
GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THEPLANESERGE CANTAT AND STÉPHANE LAMYThis is a translation of our paper �Groupes d'automorphismes polynomiaux duplan�, Geom. Dedi
ata 123 (2006), 201�221. (translation by S. Lamy)Abstra
t. We study the embeddings of latti
es from simple Lie groupsinto the group of polynomial automorphisms of the a�ne plane and answera question of Dekimpe 
on
erning 
rystallographi

 polynomial groups of theplane. 1. Introdu
tionWhi
h are the �nite type groups that a
t by polynomial transformations on theplane? Here we try to give a partial answer to questions of this kind. Of 
oursewe only 
onsider some spe
i�
 groups of �nite type, namely latti
es in simple
onne
ted Lie groups. This is motivated by some 
onje
tures of Zimmer (see[18℄ and [9℄) and by a question by Dekimpe about polynomial 
rystallographi
groups (see [13℄).1.1. Polynomial automorphisms. If k is a �eld, the group Aut(k2) of poly-nomial automorphisms of the a�ne plane k2 
ontains two important subgroups:the a�ne group A and the group of automorphisms that preserve the foliation of
k2 by a�ne horizontal lines. These latter automorphisms are 
alled elementaryand the group they 
omposed is the elementary group E. By the theorem ofJung - Van der Kulk, Aut(k2) is the amalgamated produ
t of A and E alongtheir interse
tion S.The Bass-Serre theory allows us to asso
iate a tree to this amalgamatedprodu
t stru
ture and to embed the group Aut(k2) into the group of simpli
ialautomorphisms of this tree. The stabilizers of verti
es are 
onjugate in Aut(k2)to the group A or to the group E. Thus, when a group G is embedded in Aut(k2),either it a
ts on the tree without �xed vertex, or it 
an be embedded in A or E.From this we 
an study embeddings of Kazhdan group, and in parti
ular lat-ti
es in real Lie groups of real rank at least 2. Using a re
ent result of Shalom,we obtain the following theorem.Theorem A. Let k be a �eld. Let G be a real simple Lie group and Γ a latti
ein G. If there exists an inje
tive morphism ρ : Γ → Aut(k2), the group G isisomorphi
 to PSO(1, n) or to PSU(1, n) for some integer n; furthermore if Gis distin
t from PSO(1, 2) then the image of ρ is 
ontained in a 
onjugate of the1
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ently used by Déserti to prove a rigidity result for thegroup SL(3,Z) relatively to the group of birational transformations of the 
om-plex proje
tive plane (see [15℄).Sin
e the group PSO(1, 2) is isomorphi
 to PSL(2,R) it is easy to embedlatti
es of this group into the group Aut(R2). On the other hand it is moredeli
ate to �nd embeddings whose image is not 
onjugate to a subgroup of thea�ne group. The existen
e of su
h embeddings will be the main theme of thistext.1.2. Fundamental groups of surfa
es. Let Γ be a latti
e of PSL(2,R). Wewant to know if there exists embeddings of Γ into Aut(C2) or Aut(R2) whi
hare not 
onjugate to an embedding into the a�ne group.If we repla
e Γ by one of its �nite index subgroups, the lemma of Selbergallows us to assume that Γ is a latti
e without torsion. The quotient of thePoin
are dis
 by Γ is then an orientable 
losed surfa
e minus a �nite numberof points. When this surfa
e is 
ompa
t, Γ is isomorphi
 to the fundamentalgroup
Γg = 〈a1, b1, ..., ag , bg |

i=g
∏

i=1

[ai, bi] = 1〉where g is the genus of the surfa
e and [ai, bi] is the 
ommutator aibia
−1
i b−1

i of
ai and bi. When the surfa
e is obtained by removing p points, with p ≥ 1, Γ isisomorphi
 to the free group Fk over k generators, with k equal to 2g + p− 1.Before des
ribing the embeddings of Γg or Fk in the group Aut(R2), let usmake pre
ise some points of vo
abulary (see �2.1). A generalized Hénon trans-formation is an automorphism that reads

(

x
y

)

7→
(

y
P (y) − ax

)where P is a polynomial in one variable whi
h degree is at least 2. It turns outthat any element h of Aut(C2) is 
onjugate either to an element of E or to a
omposition of generalized Hénon transformations (see [17℄); we will say that
h is of elementary or Hénon type. In a similar way, we say that h is of a�netype if it is 
onjugate to an element of the a�ne group. By [32℄, it is equiva-lent to say that h is of Hénon type or that the topologi
al entropy of h, viewas a 
ontinuous transformation of C2, is stri
tly positive. On the other hand,an element of Aut(R2) may be of Hénon type but nevertheless 
onjugate to atranslation of R2 ; su
h elements present a very ri
h dynami
al behavior on C2and a very poor one on R2.Proposition. For every integer k ≥ 1 there exists a subgroup Γ in Aut(R2)isomorphi
 to the free group Fk su
h that:

• Any non trivial element in Γ is an Hénon type automorphism;
• any element in Γ is analyti
ally 
onjugate to a translation;
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• Γ a
ts properly dis
ontinuously on the plane R2.This proposition is proved in part 4. The 
ase of the fundamental groups Γgof 
ompa
t orientable surfa
es of genus g is more deli
ate. The following the-orem shows that there exists some embeddings of Γg into Aut(R2) whi
h arenot 
onjugate to an a�ne embedding, but there exists some 
onstraints on thepossible embeddings. We give the proof in two steps in paragraphs 5.2 and 5.3,theorems 5.1 and 5.3.Theorem B.

• For any integer g ≥ 2 there exists subgroups of Aut(R2) isomorphi
 to Γgthat 
ontain Hénon type automorphisms.
• Any subgroup of Aut(R2) isomorphi
 to Γg (with g ≥ 2) 
ontains an elementdistin
t from the identity whi
h possess a �xed point in R2.1.3. Crystallographi
 groups. A subgroup of Diff

∞(Rn) is a 
rystallographi
group if its a
tion on Rn is dis
rete and 
o
ompa
t. Re
ently, Dekimpe andIgodt proved that for any poly
y
li
 group Γ there exists an integer n su
h that
Γ is isomorphi
 to a 
rystallographi
 group of polynomial di�eomorphisms of Rn(see [14℄). On the other hand, we 
an ask for a 
lassi�
ation of the polynomial
rystallographi
 groups when n is small. The results above lead to the followingtheorem that answers a question by Dekimpe (see [13℄ or [6℄). This result isproved in paragraph 5.2.Theorem C.

• It is not possible to �nd a model of the universal 
overing of the 
ompa
torientable surfa
e of genus g ≥ 2 su
h that the group of automorphisms woulda
t by polynomial transformations of the plane.
• Any polynomial 
rystallographi
 group of the plane admits a �nite indexsubgroup whi
h is polynomially 
onjugate to the group of integral translations.1.4. A
knowledgements. This text originates from a question by François Be-guin about Brouwer homeomorphisms (see paragraph 4.1); we would like tothank François for his beautiful le
ture on this subje
t. Thanks also to Do-minique Cerveau for his advi
e and to Étienne Ghys for his en
ouragements.2. A
tions of groups on trees2.1. Bass-Serre tree. Let k be a �eld. By the theorem of Jung - Van derKulk (a proof of whi
h we 
an �nd in [25℄), Aut(k2) is the produ
t of the a�negroup
A = {(x, y) 7→ (a1x+ a2y + a3, b1x+ b2y + b3); ai, bi ∈ k, a1b2 − a2b1 6= 0}and of the elementary group

E = {(x, y) 7→ (αx+ P (y), βy + γ);α, β, γ ∈ k, αβ 6= 0, P ∈ k[X]}
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tion S. In parti
ular, any polynomial automor-phism of the a�ne plane is a 
omposition of a�ne and elementary transforma-tions.Remark 2.1.1.- The groups E and S are solvable of length 3 and 2 respe
tively.2.- When k is algebrai
ally 
losed, any element of A is 
onjugate, in A, toan element of S.Sin
e Aut(k2) is an amalgamated produ
t, we 
an 
onstru
t its Bass-Serretree ([30℄). The verti
es of this tree are in bije
tion with right 
osets modulo A(type A verti
es) and modulo E (type E verti
es). Every element φ in Aut(k2)thus gives to distin
t verti
es, φA and φE. The edges are in bije
tion with
osets modulo S: an edge φS joins the verti
es φA and φE. The CW-
omplexso 
onstru
ted is a tree. This is the Bass-Serre tree of Aut(k2), that we willdenote by T .The group Aut(k2) a
ts on T by left translation; for instan
e, the image ofthe vertex φA by the translation asso
iated with ψ is the vertex (ψ ◦ φ)A. Inthis way we embed Aut(k2) into the group of simpli
ial isometries of T . Thisa
tion is transitive on the set of edges and on the set of type A verti
es (resp.type E verti
es). The stabilizer of the vertex φA (resp. of the vertex φE, resp.of the edge φS) is the group φAφ−1 (resp. φEφ−1, resp. φSφ−1).The elements g of Aut(k2) may be 
lassi�ed into two types a

ording to theira
tion on T . If g a
ts on the Bass-Serre tree with at least one �xed point, then
g is 
onjugate to an a�ne or elementary automorphism. When k is algebrai
ally
losed, g is then 
onjugate to an elementary automorphism; we will say that anelement of Aut(k2) is of elementary type (even if k is not algebrai
ally 
losed) ifit admits a �xed point on the Bass-Serre tree. We will say that it is of a�netype if it is 
onjugate to an element in the a�ne group.Let long(g) be the translation length of g, de�ned as the minimum of thedistan
es dist(g(s), s) where s runs on the set of all verti
es of T and dist(., .) isthe simpli
ial distan
e on T . Thus, an automorphism g is of elementary type ifand only if its translation length is zero. When the length is stri
tly positive, wesay that g is of Hénon type. This is the 
ase for the usual Hénon automorphism

g

(

x
y

)

=

(

y
x+ y2 + 0, 35

)

. (2.1)The justi�
ation of the terminology 
omes from the dynami
s. Indeed, when
k = C, an automorphism is either of elementary type or of Hénon type, andthe latter 
ase 
orresponds exa
tly to the automorphisms with a non elementarydynami
s on C2 (in�nity of hyperboli
 periodi
 points, et
...). If g is an Hénontype element, the set of verti
es s in the tree T that satisfy dist(g(s), s) = long(g)form a geodesi
 in T 
alled geodesi
 of g and noted Geo(g).2.2. The property (FA). Let X be a tree. We say that the a
tion of a group
Γ on X is without inversion if there does not exist a 
ouple of adja
ent verti
es
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h are ex
hanged by an element of Γ. A group Γ has the property (FA) if, forany a
tion without inversion of Γ on a tree X, there exists a vertex of X whi
his invariant for all the elements in Γ. A 
ountable group Γ has the property (FA)if and only if it satis�es the following three properties (see [30℄):(i) Γ is not atrivial amalgamated produ
t, (ii) the abelianized group of Γ is �nite and (iii)the group Γ is of �nite type.Let Γ be a group with the property (FA). Note ρ : Γ → Aut(k2) a morphismfrom Γ to the group of plane automorphisms. We thus obtain an a
tion withoutinversion of Γ on the tree T and by the property (FA) there exists a vertexinvariant for Γ. In other words there exists an element f of Aut(k2) su
h that
fρ(Γ)f−1 is 
ontained in the a�ne or elementary group. We will use this remarkin the next se
tion in order to 
lassify the latti
es in simple Lie groups that 
anbe imbedded into Aut(k2).2.3. Graph of groups. (see [30, 29℄) A graph of groups (G, G) is a graph G,with a group Gs labelling every vertex s of G, and a group Ga labelling every(non oriented) edge a of G, and with two inje
tive morphisms ρa0 : Ga → Ga0and ρa1 : Ga → Ga1 for every edge a with verti
es a0 and a1 (possibly equal).Consider a vertex s0 in G. For every vertex s (resp. every edge a) we 
hoose apointed topologi
al spa
e Xs (resp. Xa) whi
h is a K(Gs, 1) (resp. a K(Ga, 1)).The morphisms ρai

are then realized by 
ontinuous appli
ations between pointedtopologi
al spa
es fai
: Xa → Xai

, unique up to homotopy. Let X(G, G) be thetopologi
al spa
e obtained by gluing the spa
es Xs with the spa
es Xa × [0, 1]by means of the appli
ations fai
: Xa × {i} → Xai

. The fundamental group ofthis topologi
al spa
e is then uniquely determined by the graph of groups (G, G)and the 
hoi
e of s0. When the graph G is 
onne
ted, this group is unique up toisomorphism and is noted π1(G, G).The two main examples of graphs of groups 
orrespond respe
tively to thenotion of amalgamated produ
t, when G is a segment, and to HNN-extension (forHigman, Neumann, Neumann), when G is a loop; the fundamental group ofany graph of groups 
an be de
omposed as a sequen
e of amalgamated produ
tsand HNN-extensions.2.4. Bass-Serre theory. There exists a bije
tive 
orresponden
e between groupsa
ting without inversion on trees and fundamental groups of graphs of groups.If Γ a
ts without inversion on a tree A, we 
onstru
t the asso
iated graph ofgroups (G, G) as the quotient graph G = Γ\A, labeled in the following way. We
hoose a maximal subtree M in G that we lift as a tree M̃ in A; if s (resp.
a) is a vertex (resp. an edge) of M we note s̃ (resp. ã) its lifting in M̃. Forevery vertex s of G, s is in M and by de�nition the group Gs is the stabilizerof the asso
iated vertex s̃. The 
onstru
tion extends to the edges of M and themorphisms Ga → Gai

are in
lusions. If a is an edge of G whi
h is not in M,we �rst lift its verti
es a0 and a1, whi
h are in M, to two verti
es ã0 and ã1of M̃. Then we 
onsider the edge a′ of A starting from ã0 that lifts a and wede�ne Ga as the stabilizer of this edge, the morphism from Ga in Ga0 being thein
lusion. Let γ be an element in Γ that sends ã1 on the end of a′ whi
h is not



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 6in M̃; then we de�ne the morphism ρa1 : Ga → Ga1 by ρa1(α) = γ−1αγ. This
onstru
tion done, it turns out that the morphism from π1(G, G) to Γ indu
edby the in
lusions of the Gs and Ga into Γ is an isomorphism. This is the 
ontentof the Bass-Serre theory.Thus Bass-Serre theory shows that groups that a
t on a tree without global�xed point may be de
omposed as a sequen
e of amalgamated produ
t and HNN-extension. In order to embed a non solvable group into Aut(k2) but not intothe a�ne group, a ne
essary 
ondition is that the group may be non triviallyde
omposed as an amalgamated produ
t or an HNN-extension.
F2F2

ZFigure 1. The fundamental group of the 
ompa
t orientable sur-fa
e of genus 2, Γ2 = 〈a1, b1, a2, b2|[a1, b1] = [a2, b2]〉, is isomorphi
to the fundamental group of the graph of groups pi
tured above.In parti
ular, the group Γ2 a
ts without inversion and without �xedpoint on some trees.2.5. Two examples. In this paragraph, we show that two 
lassi
al examples ofamalgamated produ
t and HNN-extension 
an not be embedded into Aut(C2).They are the braid group Bn and the Baumslag-Solitar group BS(2, 3). Thiswill illustrate the te
hni
s used further in the arti
le.For any 
ouple of stri
tly positive integers (p, q), the Baumslag-Solitargroup BS(p, q) (non solvable ex
ept for p = 1 or q = 1) may be de�ned by thefollowing presentation BS(p, q) = 〈s, t| stps−1 = tq 〉. (2.2)When p = 2 and q = 3, this �nite type group is not residually �nite and thus
an not be embedded into any GL(n,C) (see [2℄, [3℄).Proposition 2.2. Let p and q be two distin
t stri
tly positive integers. Thenany morphism from BS(p, q) to Aut(C2) admits a solvable image. In 
onsequen
ethe group Aut(C2) does not 
ontain any subgroup isomorphi
 to BS(2, 3).Remark 2.3. By the main theorem of [1℄, a �nite type subgroup of the poly-nomial automorphisms of Cn is residually �nite, and this is not the 
ase forBS(2, 3). So part of this proposition is a 
orollary of [1℄.Proof. Let ρ : BS(p, q) → Aut(C2) be a group morphism. Note a and b theimages of t and s by this morphism. Sin
e ap is 
onjugate to aq, the length oftranslation of a is zero as soon as p is distin
t from q.If a is of in�nite order, proposition 3.3 from [24℄ and its proof show that the�xed points of the tree T for the a
tion of an are a bounded subtree of diameter



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 7at most 6. This implies that the set of points of the tree T whi
h are periodi
for a is a tree F of diameter at most 6. If we 
onjugate the morphism ρ by anelement of Aut(C2), we 
an assume that F has its 
enter on the vertex E, thevertex A, or the edge S. Sin
e bapb−1 is equal to aq, the tree F and its 
enterare invariants under the a
tion of b (see [30, p. 32℄). Thus the image of ρ is
ontained in E, in A or in S.From this it is easy to dedu
e that the image of ρ is solvable. It is immediateif it is 
ontained in E. If it is 
ontained in A the relation bapb−1 = aq impliesthat the linear parts of a and b or b2 share a 
ommon eigendire
tion; and so theimage of ρ is solvable.When the order of a is �nite, the image of ρ is an extension of Z by a �nite
y
li
 group and so is solvable.Sin
e BS(2, 3) is not solvable, it 
an not be embedded into Aut(C2). �The braid group B3 admits the following presentation
B3 = 〈u, v|u2 = v3 〉. (2.3)So this group is the produ
t of two 
opies of Z amalgamated along Z and assu
h it 
an be embedded into the automorphism group of a simpli
ial tree.Proposition 2.4.

• If ρ is an inje
tive morphism from B3 to Aut(C2), its image is 
ontained insome 
onjugate of the a�ne group.
• It does not exist any embedding of the braid group Bn into Aut(C2) when

n ≥ 4.Remark 2.5. TheBurau representation gives a representation ofBn in GL(n,Q[t±1]).This representation is redu
ible, it splits in a representation of dimension 1 anda representation of dimension n − 1. For n = 3, this representation of dimen-sion 2 is faithful; by repla
ing t with a trans
endant 
omplex number we obtainan inje
tive irredu
ible representation of B3 in GL(2,C) (see [8℄ and referen
estherein).Remark 2.6. The groups B3 and B4 are the only braid groups whi
h admit anon trivial de
omposition into an amalgamated produ
t (see [23℄), but we willnot need this property.Proof. Let ρ be a morphism from B3 to Aut(C2). The polynomial automorphism
h = ρ(u)2 = ρ(v)3 (2.4)
ommutes with ρ(u) and with ρ(v). If h is of Hénon type, the image of ρ isthen 
ontained in a solvable group and ρ 
an not be inje
tive (see [24℄, thm. 2.4and prop.4.8).If h is an automorphism of elementary type, ρ(u) and ρ(v) are also elementaryand so we 
an assume that the image of ρ is 
ontained in A or E (apply a similarargument as the one above). Sin
e B3 is not solvable, the only morphisms that
an be inje
tive are the ones with value in A.
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ond point. It is su�
ient to 
onsider the 
ase n = 4be
ause B4 is 
ontained in Bn for all n greater than 4. The group B4 admitsthe following presentation:
B4 = 〈a, b, c| ac = ca, aba = bab, bcb = cbc 〉 (2.5)If we take u = aba and v = ab, or u = bcb and v = bc, we see that B4 
ontainstwo 
opies of B3, one generated by a and b, and the other by b and c.Suppose there exists an inje
tive morphism ρ from B4 to Aut(C2). The studyof morphisms from B3 to Aut(C2) shows that, up to 
onjuga
y, the image of

h = (ab)3 by ρ is an element of the a�ne group whi
h �xed points (on T ) are asubtree of �nite diameter and with 
enter on A. This property remains true forelements that 
ommute with h, that is a and b, and then also for elements that
ommute with a, for instan
e c. Thus, the image of ρ is 
ontained in the a�negroup.It is easy to see that no representation of B4 in the a�ne 
omplex group 
anbe inje
tive (see [16℄). So we obtain a 
ontradi
tion that ends the proof. �2.6. Modular groups. Let Γ be the fundamental group of an 
ompa
t ori-entable surfa
e with boundary. The group Out(Γ) 
an be embedded in theautomorphism group Aut(V ) of a 
omplex algebrai
 variety V (see [1℄), and itwould be interesting to know what are the smallest varieties whi
h Out(Γ) a
tspolynomially and faithfully on. Suppose that Γ is a free group Fn with n ≥ 3 orthat S is 
losed with genus at least 2. Then Out(Γ) has property (FA) (see [10℄),is not solvable and 
an not be embedded into the group A�(C2). The argumentsof the previous paragraphs then show that Out(Γ) 
an not be embedded intoAut(C2). We 
an also prove that Out(Γ) 
an not be embedded into Aut(X) if
X is a 
omplex proje
tive surfa
e. So it seems that algebrai
 faithful a
tions ofthese groups do not exist in dimension 2.3. Latti
es in simple Lie groupsIn this se
tion we prove the following theorem.Theorem 3.1. Let k be a �eld. Let G be a real simple Lie group and Γ be alatti
e in G. If there exists an inje
tive morphism ρ : Γ → Aut(k2), the group Gis isomorphi
 to PSO(1, n) or to PSU(1, n) for some integer n; furthermore if Gis distin
t from PSO(1, 2) then the image of ρ is 
ontained in a 
onjugate of thea�ne group.3.1. The property (T). We are going to apply the remarks of the previousse
tion to groups satisfying the property (T) of Kazhdan. We do not de�nethis property here, the interested reader should 
onsult [12℄, 
hapter I, or [26℄,
hapter III. Let us simply re
all some 
onsequen
es of property (T). Let G be alo
ally 
ompa
t topologi
al group with 
ountable basis and Γ be a latti
e in G.(a) G has property (T) if and only if Γ has property (T).(b) If G has property (T), then any 
ontinuous morphism from G to a solv-able group has a relatively 
ompa
t image.
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) If G has property (T), then G is generated by a 
ompa
t neighborhoodof the identity element.(d) If Γ has property (T) then it has property (FA).Thus, when G is a lo
ally 
ompa
t topologi
al group with 
ountable basis thathas property (T), any latti
e in G is of �nite type (apply (
)) and has property(FA). In parti
ular, when Γ is a latti
e in G and ρ : Γ → Aut(k2) is a groupmorphism, 
onjugating ρ by an element of Aut(k2) we 
an assume that theimage of ρ is 
ontained in the a�ne group or in the group E of elementaryautomorphisms. In the latter 
ase, the image of ρ is �nite be
ause E is solvable.If the image of ρ is 
ontained in the a�ne group, the linear parts of elementsin ρ(γ) give a representation ρ′ : Γ → GL(2, k) and, if we repla
e Γ by �niteindex subgroup, we 
an assume that the image of ρ′ is in SL(2, k). Using [19℄ wededu
e that the image of ρ′ (and of ρ) is �nite.Proposition 3.2. Let k be a �eld. Let G be a lo
ally 
ompa
t topologi
al groupsatisfying property (T), and let Γ be a latti
e in G. Any morphism from Γ toAut(k2) has a �nite image.By this proposition we 
an manage all 
ountable groups satisfying property(T) and latti
es in real simple Lie groups whi
h are not lo
ally isomorphi
 to
SO(1, n) or SU(1, n) (see [12℄). These two groups do not have property (T), andindeed some of their latti
es a
t without inversion and without global �xed pointon trees.3.2. A result by Shalom, [31℄. In order to 
on
lude, we are going to apply aresult by Shalom about the a
tions on trees of latti
es in SO(1, n) or SU(1, n).First, let us re
all that these two Lie groups naturally a
t on the real or 
omplexhyperboli
 spa
e of dimension n. Note H this hyperboli
 spa
e, and �x a basepoint o in H. We note d(., .) the hyperboli
 distan
e. For any dis
rete group Γof isometries of H, the 
riti
al exponent of Γ is the positive real number

δ(Γ) = inf







s ∈ R :
∑

γ∈Γ

e−sd(o,γ(o)) < +∞







.The 
riti
al exponent of a latti
e is equal to n−1 in the 
ase of the real hyperboli
spa
e and to 2n for the 
omplex hyperboli
 spa
e; the exponent of a solvablegroup is zero.Theorem 3.3 (Shalom). Let X be a simpli
ial tree. Let Γ be a latti
e in
SO(1, n) or in SU(1, n), with n ∈ N∗. Let Γ × X → X be an a
tion withoutinversion nor �xed point. Then there exists an edge α in X whi
h stabilizer Cin Γ satis�es

δ(C) ≥ δ(Γ) − 1.Thus, as soon as δ(Γ) is stri
tly bigger than 1, the 
riti
al exponent of C isstri
tly positive and C 
an not be a solvable group. Sin
e stabilizers of edgesof the tree T asso
iated with Aut(k2) are solvable groups, we dedu
e that anyrepresentation of Γ in Aut(k2) stabilizes a vertex. So, any faithful representationof Γ in Aut(k2) has value in the a�ne group.
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lusion. The demonstration of theorem 3.1 is 
omplete: we dealt withlatti
es in Lie groups satisfying property (T ) in paragraph 3.1, and with theremaining 
ase of latti
es in SO(1, n) and SU(1, n) in the paragraph above.Remark 3.4. It 
ould be that no latti
e of SO(1, n) 
an be embedded in thea�ne group of C2 when n ≥ 4. This would pre
ise theorem 3.1. Unfortunately,we do not know how to handle this problem.4. Free groupsIn this se
tion and the next one we des
ribe some embeddings of latti
es in
PSL(2,R) into the group Aut(R2) whi
h image 
ontains Hénon type elements.As already mentioned in the introdu
tion, there are two 
lasses of latti
es to
onsider, the uniform (or 
o
ompa
ts) latti
es and the others. Any non uniformlatti
e 
ontains a �nite index subgroup whi
h is isomorphi
 to a free group Fkover a �nite number of generators.Proposition 4.1. For any integer k ≥ 1 there exists a subgroup Γ of Aut(R2)isomorphi
 to the free group Fk su
h that:

• any non trivial element in Γ is an Hénon type automorphism;
• any element in Γ is analyti
ally 
onjugate to a translation;
• Γ a
ts properly dis
ontinuously on the plane R2.Remark 4.2. Sin
e the free group F2 
ontains a 
opy of every Fk, k ≥ 1, wewill only 
onsider the 
ase k equal to 2.Remark 4.3. The elements in the group we are about to 
onstru
t preservethe orientation and so are Brouwer homeomorphisms, that is to say they arehomeomorphisms without �xed point that preserve the orientation. By a theo-rem of Brouwer, these elements do not have any periodi
 point. A priori, they
ould nevertheless have some interesting dynami
al behavior (see the introdu
-tion of [5℄): for instan
e, there exists a Brouwer homeomorphism whi
h doesnot a
t properly dis
ontinuously on any non empty invariant 
losed subset of

R2 (see [11℄). However, we show in the �rst paragraph of this se
tion that anyautomorphism of the plane whi
h is a Brouwer homeomorphism is analyti
ally
onjugate to a translation. This is the result that allows us to prove the se
ondpoint in the proposition. This result 
ontrasts with the existen
e of analyti
Brouwer di�eomorphisms whi
h have interesting dynami
s.Remark 4.4. The proposition above say nothing about the set of non-uniformlatti
es sin
e we put aside latti
es with elements of �nite order. Here are twoexamples:
• there exists an embedding of the group PSL(2,Z) ≃ Z/2⋆Z/3 into Aut(R2)whi
h image 
ontains Hénon type automorphisms. For instan
e 
onsider thegroup generated by the automorphisms

f

(

x
y

)

=
1

2

(

−x−
√

3y√
3x− y

) et g

(

x
y

)

=

(

−x+ y2

y

) (4.1)and apply Bass-Serre theory (see �5.3 for other reasonings of this kind).
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• any morphism of the triangular group

Tl,m,n = 〈a, b|am = bm = (ab)l = 1〉to the group Aut(k2) is 
onjugate to a morphism with value in the a�ne groupwhen l, m and n are positive integers (this group is a latti
e in PSL(2,R) when
1/l + 1/m + 1/n < 1), this 
omes from the fa
t that these groups have theproperty (FA) (see [34℄ or [30℄).4.1. Brouwer automorphisms. In this paragraph we want to show the fol-lowing proposition.Proposition 4.5. Any polynomial Brouwer homeomorphism is analyti
ally
onjugate to a translation.Proof. In order to 
lassify polynomial automorphisms whi
h are not Brouwerhomeomorphisms, we 
onsider three 
ases a

ording if an automorphism, say g,is of elementary, a�ne or Hénon type (see paragraph 2.1 for the de�nitions). Inthese three 
ases, the strategy is the same: the point is to show that the groupgenerated by g a
ts properly dis
ontinuously on R2. Indeed, Σ(g) = R2/〈g〉 isthen an orientable analyti
 surfa
e homeomorphi
 to a 
ylinder. So this surfa
eis isomorphi
, as a real analyti
 surfa
e, to the standard 
ylinder obtained asthe quotient of the plane R2 by the horizontal unitary translation (see [21℄,p. 65 �II.5). Thus there exists an analyti
 
overing Φ : R2 → Σ(g) whi
hautomorphism group is the group of integral translations τn : (x, y) 7→ (x+n, y),
n ∈ Z. We 
an lift this 
overing to an analyti
 map φ : R2 → R2 whi
h
onjugates g to the unitary translation:

φ−1 ◦ g ◦ φ = τ1. (4.2)This is the 
onjuga
y stated in proposition 4.5.If g is an elementary type automorphism that preserves the orientation andwithout �xed point, then g is 
onjugate to a transformation
(

x
y

)

7→
(

αx+ P (y)
βy + γ

) (4.3)where P is a polynomial in one variable and the quadruplet (α, β, γ, P ) satis�esto one of the three following properties:(1) β = 1 and γ 6= 0;(2) α = β = 1, γ = 0 and P does not have any real root.(3) β 6= 1, α = 1 and P (γ/(1 − β)) is not zero. In this 
ase if we 
onjugateby a translation we 
an assume γ = 0.In ea
h 
ase it is easy to verify that 〈g〉 a
ts properly dis
ontinuously on R2.If g is an a�ne type automorphism that preserves the orientation and without�xed point, g is 
onjugate to an a�ne automorphism whi
h linear part admits
1 as an eigenvalue. By 
onjuga
y in GL(2,R) we 
an obtain a triangular a�neautomorphism, and so we are in the previous 
ase.



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 12Suppose now that g is anHénon type automorphism whi
h is also aBrouwerhomeomorphism. Note G+ the (positive) Green fun
tion of g, restri
ted to thereal a�ne plane R2. It is de�ned on C2 by the following formula
G+(z) = lim

n→+∞

{

1

dn
log+ (‖gn(z)‖)

}

, (4.4)where d ≥ 2 is the (dynami
al) degree of g (see [22℄). in parti
ular, G+ is positiveand G+ ◦g = dG+. Let us re
all that G+ is smooth on the open set G+ > 0, andthat the set G+ = 0 is exa
tly the lo
us of points in C2 with bounded positiveorbits. Sin
e g is a Brouwer homeomorphism, all its orbits go to in�nity andso G+ is smooth and everywhere stri
tly positive on R2.Let m be a point in R2; we 
an 
hoose α > 0 su
h that m is in a fundamentaldomain:
m ∈ {p ∈ R2;α < G+(p) < α.d}.let U be a neighborhood of m in
luded in this fundamental domain. Then weremark that for any k ∈ Z we have gk(U) ⊂ {p ∈ R2;αdk < G+(p) < αdk+1},and we 
on
lude that 〈g〉 a
ts properly dis
ontinuously on R2.This ends the proof of proposition 4.5 �4.2. An embedding of F2. Now we give the proof of the proposition 4.1. If

f is a non a�ne automorphism of the plane R2, its birational extension to thereal proje
tive plane admits a unique indetermina
y point i(f). We 
an 
hoose
f su
h that the points i(f) and i(f−1) are distin
t. We 
an further assume that
f is a Brouwer homeomorphism. For instan
e, if P ∈ R[X] is any polynomialwithout real root, we 
an take

f

(

x
y

)

=

(

y
P (y) + 2y − x

) (4.5)Then if we repla
e f by one of its iterates, we 
an 
hoose a neighborhood V +(f)of i(f−1) and a neighborhood V −(f) of i(f) in the proje
tive plane with disjointadheren
e and satisfying the two following properties
f(R2 \ V −(f)) ⊂ V +(f) and ‖f(p)‖ > 2‖p‖ ∀p ∈ R2 \ V −(f) (4.6)

f−1(R2 \ V +(f)) ⊂ V −(f) and ‖f−1(p)‖ > 2‖p‖ ∀p ∈ R2 \ V +(f).(4.7)We 
an also assume that (0, 0) is not in any of the V ±(f).For instan
e for the automorphism f above, whi
h indetermina
y points are
i(f) = [1 : 0 : 0] and i(f−1) = [0 : 1 : 0], we 
an de�ne V ±(f) (or more pre
iselytheir tra
e on R2) by

V +(f) = {(x, y) ∈ R2; |y| > N, |x/y| < ε}; (4.8)
V −(f) = {(x, y) ∈ R2; |x| > N, |y/x| < ε}; (4.9)where ε > 0 is arbitrarily small and N > 0 arbitrarily big (the 
onditions (4.6)and (4.7) will be full�lled by an iterate fk of f with k depending on ε and N).Let g be another Hénon type automorphism satisfying the same properties.It is possible to 
hoose g su
h that(i) {i(f), i(f−1)} and {i(g), i(g−1)} are all disjoint;
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t.For instan
e we 
an take g equal to the 
onjugate of f by a linear transformationthat does not �x the horizontal nor the verti
al axes. The 
onstraints on g allowus to 
hoose some neighborhoods V ±(g) of i(g) and i(g−1) satisfying propertiessimilar to (4.6) and (4.7), and disjoint from V +(f) ∪ V −(f).Let N be an integer stri
tly positive su
h that the lengths of translation of fNand of gN are stri
tly greater than the diameter of the segment Geo(f)∩Geo(g).Repla
e f and g by their N powers (without 
hanging notations). The groupgenerated by f and g is then a free group all of whi
h elements are Hénon typeautomorphisms (see [24℄). This a 
onsequen
e of the ping-pong lemma for thea
tion of this group on the tree T . We note Γ this group.Let q be a point in the plane; we want to 
onstru
t a neighborhood U of q su
hthat h(U)∩U = ∅ for all h ∈ Γ \{Id}. Without loss of generality we 
an repla
e
q by any point in the orbit of q under the a
tion of Γ. If q is in the 
omplementof the sets V ±(f) and V ±(g), we 
an 
hoose U equal to a ball 
entered in q andwithout interse
tion with the sets V ±(f), V ±(g).Suppose now that the orbit of q under Γ is entirely 
ontained in the unionof the V ±(f), V ±(g) (in parti
ular it 
an not a

umulate on (0, 0)). Note m =
inf{||h(q)||;h ∈ Γ}, we 
an assume 0 < m ≤ ||q|| < 2m (we 
an not a prioriassume ||q|| = m be
ause it is not 
lear if this in�mum is realized). Supposenow that q is in V −(f) (the three other 
ases are similar). then f(q) ∈ V +(f)be
ause otherwise we would have

2m > ||q|| = ||f−1(f(q))|| > 2||f(q)|| and so m > ||f(q)||and this would 
ontradi
ts the de�nition of m. If U is small enough ball 
enteredon q, we 
an assume that f(U) ⊂ V +(f) and that U ⊂ {p ∈ R2; ||p|| < 2m}.Let h be an element of Γ distin
t from the identity; h 
an be written in a uniqueway as a redu
ed word of length l ≥ 1 in the letters f, f−1, g and g−1.
• if h = f , by 
onstru
tion we have h(U) ∩ U = ∅;
• if the de
omposition of h begins (on the right) by f and l ≥ 2, then forany p ∈ U

||h(p)|| ≥ 2l−1||f(p)|| ≥ 2mand so h(U) ∩ U = ∅;
• otherwise, for all p ∈ U we have ||h(p)|| ≥ 2l||p|| ≥ 2m and again h(U)∩
U = ∅.Thus we have proved that the group Γ is a free group, isomorphi
 to F2, allof whi
h elements distin
t from the identity are of Hénon type, and that Γa
ts dis
ontinuously on the plane R2. In parti
ular its elements distin
t fromthe identity are Brouwer automorphisms and so are analyti
ally 
onjugate totranslations.
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esIn this se
tion we want to study embeddings of the group
Γg = 〈a1, b1, ..., ag , bg |

g
∏

i=1

[ai, bi] 〉 (5.1)in the group Aut(k2) where k is a �eld. This group is the fundamental groupof a 
ompa
t orientable surfa
e of genus g. So we 
an embed Γg in SL(2,R),and in Aut(R2). The embeddings we are interested in are those whi
h are not
onjugate to an embedding into the a�ne group. We will see that these areexa
tly the embeddings whi
h image 
ontains an Hénon type automorphism.5.1. A theorem of Zies
hang. Let ρ : Γg → Aut(k2) be an inje
tive mor-phism. Then the group Γg a
ts on the Bass-Serre tree T asso
iated withAut(k2). Let T0 be the smallest sub-tree of T 
ontaining the orbit of the edge
IdS under the a
tion of Γg. Let (G, G) be the graph of groups obtained as thequotient of T0 by the a
tion of Γg. If a is an edge of G, the group Ga asso
iatedwith this edge is a solvable subgroup of Γg (be
ause the stabilizer groups ofedges are solvable): this group is then trivial or isomorphi
 to Z. By a theoremof Zies
hang (see [35℄ and [20℄), a de
omposition of Γg as the fundamentalgroup of a graph of groups whose edges are labeled with a trivial group or agroup isomorphi
 to Z is always given by a 
ut-out of the surfa
e of genus galong disjoint simple 
losed 
urves. The groups atta
hed to the verti
es of thisgraph are the fundamental groups of ea
h of the 
onne
ted 
omponents of the
ut-out surfa
e. The reader might want to 
onsult [27℄, pages 465 to 467, wherethis theorem is proved and partially attributed to Stallings, [33℄.

F2
F4 F3

Z

Z

Z ZFigure 2. This �gure presents a de
omposition of Γ3 as the fun-damental group of a graph of groups: we have pi
tured the graphand the simple 
losed 
urves that 
an be 
hosen to realize this de-
omposition of Γ3.Let s be a vertex of G 
oming from a type E vertex of the tree T0. Thegroup Gs 
orresponds to a solvable subgroup of Γg and so is isomorphi
 to Zor to the trivial group. If the groups asso
iated with the edges joining s to theother verti
es of G are trivial, the group Gs is also trivial, be
ause otherwise
Γg = π1(G, G) would be the free produ
t of Z and another group, and this is notthe 
ase (to see this, one 
an for example apply again the theorem of Zies
hang
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ited above). So there exists at least one edge a linked to s for whi
h the group
Ga is isomorphi
 to Z. The morphism from Ga to Gs, must be an isomorphism;so we 
an simplify the graph by erasing all the type E verti
es.Geometri
ally, this operation is asso
iated to the following situation. Thegraph of groups G 
orresponds to a 
ut-out of the surfa
e of genus g and the type
E vertex 
orresponds to a 
omponent whi
h is homeomorphi
 to a 
ylinder. This
ylinder is produ
ed by the 
ut-out of the surfa
e along two boundary 
urves.To simplify the graph by removing the type E vertex is equivalent to simplifythe 
ut-out by forgetting one of these two 
urves.5.2. A
tions without �xed points. We are now in position to prove the fol-lowing theorem.Theorem 5.1. Any subgroup of Aut(R2) isomorphi
 to Γg (with g ≥ 2) 
ontainsan element distin
t from identity whi
h admits a �xed point in R2.As a 
orollary, it does not exist a properly dis
ontinuous polynomial a
tion of
Γg on the plane R2. It is unfortunate: it would have been interesting to �nd amodel of the universal 
overing of the surfa
e of genus g (g > 1) for whi
h the
overing automorphism group a
ts by polynomial automorphisms of the plane.Proof. Let F be a subgroup of the real a�ne group all of whi
h elements a
twithout �xed point on the plane. The linear parts of the elements of F satisfythe equation

det (M − Id) = 0 (5.2)and so the group F is not Zariski dense. In 
onsequen
e, F is a solvable subgroupof the a�ne group and in parti
ular, F does not 
ontain a free group on twogenerators.Let Γ be a subgroup of Aut(R2) all of whi
h non trivial elements are Brouwerhomeomorphisms. The group Γ a
ts on the Bass-Serre tree T and so all thestabilizer groups in Γ of the verti
es of T are solvable groups. Thus the groupsasso
iated to verti
es of the graph of groups T \Γ are solvable.By the paragraph above, su
h a group 
an not be isomorphi
 to the group
Γg. �This theorem allows us to obtain the following 
orollary, whi
h answers aquestion by Dekimpe (see [6, question 5.2℄).Corollary 5.2. Any polynomial 
rystallographi
 group of the plane admits a�nite index subgroup 
onjugated by a polynomial automorphism to the group ofintegral translations.Proof. Let G ⊂ Aut(R2) be su
h a 
rystallographi
 group. There exists H of�nite index in G su
h that H a
ts freely on R2 and su
h that the quotient R2/His 
ompa
t and orientable. The theorem 5.1 forbids this quotient to be a surfa
eof genus ≥ 2, so this is a torus and H = Z2. Thus it is impossible that H
ontains an Hénon type element (be
ause all of those have a 
entralizer groupin Aut(C2) isomorphi
 to Z⋉Z/pZ: see [24℄), so up to 
onjuga
y we 
an assumethat H ⊂ A or H ⊂ E. We 
on
lude by applying the main theorem of [7℄ whi
h



GROUPS OF POLYNOMIAL AUTOMORPHISMS OF THE PLANE 16gives us the result as soon as we know that H is of bounded degree, and herethis is an easy remark: if H = 〈f, g〉 ⊂ E then the degree of any element in His at most max(deg f,deg g). �5.3. Examples of embeddings. We are now going to prove the followingTheorem 5.3. For any integer g ≥ 2 there exists subgroups of Aut(R2) isomor-phi
 to Γg 
ontaining Hénon type elements.In fa
t, we will 
onstru
t two distin
t embeddings. The graph of groupsasso
iated with the �rst one will 
orrespond to a de
omposition of Γg as anamalgamated produ
t. The graph of groups asso
iated with the se
ond onewill 
orrespond to a de
omposition of type HNN-extension. Here we didn'tseek a general result, however these two examples lead us to think that anyde
omposition of a surfa
e of genus g 
ould be realized by an embedding inAut(R2).5.3.1. Embeddings asso
iated with an amalgamated produ
t. Let us 
onsider ade
omposition of Γg as an amalgamated produ
t Γg = F2k ⋆Z F2l where Fn isthe free group over n generators and k+ l is equal to g ; The presentation of Γgasso
iated with this de
omposition is
Γg = 〈a1, b1, ...., ag , bg |

i=k
∏

i=1

[ai, bi] =

j=l
∏

j=1

[ak+j, bk+j] 〉We want to 
onstru
t an embedding ρ of Γg in Aut(R2) that "realizes" thisde
omposition: the orbit of the edge IdS under the a
tion of ρ(Γg) on theBass-Serre tree will be a tree T0 and T0/ρ(Γg) will be the graph of groupspi
tured on �gure 3. The labels A and E on this �gure 
orrespond to the typeof the verti
es. By the paragraph 5.1 the type E vertex is ne
essary.
Z Z

F2k Z F2l

A AE

Figure 3. Graph of groups asso
iated with the 
onstru
ted em-bedding and de
omposition of the related surfa
e.Lemma 5.4. For all n ≥ 1 there exists some matri
es A1, B1, · · · , An, Bn ∈
SL(2,R) su
h that:(1) 〈A1, B1, · · · , An, Bn〉 is a free group over 2n generators;(2) h =

∏i=n
i=1 [Ai, Bi] =

(

−1 1
0 −1

);(3) the only triangular matri
es in 〈A1, B1, · · · , An, Bn〉 are the powers of h.
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h a 
hoi
e of the Ai, Bi is possible be
ause the Riemann surfa
e Σnminus a point 
an be endowed with an hyperboli
 metri
 of �nite area. Expli
itlyit is su�
ient to 
hoose the Ai, Bi su
h that the fundamental domain for thea
tion of the group on the Poin
are dis
 is a polygon with 4n verti
es, all ofwhi
h are lo
ated on the 
ir
le at in�nity. The �gure 4 illustrates the 
ase n = 2.As elements of SL(2,R) the matri
es Ai and Bi are de�ned up to multipli
ation
A2

A1

B1

∞ = [A1, B1][A2, B2]∞

B2

Figure 4. Case n = 2 in lemma 5.4.by −Id, but their 
ommutators [Ai, Bi] are well de�ned. In parti
ular, theirtra
es are well de�ned. Sin
e the matri
e h =
∏i=n

i=1 [Ai, Bi] �x the point ∞, itis triangular and its tra
e is ±2. It turns out that the tra
e of h is equal to −2(see for example [28℄, ex. 6.1, page 193 and [4℄ for results of this kind). Thus by
onjuga
y we 
an have h(x, y) = (−x+ y,−y). �Let u1, v1, ..., uk , vk be the elements of SL(2,R) given by the lemma with
n = k, and u′k+1, v

′
k+1, ..., u

′
k+l, v

′
k+l another set of elements given by the lemmawith n = l. Choose φ an elementary automorphism whi
h is not a�ne andwhi
h 
ommutes with the linear automorphism h. For instan
e, we 
an take

φ(x, y) = (x + y3, y). For all integer j between 1 and l,, note uk+j (resp. vk+j)the automorphisms φ ◦ u′k+j ◦ φ−1 (resp. φ ◦ v′k+j ◦ φ−1).Proposition 5.5. If we de�ne σ by σ(ai) = ui and σ(bi) = vi for all i =
1, · · · , k + l, then we get an isomorphism between Γg and 〈ui, vi〉.Proof. By 
onstru
tion G2k = 〈u1, v1, · · · , uk, vk〉 ⊂ SL(2,R) is a free group over
2k generators that �xes the vertex IdA in the Bass-Serre tree. On the otherhand, by 
ondition (3) of lemma 5.4, the vertex IdE is not �xed by any f ∈
G2k \ {Id}. In the same way, G2l = 〈uk+1, vk+1, · · · , uk+l, vk+l〉 ⊂ φSL(2,R)φ−1is a free group over 2l generators that �xes the vertex φA, and any g ∈ G2l \{Id}does not �x the vertex IdE (whi
h is in the middle of the path of two edgesjoining the verti
es IdA and φA).By 
onstru
tion σ is a surje
tive group morphism. Take m ∈ Γg \ {1}. Up to
onjuga
y in Γg we 
an assume that m 
an be written

m = fngn · · · f1g1 with fi ∈ F2k \ {1}, gi ∈ F2l \ {1}, n ≥ 1.
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he
k that the vertex σ(m)IdE is at distan
e 2n from IdE,in parti
ular σ(m) 6= Id and σ is inje
tive. �5.3.2. Embeddings asso
iated with an HNN-extension. Now we want to des
ribean embedding of Γg into Aut(R2) based on the presentation of Γg as an HNN-extension (here ag plays the role of the stable letter):
Γg = 〈a1, b1, · · · , ag, bg |

(

i=g−1
∏

i=1

[ai, bi]

)

bg = agbga
−1
g 〉Lemma 5.6. For all n ≥ 1 there exists matri
es A1, B1, · · · , An, Bn ∈ SL(2,R)su
h that, with the notation P =

(

1 1
0 1

):(1) 〈A1, B1, · · · , An, Bn, P 〉 generates a free group over 2n + 1 generators;(2) Q =
(

∏i=n
i=1 [Ai, Bi]

)

P is a matri
e of tra
e 2 (in parti
ular Q is 
onju-gate to P );(3) the only triangular matri
es in 〈A1, B1, · · · , An, Bn, P 〉 are the powers of
P .Proof. The proof is similar to the one of lemma 5.4. The �gure 5 illustrates the
ase n = 1. �

∞

A1

P

B1

x

Figure 5. The vertex x satis�es x = [A1, B1]P (x).Let us apply this lemma with n = g − 1, and note M the matri
e (nontriangular, be
ause it does not �x the point ∞) su
h that
MPM−1 = Q =

(

g−1
∏

i=1

[Ai, Bi]

)

P.Chose e an element of E \ A 
ommuting with P : for instan
e we 
an take
e(x, y) = (x+ y2, y).Proposition 5.7. If we de�ne σ by σ(ai) = Ai, σ(bi) = Bi for i = 1, · · · , g− 1,
σ(bg) = P , σ(ag) = M ◦ e, we get a morphism from Γg to Aut(R2) that realizesan isomorphism from Γg to its image.
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e e 
ommutes with P , σ is well de�ned and is a group morphism.The point is to prove that σ is inje
tive.Let h be an element of Γg \ {1}, we want to show that σ(h) is distin
tfrom Id. Note F ⊂ Γg the free subgroup over 2g − 1 generators generatedby a1, b1, · · · , ag−1, bg−1, bg. In restri
tion to F the morphism σ is inje
tive; sowe 
an assume that h is not in F . Up to 
onjuga
y in Γg we 
an also assumethat h admits a de
omposition as follows:
h = fna

ln
g · · · f2a

l2
g f1a

l1
g with fi ∈ F \ {1}, li ∈ Z \ {0} and n ≥ 1.Finally, we 
an assume that this is a redu
ed de
omposition, that is:

• If li < 0 and li+1 > 0 then fi is not a power of bg;
• If li > 0 and li+1 < 0 then fi is not a power of (∏i=g−1

i=1 [ai, bi]
)

bg.Indeed if the de
omposition is not redu
ed we 
an modify it and observe thatthe sum of the |li| drops. We are going to show that σ(h) does not �x the vertex
IdA, and this will prove σ(h) 6= Id. Note x0 = IdA and for all i = 1, · · · , n

xi = σ(fi)(M ◦ e)li · · · σ(f1)(M ◦ e)l1(IdA).The automorphism M ◦e = σ(ag) is an Hénon type automorphism. The asso
i-ated geodesi
 in the Bass-Serre tree 
ontains the verti
es e−1A, IdE, IdA,ME,MeAin this order, and M ◦ e a
ts on this geodesi
 as a translation of length 2. Note
yi the vertex in Geo(M ◦ e) that is the 
losest from xi, and di ∈ N the distan
ebetween yi and xi (see �gure 6). In parti
ular y0 = IdA et d0 = 0. We want toshow by indu
tion that

• yi+1 is always one of the three verti
es IdA,MeA or e−1A;
• yi+1 is the vertex e−1A if and only if li+1 is negative and σ(fi+1) is inthe group 〈P 〉 generated by P ;
• yi+1 is the vertex MeA if and only if li+1 is positive and σ(fi+1) is inthe group 〈Q〉;
• di+1 ≥ di.

yi

xi

di = 2

MEIdAIdEe−1A MeA Géo(M ◦ e)
Figure 6. The geodesi
 of M ◦ e.Remark that the powers of P �x exa
tly three verti
es of Geo(M◦e): IdA, IdEand e−1A (these three verti
es are �xed for P , and the proof of the proposition3.3 of [24℄ shows that the tree �xed by P is of diameter 2). In the same way thepowers of Q �x the verti
es IdA, ME and MeA. Furthermore, by 
ondition (3)of lemma 5.6, any other element of σ(F ) �xes only one vertex of Geo(M ◦ e):

IdA. The observations below follows easily (with the help of �gure 6) and provethe properties stated above:
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• If yi = IdA and� if li+1 < 0 and σ(fi+1) 6∈ 〈P 〉 then di+1 > di and yi+1 = IdA.� if li+1 < −1 and σ(fi+1) ∈ 〈P 〉 then di+1 > di and yi+1 = e−1A.� if li+1 = −1 and σ(fi+1) ∈ 〈P 〉 then di+1 = di and yi+1 = e−1A.� if li+1 > 0 and σ(fi+1) 6∈ 〈Q〉 then di+1 > di and yi+1 = IdA.� if li+1 > 1 and σ(fi+1) ∈ 〈Q〉 then di+1 > di and yi+1 = MeA.� if li+1 = 1 and σ(fi+1) ∈ 〈Q〉 then di+1 = di and yi+1 = MeA.
• If yi = e−1A and� if li+1 < 0 and σ(fi+1) 6∈ 〈P 〉 then di+1 > di and yi+1 = IdA.� if li+1 < 0 and σ(fi+1) ∈ 〈P 〉 then di+1 > di and yi+1 = e−1A.� if li+1 > 0: this 
ase is impossible be
ause the de
omposition of his redu
ed and be
ause of the indu
tion hypotheses.
• If yi = MeA and� if li+1 > 0 and σ(fi+1) 6∈ 〈Q〉 then di+1 > di and yi+1 = IdA.� if li+1 > 0 and σ(fi+1) ∈ 〈Q〉 then di+1 > di and yi+1 = MeA.� if li+1 < 0: this 
ase also is impossible.By indu
tion we see that if n > 1 then dn > 0, thus xn = σ(h)IdA is distin
tfrom IdA and we obtain σ(h) 6= Id (the 
ase n = 1 is trivial). �Referen
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