in particular, G is positive
and GTog = dG™T. Let us recall that G is smooth on the open set G > 0, and
that the set Gt = 0 is exactly the locus of points in C? with bounded positive
orbits. Since g is a BROUWER homeomorphism, all its orbits go to infinity and
so G is smooth and everywhere strictly positive on R2.

Let m be a point in R?; we can choose o > 0 such that m is in a fundamental
domain:

m e {p e R*a < G (p) < a.d}.

let U be a neighborhood of m included in this fundamental domain. Then we
remark that for any k& € Z we have ¢*(Ud) C {p € R*};ad* < GT(p) < ad**+'},
and we conclude that (g) acts properly discontinuously on R2.

This ends the proof of proposition 4.5 (]

4.2. An embedding of F>. Now we give the proof of the proposition 4.1. If
f is a non affine automorphism of the plane R?, its birational extension to the
real projective plane admits a unique indeterminacy point i(f). We can choose
f such that the points i(f) and i(f~!) are distinct. We can further assume that
f is a BROUWER homeomorphism. For instance, if P € R[X] is any polynomial
without real root, we can take

f( z ) - < P(y) —i—y2y—x ) (4.5)

Then if we replace f by one of its iterates, we can choose a neighborhood V¥ (f)
of i(f~!) and a neighborhood V= (f) of i(f) in the projective plane with disjoint
adherence and satisfying the two following properties

FRENVT(f) V() and |If()] >2]pll Ype RP\V(f) (4.6)
FR®REANVH() V() and [f®) > 2llpll Vpe R*\VT(f)(4.7)
We can also assume that (0,0) is not in any of the VE(f).

For instance for the automorphism f above, which indeterminacy points are
i(f)=1[1:0:0] and i(f~!) =[0:1:0], we can define VE(f) (or more precisely
their trace on R?) by

V() = {(z,y) e R%Jyl > N, |z/y| < e} (4.8)
V() = {(@y) e R%[z| > N,ly/a| <} (4.9)
where € > 0 is arbitrarily small and N > 0 arbitrarily big (the conditions (4.6)
and (4.7) will be fullfilled by an iterate f* of f with k depending on € and N).

Let g be another HENON type automorphism satisfying the same properties.
It is possible to choose g such that

(1) {i(f), i(f~YH} and {i(g), i(¢g~ 1)} are all disjoint;
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(ii) Geo(f) and Geo(g) are distinct.

For instance we can take g equal to the conjugate of f by a linear transformation
that does not fix the horizontal nor the vertical axes. The constraints on g allow
us to choose some neighborhoods V*(g) of i(g) and i(g~") satisfying properties
similar to (4.6) and (4.7), and disjoint from V*(f) UV~ (f).

Let N be an integer strictly positive such that the lengths of translation of f~
and of gV are strictly greater than the diameter of the segment Geo(f)NGeo(g).
Replace f and g by their N powers (without changing notations). The group
generated by f and g is then a free group all of which elements are HENON type
automorphisms (see [24]). This a consequence of the ping-pong lemma for the
action of this group on the tree 7. We note I' this group.

Let ¢ be a point in the plane; we want to construct a neighborhood U of ¢ such
that h(U)NU = 0 for all h € T'\ {Id}. Without loss of generality we can replace
q by any point in the orbit of ¢ under the action of I'. If ¢ is in the complement
of the sets VF(f) and V*(g), we can choose U equal to a ball centered in ¢ and
without intersection with the sets VE(f), VE(g).

Suppose now that the orbit of ¢ under I' is entirely contained in the union
of the VE(f),VE(g) (in particular it can not accumulate on (0,0)). Note m =
inf{||h(¢)||;h € T'}, we can assume 0 < m < ||¢|| < 2m (we can not a priori
assumne ||g|| = m because it is not clear if this infimum is realized). Suppose
now that ¢ is in V™~ (f) (the three other cases are similar). then f(q) € VT (f)
because otherwise we would have

2m > |lqll = 1/ (F(a)I > 2/ £ (q)l| and so m > ||f(g)]]

and this would contradicts the definition of m. If i is small enough ball centered
on ¢, we can assume that f(U4) C VT(f) and that U C {p € R?;||p|| < 2m}.
Let h be an element of I' distinct from the identity; h can be written in a unique

way as a reduced word of length [ > 1 in the letters f, f~!, g and g~ 1.

e if h = f, by construction we have h(U) NU = ;
e if the decomposition of h begins (on the right) by f and [ > 2, then for
any pelU

1A)I| = 27| £ (p)]] = 2m

and so h(U) NU =
e otherwise, for all p € U we have ||h(p)|| > 2!||p|| > 2m and again h(U) N
U=790.

Thus we have proved that the group I is a free group, isomorphic to F3, all
of which elements distinct from the identity are of HENON type, and that I’
acts discontinuously on the plane R?. In particular its elements distinct from
the identity are BROUWER automorphisms and so are analytically conjugate to
translations.
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5. FUNDAMENTAL GROUPS OF SURFACES

In this section we want to study embeddings of the group
g
Ty = (a1,b1, ... a9, by | [ Jlai,bi]) (5.1)
i=1

in the group Aut(k?) where k is a field. This group is the fundamental group
of a compact orientable surface of genus g. So we can embed I'y in SL(2,R),
and in Aut(R?). The embeddings we are interested in are those which are not
conjugate to an embedding into the affine group. We will see that these are
exactly the embeddings which image contains an HENON type automorphism.

5.1. A theorem of Zieschang. Let p : I'; — Aut(k?) be an injective mor-
phism. Then the group I'y acts on the BASS-SERRE tree 7 associated with
Aut(k?). Let 7o be the smallest sub-tree of 7 containing the orbit of the edge
IdS under the action of I'y. Let (G, G) be the graph of groups obtained as the
quotient of 7y by the action of I'y. If @ is an edge of G, the group G, associated
with this edge is a solvable subgroup of I'y (because the stabilizer groups of
edges are solvable): this group is then trivial or isomorphic to Z. By a theorem
of ZIESCHANG (see [35] and [20]), a decomposition of I'; as the fundamental
group of a graph of groups whose edges are labeled with a trivial group or a
group isomorphic to Z is always given by a cut-out of the surface of genus g
along disjoint simple closed curves. The groups attached to the vertices of this
graph are the fundamental groups of each of the connected components of the
cut-out surface. The reader might want to consult [27], pages 465 to 467, where
this theorem is proved and partially attributed to STALLINGS, [33].

Fy F3
F> 7
7 =
Z

FIGURE 2. This figure presents a decomposition of I's as the fun-
damental group of a graph of groups: we have pictured the graph
and the simple closed curves that can be chosen to realize this de-
composition of I's.

Let s be a vertex of G coming from a type E vertex of the tree 7. The
group G corresponds to a solvable subgroup of I'; and so is isomorphic to Z
or to the trivial group. If the groups associated with the edges joining s to the
other vertices of G are trivial, the group G is also trivial, because otherwise
I'y = m (G, G) would be the free product of Z and another group, and this is not
the case (to see this, one can for example apply again the theorem of ZIESCHANG
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cited above). So there exists at least one edge a linked to s for which the group
(G, is isomorphic to Z. The morphism from G, to G, must be an isomorphism;
so we can simplify the graph by erasing all the type E vertices.

Geometrically, this operation is associated to the following situation. The
graph of groups G corresponds to a cut-out of the surface of genus g and the type
FE vertex corresponds to a component which is homeomorphic to a cylinder. This
cylinder is produced by the cut-out of the surface along two boundary curves.
To simplify the graph by removing the type F vertex is equivalent to simplify
the cut-out by forgetting one of these two curves.

5.2. Actions without fixed points. We are now in position to prove the fol-
lowing theorem.

Theorem 5.1. Any subgroup of Aut(R?) isomorphic to T, (with g > 2) contains
an element distinct from identity which admits a fived point in R?.

As a corollary, it does not exist a properly discontinuous polynomial action of
', on the plane R?. It is unfortunate: it would have been interesting to find a
model of the universal covering of the surface of genus ¢g (¢ > 1) for which the
covering automorphism group acts by polynomial automorphisms of the plane.

Proof. Let F be a subgroup of the real affine group all of which elements act
without fixed point on the plane. The linear parts of the elements of F satisfy
the equation

det (M —Id) =0 (5.2)
and so the group F'is not Zariski dense. In consequence, F'is a solvable subgroup
of the affine group and in particular, F' does not contain a free group on two
generators.

Let I be a subgroup of Aut(R?) all of which non trivial elements are BROUWER
homeomorphisms. The group I' acts on the BASS-SERRE tree 7 and so all the
stabilizer groups in I' of the vertices of 7 are solvable groups. Thus the groups
associated to vertices of the graph of groups 7\I" are solvable.

By the paragraph above, such a group can not be isomorphic to the group
ry,. O

This theorem allows us to obtain the following corollary, which answers a
question by DEKIMPE (see |6, question 5.2]).

Corollary 5.2. Any polynomial crystallographic group of the plane admits a
finite index subgroup conjugated by a polynomial automorphism to the group of
integral translations.

Proof. Let G C Aut(R?) be such a crystallographic group. There exists H of
finite index in G such that H acts freely on R? and such that the quotient R?/H
is compact and orientable. The theorem 5.1 forbids this quotient to be a surface
of genus > 2, so this is a torus and H = Z2. Thus it is impossible that H
contains an HENON type element (because all of those have a centralizer group
in Aut(C?) isomorphic to Z x Z/pZ: see [24]), so up to conjugacy we can assume
that H C A or H C E. We conclude by applying the main theorem of 7] which
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gives us the result as soon as we know that H is of bounded degree, and here
this is an easy remark: if H = (f,g) C E then the degree of any element in H
is at most max(deg f, degg). O

5.3. Examples of embeddings. We are now going to prove the following

Theorem 5.3. For any integer g > 2 there exists subgroups of Aut(R?) isomor-
phic to I'y containing HENON type elements.

In fact, we will construct two distinct embeddings. The graph of groups
associated with the first one will correspond to a decomposition of I'; as an
amalgamated product. The graph of groups associated with the second one
will correspond to a decomposition of type HNN-extension. Here we didn’t
seek a general result, however these two examples lead us to think that any
decomposition of a surface of genus g could be realized by an embedding in
Aut(R?).

5.3.1. Embeddings associated with an amalgamated product. Let us consider a
decomposition of I'y as an amalgamated product I'y = Fyy xz Fy where F, is
the free group over n generators and k41 is equal to g ; The presentation of I',
associated with this decomposition is

i=k j=l
Fg = <al7b17 '°'°7agabg | H[ai7 ) H ak+j7bk+]

We want to construct an embedding p of I'y in Aut(RQ) that "realizes" this
decomposition: the orbit of the edge IdS under the action of p(I'y) on the
BASS-SERRE tree will be a tree 7y and 7y/p(I'y) will be the graph of groups
pictured on figure 3. The labels A and F on this figure correspond to the type
of the vertices. By the paragraph 5.1 the type E vertex is necessary.

A Z E Z A
o o)

GYSY=J IS

FIGURE 3. Graph of groups associated with the constructed em-
bedding and decomposition of the related surface.

Lemma 5.4. For all n > 1 there exists some matrices A1,B1,--- , Ay, B, €
SL(2,R) such that:

(1) (A1, By, -+, Apn, By) is a free group over 2n generators;

(2) h=TI={[A, B;] = ( _01 _11 >J
(3)

3) the only triangular matrices in (A1, B1,- -+ , Ay, By) are the powers of h.
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Proof. Such a choice of the A;, B; is possible because the Riemann surface X,
minus a point can be endowed with an hyperbolic metric of finite area. Explicitly
it is sufficient to choose the A;, B; such that the fundamental domain for the
action of the group on the Poincare disc is a polygon with 4n vertices, all of
which are located on the circle at infinity. The figure 4 illustrates the case n = 2.
As elements of SL(2,R) the matrices A; and B; are defined up to multiplication

oo = [Ay, B1][A2, Bz]oo
’ By Ay
B,
Ag

FIGURE 4. Case n =2 in lemma 5.4.

by —Id, but their commutators [A;, B;] are well defined. In particular, their
traces are well defined. Since the matrice h = HZi’f[AZ, B;] fix the point oo, it
is triangular and its trace is £2. It turns out that the trace of h is equal to —2
(see for example [28], ex. 6.1, page 193 and [4] for results of this kind). Thus by
conjugacy we can have h(x,y) = (—z +y, —y). O

Let wui,v1,...,u,vr be the elements of SL(2,R) given by the lemma with
n =k, and uj_ |,V ;- Uy, V) another set of elements given by the lemma
with n = [. Choose ¢ an elementary automorphism which is not affine and
which commutes with the linear automorphism h. For instance, we can take
#(z,y) = (x + y>,y). For all integer j between 1 and l,, note ug; (resp. vgi;)
the automorphisms ¢ 0w}, ; o ¢! (resp. ¢o Upyj © o).

Proposition 5.5. If we define o by o(a;) = u; and o(b;) = v; for all i =
L,--- ,k+1, then we get an isomorphism between I'y and (u;,v;).

Proof. By construction Gop = (uy,v1,- -+ ,uk, vg) C SL(2,R) is a free group over
2k generators that fixes the vertex IdA in the BASS-SERRE tree. On the other
hand, by condition (3) of lemma 5.4, the vertex IdE is not fixed by any f €
Gor \ {Id}. In the same way, Go; = (Upt1, V1, Uk, Vktt) C PSL(2,R)p™!
is a free group over 2! generators that fixes the vertex ¢ A, and any g € Go\ {Id}
does not fix the vertex IdFE (which is in the middle of the path of two edges
joining the vertices IdA and ¢A).

By construction o is a surjective group morphism. Take m € I'; \ {1}. Up to
conjugacy in I'y we can assume that m can be written

m = fugn--- f191 with fi € For \ {1},9; € Fo \ {1},n > 1.
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Then it is easy to check that the vertex o(m)IdE is at distance 2n from IdF,
in particular o(m) # Id and o is injective. O

5.3.2. Embeddings associated with an HNN-extension. Now we want to describe
an embedding of I'y into Aut(R?) based on the presentation of I'y as an HNN-
extension (here a4 plays the role of the stable letter):

1=g—1
Ly = (a1, b1, - ,ag,by| ( H [ai’bi]> by = agbga;1>
i=1
Lemma 5.6. For all n > 1 there exists matrices Ay, By,--- , An, B, € SL(2,R)

such that, with the notation P = ( (1) i >

(1) (A1, By, , Ay, By, P) generates a free group over 2n + 1 generators;
(2) Q@ = (H;Z‘[AZ,BZD P is a matrice of trace 2 (in particular Q is conju-
gate to P);

(3) the only triangular matrices in (A1, B1,--- , An, By, P) are the powers of
P.

Proof. The proof is similar to the one of lemma 5.4. The figure 5 illustrates the
case n = 1. (]

FIGURE 5. The vertex x satisfies z = [A1, B1|P(x).

Let us apply this lemma with n = g — 1, and note M the matrice (non
triangular, because it does not fix the point oco) such that

g—1
MPM'=Q= (H[Ai,Bi]> P.

i=1
Chose e an element of F \ A commuting with P: for instance we can take
e(z,y) = (z+y°y).
Proposition 5.7. If we define o by o(a;) = A;, o(b;)) = B; fori=1,--- ,g—1,
a(by) = P, o(ag) = M oe, we get a morphism from I'y to Aut(R?) that realizes
an isomorphism from Iy to its image.
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Proof. Since e commutes with P, o is well defined and is a group morphism.
The point is to prove that o is injective.

Let h be an element of I'y \ {1}, we want to show that o(h) is distinct
from Id. Note I’ C I'y the free subgroup over 2g — 1 generators generated
by a1,b1,--+ ,ag-1,bg—1,by. In restriction to F' the morphism o is injective; so
we can assume that A is not in . Up to conjugacy in I'y we can also assume
that h admits a decomposition as follows:

h= fnalg” e fgal;flalgl with f; € F\{1},l; € Z\ {0} and n > 1.
Finally, we can assume that this is a reduced decomposition, that is:
o If /; <0 and l;11 > 0 then f; is not a power of bgy;
e If I; > 0 and [;;; < 0 then f; is not a power of (Hiﬁ]*l[ai, bz]> by-

Indeed if the decomposition is not reduced we can modify it and observe that
the sum of the |l;| drops. We are going to show that o(h) does not fix the vertex
IdA, and this will prove o(h) # Id. Note xg = [dA and for alli=1,--- ,n

z; = o(f;))(Moe)i - a(fi)(Moe)t(IdA).

The automorphism M oe = o(ay) is an HENON type automorphism. The associ-

ated geodesic in the BASS-SERRE tree contains the vertices e "' A, IdE, IdA, ME, MeA
in this order, and M o e acts on this geodesic as a translation of length 2. Note

y; the vertex in Geo(M o e) that is the closest from z;, and d; € N the distance
between y; and x; (see figure 6). In particular yg = IdA et dy = 0. We want to
show by induction that

e y;.1 is always one of the three vertices IdA, MeA or e ! A;

e y;.1 is the vertex e 1A if and only if I;;1 is negative and o(f;41) is in
the group (P) generated by P;

e y; 11 is the vertex MeA if and only if ;11 is positive and o(f;11) is in
the group (Q);

o dit1 > d;.

e A IdE IdA ME MeA
- O O Ly
Yi Géo(M o e€)

FIGURE 6. The geodesic of M oe.

Remark that the powers of P fix exactly three vertices of Geo(Moe): IdA, IdE
and e~ A (these three vertices are fixed for P, and the proof of the proposition
3.3 of |24] shows that the tree fixed by P is of diameter 2). In the same way the
powers of @ fix the vertices IdA, M E and MeA. Furthermore, by condition (3)
of lemma 5.6, any other element of o(F) fixes only one vertex of Geo(M o e):
IdA. The observations below follows easily (with the help of figure 6) and prove
the properties stated above:
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o If y; = IdA and
— if li+1 < 0 and U(fi+1)
—if li+1 < —1 and J(fi-i—l
—if li+1 = —1 and U(fi-i—l

¢ P> then d;11 > d; and y;+1 = IdA.
) €
) €

— if li+1 > 0 and U(fi+1) ¢
S
S

(

€ (P) then d;11 > d; and y; 41 = e 1A,
S P> then di+1 =d; and Yirl1 = e 1A,
<Q> then di+1 > d; and Yir1 = IdA.
(Q) then d;+1 > d; and y;11 = MeA.
(@) then d;+1 = d; and y;11 = MeA.

— if liy1 > 1 and o(fit1)

— if liy1 =1 and o(fit1)
o Ify; =e 1A and

—if li+1 < 0 and U(fi+1) ¢ <P> then di+1 > d; and Yirl1 = 1dA.

— if [;4+1 < 0 and U(fi+1) S <P> then d;jy1 > d; and y;41 = e 1A.

— if l;41 > 0: this case is impossible because the decomposition of h

is reduced and because of the induction hypotheses.

o If y; = MeA and

—if lrL'Jrl > 0 and O-(fi+1) € <Q> then di+1 > d; and Yi+1 = 1dA.

—if lrL'Jrl > 0 and O-(fi+1) S <Q> then di+1 > d; and Yit1 = MeA.

— if [;411 < 0: this case also is impossible.

By induction we see that if n > 1 then d,, > 0, thus z,, = o(h)IdA is distinct
from IdA and we obtain o(h) # Id (the case n =1 is trivial). O
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