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1Università degli Studi di Milano, Milano, Italy
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Setting: online nonparametric (contextual) learning

Online protocol: at each round t ∈ N∗,
1 The environment reveals a context vector xt ∈ [0, 1]d .

2 The learner chooses an action ŷt ∈ [0, 1].

3 The learner suffers the loss `t(ŷt) and obtains feedback:

the instantaneous loss `t(ŷt) in the bandit setting
`t(y) for all y > ŷt in the one-sided feedback setting
the loss function `t in the full-information setting.

Goal: denoting by F the set of 1-Lipschitz functions from [0, 1]d to [0, 1]
(for some given norms), we want to minimize the regret

RegT (F) :=
T∑
t=1

`t
(
ŷt
)
− inf

f∈F

T∑
t=1

`t
(
f (xt)

)
.

The sequence (xt , `t)t>1 is arbitrary and fixed at the beginning of the
game; the loss functions `t satisfy a Lipschitz-type assumption.
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An example of one-sided full information feedback

Online second-price auctions with reserve price:

Seller with hidden reserve price ŷt (minimal revenue), multiple bidders

The highest bidder wins the auction but pays the minimum of the
second-highest bid and the reserve price (unless the reserve price is
too big and the auction is lost).
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If the seller observes the highest bid along with her revenue, she can
compute `t(y) for all y > ŷt  one-sided full information feedback.
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Full information feedback (suboptimal approach)

The learner observes `t(·) at the end of round t.

Natural but suboptimal approach: discretize the set F of 1-Lipschitz
functions from [0, 1]d to [0, 1]:

in sup norm, this set can be approximated at precision ε with roughly

Nε ≈ 2(1/ε)d functions;

using a classical mixture algorithm (like Hedge) on these Nε experts
yields regret

RegT (F) .
√
T lnNε + Tε if the `t are (semi-)Lipschitz

. T (d+1)/(d+2) when optimizing in ε

Why suboptimal? We treat the functions in the discretization as
uncorrelated experts, which is too pessimistic and harmful when F is large.
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Full information: less pessimistic approach via chaining

Build a hierarchy of discretizations:

the level-m discretization approximates F with precision 2−m;

each level-m node is connected to its closest level-(m − 1) node;
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Hierarchical Hedge algorithm:

each leaf h recommends its own (discretized) action h(xt);

each internal node hosts an instance of Hedge using its children as
experts; its regret is at most of order 2−m

√
T lnN2−m at level m since

its children’s losses are 2−m-close.
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Hierarchical Hedge algorithm:

each leaf h recommends its own (discretized) action h(xt);

each internal node hosts an instance of Hedge using its children as
experts; its regret is at most of order 2−m

√
T lnN2−m at level m since

its children’s losses are 2−m-close.
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Chaining (continued)

Summing the local regret bounds over any path in the tree, we obtain a
regret bound of

RegT (F) .
M−1∑
m=0

2−m
√
T lnN2−m + 2−MT ≈

{ √
T if d ∈ {1, 2}

T (d−1)/d if d > 3.

Remarks:

Same upper bound as the one proven by Rakhlin et al. (2015) in a
nonconstructive manner.

Matches the lower bound of Hazan and Megiddo (2007).

Our approach generalizes that of Cesa-Bianchi and Lugosi (1999) and
Gaillard and Gerchinovitz (2015) to nonconvex Lipschitz losses.

A variant of this hierarchical composition of Hedge instances can be
implemented in polynomial time.
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Can we use chaining for other feedbacks?

Bandit feedback

Bad news: deriving regret bounds that scale as the effective range of
the arms’ losses, which was key for full information, is not possible in
general for adversarial bandits (Gerchinovitz and Lattimore, 2016).

Regret bounds : T (d+2)/(d+3) for semi-Lipschitz losses or T (d+1)/(d+2)

for convex Lipschitz losses. See also the work of Slivkins (2014).

One-sided full-information feedback

This stronger feedback, together with Lipschitzness of the losses,
enables us to derive a regret bound for a variant of Exp4 that scales
as the effective range of the arms’ losses.

Hierarchical algorithm: in the earlier tree, we replace Hedge with
Exp4. We obtain a regret of order T d/(d+1) or even T (d−1/3)/(d+2/3)

with an additional hierarchical penalization trick.
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A brief summary of our results

More details at the poster session!

Feedback model Loss functions Upper bound

Bandit
Lipschitz T

d+2
d+3

Convex T
d+1
d+2

One-sided full information
Semi-Lipschitz T

d+1
d+2

Lipschitz T
d−1/3
d+2/3

Full information Lipschitz T
d−1
d

Table: Some regret bounds obtained in this paper (up to log factors).
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