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We discuss a braided monoidal category Y whose objects are semistandard
Young tableaux, and a tensor structure comes from the classical Knuth’s product
of tableaux.

The category Y descends by means of the RSK correspondence from the
universal braided monoidal category CM introduced in [KS].

This is work in progress, a complement to [KS].
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§1. Robinson - Shensted - Knuth correspondence

1.1. Contingency tables and generalized permutations. Recall (cf. [P])
that a contingency table is a rectangular matrixA = (aij) with integer nonnegative
coefficients, cf. also [DK] where they appear under the name arrays.

If such A has size, say, n×m, then we remark with Knuth, cf. [Kn], that it is
the same as a "generalized permutation" : a two line array of integers

Perm(A) =

(
u
v

)
=

(
u1 . . . uk
v1 . . . vk

)
(1.1.1)

with
1 ≤ u1 ≤ . . . ≤ uk

and if i ≤ j, ui = uj then vi ≤ vj, i.e. the columns are arranged lexicografically,
with

aij = number of occurences of a column i
j
in (1.1.1).

Thus

the number of i’s among up’s = ΣiA :=
∑

j aij,

(i-th horizontal margin), so

k = ΣA :=
∑
i,j

aij.

Concatenation

Let CMnm denote the set of contingency tables with n rows and m columns.
We have an associative operation

CMnm × CMn′m −→ CMn+n′,m, (A,B) 7→
(
A
B

)
.

On the other hand we have an obvious operation of concatenation for generalized
permutations generalizing embeddings of symmetric groups

Sn × Sn′ −→ Sn+n′

Evidently

Perm

(
A
B

)
= Perm(A)Perm(B) (1.1.2)
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1.2. Insertion. Recall the notions of SYT and SSYT.

A SYT may be defined inductively, using a growth procedure.

We have a basic operation of insertion of a natural number v to a SSYT T , to
be denoted

Iv(T )

for example
Iv(∅) = u

Each SSYT may be obtained by a sequence of insertions from the empty tableau.

However such a representation is not unique.

1.2.1. Example of a SSYT (in fact it is standard):

T =
1 2 4 8 9
3 5 7
6

We have
T = I9I8I4I2I1I7I5I3I6(∅)

(we go downstairs by the rows and from right to the left in each row; this is a
distinguished way).

1.3. RSK correspondence. To a generalized permutation Perm(A) one
associates a couple of semistandard Young tableaux (P (A), Q(A)) of the same
shape with N = ΣA cells, with

P (A) = Iv(∅) = IvN . . . Iv1(∅)
and Q encodes the order of adding cells to P , cf. [S].

We have
Q(A) = P (At),

cf. [Kn], Thm. 3.

Each SSYT T is P (A) for some A ∈ CM . The number of cells in T = ΣA.

1.4. A geometric interpretation of RSK (for standard Young tableaux) was
given by R.Steinberg, [Ste]. It is based on the following fact.

Let V be an n-dimensional vector space over an infinite field. Any unipotent
automorphism u of V defines a partition

λ = (λ1 ≥ λ2 ≥ . . .)

of n where λi are the sizes of the Jordan blocks for u, and therefore a Young
diagram Tλ.
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Let F be the variety of full flags in V , and

Fλ = {(V1 ⊂ V2 ⊂ . . . ⊂ Vn = V | ∀i u(Vi) = Vi} ⊂ F

Then

the set of irreducible components of Fλ is in bijection with the set of SYT with
table Tλ.

1.5. Knuth describes the fibers of the map

P : CM −→ Y

by means of certain equivalence relation on CM , see [Kn], Th. 6.

Standard Young tableaux correspond to permutation matrices. The corresponding
equivalence relation appeared in [KL] who in turn refer to Vogan, Jantzen and
Joseph, see [KL], §5, and is defined for any Weil groupW ; the equivalence classes
are called left cells.

§2. Knuth multiplication and a braided structure

2.1. Multiplication of tableaux and Knuth’s theorem. More generally,
Knuth introduces an associative operation of multiplication for SSYT.

If T = P (A) = Iv(∅) as above and T ′ is another SSYT then

T ′ · T = Iv(T ′) = IvN . . . Iv1(T
′) (2.1.1)

If T ′ = Perm(B) then

T ′ · T = Perm

(
A
B

)
, (2.1.2)

cf. (1.1.2) and [Kn], Corollary of Thm. 6, [Kn2], 5.1.4.

2.2. Braided category CM. On the other hand we know from [KS] that
the concatenation of contingency tables is a part of certain braided structure.
Namely, one defines an additive braided tensor category CM whose objects are all
contingency tables (matrices), and morphisms are generated by certain "fusions"
of matrices (called "contractions" in op. cit.), subject to some relations.

More precisely, one introduces two operations called vertical and horizontal
fusions on the set CM where the vertical (resp. horizontal) fusion does not change
the number of rows (resp. columns); both operations do not change ΣM .

They give rise to two partial orders on CM denoted by ≤v,≤h.
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The arrows in CM are generated by:

hM ′M : M ′ −→M if M ′ ≤h M , and

hMM ′′ : M −→M ′′ if M ′′ ≤v M .

They are subject to the transitivity relations, and to the mixed relation:

hABvCA =
∑

D:B≤vD,C≤hD

vDBhCD

A fusion of a matrix M is called anodyne if it does not change the set of nonzero
elements of M . We require that the anodyne fusions become invertible arrows in
CM.

CM is generated as a tensor category by the collection of 1 × 1 contingency
tables An = (n) whose tensor products form an N-graided braided bialgebra a in
CM.

We have an orthogonal decomposition
CM = ⊕n≥0CMn

where CMn is the full subcategory of contingency tables A with ΣA = n.

If k is a field then the category of additive functors Funct(CMn;V ectf (k)) is
equivalent to the category Perv(Symn(C), S) of perverse sheaves on Symn(C) =
Cn/Σn smooth along the diagonal stratification S.

2.3. Example: CM2.

This part corresponds to

A2

∆
−→
←−
µ′

A1 ⊗ A1

Relation:
∆µ′ = 1 +R

where
R : A1 ⊗ A1

∼−→ A1 ⊗ A1.
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A picture in CM2: (
1 0
0 1

) β
∼←−

(
1
1

) α
∼−→

(
0 1
1 0

)
δ ↓ µ ↓ ↓ γ

(1 1)
ν←− (2)

ν−→ (1 1)
γ ↑ µ ↑ ↑ δ(
0 1
1 0

) α
∼←−

(
1
1

) β
∼−→

(
1 0
0 1

)
(a)

The maps α, β, γ, δ are anodyne, whence invertible.

Relation:
νµ = γα + δβ,

or
νµα−1γ−1 = 1 + δβα−1γ−1

which is the same as
∆µ′ = 1A1⊗A1 +R,

comme il faut.

Corresponding diagram of generalized permutations:
1 2
1 2

∼←− 1 2
1 1

∼−→ 1 2
2 1

↓ µ ↓ ↓
1 1
1 2

←− 1 1
1 1

ν−→ 1 1
1 2

↑ ↑ ↑
1 2
2 1

∼←− 1 2
1 1

∼−→ 1 2
1 2

(b)
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Corresponding diagram of semistandard Young tableaux, Y2:

1 2
β
∼←− 1 1

α
∼−→ 1

2
δ ↓ µ ↓ ↓ γ
1 2 ν←− 1 1 ν−→ 1 2
γ ↑ µ ↑ ↑ δ
1
2

α
∼←− 1 1

β
∼−→ 1 2

(c)

Note that here µ = 1 1 1 , and δ = 1 1 2
Relation:

ν = γα + δβ = γα + β,

or
να−1γ−1 = 1 1 2 + βα−1γ−1

So Y2 has three objects which are all SSYT with two cells with contents {1} or
{1, 2}.

Warning: all objects of Y2 are isomorphic but Y2 is not a groupoid, it is an
additive category.

2.4. Example: CM3 and Y3. (a) A part of CM3 corresponding to

A3
←−−→ A2 ⊗ A1 ⊕ A1 ⊗ A2

will be (
1 0
0 2

) β
∼←−

(
1
2

) α
∼−→

(
0 1
2 0

)
δ ↓ µ ↓ ↓ γ

(1 2)
ν←− (3)

ν−→ (2 1)
γ′ ↑ µ′ ↑ ↑ δ′(
0 2
1 0

) α′
∼←−

(
2
1

) β′
∼−→

(
2 0
0 1

)
(a)
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(c) A part of Y3 corresponding to

Y3
←−−→ Y2 ⊗ Y1 ⊕ Y1 ⊗ Y2

will be

1 2 2
β
∼←− 1 1 1

α
∼−→ 1 1

2
δ ↓ µ ↓ ↓ γ

1 2 2 ν←− 1 1 1 ν−→ 1 1 2
γ′ ↑ µ ↑ ↑ δ′

1 2
2

α′
∼←− 1 1 1

β′
∼−→ 1 1 2

(c)

Note that here

µ = 1 1 1 1 , δ = 1 1 2 2 , δ
′ = 1 1 1 2

Objects of Y3 are all SSYT with 3 cells and contents {1}, {1, 2} or {1, 2, 3}.
The absence of gaps in the contents corresponds to the absence of rows with

all zeros in the contingency tables.

For a SSYT Y let max(Y ) denote the maximal number in the contents of Y .

There are 5 = 1 + 4 objects in the ”A1 ⊗ A2” local system over

X2 = Sym2C \∆,

they are all SSYT Y with 3 cells, no gaps, and max(Y ) ≤ 2.

There are 9 = 1 + 4 + 4 objects in the ”A⊗31 ” local system over

X3 = Sym3C \ ∪(diagonals),

they are all SSYT Y with 3 cells, no gaps, and max(Y ) ≤ 3, see below §3.

2.5. The general case seems similar. The objects of Yn are all SSYT Y with
n cells, no gaps, and max(Y ) ≤ n.

For each partition of n,

n = (n1, . . . , np),
∑

ni = n, n1 ≥ . . . ≥ np

we have a local system ”An”, or

”An1 ⊗ . . .⊗ Anp”

over
Xn = SymnC \ ∪(diagonals),

given by a groupoid whose objects are all SSYT Y with n cells, no gaps, and
max(Y ) ≤ n.
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2.6. Let Yn denote the row tableaux with all 1’s. The tensor product Yn ⊗ Ym
is a row tableau with n 1’s followed by m 2’s, etc.

2.6.1. Conjecture. Y = ⊕n≥0Yn is equivalent to a free N-graded braided
monoidal category with Y0 = {1} and one generator y = 1 ∈ Y1.

2.7. Relation to the plactic monoid? In [F], 2.1 Fulton defines a plactic
monoid

M = F/R

and says that the monoid of tableaux is isomorphic to M .

§3. Details for CM3 and Y3

3.1. Here is the 3× 3 master square A3 for CM3:

{

1
1
1

} ←− {

0 1
1 0
1 0

 ,

1 0
0 1
0 1

1 0
0 1
1 0

 ,

0 1
1 0
0 1

1 0
1 0
0 1

 ,

0 1
0 1
1 0


} ←− {

1 0 0
0 1 0
0 0 1

 ,

0 1 0
1 0 0
0 0 1

0 1 0
0 0 1
1 0 0

 ,

1 0 0
0 0 1
1 0 0

0 0 1
0 1 0
1 0 0

 ,

0 0 1
1 0 0
0 1 0


}

↓ ↓ ↓

{

(
2
1

)
(

1
2

)} ←− {

(
1 1
0 1

)
,

(
1 1
1 0

)
(

0 1
1 1

)
,

(
1 0
1 1

)
(

2 0
0 1

)
,

(
0 2
1 0

)
(

0 1
2 0

)
,

(
1 0
0 2

)
} ←− {

(
0 1 1
1 0 0

)
,

(
1 0 1
0 1 0

)
(

1 1 0
0 0 1

)
,

(
1 0 0
0 1 1

)
(

0 1 0
1 0 1

)(
0 0 1
1 1 0

) }

↓ ↓ ↓
{(3)} ←− {

(
2 1

)
,
(
1 2

)
} ←− {

(
1 1 1

)
}
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3.2. The cardinal matrix :

A3 = |A3| =

1 6 6
2 8 6
1 2 1


A finer structure on A3:

A3 =

1 6 6
2 4 + 4 6
1 2 1


Here 8 = 4 + 4 means that the set A3(2, 2) contains 4 matrices with contents
{1, 2} and 4 matrices with contents {1, 1, 1}.
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3.3. Metamatrix of weight n = 3.

3.3.1. First line:

m11:

(3);

(
1 1 1
1 1 1

)
; 1 1 1 , 1 1 1 |

m12, 2 elements:

(
2 1

)
;

(
1 1 1
1 1 2

)
; 1 1 2 , 1 1 1 |

(
1 2

)
;

(
1 1 1
1 2 2

)
; 1 2 2 , 1 1 1

m13:

(
1 1 1

)
;

(
1 1 1
1 2 3

)
; 1 2 3 , 1 1 1

3.3.2. Second line:

m21, 2 elements:

(
1
2

)
;(

2
1

)
;

(
1 2 2
1 1 1

)
; 1 1 1 , 1 2 2(

1 1 2
1 1 1

)
; 1 1 1 , 1 1 2

m22, the central element, consisting of 8 = 4 + 4 elements:

(a) 4 of contents {1, 1, 1}:

(
1 1
1 0

)
;

(
1 1 2
1 2 1

)
; 1 1
2 , 1 1

2 |
(

1 1
0 1

)
;

(
1 1 2
1 2 2

)
; 1 2 2 , 1 1 2

(
1 0
1 1

)
;

(
1 2 2
1 1 2

)
; 1 1 2 , 1 2 2 |

(
0 1
1 1

)
;

(
1 2 2
2 1 2

)
; 1 2
2 , 1 2

2

(b) and 4 of contents {1, 2}:
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(
0 1
2 0

)
;

(
1 2 2
2 1 1

)
; 1 1
2 , 1 2

2 |
(

0 2
1 0

)
;

(
1 1 2
2 2 1

)
; 1 2
2 , 1 1

2

(
2 0
0 1

)
;

(
1 1 2
1 1 2

)
; 1 1 2 , 1 1 2 |

(
1 0
0 2

)
;

(
1 2 2
1 2 2

)
; 1 2 2 , 1 2 2

m23, 6 = 3 + 3 elements:

(a) (
1 0 0
0 1 1

)
;

(
1 2 2
1 2 3

)
; 1 2 3 , 1 2 2(

0 1 0
1 0 1

)
;

(
1 2 2
2 1 3

)
; 1 3
2 , 1 2

2 |
(

0 0 1
1 1 0

)
;

(
1 2 2
3 1 2

)
; 1 2
3 , 1 2

2

(b)(
0 1 1
1 0 0

)
;

(
1 1 2
2 3 1

)
; 1 3
2 , 1 1

2 |
(

1 0 1
0 1 0

)
;

(
1 1 2
1 3 2

)
; 1 2
3 , 1 1

2(
1 1 0
0 0 1

)
;

(
1 1 2
1 2 3

)
; 1 2 3 , 1 1 2

We see that the first tableau is standard, whereas the second one is not.

3.3.3. Third line:

m31: 1
1
1

 ;

(
1 2 3
1 1 1

)
; 1 1 1 , 1 2 3

m32, 6 = 3 + 3 elements:

0 1
1 0
1 0

 ;

(
1 2 3
2 1 1

)
; 1 1
2 , 1 3

21 0
0 1
1 0

 ;

(
1 2 3
1 2 1

)
; 1 1
2 , 1 2

3
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1 0
0 1

 ;

(
1 2 3
1 1 2

)
; 1 1 2 , 1 2 3

and 1 0
0 1
0 1

 ;

(
1 2 3
1 2 2

)
; 1 2 2 , 1 2 3

0 1
1 0
0 1

 ;

(
1 2 3
2 1 2

)
; 1 2
2 , 1 3

20 1
0 1
1 0

 ;

(
1 2 3
2 2 1

)
; 1 2
2 , 1 2

3

The corner,

m33, 6 = 3 + 3 = 2 + 2 + 2 elements (all permutation matrices):

We have 3 shapes, and 4 standard tableaux:

1 2 3 , 1 2
3 , 1 3

2 ,
1
2
3
,

Correspondingly,
3! = 12 + 22 + 12

Elements: 0 0 1
1 0 0
0 1 0

 ;

(
1 2 3
3 1 2

)
; 1 2
3 , 1 3

20 0 1
0 1 0
1 0 0

 ;

(
1 2 3
3 2 1

)
;
1
2
3
,
1
2
3

*** 1 0 0
0 0 1
0 1 0

 ;

(
1 2 3
1 3 2

)
; 1 2
3 , 1 2

30 1 0
0 0 1
1 0 0

 ;

(
1 2 3
2 3 1

)
; 1 3
2 , 1 2

3
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*** 1 0 0
0 1 0
0 0 1

 ;

(
1 2 3
1 2 3

)
; 1 2 3 , 1 2 3

0 1 0
1 0 0
0 0 1

 ;

(
1 2 3
2 1 3

)
; 1 3
2 , 1 3

2

That’s it for n = 3.

3.4. Young metamatrix, n = 3.

3.4.1. We list here both tableaux P,Q.

For a Young tableau T , let

|T | = the biggest number in T .

In our n×n metamatrix M = (Mij) there will be all couples (T ′, T ′′) of SSYT
on n boxes where T ′, T ′′ have the same shape.

Mpq = {(T ′, T ′′)| |T ′| = p, |T ′′| = q}

Matrix:

1 1 1 , 1 1 1 1 1 2 , 1 1 1 ; 1 2 2 , 1 1 1 1 2 3 , 1 1 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 1 1 , 1 2 2
1 1 1 , 1 1 2

1 1
2 , 1 1

2 ; 1 2 2 , 1 1 2

1 1 2 , 1 2 2 ; 1 2
2 , 1 2

2
1 1
2 , 1 2

2 ; 1 2
2 , 1 1

2
1 1 2 , 1 1 2 ; 1 2 2 , 1 2 2

1 2 3 , 1 2 2
1 3
2 , 1 2

2 ; 1 2
3 , 1 2

2
1 3
2 , 1 1

2 ; 1 2
3 , 1 1

2
1 2 3 , 1 1 2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 1 1 , 1 2 3

1 1
2 , 1 3

2 ; 1 1
2 , 1 2

3
1 1 2 , 1 2 3 ; 1 2 2 , 1 2 3

1 2
2 , 1 3

2 ; 1 2
2 , 1 2

3

1 2
3 , 1 3

2 ;
1
2
3
,
1
2
3

1 2
3 , 1 2

3 ; 1 3
2 , 1 2

3

1 2 3 , 1 2 3 ; 1 3
2 , 1 3

2
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3.4.2. Only tableaux P left:

1 1 1 1 1 2 1 2 2 1 2 3
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 1 1
1 1 1

1 1
2 1 2 2

1 1 2 ; 1 2
2

1 1
2

1 2
2

1 1 2 1 2 2

1 2 3
1 3
2

1 2
3

1 3
2

1 2
3

1 2 3

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 1 1

1 1
2

1 1
2

1 1 2 1 2 2
1 2
2

1 2
2

1 2
3

1
2
3

1 2
3

1 3
2

1 2 3 1 3
2

3.5. The category Y3 has 9 objects:

1 1 1 , 1 1 2 , 1 2 2 ,

1 1
2 , 1 2

2 ,

1 2 3 ,

1 2
3 , 1 3

2 ,

and
1
2
3
.
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