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Outline

This lecture is a short introduction to bandit problems and algorithms.

For an in-depth treatment, we suggest the recent book Bandit algorithms
by Lattimore and Szepesvári (2018). See also this tutorial or this blog.

Outline:

1 The K -armed bandit problem

2 Various extensions for numerous applications

3 An example in ad auction optimization

4 Next: Reinforcement Learning
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The Multi-Armed Bandit problem (MAB)

The Multi-Armed Bandit problem (MAB) is a toy problem that models
sequential decision tasks where the learner must simultaneously exploit
their knowledge and explore unknown actions to gain knowledge for the
future (exploration-exploitation tradeoff).

Toy example: playing in a casino.

Imagine we are given 1000 USD that we can use on 10 different slot
machines (or one-armed bandits), 1 USD each.

The average reward may vary from one slot machine to another. We
initially do not know which machine is optimal.

What is the best strategy to optimize our cumulative reward after
1000 rounds?

We should both try all machines (exploration) while playing an
empirically good machine sufficiently often (exploitation).
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A more serious application

Imagine you are a doctor:

Patients visit you one after another for a given disease.

You prescribe one of the (say) 5 treatments available.

The treatments are not equally efficient.

You do not know which one is the best, you observe the effect of the
prescribed treatment on each patient

 What should you do?

You must choose each prescription using only the previous
observations.

Your goal is not to estimate each treatment’s efficiency precisely, but
to heal as many patients as possible ( 6= clinical trials).
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Formal statement of the MAB problem

We write gt(i) for the reward (gain) of arm i ∈ {1, . . . ,K} at round t > 1.
We assume that the sequence of reward vectors g1, g2, . . . ∈ RK is chosen
at the beginning of the game, and is i.i.d. for the moment. We set:

µi := E
[
g1(i)

]
and µ? := max

16i6K
µi .

Online protocol: at each round t ∈ N∗,
1 The learner chooses an action It ∈ {1, . . . ,K}, possibly at random.

2 The learner receives and observes the reward gt(It), but does not
observe the reward gt(i) they would have got had they played
another action i 6= It .

Goal: minimize the (pseudo) regret

RT := max
16i6K

E

[
T∑
t=1

gt(i)

]
− E

[
T∑
t=1

gt(It)

]
= Tµ? − E

[
T∑
t=1

gt(It)

]
.

A low regret means that the learner played (in expectation) almost as
good as the best action in hindsight, which is unknown to the learner.
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The Explore-Then-Commit algorithm

Explore-Then-Commit (ETC)

Parameter: number m ∈ N∗ of initial draws for each arm.

1 At each round t ∈ {1, . . . ,mK}, choose action It = (t mod K ) + 1.

2 At each round t > mK + 1, choose the action that was empirically
best after the first phase: It = argmax16i6K µ̂i (mK ).

Theoretical guarantee: if the reward vectors g1, g2, . . . ∈ RK are i.i.d.
and each g1(i)− µi is subgaussian with variance factor σ2, then ETC
satisfies (see, e.g., Thm 6.1 by Lattimore and Szepesvári 2018)

RT 6 m
K∑
i=1

∆i + T
K∑
i=1

∆i exp

(
−m∆2

i

4σ2

)
,

where ∆i = µ? − µi is the suboptimality gap of arm i .

Consequence: for K = 2 arms with gap ∆ > 0, tuning m ≈ log(T∆2)/∆2

yields RT . log(T∆2)/∆.
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The Explore-Then-Commit algorithm

Explore-Then-Commit (ETC)

Parameter: number m ∈ N∗ of initial draws for each arm.

1 At each round t ∈ {1, . . . ,mK}, choose action It = (t mod K ) + 1.

2 At each round t > mK + 1, choose the action that was empirically
best after the first phase: It = argmax16i6K µ̂i (mK ).

Consequence: for K = 2 arms with gap ∆ > 0, tuning m ≈ log(T∆2)/∆2

yields RT . log(T∆2)/∆.

Issue 1: if T is unknown, the choice of m is impractical. Besides, the
regret RT usually grows linearly with T if m is fixed and T → +∞.

Completely stopping exploring if we do not know T is a bad idea!

Issue 2: ∆ is usually unknown.
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Proof tools: concentration of subgaussian r.v. (1)

Definition

Let v ∈ R+. A real random variable X is said to be subgaussian with
variance factor v iff

∀λ ∈ R , E
[
eλX

]
6 exp

(
λ2v

2

)
. (1)

It can be shown that a subgaussian r.v. has finite moments at all orders,
and has mean 0 and variance at most v .

Examples:

if X ∼ N (µ, σ2), then X − µ satisfies (1) with equality for v = σ2;

if X ∈ [a, b] is a bounded random variable, then X − E[X ] satisfies
(1) with v = (b − a)2/4.
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Proof tools: concentration of subgaussian r.v. (2)

Let v > 0. If X is subgaussian with variance factor v , then by Markov’s
inequality, for all x > 0 and all λ > 0,

P(X > x) = P
(
eλX > eλx

)
6 e−λx E

[
eλX

]
6 e−λx+λ2v/2 .

Optimizing in λ yields P(X > x) 6 e−x
2/(2v) for all x > 0, and

P(X 6 −x) 6 e−x
2/(2v) as well. For n independent r.v., we have:

Lemma (Subgaussian deviation inequality for the empirical mean)

Let X1,X2, . . . be i.i.d. real random variables such that X1 − µ is
subgaussian with variance factor σ2. Then, the empirical mean
µ̂n = 1

n

∑n
k=1 Xk satisfies, for all n ∈ N∗ and x > 0,

P
(
µ̂n > µ+ x

)
6 e−nx

2/(2σ2)

P
(
µ̂n 6 µ− x

)
6 e−nx

2/(2σ2)

The deviation probability bounds decrease exponentially fast with n and
x2, but increase with σ2.

8/27



The ε-Greedy algorithm

ε-Greedy

Parameters: ε1, ε2, . . . ∈ (0, 1].
At each round t > 1,

1 let Jt be the best arm so far (highest empirical average);

2 play Jt with probability 1− εt or a random uniform arm with
probability εt .

Theoretical guarantee: Auer et al. (2002a) proved that if the reward
vectors g1, g2, . . . ∈ [0, 1]K are i.i.d. and if εt ≈ K/(∆2t), then ε-Greedy
satisfies

RT .
K logT

∆2
,

where the gap ∆ is the difference between the reward expectations of the
best arm and the next best arm.

Now, T is not required to tune the algorithm, but ∆ still is.
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The UCB algorithm

This algorithm follows the ’Optimism in face of uncertainty’ principle.

UCB1 (Upper Confidence Bound) UCB.avi

Initialization: play each arm once.

At each round t > K + 1,

1 play arm It ∈ argmax16i6K

{
µ̂t−1(i) +

√
2 log t

Ti (t − 1)

}
, where

µ̂t−1(i) is the average reward of arm i up to round t − 1, and
Ti (t − 1) is the number of times arm i was played.

Theoretical guarantee: Auer et al. (2002a) proved that if the reward
vectors g1, g2, . . . ∈ [0, 1]K are i.i.d., then UCB1 satisfies

RT 6
∑

i :∆i>0

8 logT

∆i
+

(
1 +

π2

3

) K∑
i=1

∆i ,

where ∆i is the difference between the reward expectations of the best
arm and the i-th best arm. (Now, the algorithm does not use the ∆i .)
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Better performances with refined algorithms

A lot of index policies (following the work of Gittins 1979) have been
designed.

Warning: UCB should not be used in practice!

The multiplicative constant before log(T ) can be far from optimal
(relies on Hoeffding’s inequality that bounds the variance of any
random variable X ∈ [0, 1] with 1/4).

Instead KL-UCB is asymptotically optimal (relies on a Chernoff-type
inequality). Unsurprisingly much better in practice.

Several variants of KL-UCB: kl-UCB (Bernoulli), KL-UCB-switch
(also minimax optimal), etc.

Other optimal algorithms (with advantages and drawbacks):
Thompson sampling (1933), BayesUCB, IMED.
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Non-stationary rewards (Garivier and Moulines 2011)

Changepoint: reward
distributions change abruptly

Goal: follow the best arm

Application: scanning tunnelling
microscope

Variants D-UCB et SW-UCB including a progressive discount of the
past

Bounds O(
√
n log n) are proved, which is (almost) optimal
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Completely arbitrary rewards

We now consider arbitrary reward vectors g1, g2, . . . ∈ [0, 1]K (not
necessarily drawn i.i.d. from a given distribution).

Exp3 algorithm

Parameters: η1, η2, . . . > 0.

At each round t > 1,

1 compute the weight vector wt = (wt(1), . . . ,wt(K )) given by

wt(i) =
exp
(
ηt
∑t−1

s=1 g̃s(i)
)

∑K
j=1 exp

(
ηt
∑t−1

s=1 g̃s(j)
) , 1 6 i 6 K ;

where g̃s(i) = 1− 1−gs (i)
ws (i) 1Is=i is an unbiased estimator of gs(i);

2 draw It at random such that P(It = i) = wt(i).

Theoretical guarantee: Auer et al. (2002b) proved RT 6 2
√
T K lnK

with ηt =
√

ln(K )/(tK ), for arbitrary reward vectors g1, g2, . . . ∈ [0, 1]K .
(Worst guarantee than UCB1, but more robust.)
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Combinatorial bandits (1)

Sequentially choose an (ordered) subset of arms from a huge set.

Source: https://www.deezer.com/
14/27
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Combinatorial bandits (2)

Sequentially choose a path in a graph (with costs on edges).

Source: path routing example of Combes and Proutière in
https://www.sigmetrics.org/sigmetrics2015/tutorial_sigmetrics.pdf

Sequentially choose a perfect matching in a complete bipartite graph
(assignment problem).
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Continuum-armed bandits

Goal: sequentially play almost as good as the maximum of a function
f : C ⊂ Rd → R that we observe (possibly) with noise.
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Various possible models : f has a certain regularity (e.g., Lipschitz or
gradient-Lipschitz), f is the realization of a Gaussian Process, etc.

Several algorithms: zooming algorithm, HOO, GP-UCB, etc (and
other algorithms for the simple regret).
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Two examples of continuum-armed bandits

Unimodal bandits without
smoothness: trisection algo-
rithms, and better (Combes and
Proutiere, 2014).

Application to internet network
traffic optimization.

Reserve Price Optimization in
Second-price Auctions (Cesa-
Bianchi et al., 2015).

Application to ad placement.
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Example: online reserve price optimization (1)

Ad auction:

Online advertising: consider a publisher (seller) who want to sell an
ad space to advertisers (buyers) through second-price auctions
managed by an ad exchange.

For each impression (ad display) created on the publisher’s website,
the ad exchange runs an auction on the fly.

Second-price auction:

Simultaneously, all buyers propose a price (bid) to the ad exchange.

The buyer with the highest bid wins the auction but pays the second
highest price.

This is a truthful mechanism.
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Example: online reserve price optimization (2)

The seller has an additional degree of freedom: the reserve price,
which corresponds to the minimal revenue they are willing to get.

Before the auction, the seller communicates a reserve price y to the
ad exchange (the reserve price is unknown to the buyers).

If the reserve price y is larger than the highest bid b(1), the auction
is lost. Otherwise, the buyer with the highest bid wins the auction.

The winner pays the maximum of the second-highest bid b(2) and the
reserve price y . The seller’s revenue is g(y) = max{b(2), y}1b(1)>y .
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0.2

0.4

0.6
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b(2) b(1)
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Example: online reserve price optimization (3)

Assume now that the publisher participates to a series of auctions. The
task of sequentially optimizing the reserve price can be phrased as a
continuum-armed bandit problem: at each round t > 1,

the seller sets a reserve price ŷt ∈ [0, 1];

simultaneously, a set of buyers propose bids
bt(1) > bt(2) > · · · ∈ [0, 1] (sorted in decreasing order);

the seller receives and observes the revenue
gt(ŷt) = max{bt(2), ŷt}1bt(1)>ŷt .

Cesa-Bianchi et al. (2015) proposed an algorithm for the case when the
bids are i.i.d. accross the buyers and time. They proved a Õ(

√
T ) upper

bound on the (pseudo) regret

RT := sup
y∈[0,1]

E

[
T∑
t=1

gt(y)

]
− E

[
T∑
t=1

gt(ŷt)

]
.
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Contextual bandits

Before choosing the arm It ∈ {1, . . . ,K} or (more generally) the action
ŷt ∈ Y, the learner has access to a context xt ∈ X .

Example: in ad auctions, the context may contain different properties of
the customer or of the ad space.

General setting = contextual bandits: at each round t ∈ N∗,
1 The environment reveals a context xt ∈ X .

2 The learner chooses an action ŷt ∈ Y, possibly at random.

3 The learner receives and observes a reward gt(ŷt).

The goal is now to minimize the pseudo regret w.r.t. a (nonparametric)
set of functions F ⊂ YX (e.g., Cesa-Bianchi et al. 2017):

RT := sup
f∈F

E

[
T∑
t=1

gt
(
f (xt)

)]
− E

[
T∑
t=1

gt(ŷt)

]
.
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Best-arm identification

Also sometimes called pure exploration.

Previous goal: maximize the cumulative reward.

Now: identify arm with maximal expectation: i∗ ∈ argmax16i6K µi .
For example, given δ, minimize the expected number of trials E[τδ]

while ensuring the final recommandation î is most probably correct:

P
(
î 6= i∗

)
6 δ .

Applications:

clinical trials

A/B testing (for, e.g., website design)

continuous action space: zero-order stochastic optimization

See, e.g., Garivier and Kaufmann (2016).
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Thresholding bandits
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And much more!
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Header bidding auction optimization

Joint work: Jauvion et al. (2018).

See the beautiful slides from Nicolas Grislain (alephd):

https://alephd.github.io/assets/header_bidding/slides/
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Conclusion

Take-home message: bandits = exploration-exploitation tradeoff.

Bandit problems are sequential decision models where the learner must
simultaneously:

exploit their current knowledge;

explore unknown actions to gain knowledge for the future.

Forgetting about the future can be terribly bad!

There are multiple variants of the simple K -armed bandit problem that
have been designed for numerous applications.

There are also pure-exploration bandit problems.
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Next: MDP and Reinforcement Learning

Bandits

Bandit models are simple models that stress the importance to
combine exploitation with exploration.

Yet, making an action does not change the state of the environment.

Reinforcement Learning

RL studies ”learning from interaction to achieve a goal”.

Markov Decision Processes are more general models that include a
state that can evolve over time, based on the actions of the learner.

Example: inverted pendulum https://www.youtube.com/watch?v=Lt-KLtkDlh8

See Reinforcement Learning, Sutton and Barto, 2018,
and Erwan Le Pennec’s reading notes:
http://www.cmap.polytechnique.fr/~lepennec/enseignement/RL/Sutton.pdf
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