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Introduction

0.1. Let A(R) be the Cartan matrix of a finite root system R. The coordinates
of its eigenvectors have an important meaning in the physics of integrables
systems: namely, these numbers appear as the masses of particles (or, dually,
as the energy of solitons) in affine Toda field theories, cf. [F], [D].

Historically, the first example of the system of typeE8 appeared in the pioneering
papers [Z] on the 2D critical Ising model in a magnetic field.

The aim of this note is a study of these numbers, and their q-deformations,
using the motivation coming from the singularity theory.

Let us suppose that R is simply laced, i.e. of type A,D, or E. These root
systems are in one-to-one correspondence with (classes of) simple singularities
f : CN −→ C, cf. [AGV]. Under this correspondence, the root lattice Q(R) is
identified with the lattice of vanishing cycles, and the Cartan matrix A(R) is the
intersection matrix with respect to a distinguished base. The action of the Weyl
group on Q(R) is realized by Gauss - Manin monodromies - this is the Picard -
Lefschetz theory (for some details see §1 below).

Remarkably, this geometric picture provides a finer structure: namely, the
symmetric matrix A = A(R) comes equiped with a decomposition

A = L+ Lt (0.1)

where L is a nondegenerate triangular ”Seifert form”, or ”variation matrix”. The
matrix

C = −L−1Lt (0.2)

represents a Coxeter element of R; geometrically it is the operator of ”classical
monodromy”.
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We call the relation (0.1) - (0.2) between the Cartan matrix and the Coxeter
element the Cartan/Coxeter correspondence.

Incidentally, in a particular case (corresponding to a bipartition of the Dynkin
graph) this relation is equivalent to an observation by R.Steinberg, cf. [Stein], cf.
2.4 below. It enables one to relate the eigenvectors of A and C, cf. Theorem 2.5.

A decomposition (0.1) will be called a polarization of the Cartan matrix A.
In 2.3 below we introduce an operation of Sebastiani - Thom, or joint product
A ∗B of Cartan matrices (or of polarized lattices) A and B. With respect to this
operation the Coxeter eigenvectors factorize very simply.

In this note we will mainly concentrate on the example of E8; this lattice
decomposes into three ”quarks”:

E8 = A4 ∗ A2 ∗ A1 (0.3)

This decomposition is the main message from the singularity theory, and we
discuss it in detail in this note.

We use (0.3) and the Cartan/Coxeter correspondence to obtain some expressions
for all Cartan eigenvectors of E8; this is the first main result of this note, see 3.9
below.

(An elegant expression for all the Cartan eigenvectors of all finite root systems
was obtained by P.Dorey, cf. [D] (a), Table 2 on p. 659.)

0.2. In the paper [Giv] A.Givental has proposed a q-twisted version of the
Picard - Lefschetz theory, which gave rise to a q-deformation of A,

A(q) = L+ qLt.

In the last section, §4, we calculate the eigenvalues and eigenvectors of A(q) in
terms of the eigenvalues and eigenvectors of A. This is the second main result of
this note.

It turns out that if λ is an egenvalue of A then

λ(q) = 1 + (λ− 2)
√
q + q (0.4)

will be an eigenvalue of A(q). The coordinates of the corresponding eigenvector
v(q) are obtained from the coordinates of v = v(1) by multiplication by appropriate
powers of q; this is related to the fact that the Dynkin graph of A is a tree, cf.
4.9.

For an example of E8, see (4.5.1).

We are grateful to Misha Finkelberg, Andrei Gabrielov, and Sabir Gusein-Zade
for the inspiring correspondence, and to Patrick Dorey for sending us his thesis.
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§1. Recollections from singularity theory

Here we recall some classical constructions and statements, cf. [AGV].

This section plays a motivational role: formally the results of the following
sections are purely algebraic, and do not depend on it, however, one could not
arrive at them without this geometric motivation.

1.1. Let f : (CN , 0) −→ (C, 0) be the germ of a holomorphic function with an
isolated critical point at 0, with f(0) = 0. We will be interested only in polynomial
functions (from the list below, cf. 1.4), so f ∈ C[x1, . . . , xN ]. The Milnor ring of
f is defined by

Miln(f, 0) = C[[x1, . . . , xN ]]/(∂1f, . . . , ∂Nf)

where ∂i := ∂/∂xi; it is a finite-dimensional commutative C-algebra. (In fact, it
is a Frobenius, or, equivalently, a Gorenstein algebra.) The number

µ := dimC Miln(f, 0)

is called the multiplicity or Milnor number of (f, 0).

A Milnor fiber is
Vz = f−1(z) ∩ B̄ρ

where
B̄ρ = {(x1, . . . , xN)|

∑
|xi|2 ≤ ρ}

for 1� ρ� |z| > 0.

For z belonging to a small disc Dε = {z ∈ C| |z| < ε}, the space Vz is a
complex manifold with boundary, homotopically equivalent to a bouquet ∨SN−1
of µ spheres, [M].

The family of free abelian groups

Q(f ; z) := H̃N−1(Vz;Z)
∼
= Zµ, z ∈

•
Dε := Dε \ {0}, (1.1.1)

(H̃ means that we take the reduced homology for N = 1), carries a flat Gauss -
Manin conection.

Take t ∈ R>0 ∩
•
Dε; the lattice Q(f ; t) does not depend, up to a canonical

isomorphism, on the choice of t. Let us call this lattice Q(f). The linear operator

T (f) : Q(f)
∼−→ Q(f) (1.1.2)

induced by the path p(θ) = eiθt, 0 ≤ θ ≤ 2π, is called the classical monodromy
of the germ (f, 0).
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In all the examples below T (f) has finite order h. The eigenvalues of T (f) have
the form e2πik/h, k ∈ Z. The set of suitable chosen k’s for each eigenvalue are
called the spectrum of our singularity.

1.2. Morse deformations. The C-vector space Miln(f, 0) may be identified
with the tangent space to the base B of the miniversal defomation of f . For

λ ∈ B0 = B \∆

where ∆ ⊂ B is an analytic subset of codimension 1, the corresponding function
fλ : CN −→ C has µ nondegenerate Morse critical points with distinct critical
values, and the algebra Miln(fλ) is semisimple, isomorphic to Cµ.

Let 0 ∈ B denote the point corresponding to f itself, so that f = f0, and pick
t ∈ R>0 ∩

•
Dε as in 1.1.

Afterwards pick λ ∈ B0 close to 0 in such a way that the critical values z1, . . . zµ
of fλ have absolute values << t.

As in 1.1, for each
z ∈ D̃ε := Dε \ {z1, . . . zµ}

the Milnor fiber Vz has the homotopy type of a bouquet ∨SN−1 of µ spheres, and
we will be interested in the middle homology

Q(fλ; z) = H̃N−1(Vz;Z)
∼
= Zµ

(H̃ means that we take the reduced homology for N = 1).

The lattices Q(fλ; z) carry a natural bilinear product induced by the cup
product in the homology which is symmetric (resp. skew-symmetric) when N
is odd (resp. even).

The collection of these lattices, when z ∈ D̃ε varies, carries a flat Gauss - Manin
connection.

Consider an ”octopus”
Oct(t) ⊂ C

with the head at t: a collection of non-intersecting paths pi (”tentacles”) connecting
t with zi and not meeting the critical values zj otherwise. It gives rise to a base

{b1, . . . , bµ} ⊂ Q(fλ) := Q(fλ; t)

(called ”distinguished”) where bi is the cycle vanishing when being transferred
from t to zi along the tentacle pi, cf. [Gab], [AGV].

The Picard - Lefschetz formula describe the action of the fundamental group
π1(D̃ε; t) on Q(fλ) with respect to this basis. Namely, consider a loop γi which
turns around zi along the tentacle pi, then the corresponding transformation of
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Q(fλ) is the reflection (or transvection) si := sbi , cf. [Lef], Théorème fondamental,
Ch. II, p. 23.

The loops γi generate the fundamental group π1(D̃ε). Let

ρ : π1(D̃ε; t) −→ GL(Q(fλ))

denote the monodromy representation. The image of ρ, denoted by G(fλ) and
called the monodromy group of fλ, lies inside the subgroup
O(Q(fλ)) ⊂ GL(Q(fλ)) of linear transformations respecting the above mentioned
bilinear form on Q(fλ).

The subgroup G(fλ) is generated by si, 1 ≤ i ≤ µ.

As in 1.1, we have the monodromy operator

T (fλ) ∈ G(fλ),

the image by ρ of the path p ⊂ D̃ε starting at t and going around all points
z1, . . . , zµ.

This operator T (fλ) is now a product of µ simple reflections

T (fλ) = s1s2 . . . sµ,

- this is because the only critical value 0 of f became µ critical values z1, . . . , zµ
of fλ.

One can identify the relative (reduced) homology H̃N−1(Vt, ∂Vt;Z) with the
dual group H̃N−1(Vt;Z)∗, and one defines a map

var : H̃N−1(Vt, ∂Vt;Z) −→ H̃N−1(Vt;Z),

called a variation operator, which translates to a map

L : Q(fλ)
∗ ∼−→ Q(fλ)

(”Seifert form”) such that the matrixA(fλ) of the bilinear form in the distinguished
basis is

A(fλ) = L+ (−1)N−1Lt,

and
T (fλ) = (−1)N−1LL−t.

SIGNS !!!

A choice of a path q in B connecting 0 with λ, enables one to identify Q(f)
with Q(fλ), and T (f) will be identified with T (fλ).

The image G(f) of the monodromy group G(fλ) in GL(Q(f))
∼
= GL(Q(fλ)) is

called the monodromy group of f ; it does not depend on a choice of a path q.
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1.3. Sebastiani - Thom factorization. If g ∈ C[y1, . . . , yM ] is another
function, the sum, or join of two singularities f ⊕ g : CN+M −→ C is defined by

(f ⊕ g)(x, y) = f(x) + g(y)

Obviously we can identify

Miln(f ⊕ g)
∼
= Miln(f)⊗Miln(g)

Note that the function g(y) = y2 is a unit for this operation.

It follows that the singularities f(x1, . . . , xN) and

f(x1, . . . , xN) + x2M+1 + . . .+ x2N+M

are ”almost the same”. In order to have good signs (and for other purposes) it is
convenient to add some squares to a given f to get N ≡ 3 mod (4).

The fundamental Sebastiani - Thom theorem, [ST], says that there exists a
natural isomorphism of lattices

Q(f ⊕ g)
∼
= Q(f)⊗Z Q(g),

and under this identification the full monodromy decomposes as

Tf⊕g = Tf ⊗ Tg
Thus, if

Spec(Tf ) = {eµp·2πi/h1}, Spec(Tf ) = {eνq ·2πi/h2}
then

Spec(Tf⊕g) = {e(µph2+νqh1)·2πi/h1h2}

1.4. Simple singularities. Cf. [AGV] (a), 15.1. They are:

xn+1, n ≥ 1, (An)

x2y + yn−1, n ≥ 4 (Dn)

x4 + y3 (E6)

xy3 + x3 (E7)

x5 + y3 (E8)

Their names come from the following facts:

— their lattices of vanishing cycles may be identified with the corresponding
root lattices;

— the monodromy group is identified with the corresponding Weyl group;

— the classical monodromy Tf is a Coxeter element, therefore its order h is
equal to the Coxeter number, and

Spec(Tf ) = {e2πik1/h, . . . , e2πikr/h}
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where the integers
1 = k1 < k2 < . . . < kr = h− 1,

are the exponents of our root system.

We will discuss the case of E8 in some details below.

§2. Cartan - Coxeter correspondence and join product

2.1. Lattices, polarization, Coxeter elements.

Let us call a lattice a pair (Q,A) where Q is a free abelian group, and

A : Q×Q −→ Z
a symmetric bilinear map (”Cartan matrix”). We shall identify A with a map

A : Q −→ Q∨ := Hom(Q,Z).

A polarized lattice is a triple (Q,A,L) where (Q,A) is a lattice, and

L : Q
∼−→ Q∨

(”variation”, or ”Seifert matrix”) is an isomorphism such that

A = A(L) := L+ L∨ (2.1.1)

where
L∨ : Q = Q∨∨

∼−→ Q∨

is the conjugate to L.

The Coxeter automorphism of a polarized lattice is defined by

C = C(L) = −L−1L∨ ∈ GL(Q). (2.1.2)

We shall say that the operatorsA and C are in a Cartan - Coxeter correspondence.

2.1.1. Example. Let (Q,A) be a lattice, and {e1, . . . , en} an ordered Z-base
of Q. With respect to this base A is expressed as a symmetric matrix A = (aij) =
A(ei, ej) ∈ gln(Z). Let us suppose that all aii are even. We define the matrix of L
to be the unique upper triangular matrix (`ij) such that A = L+Lt (in patricular
`ii = aii/2; in our examples we will have aii = 2.) We will call L the standard
polarization associated to an ordered base. �

Polarized lattices form a groupoid:

an isomorphosm of polarized lattices f : (Q1, A1, L1)
∼−→ (Q2, A2, L2) is by

definition an isomorphism of abelian groups f : Q1
∼−→ Q2 such that

L1(x, y) = L2(f(x), f(y))

(and whence A1(x, y) = A2(f(x), f(y))).
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2.2. Lemma. (i) (orthogonality)

A(x, y) = A(Cx,Cy).

(ii) (gauge transformations) For any P ∈ GL(Q)

A(P∨LP ) = P∨A(L)P, C(P∨LP ) = P−1C(L)P.

�

2.3. Join product. Suppose we are given two polarized lattices (Qi, Ai, Li),
i = 1, 2.

Set Q = Q1 ⊗Q2, whence

L := L1 ⊗ L2 : Q
∼−→ Q∨,

and define
A := A1 ∗ A2 := L+ L∨ : Q

∼−→ Q∨

The triple (Q,A,L) will be called the join, or Sebastiani - Thom, product of
the polarized lattices Q1 and Q2, and denoted by Q1 ∗Q2.

Obviously
C(L) = −C(L1)⊗ C(L2) ∈ GL(Q1 ⊗Q2).

It follows that if if Spec(C(Li)) = {e2πiki/hi , ki ∈ Ki} then
Spec(C(L)) = {−e2πi(k1/h1+k2/h2), (k1, k2) ∈ K1 ×K2} (2.3.1)

2.4. Black/white decomposition and a Steinberg’s theorem. Cf. [Stein],
[C], [BS]. Let α1, . . . , αr be a base of simple roots of a finite reduced irreducible
root system R. Suppose that R is simply laced.

Let
A = (aij) = (〈αi, α∨j 〉)

be the Cartan matrix; suppose that R is simply laced, so that A is symmetric.

Choose a black/white coloring of the set of vertices of the corresponding Dynkin
graph in such a way that any two neighbouring vertices have different colours.

Let us choose an ordering of simple roots in such a way that the first r roots
are black, and the last r − p roots are white. In this base A has a block form

A =

(
2Ip X
X t 2Ir−p

)
Consider a Coxeter element

C = s1s2 . . . sr = CBCW , (2.4.1)
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where

CB =

p∏
i=1

si, CW =
r∏

i=p+1

si.

Here si denotes the simple reflection corresponding to the root αi.

The matrices of CB, CW with respect to the base {αi} are

CB =

(
−I −X
0 I

)
, CW =

(
I 0
−X t −I

)
,

so that
CB + CW = 2I − A. (2.4.2)

This is an observation due to R.Steinberg, cf. [Stein], p. 591.

2.4.1. Remark: a matrix quadratic polynomial. We can express the
basic relations (2.4.1), (2.4.2) by saying that CB, CW are the ”roots” of a matrix
quadratic polynomial

t2 + (A− 2)t+ C = (t− CB)(t− CW ),

�.

We can also rewrite this as follows. Set

L =

(
I X
0 I

)
.

Then A = L+ Lt, and one checks easily that
C = −L−1Lt, (2.4.3)

so we are in the situation 2.1. This explains the name ”Cartan - Coxeter coresspondence”.

2.5. Eigenvectors’ correspondence. The following corollary was obtained
by the physicists, cf. [F], or [BS], Corollary 3.7.

Theorem. In the notations of 2.3, a vector

x =
∑

xiαi

is an eigenvector of A with the eigenvalue 2(1− cos θ) iff the vector

xc :=
∑

e±iθ/2xi

where the sign in e±iθ/2 is plus if i is a white vertex, and minus otherwise, is an
eigenvector of c with eigenvalue e2iθ.

�
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§3. Sebastiani - Thom factorization of E8

3.1. Root systems An.We consider the Dynkin graph of An with the obvious
numbering of the vertices.

The Coxeter number h = n+ 1, the set of exponents:

Exp(An) = {1, 2, . . . , n}

The eigenvalues of any Coxeter element are eiθk , and the eigenvalues of the
Cartan matrix A(An) are 2− 2 cos θk, θk = 2πk/h, k ∈ Exp(An).

An eigenvector of A(An) with the eigenvalue 2− 2 cos θ has the form

x(θ) = (
n−1∑
k=0

ei(n−1−2k)θ,
n−2∑
k=0

ei(n−2−2k)θ, . . . , 1) (3.1.1)

Denote by C(An) the Coxeter element

C(An) = s1s2 . . . sn

Its eigenvector with the eigenvalue e2iθ is:

XC(An) = (

n−j∑
k=0

e2ikθ)1≤j≤n

For example, for n = 4:

CA4 =


0 0 0 −1
1 0 0 −1
0 1 0 −1
0 0 1 −1


and

XC(A4) =


1 + e2iθ + e4iθ + e6iθ

1 + e2iθ + e4iθ

1 + e2iθ

1


is an eigenvector with eigenvalue e2iθ.

Similarly, for n = 2:

CA2 =

(
0 −1
1 −1

)
, XC(A2) =

(
1 + e2iγ

1

)
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3.2. E8 versus A4 ∗ A2 ∗ A1: elementary analysis.

The ranks:
r(E8) = 8 = r(A4)r(A2)r(A1);

the Coxeter numbers:

h(E8) = h(A4)h(A2)h(A1) = 5 · 3 · 2 = 30.

It follows that
|R(E8)| = 240 = |R(A4)||R(A2)||R(A1)|.

The exponents of E8 are:

1, 7, 13, 19, 11, 17, 23, 29.

All these numbers, except 1, are primes, and these are all primes ≤ 30, not
dividing 30.

They may be determined from the formula
i

5
+
j

3
+

1

2
=

30 + k(i, j)

30
, 1 ≤ i ≤ 4, 1 ≤ j ≤ 2,

so
k(i, 1) = 1 + 6(i− 1) = 1, 7, 13, 19;

k(i, 2) = 1 + 10 + 6(i− 1) = 11, 17, 23, 29.

This shows that the exponents of E8 are the same as the exponents of
A4 ∗ A2 ∗ A1.

The following theorem is more delicate.

3.3. Theorem (Gabrielov). There exists a polarization of the root lattice Q(E8)
and an isomorphism of polarized lattices

Γ : Q(A4) ∗Q(A2) ∗Q(A1)
∼−→ Q(E8). (3.3.1)

In the left hand side Q(An) means the root lattice of An with the standard
Cartan matrix and the standard polarization

A(An) = L(An) + L(An)t

where the Seifert matrix L(An) is upper triangular.

In the process of the proof, given in 3.4 - 3.6 below, the isomorphism Γ will be
written down explicitly.

3.4. Beginning of the proof.

For n = 4, 2, 1, we consider the bases of simple roots e1, . . . , en in Q(An), with
scalar products given by the Cartan matrices A(An).
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The tensor product of three lattices
Q∗ = Q(A4)⊗Q(A2)⊗Q(A1)

will be equipped it with the ”factorizable” basis in the lexicographic order:
(f1, . . . , f8) := (e1 ⊗ e1 ⊗ e1, e1 ⊗ e2 ⊗ e1, e2 ⊗ e1 ⊗ e1, e2 ⊗ e2 ⊗ e1,

e3 ⊗ e1 ⊗ e1, e3 ⊗ e2 ⊗ e1, e4 ⊗ e1 ⊗ e1, e4 ⊗ e2 ⊗ e1).
Introduce a scalar product (x, y) on Q∗ given, in the basis {fi}, by the matrix

A∗ = A4 ∗ A2 ∗ A1.

3.5. Gabrielov - Picard - Lefschetz transformations αm, βm.

Let (Q, (, )) be a lattice of rank r. We introduce the following two sets of
transformations {αm}, {βm} on the set Bases − cycl(Q) of cyclically ordered
bases of Q.

If x = (xi)i∈Z/rZ is a base, and m ∈ Z/rZ, we set

(αm(x))i =

xm+1 + (xm+1, xm)xm if i = m
xm if i = m+ 1
xi otherwise

and

(βm(x))i =

 xm if i = m− 1
xm−1 + (xm−1, xm)xm if i = m

xi otherwise
We define also a transformation γm by

(γm(x))i =

{
−xm if i = m
xi otherwise

3.6. Passage from A4 ∗ A2 ∗ A1 to E8. Consider the base f = {f1, . . . f8} of
the lattice Q∗ := Q(A4) ⊗ Q(A2) ⊗ Q(A1) described in 3.4, and apply to it the
following transformation

G′ = γ2γ1β4β3α3α4β4α5α6α7α1α2α3α4β6β3α1, (3.6.1)

cf. [Gab], Example 3.

Then the base G′(f) has the intersection matrix given by the Dynkin graph of
E8, with the ordering indicated on Figure 1 below.
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1 − 2 − 3 − 5 − 6 − 7 − 8

|
4

Fig. 1. Gabrielov’s ordering of E8.

This concludes the proof of Theorem 3.3. �

3.7. The induced map of root sets. By definition, the isomorphism of
lattices Γ, (3.3.1), induces a bijection between the bases

g : {f1, . . . , f8}
∼−→ {α1, . . . , α8} ⊂ R(E8).

where in the right hand side we have the base of simple roots, and a map

G : R(A4)×R(A2)×R(A1) −→ R(E8), G(x, y, z) = Γ(x⊗ y ⊗ z)

of sets of the same cardinality 240 which is not a bijection however: its image
consists of 60 elements.

Note that the set of vectors α ∈ Q(E8) with (α, α) = 2 coincides with the root
system R(E8), cf. [Serre], Première Partie, Ch. 5, 1.4.3.

3.8. Passage to Bourbaki ordering.

The isomorphism G′ (3.6.1) is given by a matrix G′ ∈ GL8(Z) such that

AG(E8) = G′tA∗G
′

where we denoted
A∗ = A(A4) ∗ A(A2) ∗ A(A1),

the factorized Cartan matrix, and AG denotes the Cartan matrix of E8 with
respect to the numbering of roots indicated on Fig. 1.

Now let us pass to the numbering of vertices of the Dynkin graph of type E8

indicated in [B] (the difference with Gabrielov’s numeration is in three vertices
2, 3, and 4).

1 − 3 − 4 − 5 − 6 − 7 − 8

|
2

Fig. 2. Bourbaki ordering of E8.

The Gabrielov’s Coxeter element (the full monodromy) in the Bourbaki numbering
looks as follows:

CG(E8) = s1 ◦ s3 ◦ s4 ◦ s2 ◦ s5 ◦ s6 ◦ s7 ◦ s8
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3.9. Lemma. Let A(E8) be the standard Cartan matrix of E8 from [B]:

A(E8) =



2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


.

Then
A(E8) = GtA∗G

and
CG(E8) = G−1C∗G

where

C∗ = C(Q(A4) ∗Q(A2) ∗Q(A1)) = C(A4)⊗ C(A2)⊗ C(A1),

is the factorized Coxeter element, and

G =



0 0 0 1 −1 0 0 0
−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
−1 1 −1 0 0 1 0 0
0 1 −1 0 0 0 1 0
−1 1 −1 0 0 0 1 0
0 1 −1 0 0 0 0 1
0 1 −1 0 0 0 0 0


(3.8.1)

Here
G = G′P

where P is the permutation matrix of passage from the Gabrielov’s ordering on
Fig. 1 to the Bourbaki ordering on Fig. 2.

3.9. Cartan eigenvectors of E8. To obtain the Cartan eigenvectors of E8,
one should pass from CG(E8) to a ”black/white” coxeter element (as in 2.4)

CBW (E8) = s1 ◦ s4 ◦ s6 ◦ s8 ◦ s2 ◦ s3 ◦ s5 ◦ s7

Any two Coxeter elements are conjugate in the Weyl group W (E8).

The elements CG(E8) and CBW (E8) are conjugate by the following element of
W (E8):

CG(E8) = w−1CBW (E8)w

where

w = s7 ◦ s5 ◦ s3 ◦ s2 ◦ s6 ◦ s4 ◦ s5 ◦ s1 ◦ s3 ◦ s2 ◦ s4 ◦ s1 ◦ s3 ◦ s2 ◦ s1 ◦ s2
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This expression for w can be obtained using an algorithm described in [C].

Thus, if x∗ is an eigenvector of C∗(E8) then

xBW = wG−1x∗

is an eigenvector of CBW (E8). But we know the eigenvectors of C∗(E8), they are
all factorizable.

This provides the eigenvectors of CBW (E8), which in turn have very simple
relation to the eigenvectors of A(E8), due to Theorem 2.5.

Conclusion: an expression for the eigenvectors of A(E8).

Let θ = aπ
5
, 1 ≤ a ≤ 4, γ = bπ

3
, 1 ≤ b ≤ 2, δ = π

2
,

α = θ + γ + δ = 1 +
kπ

30
,

k ∈ {1, 7, 11, 13, 17, 19, 23, 29}.
The 8 eigenvalues of A(E8) have the form

λ(α) = λ(θ, γ) = 2− 2 cosα

An eigenvector of A(E8) with the eigenvalue λ(θ, γ) is

XE8(θ, γ) =



cos(γ + θ − δ) + cos(γ − 3θ − δ) + cos(γ − θ − δ)
cos(2γ + 2θ)

cos(2γ) + cos(2γ + 2θ) + cos(2γ − 2θ) + cos(4θ) + cos(2θ)
cos(γ + 3θ − δ) + cos(γ + θ − δ) + cos(−γ + 3θ − δ)

2 cos(2γ) + 2 cos(2γ + 2θ) + cos(2γ − 2θ) + cos(2γ + 4θ) + cos(4θ) + 2 cos(2θ) + 1
cos(γ + 3θ − δ) + cos(γ + θ − δ)

cos(2γ) + cos(2θ − 2δ)
cos(γ − θ − δ)


One can simplify it as follows:

XE8(θ, γ) =



2 cos(4θ) cos(γ − θ − δ)
− cos(2γ + 2θ)

2 cos2(θ)
−2 cos(γ) cos(3θ − δ)− cos(γ + θ − δ)
−2 cos(2γ + 3θ) cos(θ) + cos(2γ)
−2 cos θ cos(γ + 2θ − δ)

−2 cos(γ + θ − δ) cos(γ − θ + δ)
− cos(γ − θ − δ)


(3.9.1)
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3.10. Perron - Frobenius and all that. The Perron - Frobenius eigenvector
corresponds to the eigenvalue

2− 2 cos
π

30
,

and may be chosen as

vPF =



2 cos π
5

cos 11π
30

cos π
15

2 cos2 π
5

2 cos 2π
30

cos π
30

2 cos 4π
15

cos π
5

+ 1
2

2 cos π
5

cos 7π
30

2 cos π
30

cos 11π
30

cos 11π
30


If we order its coordinates in the increasing order, we get

vPF< =



cos 11π
30

2 cos π
5

cos 11π
30

2 cos π
30

cos 11π
30

cos π
15

2 cos π
5

cos 7π
30

2 cos2 π
5

2 cos 4π
15

cos π
5

+ 1
2

2 cos 2π
30

cos π
30


Zamolodchikov gives in [Z] the following expression for a PF vector:

vZam(m) =



m
2m cos π

5
2m cos π

30
4m cos π

5
cos 7π

30
4m cos π

5
cos 2π

15
4m cos π

5
cos π

30
8m cos2 π

5
cos 7π

30
8m cos2 π

5
cos 2π

15


Setting m = cos 11π

30
, we have indeed :

vPF< = vZam(cos
11π

30
)
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3.11. Another form of the eigenvectors’ matrix. As was noticed in [BS],
the coordiantes of all eigenvectors of A(E8) may be obtained from the coordinates
of the PF vector by some permutations and sign changes.

Namely, if (z1, . . . , z8) is a PF vector then the other eigenvectors are the
columns of the matrix

Z =



z1 z7 z4 z2 z2 z4 z7 z1
z2 z1 −z7 −z4 z4 z7 −z1 −z2
z3 z6 z5 z8 −z8 −z5 −z6 −z3
z4 z2 −z1 −z7 −z7 −z1 z2 z4
z5 −z8 −z3 z6 −z6 z3 z8 −z5
z6 −z5 −z8 z3 z3 −z8 −z5 z6
z7 −z4 z2 −z1 z1 −z2 z4 −z7
z8 −z3 z6 −z5 −z5 z6 −z3 z8


However, these eigenvectors differ from the ones given by the formula (3.9.1):

the latter ones are proportional to the former ones.

§4. Givental’s q-deformations

4.1. Definition. Let (Q,A,L) be a polarized lattice. We define a q-deformed
Cartan matrix by

A(q) = L+ qLt.

This definition is inspired by the q-deformed Picard - Lefschetz theory developed
by Givental, [Giv].

4.2. ”Black/white” q-deformation. Let

A =

(
2 B
C 2

)
be a block matrix, and v =

(
x
y

)
its eigenvector with the eigenvalue λ. This

means that
By = (λ− 2)x, Cx = (λ− 2)y. (4.2.1)

Consider the matrix

A(q) =

(
1 + q B
qC 1 + q

)
,
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and let us look for its eigenvector in the form v =

(
x
by

)
with eigenvalue µ. This

would mean that

By =
µ− q − 1

b
x, Cx =

b(µ− q − 1)

q
x. (4.2.2)

Comparing (4.2.1) and (4.2.2) we conclude that
µ′

b
=
bµ′

q
, µ′ = µ− q − 1,

whence b =
√
q, and that

λ− 2 =
µ′
√
q
.

Conclusion: the vector
v(q) =

(
x

q1/2y

)
is an eigenvector of A(q) with eigenvalue

λ(q) = 1 + (λ− 2)q1/2 + q. (4.2.3)

For another approach to the same values see 4.10 below.

4.2.1. A generalization. More generally, let

M =

2I A 0
C 2I B
0 D 2I


be a block Jacobi matrix which admits an eigenvector v =

xy
z

 for the

eigenvalue λ = 2− 2 cos θ.

Then its q-deformation

M(q) =

(1 + q)I A 0
qC (1 + q)I D
0 qD (1 + q)I


admits an eigenvector

v(q) =

 x

q
1
2y
qz
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with the eigenvalue
λ(q) = 1 + q − 2q

1
2 cos θ.

This can be generalized to the block Jacobi matrices of any size.

4.3. Remark (M.Finkelberg). The expression (4.2.3) resembles the number
of points of an elliptic curve X over a finite field Fq. To better appreciate this
resemblance, note that in all our examples λ will have the form

λ = 2− 2 cos θ,

so if we set
α =
√
qeiθ

(”a Frobenius root”) then |α| = √q, and

λ(q) = 1− α− ᾱ + q,

cf. [IR], Chapter 11, §1, [Kn], Chapter 10, Theorem 10.5.

So, the Coxeter eigenvalues e2iθ may be seen as analogs of ”Frobenius roots of
an elliptic curve over F1”.

4.4. Standard deformation for An. Let us consider the following q-deformation
of A = A(An):

A(q) =


1 + q −1 0 . . . 0
−q 1 + q −1 . . . 0
. . . . . . . . . . . . . . .
0 . . . 0 −q 1 + q


Then

Spec(A(q)) = {λ(q) := 1 + (λ− 2)
√
q + q| λ ∈ Spec(A(1))}.

If x = (x1, . . . , xn) is an eigenvector of A = A(1) with eigenvalue λ then

x(q) = (x1, q
1/2x2, . . . , q

(n−1)/2xn)

is an eigenvector of A(q) with eigenvalue λ(q).

4.5. Standard deformation for E8. A q-deformation:

AE8(q) =



1 + q 0 −1 0 0 0 0 0
0 1 + q 0 −1 0 0 0 0
−q 0 1 + q −1 0 0 0 0
0 −q −q 1 + q −1 0 0 0
0 0 0 −q 1 + q −1 0 0
0 0 0 0 −q 1 + q −1 0
0 0 0 0 0 −q 1 + q −1
0 0 0 0 0 0 −q 1 + q
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Its eigenvalues are

λ(q) = 1 + q + (λ− 2)
√
q = 1 + q − 2

√
q cos θ

where λ = 2− 2 cos θ is an eigenvalue of A(E8).

If X = (x1, x2, x3, x4, x5, x6, x7, x8) is an eigenvector of A(E8) for the eigenvalue
λ, then

X = (x1,
√
qx2,
√
qx3, qx4, q

√
qx5, q

2x6, q
2√qx7, q3x8) (4.5.1)

is an eigenvector of AE8(q) for the eigenvalue λ(q).

We see the patterns here:

(i) The eigenvalues are always λ(q), as in the black/white case, so the q-
deformed Cartan matrices for different orderings are conjugate.

(ii) The coordinates of the q-deformed eigenvectors are equal to q?× the coordinates
of the original eigenvector.

For an explanation, see 4.7, 4.8 below.

4.6. Examples of conjugation.

(a) Let

A(A4; q) =


1 + q −1 0 0
−q 1 + q −1 0
0 −q 1 + q −1
0 0 −q 1 + q


be the q-deformation of the standard A(A4), and

ABW (A4; q) =


1 + q 0 −1 0

0 1 + q −1 −1
−q −q 1 + q 0
0 −q 0 1 + q


that of the ”black/white” one. Then

A(A4; q) = P (q) · ABW (A4; q) · P−1(q),

with
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P (q) =


1 0 0 0
0 0 1 0
0 q 0 0
0 0 0 q

 and P−1(q) =


1 0 0 0
0 0 q−1 0
0 1 0 0
0 0 0 q−1


The matrix P (q) is a deformation of a permutation matrix.

(b) A similar example for E8:

A(E8; q) = P (q) · ABW (E8; q) · P−1(q),

with

P (q) =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 q 0 0 0 0 0 0
0 0 0 0 0 0 q 0
0 0 q2 0 0 0 0 0
0 0 0 0 0 0 0 q2

0 0 0 q3 0 0 0 0


In fact, always

P (q) = D(q)P (1) = P (1)D′(q)

where P (1) is a permutation matrix, and D(q), D′(q) are diagonal matrices, with
some natural powers qn on the diagonal.

Below follows an explanation of what is going on.

4.7. Conjugacy of different q-deformations.

Let A = (aij) ∈ glr(C) be a symmetric matrix, and

A = L+ Lt,

the standard polarization, with L upper triangular. Thus, L = (`ij), with `ii =
aii/2, and

`ij =

{
aij if i < j
0 if i > j

For a bijection
σ : {1, . . . , r} ∼−→ {1, . . . , r},

define a matrix Lσ = (`σij) with `σii = aii/2, and

`σij =

{
aij if σ(i) < σ(j)
0 if σ(i) > σ(j)
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Obviously
A = Lσ + Ltσ,

i.e. we have got a different, ”σ - twisted”, polarization of A.

Consider the q-deformations of A corresponding to these two polarizations:

A(q) = L+ qLt

and
A(σ; q) = Lσ + qLtσ.

Let us ask a

4.7.1. Question. Find a diagonal matrix of the form

D = D(σ; q) = Diag(qn1 , . . . , qnr) (4.7.1)

such that
A(σ; q) = D−1A(q)D. (4.7.2)

This equation means that

A(σ; q)ij = q−ni+njA(q)ij

for all i, j. This is an overdertermined system of r(r−1)/2 equations on r variables
ni, not solvable in general.

However, we have something positive to say.

Let A = (aij) be any matrix having the property

aij 6= 0 implies aji 6= 0 (4.7.3)

Let us assign to A its ”Dynkin graph” Γ(A) having [r] := {1, . . . , r} as the set of
vertices, vertices i and j being connected iff aij 6= 0.

Now let us return to our symmetric matrix A.

4.7.1. Tree lemma. If Γ(A) is a tree then for each σ ∈ Sr = Aut([r]) there
exists D = D(σ; q) such that (4.7.2) holds true.

A proof will be given in 4.9 below (the reader may also wish to take it as an
excercise).

For the moment we assume this assertion.

4.8. Now let us turn a permutation matrix P on.

Define a permutation matrix P = P (σ) = (pij) ∈ GLr(Z), by

pij = δi,σ(j).
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Then its inverse

P−1 = (p′ij), p
′
ij = δσ(i),j = δi,σ−1(j) = P t (4.8.1)

Define
A′ = P−1AP = (a′ij).

Then
a′ij = aσ(i),σ(j). (4.8.2)

It follows that A′ is symmetric as well.

Decompose
A′ = L′ + L′t, (4.8.3)

with L′ upper triangular.

Define a q-deformation
A′(q) = L′ + qL′t,

Let us look for a matrix P (q) of the form

P (q) = PD(q),

D(q) = D(σ; q) being as in (4.7.1), such that

A′(q) = P (q)−1A(q)P (q). (4.8.4)

(Note that
D(q)P = PD′(q)

where
D′(q) = diag(qn

′
1 , . . . , qn

′
r), n′i = nσ−1(i),

cf. (4.8.2).)

The matrix A′ has two polarizations: the first, the standard one, (4.8.3), and
the second, the σ-twisted one:

A′ = Lσ + Ltσ, Lσ := P−1LP.

So, we are in the situation 4.7, and we are looking for a diagonal matrix D.

If we are lucky, and D exists, for example, according to the Tree lemma 4.7.1,
if Γ(A) is a tree, then the problem (4.8.4) is solved.

This is the case for the finite Cartan matrices of types A,D or E.

4.9. Homology of the Dynkin graph, the diagonal conjugacy, and
a proof of Tree Lemma. Under the assumptions of Lemma 4.7.1, pick any
orientation on the Dynkin graph Γ = Γ(A); let

→
Γ denote the oriented graph thus

obtained.

Consider a cochain complex

O −→ C0(
→
Γ;C∗) d−→ C1(

→
Γ;C∗) −→ 0
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We have Coker(d) = H1(
→
Γ;C∗) = 0 since Γ is a tree. This means the following:

(i) For any collection of numbers {bij ∈ C∗, (i, j) ∈ [r]2, i 6= j} such that

bji = b−1ij , (4.9.1)

there exists a collection {ci ∈ C∗, i ∈ [r]} such that

bij = cj/ci. (4.9.2)

Moreover, we can choose the numbers ci in such a way that they are products of
some bij.

To prove the last assertion, let us choose a trunk of our tree Γ, and partially
order its vertices by taking the minimal vertex i0 to be the beginning of the
trunk, and then going "upstairs". This defines an orientation on Γ. Now, given a
1-cochain (bij), we set ci0 = 1 and then define the other ci one by one, by going
upstairs, and using as a definition

cj = bijci, i < j.

Obviously, the numbers ci defined in such a way, are products of bab.

�

If we don’t suppose Γ to be a tree then to get a solution of (4.9.2), in addition
to (4.9.1) one should impose on {bij} one more condition:

for any non-contractible loop i1 −→ i2 −→ . . . ik −→ i1 in Γ,

bi1i2bi2i3 . . . biki1 = 1. (4.9.1a)

(One could restrict to the loops representing some set of generators of H1(
→
Γ;Z).)

Let us return to the conditions of Lemma 4.7.1.

(ii) Let A′ = (a′ij) be another matrix with Γ(A′) = Γ(A) such that a′ii = aii for
all i, and

a′ij/aij = aji/a
′
ji

for all i 6= j. Then there exists a diagonal matrix

D = Diag(c1, . . . , cr)

such that A′ = D−1AD.

This is a corollary of (i), namely, set bij = a′ij/aij.

Now we can prove the Tree Lemma. In fact, two matrices A(q) and Aσ(q)
satisfy the conditions of (ii), with bij = 1, q, or q−1.

We can choose ci to be the integer powers of q due to the last assertion of (i).
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4.10. Another way to compute the eigenvalues and eigenvectors of
A(q). Let A be a symmetric generalized Cartan matrix, and A(q) its standard
q-deformation.

We can apply 4.9 (ii) to the matrices A(q) and a symmetric

A′(q) =
√
qA+ (1−√q)2I

So, there exists a diagonal matrix D as above such that

A(q) = D−1A′(q)D.

But the eigenvalues of A′(q) are obviously

λ(q) =
√
qλ+ (1−√q)2 = 1 + (λ− 2)

√
q + q.

If v is an eigenvector of A for λ then v is an eigenvector of A′(q) for λ(q), and
Dv will be an eigenvector of A(q) for λ(q).
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