
GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THEPLANESERGE CANTAT AND STÉPHANE LAMYThis is a translation of our paper �Groupes d'automorphismes polynomiaux duplan�, Geom. Dediata 123 (2006), 201�221. (translation by S. Lamy)Abstrat. We study the embeddings of latties from simple Lie groupsinto the group of polynomial automorphisms of the a�ne plane and answera question of Dekimpe onerning rystallographi polynomial groups of theplane. 1. IntrodutionWhih are the �nite type groups that at by polynomial transformations on theplane? Here we try to give a partial answer to questions of this kind. Of oursewe only onsider some spei� groups of �nite type, namely latties in simpleonneted Lie groups. This is motivated by some onjetures of Zimmer (see[18℄ and [9℄) and by a question by Dekimpe about polynomial rystallographigroups (see [13℄).1.1. Polynomial automorphisms. If k is a �eld, the group Aut(k2) of poly-nomial automorphisms of the a�ne plane k2 ontains two important subgroups:the a�ne group A and the group of automorphisms that preserve the foliation of
k2 by a�ne horizontal lines. These latter automorphisms are alled elementaryand the group they omposed is the elementary group E. By the theorem ofJung - Van der Kulk, Aut(k2) is the amalgamated produt of A and E alongtheir intersetion S.The Bass-Serre theory allows us to assoiate a tree to this amalgamatedprodut struture and to embed the group Aut(k2) into the group of simpliialautomorphisms of this tree. The stabilizers of verties are onjugate in Aut(k2)to the group A or to the group E. Thus, when a group G is embedded in Aut(k2),either it ats on the tree without �xed vertex, or it an be embedded in A or E.From this we an study embeddings of Kazhdan group, and in partiular lat-ties in real Lie groups of real rank at least 2. Using a reent result of Shalom,we obtain the following theorem.Theorem A. Let k be a �eld. Let G be a real simple Lie group and Γ a lattiein G. If there exists an injetive morphism ρ : Γ → Aut(k2), the group G isisomorphi to PSO(1, n) or to PSU(1, n) for some integer n; furthermore if Gis distint from PSO(1, 2) then the image of ρ is ontained in a onjugate of the1



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 2a�ne group.This result was reently used by Déserti to prove a rigidity result for thegroup SL(3,Z) relatively to the group of birational transformations of the om-plex projetive plane (see [15℄).Sine the group PSO(1, 2) is isomorphi to PSL(2,R) it is easy to embedlatties of this group into the group Aut(R2). On the other hand it is moredeliate to �nd embeddings whose image is not onjugate to a subgroup of thea�ne group. The existene of suh embeddings will be the main theme of thistext.1.2. Fundamental groups of surfaes. Let Γ be a lattie of PSL(2,R). Wewant to know if there exists embeddings of Γ into Aut(C2) or Aut(R2) whihare not onjugate to an embedding into the a�ne group.If we replae Γ by one of its �nite index subgroups, the lemma of Selbergallows us to assume that Γ is a lattie without torsion. The quotient of thePoinare dis by Γ is then an orientable losed surfae minus a �nite numberof points. When this surfae is ompat, Γ is isomorphi to the fundamentalgroup
Γg = 〈a1, b1, ..., ag , bg |

i=g
∏

i=1

[ai, bi] = 1〉where g is the genus of the surfae and [ai, bi] is the ommutator aibia
−1
i b−1

i of
ai and bi. When the surfae is obtained by removing p points, with p ≥ 1, Γ isisomorphi to the free group Fk over k generators, with k equal to 2g + p− 1.Before desribing the embeddings of Γg or Fk in the group Aut(R2), let usmake preise some points of voabulary (see �2.1). A generalized Hénon trans-formation is an automorphism that reads

(

x
y

)

7→
(

y
P (y) − ax

)where P is a polynomial in one variable whih degree is at least 2. It turns outthat any element h of Aut(C2) is onjugate either to an element of E or to aomposition of generalized Hénon transformations (see [17℄); we will say that
h is of elementary or Hénon type. In a similar way, we say that h is of a�netype if it is onjugate to an element of the a�ne group. By [32℄, it is equiva-lent to say that h is of Hénon type or that the topologial entropy of h, viewas a ontinuous transformation of C2, is stritly positive. On the other hand,an element of Aut(R2) may be of Hénon type but nevertheless onjugate to atranslation of R2 ; suh elements present a very rih dynamial behavior on C2and a very poor one on R2.Proposition. For every integer k ≥ 1 there exists a subgroup Γ in Aut(R2)isomorphi to the free group Fk suh that:

• Any non trivial element in Γ is an Hénon type automorphism;
• any element in Γ is analytially onjugate to a translation;



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 3
• Γ ats properly disontinuously on the plane R2.This proposition is proved in part 4. The ase of the fundamental groups Γgof ompat orientable surfaes of genus g is more deliate. The following the-orem shows that there exists some embeddings of Γg into Aut(R2) whih arenot onjugate to an a�ne embedding, but there exists some onstraints on thepossible embeddings. We give the proof in two steps in paragraphs 5.2 and 5.3,theorems 5.1 and 5.3.Theorem B.

• For any integer g ≥ 2 there exists subgroups of Aut(R2) isomorphi to Γgthat ontain Hénon type automorphisms.
• Any subgroup of Aut(R2) isomorphi to Γg (with g ≥ 2) ontains an elementdistint from the identity whih possess a �xed point in R2.1.3. Crystallographi groups. A subgroup of Diff

∞(Rn) is a rystallographigroup if its ation on Rn is disrete and oompat. Reently, Dekimpe andIgodt proved that for any polyyli group Γ there exists an integer n suh that
Γ is isomorphi to a rystallographi group of polynomial di�eomorphisms of Rn(see [14℄). On the other hand, we an ask for a lassi�ation of the polynomialrystallographi groups when n is small. The results above lead to the followingtheorem that answers a question by Dekimpe (see [13℄ or [6℄). This result isproved in paragraph 5.2.Theorem C.

• It is not possible to �nd a model of the universal overing of the ompatorientable surfae of genus g ≥ 2 suh that the group of automorphisms wouldat by polynomial transformations of the plane.
• Any polynomial rystallographi group of the plane admits a �nite indexsubgroup whih is polynomially onjugate to the group of integral translations.1.4. Aknowledgements. This text originates from a question by François Be-guin about Brouwer homeomorphisms (see paragraph 4.1); we would like tothank François for his beautiful leture on this subjet. Thanks also to Do-minique Cerveau for his advie and to Étienne Ghys for his enouragements.2. Ations of groups on trees2.1. Bass-Serre tree. Let k be a �eld. By the theorem of Jung - Van derKulk (a proof of whih we an �nd in [25℄), Aut(k2) is the produt of the a�negroup
A = {(x, y) 7→ (a1x+ a2y + a3, b1x+ b2y + b3); ai, bi ∈ k, a1b2 − a2b1 6= 0}and of the elementary group

E = {(x, y) 7→ (αx+ P (y), βy + γ);α, β, γ ∈ k, αβ 6= 0, P ∈ k[X]}



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 4amalgamated along their intersetion S. In partiular, any polynomial automor-phism of the a�ne plane is a omposition of a�ne and elementary transforma-tions.Remark 2.1.1.- The groups E and S are solvable of length 3 and 2 respetively.2.- When k is algebraially losed, any element of A is onjugate, in A, toan element of S.Sine Aut(k2) is an amalgamated produt, we an onstrut its Bass-Serretree ([30℄). The verties of this tree are in bijetion with right osets modulo A(type A verties) and modulo E (type E verties). Every element φ in Aut(k2)thus gives to distint verties, φA and φE. The edges are in bijetion withosets modulo S: an edge φS joins the verties φA and φE. The CW-omplexso onstruted is a tree. This is the Bass-Serre tree of Aut(k2), that we willdenote by T .The group Aut(k2) ats on T by left translation; for instane, the image ofthe vertex φA by the translation assoiated with ψ is the vertex (ψ ◦ φ)A. Inthis way we embed Aut(k2) into the group of simpliial isometries of T . Thisation is transitive on the set of edges and on the set of type A verties (resp.type E verties). The stabilizer of the vertex φA (resp. of the vertex φE, resp.of the edge φS) is the group φAφ−1 (resp. φEφ−1, resp. φSφ−1).The elements g of Aut(k2) may be lassi�ed into two types aording to theiration on T . If g ats on the Bass-Serre tree with at least one �xed point, then
g is onjugate to an a�ne or elementary automorphism. When k is algebraiallylosed, g is then onjugate to an elementary automorphism; we will say that anelement of Aut(k2) is of elementary type (even if k is not algebraially losed) ifit admits a �xed point on the Bass-Serre tree. We will say that it is of a�netype if it is onjugate to an element in the a�ne group.Let long(g) be the translation length of g, de�ned as the minimum of thedistanes dist(g(s), s) where s runs on the set of all verties of T and dist(., .) isthe simpliial distane on T . Thus, an automorphism g is of elementary type ifand only if its translation length is zero. When the length is stritly positive, wesay that g is of Hénon type. This is the ase for the usual Hénon automorphism

g

(

x
y

)

=

(

y
x+ y2 + 0, 35

)

. (2.1)The justi�ation of the terminology omes from the dynamis. Indeed, when
k = C, an automorphism is either of elementary type or of Hénon type, andthe latter ase orresponds exatly to the automorphisms with a non elementarydynamis on C2 (in�nity of hyperboli periodi points, et...). If g is an Hénontype element, the set of verties s in the tree T that satisfy dist(g(s), s) = long(g)form a geodesi in T alled geodesi of g and noted Geo(g).2.2. The property (FA). Let X be a tree. We say that the ation of a group
Γ on X is without inversion if there does not exist a ouple of adjaent verties



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 5whih are exhanged by an element of Γ. A group Γ has the property (FA) if, forany ation without inversion of Γ on a tree X, there exists a vertex of X whihis invariant for all the elements in Γ. A ountable group Γ has the property (FA)if and only if it satis�es the following three properties (see [30℄):(i) Γ is not atrivial amalgamated produt, (ii) the abelianized group of Γ is �nite and (iii)the group Γ is of �nite type.Let Γ be a group with the property (FA). Note ρ : Γ → Aut(k2) a morphismfrom Γ to the group of plane automorphisms. We thus obtain an ation withoutinversion of Γ on the tree T and by the property (FA) there exists a vertexinvariant for Γ. In other words there exists an element f of Aut(k2) suh that
fρ(Γ)f−1 is ontained in the a�ne or elementary group. We will use this remarkin the next setion in order to lassify the latties in simple Lie groups that anbe imbedded into Aut(k2).2.3. Graph of groups. (see [30, 29℄) A graph of groups (G, G) is a graph G,with a group Gs labelling every vertex s of G, and a group Ga labelling every(non oriented) edge a of G, and with two injetive morphisms ρa0 : Ga → Ga0and ρa1 : Ga → Ga1 for every edge a with verties a0 and a1 (possibly equal).Consider a vertex s0 in G. For every vertex s (resp. every edge a) we hoose apointed topologial spae Xs (resp. Xa) whih is a K(Gs, 1) (resp. a K(Ga, 1)).The morphisms ρai

are then realized by ontinuous appliations between pointedtopologial spaes fai
: Xa → Xai

, unique up to homotopy. Let X(G, G) be thetopologial spae obtained by gluing the spaes Xs with the spaes Xa × [0, 1]by means of the appliations fai
: Xa × {i} → Xai

. The fundamental group ofthis topologial spae is then uniquely determined by the graph of groups (G, G)and the hoie of s0. When the graph G is onneted, this group is unique up toisomorphism and is noted π1(G, G).The two main examples of graphs of groups orrespond respetively to thenotion of amalgamated produt, when G is a segment, and to HNN-extension (forHigman, Neumann, Neumann), when G is a loop; the fundamental group ofany graph of groups an be deomposed as a sequene of amalgamated produtsand HNN-extensions.2.4. Bass-Serre theory. There exists a bijetive orrespondene between groupsating without inversion on trees and fundamental groups of graphs of groups.If Γ ats without inversion on a tree A, we onstrut the assoiated graph ofgroups (G, G) as the quotient graph G = Γ\A, labeled in the following way. Wehoose a maximal subtree M in G that we lift as a tree M̃ in A; if s (resp.
a) is a vertex (resp. an edge) of M we note s̃ (resp. ã) its lifting in M̃. Forevery vertex s of G, s is in M and by de�nition the group Gs is the stabilizerof the assoiated vertex s̃. The onstrution extends to the edges of M and themorphisms Ga → Gai

are inlusions. If a is an edge of G whih is not in M,we �rst lift its verties a0 and a1, whih are in M, to two verties ã0 and ã1of M̃. Then we onsider the edge a′ of A starting from ã0 that lifts a and wede�ne Ga as the stabilizer of this edge, the morphism from Ga in Ga0 being theinlusion. Let γ be an element in Γ that sends ã1 on the end of a′ whih is not



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 6in M̃; then we de�ne the morphism ρa1 : Ga → Ga1 by ρa1(α) = γ−1αγ. Thisonstrution done, it turns out that the morphism from π1(G, G) to Γ induedby the inlusions of the Gs and Ga into Γ is an isomorphism. This is the ontentof the Bass-Serre theory.Thus Bass-Serre theory shows that groups that at on a tree without global�xed point may be deomposed as a sequene of amalgamated produt and HNN-extension. In order to embed a non solvable group into Aut(k2) but not intothe a�ne group, a neessary ondition is that the group may be non triviallydeomposed as an amalgamated produt or an HNN-extension.
F2F2

ZFigure 1. The fundamental group of the ompat orientable sur-fae of genus 2, Γ2 = 〈a1, b1, a2, b2|[a1, b1] = [a2, b2]〉, is isomorphito the fundamental group of the graph of groups pitured above.In partiular, the group Γ2 ats without inversion and without �xedpoint on some trees.2.5. Two examples. In this paragraph, we show that two lassial examples ofamalgamated produt and HNN-extension an not be embedded into Aut(C2).They are the braid group Bn and the Baumslag-Solitar group BS(2, 3). Thiswill illustrate the tehnis used further in the artile.For any ouple of stritly positive integers (p, q), the Baumslag-Solitargroup BS(p, q) (non solvable exept for p = 1 or q = 1) may be de�ned by thefollowing presentation BS(p, q) = 〈s, t| stps−1 = tq 〉. (2.2)When p = 2 and q = 3, this �nite type group is not residually �nite and thusan not be embedded into any GL(n,C) (see [2℄, [3℄).Proposition 2.2. Let p and q be two distint stritly positive integers. Thenany morphism from BS(p, q) to Aut(C2) admits a solvable image. In onsequenethe group Aut(C2) does not ontain any subgroup isomorphi to BS(2, 3).Remark 2.3. By the main theorem of [1℄, a �nite type subgroup of the poly-nomial automorphisms of Cn is residually �nite, and this is not the ase forBS(2, 3). So part of this proposition is a orollary of [1℄.Proof. Let ρ : BS(p, q) → Aut(C2) be a group morphism. Note a and b theimages of t and s by this morphism. Sine ap is onjugate to aq, the length oftranslation of a is zero as soon as p is distint from q.If a is of in�nite order, proposition 3.3 from [24℄ and its proof show that the�xed points of the tree T for the ation of an are a bounded subtree of diameter



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 7at most 6. This implies that the set of points of the tree T whih are periodifor a is a tree F of diameter at most 6. If we onjugate the morphism ρ by anelement of Aut(C2), we an assume that F has its enter on the vertex E, thevertex A, or the edge S. Sine bapb−1 is equal to aq, the tree F and its enterare invariants under the ation of b (see [30, p. 32℄). Thus the image of ρ isontained in E, in A or in S.From this it is easy to dedue that the image of ρ is solvable. It is immediateif it is ontained in E. If it is ontained in A the relation bapb−1 = aq impliesthat the linear parts of a and b or b2 share a ommon eigendiretion; and so theimage of ρ is solvable.When the order of a is �nite, the image of ρ is an extension of Z by a �niteyli group and so is solvable.Sine BS(2, 3) is not solvable, it an not be embedded into Aut(C2). �The braid group B3 admits the following presentation
B3 = 〈u, v|u2 = v3 〉. (2.3)So this group is the produt of two opies of Z amalgamated along Z and assuh it an be embedded into the automorphism group of a simpliial tree.Proposition 2.4.

• If ρ is an injetive morphism from B3 to Aut(C2), its image is ontained insome onjugate of the a�ne group.
• It does not exist any embedding of the braid group Bn into Aut(C2) when

n ≥ 4.Remark 2.5. TheBurau representation gives a representation ofBn in GL(n,Q[t±1]).This representation is reduible, it splits in a representation of dimension 1 anda representation of dimension n − 1. For n = 3, this representation of dimen-sion 2 is faithful; by replaing t with a transendant omplex number we obtainan injetive irreduible representation of B3 in GL(2,C) (see [8℄ and referenestherein).Remark 2.6. The groups B3 and B4 are the only braid groups whih admit anon trivial deomposition into an amalgamated produt (see [23℄), but we willnot need this property.Proof. Let ρ be a morphism from B3 to Aut(C2). The polynomial automorphism
h = ρ(u)2 = ρ(v)3 (2.4)ommutes with ρ(u) and with ρ(v). If h is of Hénon type, the image of ρ isthen ontained in a solvable group and ρ an not be injetive (see [24℄, thm. 2.4and prop.4.8).If h is an automorphism of elementary type, ρ(u) and ρ(v) are also elementaryand so we an assume that the image of ρ is ontained in A or E (apply a similarargument as the one above). Sine B3 is not solvable, the only morphisms thatan be injetive are the ones with value in A.



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 8Now we show the seond point. It is su�ient to onsider the ase n = 4beause B4 is ontained in Bn for all n greater than 4. The group B4 admitsthe following presentation:
B4 = 〈a, b, c| ac = ca, aba = bab, bcb = cbc 〉 (2.5)If we take u = aba and v = ab, or u = bcb and v = bc, we see that B4 ontainstwo opies of B3, one generated by a and b, and the other by b and c.Suppose there exists an injetive morphism ρ from B4 to Aut(C2). The studyof morphisms from B3 to Aut(C2) shows that, up to onjugay, the image of

h = (ab)3 by ρ is an element of the a�ne group whih �xed points (on T ) are asubtree of �nite diameter and with enter on A. This property remains true forelements that ommute with h, that is a and b, and then also for elements thatommute with a, for instane c. Thus, the image of ρ is ontained in the a�negroup.It is easy to see that no representation of B4 in the a�ne omplex group anbe injetive (see [16℄). So we obtain a ontradition that ends the proof. �2.6. Modular groups. Let Γ be the fundamental group of an ompat ori-entable surfae with boundary. The group Out(Γ) an be embedded in theautomorphism group Aut(V ) of a omplex algebrai variety V (see [1℄), and itwould be interesting to know what are the smallest varieties whih Out(Γ) atspolynomially and faithfully on. Suppose that Γ is a free group Fn with n ≥ 3 orthat S is losed with genus at least 2. Then Out(Γ) has property (FA) (see [10℄),is not solvable and an not be embedded into the group A�(C2). The argumentsof the previous paragraphs then show that Out(Γ) an not be embedded intoAut(C2). We an also prove that Out(Γ) an not be embedded into Aut(X) if
X is a omplex projetive surfae. So it seems that algebrai faithful ations ofthese groups do not exist in dimension 2.3. Latties in simple Lie groupsIn this setion we prove the following theorem.Theorem 3.1. Let k be a �eld. Let G be a real simple Lie group and Γ be alattie in G. If there exists an injetive morphism ρ : Γ → Aut(k2), the group Gis isomorphi to PSO(1, n) or to PSU(1, n) for some integer n; furthermore if Gis distint from PSO(1, 2) then the image of ρ is ontained in a onjugate of thea�ne group.3.1. The property (T). We are going to apply the remarks of the previoussetion to groups satisfying the property (T) of Kazhdan. We do not de�nethis property here, the interested reader should onsult [12℄, hapter I, or [26℄,hapter III. Let us simply reall some onsequenes of property (T). Let G be aloally ompat topologial group with ountable basis and Γ be a lattie in G.(a) G has property (T) if and only if Γ has property (T).(b) If G has property (T), then any ontinuous morphism from G to a solv-able group has a relatively ompat image.



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 9() If G has property (T), then G is generated by a ompat neighborhoodof the identity element.(d) If Γ has property (T) then it has property (FA).Thus, when G is a loally ompat topologial group with ountable basis thathas property (T), any lattie in G is of �nite type (apply ()) and has property(FA). In partiular, when Γ is a lattie in G and ρ : Γ → Aut(k2) is a groupmorphism, onjugating ρ by an element of Aut(k2) we an assume that theimage of ρ is ontained in the a�ne group or in the group E of elementaryautomorphisms. In the latter ase, the image of ρ is �nite beause E is solvable.If the image of ρ is ontained in the a�ne group, the linear parts of elementsin ρ(γ) give a representation ρ′ : Γ → GL(2, k) and, if we replae Γ by �niteindex subgroup, we an assume that the image of ρ′ is in SL(2, k). Using [19℄ wededue that the image of ρ′ (and of ρ) is �nite.Proposition 3.2. Let k be a �eld. Let G be a loally ompat topologial groupsatisfying property (T), and let Γ be a lattie in G. Any morphism from Γ toAut(k2) has a �nite image.By this proposition we an manage all ountable groups satisfying property(T) and latties in real simple Lie groups whih are not loally isomorphi to
SO(1, n) or SU(1, n) (see [12℄). These two groups do not have property (T), andindeed some of their latties at without inversion and without global �xed pointon trees.3.2. A result by Shalom, [31℄. In order to onlude, we are going to apply aresult by Shalom about the ations on trees of latties in SO(1, n) or SU(1, n).First, let us reall that these two Lie groups naturally at on the real or omplexhyperboli spae of dimension n. Note H this hyperboli spae, and �x a basepoint o in H. We note d(., .) the hyperboli distane. For any disrete group Γof isometries of H, the ritial exponent of Γ is the positive real number

δ(Γ) = inf







s ∈ R :
∑

γ∈Γ

e−sd(o,γ(o)) < +∞







.The ritial exponent of a lattie is equal to n−1 in the ase of the real hyperbolispae and to 2n for the omplex hyperboli spae; the exponent of a solvablegroup is zero.Theorem 3.3 (Shalom). Let X be a simpliial tree. Let Γ be a lattie in
SO(1, n) or in SU(1, n), with n ∈ N∗. Let Γ × X → X be an ation withoutinversion nor �xed point. Then there exists an edge α in X whih stabilizer Cin Γ satis�es

δ(C) ≥ δ(Γ) − 1.Thus, as soon as δ(Γ) is stritly bigger than 1, the ritial exponent of C isstritly positive and C an not be a solvable group. Sine stabilizers of edgesof the tree T assoiated with Aut(k2) are solvable groups, we dedue that anyrepresentation of Γ in Aut(k2) stabilizes a vertex. So, any faithful representationof Γ in Aut(k2) has value in the a�ne group.



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 103.3. Conlusion. The demonstration of theorem 3.1 is omplete: we dealt withlatties in Lie groups satisfying property (T ) in paragraph 3.1, and with theremaining ase of latties in SO(1, n) and SU(1, n) in the paragraph above.Remark 3.4. It ould be that no lattie of SO(1, n) an be embedded in thea�ne group of C2 when n ≥ 4. This would preise theorem 3.1. Unfortunately,we do not know how to handle this problem.4. Free groupsIn this setion and the next one we desribe some embeddings of latties in
PSL(2,R) into the group Aut(R2) whih image ontains Hénon type elements.As already mentioned in the introdution, there are two lasses of latties toonsider, the uniform (or oompats) latties and the others. Any non uniformlattie ontains a �nite index subgroup whih is isomorphi to a free group Fkover a �nite number of generators.Proposition 4.1. For any integer k ≥ 1 there exists a subgroup Γ of Aut(R2)isomorphi to the free group Fk suh that:

• any non trivial element in Γ is an Hénon type automorphism;
• any element in Γ is analytially onjugate to a translation;
• Γ ats properly disontinuously on the plane R2.Remark 4.2. Sine the free group F2 ontains a opy of every Fk, k ≥ 1, wewill only onsider the ase k equal to 2.Remark 4.3. The elements in the group we are about to onstrut preservethe orientation and so are Brouwer homeomorphisms, that is to say they arehomeomorphisms without �xed point that preserve the orientation. By a theo-rem of Brouwer, these elements do not have any periodi point. A priori, theyould nevertheless have some interesting dynamial behavior (see the introdu-tion of [5℄): for instane, there exists a Brouwer homeomorphism whih doesnot at properly disontinuously on any non empty invariant losed subset of

R2 (see [11℄). However, we show in the �rst paragraph of this setion that anyautomorphism of the plane whih is a Brouwer homeomorphism is analytiallyonjugate to a translation. This is the result that allows us to prove the seondpoint in the proposition. This result ontrasts with the existene of analytiBrouwer di�eomorphisms whih have interesting dynamis.Remark 4.4. The proposition above say nothing about the set of non-uniformlatties sine we put aside latties with elements of �nite order. Here are twoexamples:
• there exists an embedding of the group PSL(2,Z) ≃ Z/2⋆Z/3 into Aut(R2)whih image ontains Hénon type automorphisms. For instane onsider thegroup generated by the automorphisms

f

(

x
y

)

=
1

2

(

−x−
√

3y√
3x− y

) et g

(

x
y

)

=

(

−x+ y2

y

) (4.1)and apply Bass-Serre theory (see �5.3 for other reasonings of this kind).
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• any morphism of the triangular group

Tl,m,n = 〈a, b|am = bm = (ab)l = 1〉to the group Aut(k2) is onjugate to a morphism with value in the a�ne groupwhen l, m and n are positive integers (this group is a lattie in PSL(2,R) when
1/l + 1/m + 1/n < 1), this omes from the fat that these groups have theproperty (FA) (see [34℄ or [30℄).4.1. Brouwer automorphisms. In this paragraph we want to show the fol-lowing proposition.Proposition 4.5. Any polynomial Brouwer homeomorphism is analytiallyonjugate to a translation.Proof. In order to lassify polynomial automorphisms whih are not Brouwerhomeomorphisms, we onsider three ases aording if an automorphism, say g,is of elementary, a�ne or Hénon type (see paragraph 2.1 for the de�nitions). Inthese three ases, the strategy is the same: the point is to show that the groupgenerated by g ats properly disontinuously on R2. Indeed, Σ(g) = R2/〈g〉 isthen an orientable analyti surfae homeomorphi to a ylinder. So this surfaeis isomorphi, as a real analyti surfae, to the standard ylinder obtained asthe quotient of the plane R2 by the horizontal unitary translation (see [21℄,p. 65 �II.5). Thus there exists an analyti overing Φ : R2 → Σ(g) whihautomorphism group is the group of integral translations τn : (x, y) 7→ (x+n, y),
n ∈ Z. We an lift this overing to an analyti map φ : R2 → R2 whihonjugates g to the unitary translation:

φ−1 ◦ g ◦ φ = τ1. (4.2)This is the onjugay stated in proposition 4.5.If g is an elementary type automorphism that preserves the orientation andwithout �xed point, then g is onjugate to a transformation
(

x
y

)

7→
(

αx+ P (y)
βy + γ

) (4.3)where P is a polynomial in one variable and the quadruplet (α, β, γ, P ) satis�esto one of the three following properties:(1) β = 1 and γ 6= 0;(2) α = β = 1, γ = 0 and P does not have any real root.(3) β 6= 1, α = 1 and P (γ/(1 − β)) is not zero. In this ase if we onjugateby a translation we an assume γ = 0.In eah ase it is easy to verify that 〈g〉 ats properly disontinuously on R2.If g is an a�ne type automorphism that preserves the orientation and without�xed point, g is onjugate to an a�ne automorphism whih linear part admits
1 as an eigenvalue. By onjugay in GL(2,R) we an obtain a triangular a�neautomorphism, and so we are in the previous ase.



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 12Suppose now that g is anHénon type automorphism whih is also aBrouwerhomeomorphism. Note G+ the (positive) Green funtion of g, restrited to thereal a�ne plane R2. It is de�ned on C2 by the following formula
G+(z) = lim

n→+∞

{

1

dn
log+ (‖gn(z)‖)

}

, (4.4)where d ≥ 2 is the (dynamial) degree of g (see [22℄). in partiular, G+ is positiveand G+ ◦g = dG+. Let us reall that G+ is smooth on the open set G+ > 0, andthat the set G+ = 0 is exatly the lous of points in C2 with bounded positiveorbits. Sine g is a Brouwer homeomorphism, all its orbits go to in�nity andso G+ is smooth and everywhere stritly positive on R2.Let m be a point in R2; we an hoose α > 0 suh that m is in a fundamentaldomain:
m ∈ {p ∈ R2;α < G+(p) < α.d}.let U be a neighborhood of m inluded in this fundamental domain. Then weremark that for any k ∈ Z we have gk(U) ⊂ {p ∈ R2;αdk < G+(p) < αdk+1},and we onlude that 〈g〉 ats properly disontinuously on R2.This ends the proof of proposition 4.5 �4.2. An embedding of F2. Now we give the proof of the proposition 4.1. If

f is a non a�ne automorphism of the plane R2, its birational extension to thereal projetive plane admits a unique indeterminay point i(f). We an hoose
f suh that the points i(f) and i(f−1) are distint. We an further assume that
f is a Brouwer homeomorphism. For instane, if P ∈ R[X] is any polynomialwithout real root, we an take

f

(

x
y

)

=

(

y
P (y) + 2y − x

) (4.5)Then if we replae f by one of its iterates, we an hoose a neighborhood V +(f)of i(f−1) and a neighborhood V −(f) of i(f) in the projetive plane with disjointadherene and satisfying the two following properties
f(R2 \ V −(f)) ⊂ V +(f) and ‖f(p)‖ > 2‖p‖ ∀p ∈ R2 \ V −(f) (4.6)

f−1(R2 \ V +(f)) ⊂ V −(f) and ‖f−1(p)‖ > 2‖p‖ ∀p ∈ R2 \ V +(f).(4.7)We an also assume that (0, 0) is not in any of the V ±(f).For instane for the automorphism f above, whih indeterminay points are
i(f) = [1 : 0 : 0] and i(f−1) = [0 : 1 : 0], we an de�ne V ±(f) (or more preiselytheir trae on R2) by

V +(f) = {(x, y) ∈ R2; |y| > N, |x/y| < ε}; (4.8)
V −(f) = {(x, y) ∈ R2; |x| > N, |y/x| < ε}; (4.9)where ε > 0 is arbitrarily small and N > 0 arbitrarily big (the onditions (4.6)and (4.7) will be full�lled by an iterate fk of f with k depending on ε and N).Let g be another Hénon type automorphism satisfying the same properties.It is possible to hoose g suh that(i) {i(f), i(f−1)} and {i(g), i(g−1)} are all disjoint;



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 13(ii) Geo(f) and Geo(g) are distint.For instane we an take g equal to the onjugate of f by a linear transformationthat does not �x the horizontal nor the vertial axes. The onstraints on g allowus to hoose some neighborhoods V ±(g) of i(g) and i(g−1) satisfying propertiessimilar to (4.6) and (4.7), and disjoint from V +(f) ∪ V −(f).Let N be an integer stritly positive suh that the lengths of translation of fNand of gN are stritly greater than the diameter of the segment Geo(f)∩Geo(g).Replae f and g by their N powers (without hanging notations). The groupgenerated by f and g is then a free group all of whih elements are Hénon typeautomorphisms (see [24℄). This a onsequene of the ping-pong lemma for theation of this group on the tree T . We note Γ this group.Let q be a point in the plane; we want to onstrut a neighborhood U of q suhthat h(U)∩U = ∅ for all h ∈ Γ \{Id}. Without loss of generality we an replae
q by any point in the orbit of q under the ation of Γ. If q is in the omplementof the sets V ±(f) and V ±(g), we an hoose U equal to a ball entered in q andwithout intersetion with the sets V ±(f), V ±(g).Suppose now that the orbit of q under Γ is entirely ontained in the unionof the V ±(f), V ±(g) (in partiular it an not aumulate on (0, 0)). Note m =
inf{||h(q)||;h ∈ Γ}, we an assume 0 < m ≤ ||q|| < 2m (we an not a prioriassume ||q|| = m beause it is not lear if this in�mum is realized). Supposenow that q is in V −(f) (the three other ases are similar). then f(q) ∈ V +(f)beause otherwise we would have

2m > ||q|| = ||f−1(f(q))|| > 2||f(q)|| and so m > ||f(q)||and this would ontradits the de�nition of m. If U is small enough ball enteredon q, we an assume that f(U) ⊂ V +(f) and that U ⊂ {p ∈ R2; ||p|| < 2m}.Let h be an element of Γ distint from the identity; h an be written in a uniqueway as a redued word of length l ≥ 1 in the letters f, f−1, g and g−1.
• if h = f , by onstrution we have h(U) ∩ U = ∅;
• if the deomposition of h begins (on the right) by f and l ≥ 2, then forany p ∈ U

||h(p)|| ≥ 2l−1||f(p)|| ≥ 2mand so h(U) ∩ U = ∅;
• otherwise, for all p ∈ U we have ||h(p)|| ≥ 2l||p|| ≥ 2m and again h(U)∩
U = ∅.Thus we have proved that the group Γ is a free group, isomorphi to F2, allof whih elements distint from the identity are of Hénon type, and that Γats disontinuously on the plane R2. In partiular its elements distint fromthe identity are Brouwer automorphisms and so are analytially onjugate totranslations.



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 145. Fundamental groups of surfaesIn this setion we want to study embeddings of the group
Γg = 〈a1, b1, ..., ag , bg |

g
∏

i=1

[ai, bi] 〉 (5.1)in the group Aut(k2) where k is a �eld. This group is the fundamental groupof a ompat orientable surfae of genus g. So we an embed Γg in SL(2,R),and in Aut(R2). The embeddings we are interested in are those whih are notonjugate to an embedding into the a�ne group. We will see that these areexatly the embeddings whih image ontains an Hénon type automorphism.5.1. A theorem of Zieshang. Let ρ : Γg → Aut(k2) be an injetive mor-phism. Then the group Γg ats on the Bass-Serre tree T assoiated withAut(k2). Let T0 be the smallest sub-tree of T ontaining the orbit of the edge
IdS under the ation of Γg. Let (G, G) be the graph of groups obtained as thequotient of T0 by the ation of Γg. If a is an edge of G, the group Ga assoiatedwith this edge is a solvable subgroup of Γg (beause the stabilizer groups ofedges are solvable): this group is then trivial or isomorphi to Z. By a theoremof Zieshang (see [35℄ and [20℄), a deomposition of Γg as the fundamentalgroup of a graph of groups whose edges are labeled with a trivial group or agroup isomorphi to Z is always given by a ut-out of the surfae of genus galong disjoint simple losed urves. The groups attahed to the verties of thisgraph are the fundamental groups of eah of the onneted omponents of theut-out surfae. The reader might want to onsult [27℄, pages 465 to 467, wherethis theorem is proved and partially attributed to Stallings, [33℄.

F2
F4 F3

Z

Z

Z ZFigure 2. This �gure presents a deomposition of Γ3 as the fun-damental group of a graph of groups: we have pitured the graphand the simple losed urves that an be hosen to realize this de-omposition of Γ3.Let s be a vertex of G oming from a type E vertex of the tree T0. Thegroup Gs orresponds to a solvable subgroup of Γg and so is isomorphi to Zor to the trivial group. If the groups assoiated with the edges joining s to theother verties of G are trivial, the group Gs is also trivial, beause otherwise
Γg = π1(G, G) would be the free produt of Z and another group, and this is notthe ase (to see this, one an for example apply again the theorem of Zieshang



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 15ited above). So there exists at least one edge a linked to s for whih the group
Ga is isomorphi to Z. The morphism from Ga to Gs, must be an isomorphism;so we an simplify the graph by erasing all the type E verties.Geometrially, this operation is assoiated to the following situation. Thegraph of groups G orresponds to a ut-out of the surfae of genus g and the type
E vertex orresponds to a omponent whih is homeomorphi to a ylinder. Thisylinder is produed by the ut-out of the surfae along two boundary urves.To simplify the graph by removing the type E vertex is equivalent to simplifythe ut-out by forgetting one of these two urves.5.2. Ations without �xed points. We are now in position to prove the fol-lowing theorem.Theorem 5.1. Any subgroup of Aut(R2) isomorphi to Γg (with g ≥ 2) ontainsan element distint from identity whih admits a �xed point in R2.As a orollary, it does not exist a properly disontinuous polynomial ation of
Γg on the plane R2. It is unfortunate: it would have been interesting to �nd amodel of the universal overing of the surfae of genus g (g > 1) for whih theovering automorphism group ats by polynomial automorphisms of the plane.Proof. Let F be a subgroup of the real a�ne group all of whih elements atwithout �xed point on the plane. The linear parts of the elements of F satisfythe equation

det (M − Id) = 0 (5.2)and so the group F is not Zariski dense. In onsequene, F is a solvable subgroupof the a�ne group and in partiular, F does not ontain a free group on twogenerators.Let Γ be a subgroup of Aut(R2) all of whih non trivial elements are Brouwerhomeomorphisms. The group Γ ats on the Bass-Serre tree T and so all thestabilizer groups in Γ of the verties of T are solvable groups. Thus the groupsassoiated to verties of the graph of groups T \Γ are solvable.By the paragraph above, suh a group an not be isomorphi to the group
Γg. �This theorem allows us to obtain the following orollary, whih answers aquestion by Dekimpe (see [6, question 5.2℄).Corollary 5.2. Any polynomial rystallographi group of the plane admits a�nite index subgroup onjugated by a polynomial automorphism to the group ofintegral translations.Proof. Let G ⊂ Aut(R2) be suh a rystallographi group. There exists H of�nite index in G suh that H ats freely on R2 and suh that the quotient R2/His ompat and orientable. The theorem 5.1 forbids this quotient to be a surfaeof genus ≥ 2, so this is a torus and H = Z2. Thus it is impossible that Hontains an Hénon type element (beause all of those have a entralizer groupin Aut(C2) isomorphi to Z⋉Z/pZ: see [24℄), so up to onjugay we an assumethat H ⊂ A or H ⊂ E. We onlude by applying the main theorem of [7℄ whih



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 16gives us the result as soon as we know that H is of bounded degree, and herethis is an easy remark: if H = 〈f, g〉 ⊂ E then the degree of any element in His at most max(deg f,deg g). �5.3. Examples of embeddings. We are now going to prove the followingTheorem 5.3. For any integer g ≥ 2 there exists subgroups of Aut(R2) isomor-phi to Γg ontaining Hénon type elements.In fat, we will onstrut two distint embeddings. The graph of groupsassoiated with the �rst one will orrespond to a deomposition of Γg as anamalgamated produt. The graph of groups assoiated with the seond onewill orrespond to a deomposition of type HNN-extension. Here we didn'tseek a general result, however these two examples lead us to think that anydeomposition of a surfae of genus g ould be realized by an embedding inAut(R2).5.3.1. Embeddings assoiated with an amalgamated produt. Let us onsider adeomposition of Γg as an amalgamated produt Γg = F2k ⋆Z F2l where Fn isthe free group over n generators and k+ l is equal to g ; The presentation of Γgassoiated with this deomposition is
Γg = 〈a1, b1, ...., ag , bg |

i=k
∏

i=1

[ai, bi] =

j=l
∏

j=1

[ak+j, bk+j] 〉We want to onstrut an embedding ρ of Γg in Aut(R2) that "realizes" thisdeomposition: the orbit of the edge IdS under the ation of ρ(Γg) on theBass-Serre tree will be a tree T0 and T0/ρ(Γg) will be the graph of groupspitured on �gure 3. The labels A and E on this �gure orrespond to the typeof the verties. By the paragraph 5.1 the type E vertex is neessary.
Z Z

F2k Z F2l

A AE

Figure 3. Graph of groups assoiated with the onstruted em-bedding and deomposition of the related surfae.Lemma 5.4. For all n ≥ 1 there exists some matries A1, B1, · · · , An, Bn ∈
SL(2,R) suh that:(1) 〈A1, B1, · · · , An, Bn〉 is a free group over 2n generators;(2) h =

∏i=n
i=1 [Ai, Bi] =

(

−1 1
0 −1

);(3) the only triangular matries in 〈A1, B1, · · · , An, Bn〉 are the powers of h.



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 17Proof. Suh a hoie of the Ai, Bi is possible beause the Riemann surfae Σnminus a point an be endowed with an hyperboli metri of �nite area. Expliitlyit is su�ient to hoose the Ai, Bi suh that the fundamental domain for theation of the group on the Poinare dis is a polygon with 4n verties, all ofwhih are loated on the irle at in�nity. The �gure 4 illustrates the ase n = 2.As elements of SL(2,R) the matries Ai and Bi are de�ned up to multipliation
A2

A1

B1

∞ = [A1, B1][A2, B2]∞

B2

Figure 4. Case n = 2 in lemma 5.4.by −Id, but their ommutators [Ai, Bi] are well de�ned. In partiular, theirtraes are well de�ned. Sine the matrie h =
∏i=n

i=1 [Ai, Bi] �x the point ∞, itis triangular and its trae is ±2. It turns out that the trae of h is equal to −2(see for example [28℄, ex. 6.1, page 193 and [4℄ for results of this kind). Thus byonjugay we an have h(x, y) = (−x+ y,−y). �Let u1, v1, ..., uk , vk be the elements of SL(2,R) given by the lemma with
n = k, and u′k+1, v

′
k+1, ..., u

′
k+l, v

′
k+l another set of elements given by the lemmawith n = l. Choose φ an elementary automorphism whih is not a�ne andwhih ommutes with the linear automorphism h. For instane, we an take

φ(x, y) = (x + y3, y). For all integer j between 1 and l,, note uk+j (resp. vk+j)the automorphisms φ ◦ u′k+j ◦ φ−1 (resp. φ ◦ v′k+j ◦ φ−1).Proposition 5.5. If we de�ne σ by σ(ai) = ui and σ(bi) = vi for all i =
1, · · · , k + l, then we get an isomorphism between Γg and 〈ui, vi〉.Proof. By onstrution G2k = 〈u1, v1, · · · , uk, vk〉 ⊂ SL(2,R) is a free group over
2k generators that �xes the vertex IdA in the Bass-Serre tree. On the otherhand, by ondition (3) of lemma 5.4, the vertex IdE is not �xed by any f ∈
G2k \ {Id}. In the same way, G2l = 〈uk+1, vk+1, · · · , uk+l, vk+l〉 ⊂ φSL(2,R)φ−1is a free group over 2l generators that �xes the vertex φA, and any g ∈ G2l \{Id}does not �x the vertex IdE (whih is in the middle of the path of two edgesjoining the verties IdA and φA).By onstrution σ is a surjetive group morphism. Take m ∈ Γg \ {1}. Up toonjugay in Γg we an assume that m an be written

m = fngn · · · f1g1 with fi ∈ F2k \ {1}, gi ∈ F2l \ {1}, n ≥ 1.



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 18Then it is easy to hek that the vertex σ(m)IdE is at distane 2n from IdE,in partiular σ(m) 6= Id and σ is injetive. �5.3.2. Embeddings assoiated with an HNN-extension. Now we want to desribean embedding of Γg into Aut(R2) based on the presentation of Γg as an HNN-extension (here ag plays the role of the stable letter):
Γg = 〈a1, b1, · · · , ag, bg |

(

i=g−1
∏

i=1

[ai, bi]

)

bg = agbga
−1
g 〉Lemma 5.6. For all n ≥ 1 there exists matries A1, B1, · · · , An, Bn ∈ SL(2,R)suh that, with the notation P =

(

1 1
0 1

):(1) 〈A1, B1, · · · , An, Bn, P 〉 generates a free group over 2n + 1 generators;(2) Q =
(

∏i=n
i=1 [Ai, Bi]

)

P is a matrie of trae 2 (in partiular Q is onju-gate to P );(3) the only triangular matries in 〈A1, B1, · · · , An, Bn, P 〉 are the powers of
P .Proof. The proof is similar to the one of lemma 5.4. The �gure 5 illustrates thease n = 1. �

∞

A1

P

B1

x

Figure 5. The vertex x satis�es x = [A1, B1]P (x).Let us apply this lemma with n = g − 1, and note M the matrie (nontriangular, beause it does not �x the point ∞) suh that
MPM−1 = Q =

(

g−1
∏

i=1

[Ai, Bi]

)

P.Chose e an element of E \ A ommuting with P : for instane we an take
e(x, y) = (x+ y2, y).Proposition 5.7. If we de�ne σ by σ(ai) = Ai, σ(bi) = Bi for i = 1, · · · , g− 1,
σ(bg) = P , σ(ag) = M ◦ e, we get a morphism from Γg to Aut(R2) that realizesan isomorphism from Γg to its image.



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 19Proof. Sine e ommutes with P , σ is well de�ned and is a group morphism.The point is to prove that σ is injetive.Let h be an element of Γg \ {1}, we want to show that σ(h) is distintfrom Id. Note F ⊂ Γg the free subgroup over 2g − 1 generators generatedby a1, b1, · · · , ag−1, bg−1, bg. In restrition to F the morphism σ is injetive; sowe an assume that h is not in F . Up to onjugay in Γg we an also assumethat h admits a deomposition as follows:
h = fna

ln
g · · · f2a

l2
g f1a

l1
g with fi ∈ F \ {1}, li ∈ Z \ {0} and n ≥ 1.Finally, we an assume that this is a redued deomposition, that is:

• If li < 0 and li+1 > 0 then fi is not a power of bg;
• If li > 0 and li+1 < 0 then fi is not a power of (∏i=g−1

i=1 [ai, bi]
)

bg.Indeed if the deomposition is not redued we an modify it and observe thatthe sum of the |li| drops. We are going to show that σ(h) does not �x the vertex
IdA, and this will prove σ(h) 6= Id. Note x0 = IdA and for all i = 1, · · · , n

xi = σ(fi)(M ◦ e)li · · · σ(f1)(M ◦ e)l1(IdA).The automorphism M ◦e = σ(ag) is an Hénon type automorphism. The assoi-ated geodesi in the Bass-Serre tree ontains the verties e−1A, IdE, IdA,ME,MeAin this order, and M ◦ e ats on this geodesi as a translation of length 2. Note
yi the vertex in Geo(M ◦ e) that is the losest from xi, and di ∈ N the distanebetween yi and xi (see �gure 6). In partiular y0 = IdA et d0 = 0. We want toshow by indution that

• yi+1 is always one of the three verties IdA,MeA or e−1A;
• yi+1 is the vertex e−1A if and only if li+1 is negative and σ(fi+1) is inthe group 〈P 〉 generated by P ;
• yi+1 is the vertex MeA if and only if li+1 is positive and σ(fi+1) is inthe group 〈Q〉;
• di+1 ≥ di.

yi

xi

di = 2

MEIdAIdEe−1A MeA Géo(M ◦ e)
Figure 6. The geodesi of M ◦ e.Remark that the powers of P �x exatly three verties of Geo(M◦e): IdA, IdEand e−1A (these three verties are �xed for P , and the proof of the proposition3.3 of [24℄ shows that the tree �xed by P is of diameter 2). In the same way thepowers of Q �x the verties IdA, ME and MeA. Furthermore, by ondition (3)of lemma 5.6, any other element of σ(F ) �xes only one vertex of Geo(M ◦ e):

IdA. The observations below follows easily (with the help of �gure 6) and provethe properties stated above:
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• If yi = IdA and� if li+1 < 0 and σ(fi+1) 6∈ 〈P 〉 then di+1 > di and yi+1 = IdA.� if li+1 < −1 and σ(fi+1) ∈ 〈P 〉 then di+1 > di and yi+1 = e−1A.� if li+1 = −1 and σ(fi+1) ∈ 〈P 〉 then di+1 = di and yi+1 = e−1A.� if li+1 > 0 and σ(fi+1) 6∈ 〈Q〉 then di+1 > di and yi+1 = IdA.� if li+1 > 1 and σ(fi+1) ∈ 〈Q〉 then di+1 > di and yi+1 = MeA.� if li+1 = 1 and σ(fi+1) ∈ 〈Q〉 then di+1 = di and yi+1 = MeA.
• If yi = e−1A and� if li+1 < 0 and σ(fi+1) 6∈ 〈P 〉 then di+1 > di and yi+1 = IdA.� if li+1 < 0 and σ(fi+1) ∈ 〈P 〉 then di+1 > di and yi+1 = e−1A.� if li+1 > 0: this ase is impossible beause the deomposition of his redued and beause of the indution hypotheses.
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