VANISHING CYCLES

AND CARTAN EIGENVECTORS

Laura Brillon, Vadim Schechtman and Alexander Varchenko

August 17, 2015

Introduction

0.1. Let $A(R)$ be the Cartan matrix of a finite root system R. The coordinates of its eigenvectors have an important meaning in the physics of integrables systems: namely, these numbers appear as the masses of particles (or, dually, as the energy of solitons) in affine Toda field theories, cf. [F], [D].

Historically, the first example of the system of type E_{8} appeared in the pioneering papers $[\mathrm{Z}]$ on the 2D critical Ising model in a magnetic field.

The aim of this note is a study of these numbers, and their q-deformations, using the motivation coming from the singularity theory.

Let us suppose that R is simply laced, i.e. of type A, D, or E. These root systems are in one-to-one correspondence with (classes of) simple singularities $f: \mathbb{C}^{N} \longrightarrow \mathbb{C}$, cf. [AGV]. Under this correspondence, the root lattice $Q(R)$ is identified with the lattice of vanishing cycles, and the Cartan matrix $A(R)$ is the intersection matrix with respect to a distinguished base. The action of the Weyl group on $Q(R)$ is realized by Gauss - Manin monodromies - this is the Picard Lefschetz theory (for some details see $\S 1$ below).

Remarkably, this geometric picture provides a finer structure: namely, the symmetric matrix $A=A(R)$ comes equiped with a decomposition

$$
\begin{equation*}
A=L+L^{t} \tag{0.1}
\end{equation*}
$$

where L is a nondegenerate triangular "Seifert form", or "variation matrix". The matrix

$$
\begin{equation*}
C=-L^{-1} L^{t} \tag{0.2}
\end{equation*}
$$

represents a Coxeter element of R; geometrically it is the operator of "classical monodromy".

We call the relation (0.1) - (0.2) between the Cartan matrix and the Coxeter element the Cartan/Coxeter correspondence.

Incidentally, in a particular case (corresponding to a bipartition of the Dynkin graph) this relation is equivalent to an observation by R.Steinberg, cf. [Stein], cf. 2.4 below. It enables one to relate the eigenvectors of A and C, cf. Theorem 2.5.

A decomposition (0.1) will be called a polarization of the Cartan matrix A. In 2.3 below we introduce an operation of Sebastiani - Thom, or joint product $A * B$ of Cartan matrices (or of polarized lattices) A and B. With respect to this operation the Coxeter eigenvectors factorize very simply.

In this note we will mainly concentrate on the example of E_{8}; this lattice decomposes into three "quarks":

$$
\begin{equation*}
E_{8}=A_{4} * A_{2} * A_{1} \tag{0.3}
\end{equation*}
$$

This decomposition is the main message from the singularity theory, and we discuss it in detail in this note.

We use (0.3) and the Cartan/Coxeter correspondence to obtain some expressions for all Cartan eigenvectors of E_{8}; this is the first main result of this note, see 3.9 below.
(An elegant expression for all the Cartan eigenvectors of all finite root systems was obtained by P.Dorey, cf. [D] (a), Table 2 on p. 659.)
0.2. In the paper [Giv] A.Givental has proposed a q-twisted version of the Picard - Lefschetz theory, which gave rise to a q-deformation of A,

$$
A(q)=L+q L^{t}
$$

In the last section, $\S 4$, we calculate the eigenvalues and eigenvectors of $A(q)$ in terms of the eigenvalues and eigenvectors of A. This is the second main result of this note.

It turns out that if λ is an egenvalue of A then

$$
\begin{equation*}
\lambda(q)=1+(\lambda-2) \sqrt{q}+q \tag{0.4}
\end{equation*}
$$

will be an eigenvalue of $A(q)$. The coordinates of the corresponding eigenvector $v(q)$ are obtained from the coordinates of $v=v(1)$ by multiplication by appropriate powers of q; this is related to the fact that the Dynkin graph of A is a tree, cf. 4.9.

For an example of E_{8}, see (4.5.1).
We are grateful to Misha Finkelberg, Andrei Gabrielov, and Sabir Gusein-Zade for the inspiring correspondence, and to Patrick Dorey for sending us his thesis.

§1. Recollections from singularity theory

Here we recall some classical constructions and statements, cf. [AGV].
This section plays a motivational role: formally the results of the following sections are purely algebraic, and do not depend on it, however, one could not arrive at them without this geometric motivation.
1.1. Let $f:\left(\mathbb{C}^{N}, 0\right) \longrightarrow(\mathbb{C}, 0)$ be the germ of a holomorphic function with an isolated critical point at 0 , with $f(0)=0$. We will be interested only in polynomial functions (from the list below, cf. 1.4), so $f \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$. The Milnor ring of f is defined by

$$
\operatorname{Miln}(f, 0)=\mathbb{C}\left[\left[x_{1}, \ldots, x_{N}\right]\right] /\left(\partial_{1} f, \ldots, \partial_{N} f\right)
$$

where $\partial_{i}:=\partial / \partial x_{i}$; it is a finite-dimensional commutative \mathbb{C}-algebra. (In fact, it is a Frobenius, or, equivalently, a Gorenstein algebra.) The number

$$
\mu:=\operatorname{dim}_{\mathbb{C}} \operatorname{Miln}(f, 0)
$$

is called the multiplicity or Milnor number of $(f, 0)$.
A Milnor fiber is

$$
V_{z}=f^{-1}(z) \cap \bar{B}_{\rho}
$$

where

$$
\bar{B}_{\rho}=\left\{\left.\left(x_{1}, \ldots, x_{N}\right)\left|\sum\right| x_{i}\right|^{2} \leq \rho\right\}
$$

for $1 \gg \rho \gg|z|>0$.
For z belonging to a small disc $D_{\epsilon}=\{z \in \mathbb{C}| | z \mid<\epsilon\}$, the space V_{z} is a complex manifold with boundary, homotopically equivalent to a bouquet $\vee S^{N-1}$ of μ spheres, [M].

The family of free abelian groups

$$
\begin{equation*}
Q(f ; z):=\tilde{H}_{N-1}\left(V_{z} ; \mathbb{Z}\right) \cong \mathbb{Z}^{\mu}, z \in \dot{D}_{\epsilon}:=D_{\epsilon} \backslash\{0\} \tag{1.1.1}
\end{equation*}
$$

(\tilde{H} means that we take the reduced homology for $N=1$), carries a flat Gauss Manin conection.

Take $t \in \mathbb{R}_{>0} \cap \dot{D}_{\epsilon}$; the lattice $Q(f ; t)$ does not depend, up to a canonical isomorphism, on the choice of t. Let us call this lattice $Q(f)$. The linear operator

$$
\begin{equation*}
T(f): Q(f) \xrightarrow{\sim} Q(f) \tag{1.1.2}
\end{equation*}
$$

induced by the path $p(\theta)=e^{i \theta} t, 0 \leq \theta \leq 2 \pi$, is called the classical monodromy of the germ $(f, 0)$.

In all the examples below $T(f)$ has finite order h. The eigenvalues of $T(f)$ have the form $e^{2 \pi i k / h}, k \in \mathbb{Z}$. The set of suitable chosen k 's for each eigenvalue are called the spectrum of our singularity.
1.2. Morse deformations. The \mathbb{C}-vector space $\operatorname{Miln}(f, 0)$ may be identified with the tangent space to the base B of the miniversal defomation of f. For

$$
\lambda \in B^{0}=B \backslash \Delta
$$

where $\Delta \subset B$ is an analytic subset of codimension 1 , the corresponding function $f_{\lambda}: \mathbb{C}^{N} \longrightarrow \mathbb{C}$ has μ nondegenerate Morse critical points with distinct critical values, and the algebra $\operatorname{Miln}\left(f_{\lambda}\right)$ is semisimple, isomorphic to \mathbb{C}^{μ}.

Let $0 \in B$ denote the point corresponding to f itself, so that $f=f_{0}$, and pick $t \in \mathbb{R}_{>0} \cap \dot{D}_{\epsilon}$ as in 1.1.

Afterwards pick $\lambda \in B^{0}$ close to 0 in such a way that the critical values $z_{1}, \ldots z_{\mu}$ of f_{λ} have absolute values $\ll t$.

As in 1.1, for each

$$
z \in \tilde{D}_{\epsilon}:=D_{\epsilon} \backslash\left\{z_{1}, \ldots z_{\mu}\right\}
$$

the Milnor fiber V_{z} has the homotopy type of a bouquet $\vee S^{N-1}$ of μ spheres, and we will be interested in the middle homology

$$
Q\left(f_{\lambda} ; z\right)=\tilde{H}_{N-1}\left(V_{z} ; \mathbb{Z}\right) \cong \mathbb{Z}^{\mu}
$$

(\tilde{H} means that we take the reduced homology for $N=1$).
The lattices $Q\left(f_{\lambda} ; z\right)$ carry a natural bilinear product induced by the cup product in the homology which is symmetric (resp. skew-symmetric) when N is odd (resp. even).

The collection of these lattices, when $z \in \tilde{D}_{\epsilon}$ varies, carries a flat Gauss - Manin connection.

Consider an "octopus"

$$
O c t(t) \subset \mathbb{C}
$$

with the head at t : a collection of non-intersecting paths p_{i} ("tentacles") connecting t with z_{i} and not meeting the critical values z_{j} otherwise. It gives rise to a base

$$
\left\{b_{1}, \ldots, b_{\mu}\right\} \subset Q\left(f_{\lambda}\right):=Q\left(f_{\lambda} ; t\right)
$$

(called "distinguished") where b_{i} is the cycle vanishing when being transferred from t to z_{i} along the tentacle p_{i}, cf. [Gab], [AGV].

The Picard - Lefschetz formula describe the action of the fundamental group $\pi_{1}\left(\tilde{D}_{\epsilon} ; t\right)$ on $Q\left(f_{\lambda}\right)$ with respect to this basis. Namely, consider a loop γ_{i} which turns around z_{i} along the tentacle p_{i}, then the corresponding transformation of
$Q\left(f_{\lambda}\right)$ is the reflection (or transvection) $s_{i}:=s_{b_{i}}$, cf. [Lef], Théorème fondamental, Ch. II, p. 23.

The loops γ_{i} generate the fundamental group $\pi_{1}\left(\tilde{D}_{\epsilon}\right)$. Let

$$
\rho: \pi_{1}\left(\tilde{D}_{\epsilon} ; t\right) \longrightarrow G L\left(Q\left(f_{\lambda}\right)\right)
$$

denote the monodromy representation. The image of ρ, denoted by $G\left(f_{\lambda}\right)$ and called the monodromy group of f_{λ}, lies inside the subgroup $O\left(Q\left(f_{\lambda}\right)\right) \subset G L\left(Q\left(f_{\lambda}\right)\right)$ of linear transformations respecting the above mentioned bilinear form on $Q\left(f_{\lambda}\right)$.

The subgroup $G\left(f_{\lambda}\right)$ is generated by $s_{i}, 1 \leq i \leq \mu$.
As in 1.1, we have the monodromy operator

$$
T\left(f_{\lambda}\right) \in G\left(f_{\lambda}\right)
$$

the image by ρ of the path $p \subset \tilde{D}_{\epsilon}$ starting at t and going around all points z_{1}, \ldots, z_{μ}.

This operator $T\left(f_{\lambda}\right)$ is now a product of μ simple reflections

$$
T\left(f_{\lambda}\right)=s_{1} s_{2} \ldots s_{\mu}
$$

- this is because the only critical value 0 of f became μ critical values z_{1}, \ldots, z_{μ} of f_{λ}.

One can identify the relative (reduced) homology $\tilde{H}_{N-1}\left(V_{t}, \partial V_{t} ; \mathbb{Z}\right)$ with the dual group $\tilde{H}_{N-1}\left(V_{t} ; \mathbb{Z}\right)^{*}$, and one defines a map

$$
\text { var : } \tilde{H}_{N-1}\left(V_{t}, \partial V_{t} ; \mathbb{Z}\right) \longrightarrow \tilde{H}_{N-1}\left(V_{t} ; \mathbb{Z}\right)
$$

called a variation operator, which translates to a map

$$
L: Q\left(f_{\lambda}\right)^{*} \xrightarrow{\sim} Q\left(f_{\lambda}\right)
$$

("Seifert form") such that the matrix $A\left(f_{\lambda}\right)$ of the bilinear form in the distinguished basis is

$$
A\left(f_{\lambda}\right)=L+(-1)^{N-1} L^{t}
$$

and

$$
T\left(f_{\lambda}\right)=(-1)^{N-1} L L^{-t}
$$

SIGNS !!!
A choice of a path q in B connecting 0 with λ, enables one to identify $Q(f)$ with $Q\left(f_{\lambda}\right)$, and $T(f)$ will be identified with $T\left(f_{\lambda}\right)$.

The image $G(f)$ of the monodromy group $G\left(f_{\lambda}\right)$ in $G L(Q(f)) \cong G L\left(Q\left(f_{\lambda}\right)\right)$ is called the monodromy group of f; it does not depend on a choice of a path q.
1.3. Sebastiani - Thom factorization. If $g \in \mathbb{C}\left[y_{1}, \ldots, y_{M}\right]$ is another function, the sum, or join of two singularities $f \oplus g: \mathbb{C}^{N+M} \longrightarrow \mathbb{C}$ is defined by

$$
(f \oplus g)(x, y)=f(x)+g(y)
$$

Obviously we can identify

$$
\operatorname{Miln}(f \oplus g) \cong \operatorname{Miln}(f) \otimes \operatorname{Miln}(g)
$$

Note that the function $g(y)=y^{2}$ is a unit for this operation.
It follows that the singularities $f\left(x_{1}, \ldots, x_{N}\right)$ and

$$
f\left(x_{1}, \ldots, x_{N}\right)+x_{M+1}^{2}+\ldots+x_{N+M}^{2}
$$

are "almost the same". In order to have good signs (and for other purposes) it is convenient to add some squares to a given f to get $N \equiv 3 \bmod (4)$.

The fundamental Sebastiani - Thom theorem, [ST], says that there exists a natural isomorphism of lattices

$$
Q(f \oplus g) \cong Q(f) \otimes_{\mathbb{Z}} Q(g)
$$

and under this identification the full monodromy decomposes as

$$
T_{f \oplus g}=T_{f} \otimes T_{g}
$$

Thus, if

$$
\operatorname{Spec}\left(T_{f}\right)=\left\{e^{\mu_{p} \cdot 2 \pi i / h_{1}}\right\}, \operatorname{Spec}\left(T_{f}\right)=\left\{e^{\nu_{q} \cdot 2 \pi i / h_{2}}\right\}
$$

then

$$
\operatorname{Spec}\left(T_{f \oplus g}\right)=\left\{e^{\left(\mu_{p} h_{2}+\nu_{q} h_{1}\right) \cdot 2 \pi i / h_{1} h_{2}}\right\}
$$

1.4. Simple singularities. Cf. [AGV] (a), 15.1. They are:

$$
\begin{gather*}
x^{n+1}, n \geq 1, \tag{n}\\
x^{2} y+y^{n-1}, n \geq 4 \tag{n}\\
x^{4}+y^{3} \tag{6}\\
x y^{3}+x^{3} \tag{7}\\
x^{5}+y^{3} \tag{8}
\end{gather*}
$$

Their names come from the following facts:

- their lattices of vanishing cycles may be identified with the corresponding root lattices;
- the monodromy group is identified with the corresponding Weyl group;
- the classical monodromy T_{f} is a Coxeter element, therefore its order h is equal to the Coxeter number, and

$$
\operatorname{Spec}\left(T_{f}\right)=\left\{e^{2 \pi i k_{1} / h}, \ldots, e^{2 \pi i k_{r} / h}\right\}
$$

where the integers

$$
1=k_{1}<k_{2}<\ldots<k_{r}=h-1
$$

are the exponents of our root system.
We will discuss the case of E_{8} in some details below.

§2. Cartan - Coxeter correspondence and join product

2.1. Lattices, polarization, Coxeter elements.

Let us call a lattice a pair (Q, A) where Q is a free abelian group, and

$$
A: Q \times Q \longrightarrow \mathbb{Z}
$$

a symmetric bilinear map ("Cartan matrix"). We shall identify A with a map

$$
A: Q \longrightarrow Q^{\vee}:=\operatorname{Hom}(Q, \mathbb{Z})
$$

A polarized lattice is a triple (Q, A, L) where (Q, A) is a lattice, and

$$
L: Q \xrightarrow{\sim} Q^{\vee}
$$

("variation", or "Seifert matrix") is an isomorphism such that

$$
\begin{equation*}
A=A(L):=L+L^{\vee} \tag{2.1.1}
\end{equation*}
$$

where

$$
L^{\vee}: Q=Q^{\vee \vee} \xrightarrow{\sim} Q^{\vee}
$$

is the conjugate to L.
The Coxeter automorphism of a polarized lattice is defined by

$$
\begin{equation*}
C=C(L)=-L^{-1} L^{\vee} \in G L(Q) \tag{2.1.2}
\end{equation*}
$$

We shall say that the operators A and C are in a Cartan - Coxeter correspondence.
2.1.1. Example. Let (Q, A) be a lattice, and $\left\{e_{1}, \ldots, e_{n}\right\}$ an ordered \mathbb{Z}-base of Q. With respect to this base A is expressed as a symmetric matrix $A=\left(a_{i j}\right)=$ $A\left(e_{i}, e_{j}\right) \in \mathfrak{g l}_{n}(\mathbb{Z})$. Let us suppose that all $a_{i i}$ are even. We define the matrix of L to be the unique upper triangular matrix $\left(\ell_{i j}\right)$ such that $A=L+L^{t}$ (in patricular $\ell_{i i}=a_{i i} / 2$; in our examples we will have $a_{i i}=2$.) We will call L the standard polarization associated to an ordered base.

Polarized lattices form a groupoid:
an isomorphosm of polarized lattices $f:\left(Q_{1}, A_{1}, L_{1}\right) \xrightarrow{\sim}\left(Q_{2}, A_{2}, L_{2}\right)$ is by definition an isomorphism of abelian groups $f: Q_{1} \xrightarrow{\sim} Q_{2}$ such that

$$
L_{1}(x, y)=L_{2}(f(x), f(y))
$$

(and whence $\left.A_{1}(x, y)=A_{2}(f(x), f(y))\right)$.
2.2. Lemma. (i) (orthogonality)

$$
A(x, y)=A(C x, C y)
$$

(ii) (gauge transformations) For any $P \in G L(Q)$

$$
A\left(P^{\vee} L P\right)=P^{\vee} A(L) P, C\left(P^{\vee} L P\right)=P^{-1} C(L) P
$$

2.3. Join product. Suppose we are given two polarized lattices $\left(Q_{i}, A_{i}, L_{i}\right)$, $i=1,2$.

Set $Q=Q_{1} \otimes Q_{2}$, whence

$$
L:=L_{1} \otimes L_{2}: Q \xrightarrow{\sim} Q^{\vee},
$$

and define

$$
A:=A_{1} * A_{2}:=L+L^{\vee}: Q \xrightarrow{\sim} Q^{\vee}
$$

The triple (Q, A, L) will be called the join, or Sebastiani - Thom, product of the polarized lattices Q_{1} and Q_{2}, and denoted by $Q_{1} * Q_{2}$.

Obviously

$$
C(L)=-C\left(L_{1}\right) \otimes C\left(L_{2}\right) \in G L\left(Q_{1} \otimes Q_{2}\right)
$$

It follows that if if $\operatorname{Spec}\left(C\left(L_{i}\right)\right)=\left\{e^{2 \pi i k_{i} / h_{i}}, k_{i} \in K_{i}\right\}$ then

$$
\begin{equation*}
\operatorname{Spec}(C(L))=\left\{-e^{2 \pi i\left(k_{1} / h_{1}+k_{2} / h_{2}\right)},\left(k_{1}, k_{2}\right) \in K_{1} \times K_{2}\right\} \tag{2.3.1}
\end{equation*}
$$

2.4. Black/white decomposition and a Steinberg's theorem. Cf. [Stein], [C], [BS]. Let $\alpha_{1}, \ldots, \alpha_{r}$ be a base of simple roots of a finite reduced irreducible root system R. Suppose that R is simply laced.

Let

$$
A=\left(a_{i j}\right)=\left(\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle\right)
$$

be the Cartan matrix; suppose that R is simply laced, so that A is symmetric.
Choose a black/white coloring of the set of vertices of the corresponding Dynkin graph in such a way that any two neighbouring vertices have different colours.

Let us choose an ordering of simple roots in such a way that the first r roots are black, and the last $r-p$ roots are white. In this base A has a block form

$$
A=\left(\begin{array}{cc}
2 I_{p} & X \\
X^{t} & 2 I_{r-p}
\end{array}\right)
$$

Consider a Coxeter element

$$
\begin{equation*}
C=s_{1} s_{2} \ldots s_{r}=C_{B} C_{W} \tag{2.4.1}
\end{equation*}
$$

where

$$
C_{B}=\prod_{i=1}^{p} s_{i}, C_{W}=\prod_{i=p+1}^{r} s_{i} .
$$

Here s_{i} denotes the simple reflection corresponding to the root α_{i}.
The matrices of C_{B}, C_{W} with respect to the base $\left\{\alpha_{i}\right\}$ are

$$
C_{B}=\left(\begin{array}{cc}
-I & -X \\
0 & I
\end{array}\right), C_{W}=\left(\begin{array}{cc}
I & 0 \\
-X^{t} & -I
\end{array}\right)
$$

so that

$$
\begin{equation*}
C_{B}+C_{W}=2 I-A . \tag{2.4.2}
\end{equation*}
$$

This is an observation due to R.Steinberg, cf. [Stein], p. 591.
2.4.1. Remark: a matrix quadratic polynomial. We can express the basic relations (2.4.1), (2.4.2) by saying that C_{B}, C_{W} are the "roots" of a matrix quadratic polynomial

$$
t^{2}+(A-2) t+C=\left(t-C_{B}\right)\left(t-C_{W}\right)
$$

We can also rewrite this as follows. Set

$$
L=\left(\begin{array}{cc}
I & X \\
0 & I
\end{array}\right)
$$

Then $A=L+L^{t}$, and one checks easily that

$$
\begin{equation*}
C=-L^{-1} L^{t} \tag{2.4.3}
\end{equation*}
$$

so we are in the situation 2.1. This explains the name "Cartan - Coxeter coresspondence".
2.5. Eigenvectors' correspondence. The following corollary was obtained by the physicists, cf. [F], or [BS], Corollary 3.7.

Theorem. In the notations of 2.3 , a vector

$$
x=\sum x_{i} \alpha_{i}
$$

is an eigenvector of A with the eigenvalue $2(1-\cos \theta)$ iff the vector

$$
x_{c}:=\sum e^{ \pm i \theta / 2} x_{i}
$$

where the sign in $e^{ \pm i \theta / 2}$ is plus if i is a white vertex, and minus otherwise, is an eigenvector of c with eigenvalue $e^{2 i \theta}$.

§3. Sebastiani - Thom factorization of E_{8}

3.1. Root systems A_{n}. We consider the Dynkin graph of A_{n} with the obvious numbering of the vertices.

The Coxeter number $h=n+1$, the set of exponents:

$$
\operatorname{Exp}\left(A_{n}\right)=\{1,2, \ldots, n\}
$$

The eigenvalues of any Coxeter element are $e^{i \theta_{k}}$, and the eigenvalues of the Cartan matrix $A\left(A_{n}\right)$ are $2-2 \cos \theta_{k}, \theta_{k}=2 \pi k / h, k \in \operatorname{Exp}\left(A_{n}\right)$.

An eigenvector of $A\left(A_{n}\right)$ with the eigenvalue $2-2 \cos \theta$ has the form

$$
\begin{equation*}
x(\theta)=\left(\sum_{k=0}^{n-1} e^{i(n-1-2 k) \theta}, \sum_{k=0}^{n-2} e^{i(n-2-2 k) \theta}, \ldots, 1\right) \tag{3.1.1}
\end{equation*}
$$

Denote by $C\left(A_{n}\right)$ the Coxeter element

$$
C\left(A_{n}\right)=s_{1} s_{2} \ldots s_{n}
$$

Its eigenvector with the eigenvalue $e^{2 i \theta}$ is:

$$
X_{C\left(A_{n}\right)}=\left(\sum_{k=0}^{n-j} e^{2 i k \theta}\right)_{1 \leq j \leq n}
$$

For example, for $n=4$:

$$
C_{A_{4}}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1
\end{array}\right)
$$

and

$$
X_{C\left(A_{4}\right)}=\left(\begin{array}{c}
1+e^{2 i \theta}+e^{4 i \theta}+e^{6 i \theta} \\
1+e^{2 i \theta}+e^{4 i \theta} \\
1+e^{2 i \theta} \\
1
\end{array}\right)
$$

is an eigenvector with eigenvalue $e^{2 i \theta}$.
Similarly, for $n=2$:

$$
C_{A_{2}}=\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right), X_{C\left(A_{2}\right)}=\binom{1+e^{2 i \gamma}}{1}
$$

3.2. E_{8} versus $A_{4} * A_{2} * A_{1}$: elementary analysis.

The ranks:

$$
r\left(E_{8}\right)=8=r\left(A_{4}\right) r\left(A_{2}\right) r\left(A_{1}\right) ;
$$

the Coxeter numbers:

$$
h\left(E_{8}\right)=h\left(A_{4}\right) h\left(A_{2}\right) h\left(A_{1}\right)=5 \cdot 3 \cdot 2=30 .
$$

It follows that

$$
\left|R\left(E_{8}\right)\right|=240=\left|R\left(A_{4}\right)\right|\left|R\left(A_{2}\right)\right|\left|R\left(A_{1}\right)\right| .
$$

The exponents of E_{8} are:

$$
1,7,13,19,11,17,23,29 .
$$

All these numbers, except 1, are primes, and these are all primes ≤ 30, not dividing 30.

They may be determined from the formula

$$
\frac{i}{5}+\frac{j}{3}+\frac{1}{2}=\frac{30+k(i, j)}{30}, 1 \leq i \leq 4,1 \leq j \leq 2
$$

so

$$
\begin{gathered}
k(i, 1)=1+6(i-1)=1,7,13,19 \\
k(i, 2)=1+10+6(i-1)=11,17,23,29 .
\end{gathered}
$$

This shows that the exponents of E_{8} are the same as the exponents of $A_{4} * A_{2} * A_{1}$.

The following theorem is more delicate.
3.3. Theorem (Gabrielov). There exists a polarization of the root lattice $Q\left(E_{8}\right)$ and an isomorphism of polarized lattices

$$
\begin{equation*}
\Gamma: Q\left(A_{4}\right) * Q\left(A_{2}\right) * Q\left(A_{1}\right) \xrightarrow{\sim} Q\left(E_{8}\right) . \tag{3.3.1}
\end{equation*}
$$

In the left hand side $Q\left(A_{n}\right)$ means the root lattice of A_{n} with the standard Cartan matrix and the standard polarization

$$
A\left(A_{n}\right)=L\left(A_{n}\right)+L\left(A_{n}\right)^{t}
$$

where the Seifert matrix $L\left(A_{n}\right)$ is upper triangular.
In the process of the proof, given in 3.4-3.6 below, the isomorphism Γ will be written down explicitly.

3.4. Beginning of the proof.

For $n=4,2,1$, we consider the bases of simple roots e_{1}, \ldots, e_{n} in $Q\left(A_{n}\right)$, with scalar products given by the Cartan matrices $A\left(A_{n}\right)$.

The tensor product of three lattices

$$
Q_{*}=Q\left(A_{4}\right) \otimes Q\left(A_{2}\right) \otimes Q\left(A_{1}\right)
$$

will be equipped it with the "factorizable" basis in the lexicographic order:

$$
\begin{gathered}
\left(f_{1}, \ldots, f_{8}\right):=\left(e_{1} \otimes e_{1} \otimes e_{1}, e_{1} \otimes e_{2} \otimes e_{1}, e_{2} \otimes e_{1} \otimes e_{1}, e_{2} \otimes e_{2} \otimes e_{1},\right. \\
\left.e_{3} \otimes e_{1} \otimes e_{1}, e_{3} \otimes e_{2} \otimes e_{1}, e_{4} \otimes e_{1} \otimes e_{1}, e_{4} \otimes e_{2} \otimes e_{1}\right) .
\end{gathered}
$$

Introduce a scalar product (x, y) on Q_{*} given, in the basis $\left\{f_{i}\right\}$, by the matrix

$$
A_{*}=A_{4} * A_{2} * A_{1} .
$$

3.5. Gabrielov - Picard - Lefschetz transformations α_{m}, β_{m}.

Let $(Q,()$,$) be a lattice of rank r$. We introduce the following two sets of transformations $\left\{\alpha_{m}\right\},\left\{\beta_{m}\right\}$ on the set Bases $-\operatorname{cycl}(Q)$ of cyclically ordered bases of Q.

If $x=\left(x_{i}\right)_{i \in \mathbb{Z} / r \mathbb{Z}}$ is a base, and $m \in \mathbb{Z} / r \mathbb{Z}$, we set

$$
\left(\alpha_{m}(x)\right)_{i}=\left\{\begin{array}{cc}
x_{m+1}+\left(x_{m+1}, x_{m}\right) x_{m} & \text { if } i=m \\
x_{m} & \text { if } i=m+1 \\
x_{i} & \text { otherwise }
\end{array}\right.
$$

and

$$
\left(\beta_{m}(x)\right)_{i}=\left\{\begin{array}{cc}
x_{m} & \text { if } i=m-1 \\
x_{m-1}+\left(x_{m-1}, x_{m}\right) x_{m} & \text { if } i=m \\
x_{i} & \text { otherwise }
\end{array}\right.
$$

We define also a transformation γ_{m} by

$$
\left(\gamma_{m}(x)\right)_{i}=\left\{\begin{array}{cc}
-x_{m} & \text { if } i=m \\
x_{i} & \text { otherwise }
\end{array}\right.
$$

3.6. Passage from $A_{4} * A_{2} * A_{1}$ to E_{8}. Consider the base $f=\left\{f_{1}, \ldots f_{8}\right\}$ of the lattice $Q_{*}:=Q\left(A_{4}\right) \otimes Q\left(A_{2}\right) \otimes Q\left(A_{1}\right)$ described in 3.4 , and apply to it the following transformation

$$
\begin{equation*}
G^{\prime}=\gamma_{2} \gamma_{1} \beta_{4} \beta_{3} \alpha_{3} \alpha_{4} \beta_{4} \alpha_{5} \alpha_{6} \alpha_{7} \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \beta_{6} \beta_{3} \alpha_{1} \tag{3.6.1}
\end{equation*}
$$

cf. [Gab], Example 3.
Then the base $G^{\prime}(f)$ has the intersection matrix given by the Dynkin graph of E_{8}, with the ordering indicated on Figure 1 below.

Fig. 1. Gabrielov's ordering of E_{8}.

This concludes the proof of Theorem 3.3.
3.7. The induced map of root sets. By definition, the isomorphism of lattices Γ, (3.3.1), induces a bijection between the bases

$$
g:\left\{f_{1}, \ldots, f_{8}\right\} \xrightarrow{\sim}\left\{\alpha_{1}, \ldots, \alpha_{8}\right\} \subset R\left(E_{8}\right) .
$$

where in the right hand side we have the base of simple roots, and a map

$$
G: R\left(A_{4}\right) \times R\left(A_{2}\right) \times R\left(A_{1}\right) \longrightarrow R\left(E_{8}\right), G(x, y, z)=\Gamma(x \otimes y \otimes z)
$$

of sets of the same cardinality 240 which is not a bijection however: its image consists of 60 elements.

Note that the set of vectors $\alpha \in Q\left(E_{8}\right)$ with $(\alpha, \alpha)=2$ coincides with the root system $R\left(E_{8}\right)$, cf. [Serre], Première Partie, Ch. 5, 1.4.3.

3.8. Passage to Bourbaki ordering.

The isomorphism G^{\prime} (3.6.1) is given by a matrix $G^{\prime} \in G L_{8}(\mathbb{Z})$ such that

$$
A_{G}\left(E_{8}\right)=G^{\prime t} A_{*} G^{\prime}
$$

where we denoted

$$
A_{*}=A\left(A_{4}\right) * A\left(A_{2}\right) * A\left(A_{1}\right),
$$

the factorized Cartan matrix, and A_{G} denotes the Cartan matrix of E_{8} with respect to the numbering of roots indicated on Fig. 1.

Now let us pass to the numbering of vertices of the Dynkin graph of type E_{8} indicated in $[\mathrm{B}]$ (the difference with Gabrielov's numeration is in three vertices 2,3 , and 4).

Fig. 2. Bourbaki ordering of E_{8}.

The Gabrielov's Coxeter element (the full monodromy) in the Bourbaki numbering looks as follows:

$$
C_{G}\left(E_{8}\right)=s_{1} \circ s_{3} \circ s_{4} \circ s_{2} \circ s_{5} \circ s_{6} \circ s_{7} \circ s_{8}
$$

3.9. Lemma. Let $A\left(E_{8}\right)$ be the standard Cartan matrix of E_{8} from [B]:

$$
A\left(E_{8}\right)=\left(\begin{array}{cccccccc}
2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2
\end{array}\right) .
$$

Then

$$
A\left(E_{8}\right)=G^{t} A_{*} G
$$

and

$$
C_{G}\left(E_{8}\right)=G^{-1} C_{*} G
$$

where

$$
C_{*}=C\left(Q\left(A_{4}\right) * Q\left(A_{2}\right) * Q\left(A_{1}\right)\right)=C\left(A_{4}\right) \otimes C\left(A_{2}\right) \otimes C\left(A_{1}\right),
$$

is the factorized Coxeter element, and

$$
G=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \tag{3.8.1}\\
-1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 1 & -1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 1 & 0 \\
-1 & 1 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Here

$$
G=G^{\prime} P
$$

where P is the permutation matrix of passage from the Gabrielov's ordering on Fig. 1 to the Bourbaki ordering on Fig. 2.
3.9. Cartan eigenvectors of E_{8}. To obtain the Cartan eigenvectors of E_{8}, one should pass from $C_{G}\left(E_{8}\right)$ to a "black/white" coxeter element (as in 2.4)

$$
C_{B W}\left(E_{8}\right)=s_{1} \circ s_{4} \circ s_{6} \circ s_{8} \circ s_{2} \circ s_{3} \circ s_{5} \circ s_{7}
$$

Any two Coxeter elements are conjugate in the Weyl group $W\left(E_{8}\right)$.
The elements $C_{G}\left(E_{8}\right)$ and $C_{B W}\left(E_{8}\right)$ are conjugate by the following element of $W\left(E_{8}\right)$:

$$
C_{G}\left(E_{8}\right)=w^{-1} C_{B W}\left(E_{8}\right) w
$$

where

$$
w=s_{7} \circ s_{5} \circ s_{3} \circ s_{2} \circ s_{6} \circ s_{4} \circ s_{5} \circ s_{1} \circ s_{3} \circ s_{2} \circ s_{4} \circ s_{1} \circ s_{3} \circ s_{2} \circ s_{1} \circ s_{2}
$$

This expression for w can be obtained using an algorithm described in $[\mathrm{C}]$.
Thus, if x_{*} is an eigenvector of $C_{*}\left(E_{8}\right)$ then

$$
x_{B W}=w G^{-1} x_{*}
$$

is an eigenvector of $C_{B W}\left(E_{8}\right)$. But we know the eigenvectors of $C_{*}\left(E_{8}\right)$, they are all factorizable.

This provides the eigenvectors of $C_{B W}\left(E_{8}\right)$, which in turn have very simple relation to the eigenvectors of $A\left(E_{8}\right)$, due to Theorem 2.5.

Conclusion: an expression for the eigenvectors of $A\left(E_{8}\right)$.

Let $\theta=\frac{a \pi}{5}, 1 \leq a \leq 4, \gamma=\frac{b \pi}{3}, 1 \leq b \leq 2, \delta=\frac{\pi}{2}$,

$$
\begin{gathered}
\alpha=\theta+\gamma+\delta=1+\frac{k \pi}{30}, \\
k \in\{1,7,11,13,17,19,23,29\} .
\end{gathered}
$$

The 8 eigenvalues of $A\left(E_{8}\right)$ have the form

$$
\lambda(\alpha)=\lambda(\theta, \gamma)=2-2 \cos \alpha
$$

An eigenvector of $A\left(E_{8}\right)$ with the eigenvalue $\lambda(\theta, \gamma)$ is

$$
X_{E_{8}}(\theta, \gamma)=\left(\begin{array}{c}
\cos (\gamma+\theta-\delta)+\cos (\gamma-3 \theta-\delta)+\cos (\gamma-\theta-\delta) \\
\cos (2 \gamma+2 \theta) \\
\cos (2 \gamma)+\cos (2 \gamma+2 \theta)+\cos (2 \gamma-2 \theta)+\cos (4 \theta)+\cos (2 \theta) \\
\cos (\gamma+3 \theta-\delta)+\cos (\gamma+\theta-\delta)+\cos (-\gamma+3 \theta-\delta) \\
2 \cos (2 \gamma)+2 \cos (2 \gamma+2 \theta)+\cos (2 \gamma-2 \theta)+\cos (2 \gamma+4 \theta)+\cos (4 \theta)+2 \cos (2 \theta)+1 \\
\cos (\gamma+3 \theta-\delta)+\cos (\gamma+\theta-\delta) \\
\cos (2 \gamma)+\cos (2 \theta-2 \delta) \\
\cos (\gamma-\theta-\delta)
\end{array}\right)
$$

One can simplify it as follows:

$$
X_{E_{8}}(\theta, \gamma)=\left(\begin{array}{c}
2 \cos (4 \theta) \cos (\gamma-\theta-\delta) \tag{3.9.1}\\
-\cos (2 \gamma+2 \theta) \\
2 \cos ^{2}(\theta) \\
-2 \cos (\gamma) \cos (3 \theta-\delta)-\cos (\gamma+\theta-\delta) \\
-2 \cos (2 \gamma+3 \theta) \cos (\theta)+\cos (2 \gamma) \\
-2 \cos \theta \cos (\gamma+2 \theta-\delta) \\
-2 \cos (\gamma+\theta-\delta) \cos (\gamma-\theta+\delta) \\
-\cos (\gamma-\theta-\delta)
\end{array}\right)
$$

3.10. Perron - Frobenius and all that. The Perron - Frobenius eigenvector corresponds to the eigenvalue

$$
2-2 \cos \frac{\pi}{30}
$$

and may be chosen as

$$
v_{P F}=\left(\begin{array}{c}
2 \cos \frac{\pi}{5} \cos \frac{11 \pi}{30} \\
\cos \frac{\pi}{15} \\
2 \cos \frac{\pi}{5} \\
2 \cos \frac{2 \pi}{30} \cos \frac{\pi}{30} \\
2 \cos \frac{4 \pi}{15} \cos \frac{\pi}{5}+\frac{1}{2} \\
2 \cos \frac{\pi}{5} \cos \frac{7 \pi}{30} \\
2 \cos \frac{\pi}{30} \cos \frac{19 \pi}{30} \\
\cos \frac{11 \pi}{30}
\end{array}\right)
$$

If we order its coordinates in the increasing order, we get

$$
v_{P F<}=\left(\begin{array}{c}
\cos \frac{11 \pi}{30} \\
2 \cos \frac{\pi}{5} \cos \frac{11 \pi}{30} \\
2 \cos \frac{\pi}{30} \cos \frac{51 \pi}{30} \\
\cos \frac{\pi}{15} \\
2 \cos \frac{\pi}{5} \cos \frac{7 \pi}{30} \\
2 \cos ^{2} \frac{\pi}{5} \\
2 \cos \frac{4 \pi}{15} \cos \frac{\pi}{5}+\frac{1}{2} \\
2 \cos \frac{2 \pi}{30} \cos \frac{\pi}{30}
\end{array}\right)
$$

Zamolodchikov gives in $[\mathrm{Z}]$ the following expression for a PF vector:

$$
v_{\text {Zam }}(m)=\left(\begin{array}{c}
m \\
2 m \cos \frac{\pi}{5} \\
2 m \cos \frac{5}{30} \\
4 m \cos \frac{\pi}{5} \cos \frac{7 \pi}{30} \\
4 m \cos \frac{\pi}{5} \cos \frac{2 \pi}{15} \\
4 m \cos \frac{\pi}{5} \cos \frac{\pi}{30} \\
8 m \cos ^{2} \frac{\pi}{5} \cos \frac{9 \pi}{30} \\
8 m \cos ^{2} \frac{\pi}{5} \cos \frac{2 \pi}{15}
\end{array}\right)
$$

Setting $m=\cos \frac{11 \pi}{30}$, we have indeed:

$$
v_{P F<}=v_{Z a m}\left(\cos \frac{11 \pi}{30}\right)
$$

3.11. Another form of the eigenvectors' matrix. As was noticed in [BS], the coordiantes of all eigenvectors of $A\left(E_{8}\right)$ may be obtained from the coordinates of the PF vector by some permutations and sign changes.

Namely, if $\left(z_{1}, \ldots, z_{8}\right)$ is a PF vector then the other eigenvectors are the columns of the matrix

$$
Z=\left(\begin{array}{cccccccc}
z_{1} & z_{7} & z_{4} & z_{2} & z_{2} & z_{4} & z_{7} & z_{1} \\
z_{2} & z_{1} & -z_{7} & -z_{4} & z_{4} & z_{7} & -z_{1} & -z_{2} \\
z_{3} & z_{6} & z_{5} & z_{8} & -z_{8} & -z_{5} & -z_{6} & -z_{3} \\
z_{4} & z_{2} & -z_{1} & -z_{7} & -z_{7} & -z_{1} & z_{2} & z_{4} \\
z_{5} & -z_{8} & -z_{3} & z_{6} & -z_{6} & z_{3} & z_{8} & -z_{5} \\
z_{6} & -z_{5} & -z_{8} & z_{3} & z_{3} & -z_{8} & -z_{5} & z_{6} \\
z_{7} & -z_{4} & z_{2} & -z_{1} & z_{1} & -z_{2} & z_{4} & -z_{7} \\
z_{8} & -z_{3} & z_{6} & -z_{5} & -z_{5} & z_{6} & -z_{3} & z_{8}
\end{array}\right)
$$

However, these eigenvectors differ from the ones given by the formula (3.9.1): the latter ones are proportional to the former ones.

$\S 4$. Givental's q-deformations

4.1. Definition. Let (Q, A, L) be a polarized lattice. We define a q-deformed Cartan matrix by

$$
A(q)=L+q L^{t} .
$$

This definition is inspired by the q-deformed Picard - Lefschetz theory developed by Givental, [Giv].
4.2. 'Black/white" q-deformation. Let

$$
A=\left(\begin{array}{ll}
2 & B \\
C & 2
\end{array}\right)
$$

be a block matrix, and $v=\binom{x}{y}$ its eigenvector with the eigenvalue λ. This means that

$$
\begin{equation*}
B y=(\lambda-2) x, C x=(\lambda-2) y \text {. } \tag{4.2.1}
\end{equation*}
$$

Consider the matrix

$$
A(q)=\left(\begin{array}{cc}
1+q & B \\
q C & 1+q
\end{array}\right)
$$

and let us look for its eigenvector in the form $v=\binom{x}{b y}$ with eigenvalue μ. This would mean that

$$
\begin{equation*}
B y=\frac{\mu-q-1}{b} x, C x=\frac{b(\mu-q-1)}{q} x \text {. } \tag{4.2.2}
\end{equation*}
$$

Comparing (4.2.1) and (4.2.2) we conclude that

$$
\frac{\mu^{\prime}}{b}=\frac{b \mu^{\prime}}{q}, \mu^{\prime}=\mu-q-1,
$$

whence $b=\sqrt{q}$, and that

$$
\lambda-2=\frac{\mu^{\prime}}{\sqrt{q}} .
$$

Conclusion: the vector

$$
v(q)=\binom{x}{q^{1 / 2} y}
$$

is an eigenvector of $A(q)$ with eigenvalue

$$
\begin{equation*}
\lambda(q)=1+(\lambda-2) q^{1 / 2}+q . \tag{4.2.3}
\end{equation*}
$$

For another approach to the same values see 4.10 below.
4.2.1. A generalization. More generally, let

$$
M=\left(\begin{array}{ccc}
2 I & A & 0 \\
C & 2 I & B \\
0 & D & 2 I
\end{array}\right)
$$

be a block Jacobi matrix which admits an eigenvector $v=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ for the eigenvalue $\lambda=2-2 \cos \theta$.

Then its q-deformation

$$
M(q)=\left(\begin{array}{ccc}
(1+q) I & A & 0 \\
q C & (1+q) I & D \\
0 & q D & (1+q) I
\end{array}\right)
$$

admits an eigenvector

$$
v(q)=\left(\begin{array}{c}
x \\
q^{\frac{1}{2}} y \\
q z
\end{array}\right)
$$

with the eigenvalue

$$
\lambda(q)=1+q-2 q^{\frac{1}{2}} \cos \theta .
$$

This can be generalized to the block Jacobi matrices of any size.
4.3. Remark (M.Finkelberg). The expression (4.2.3) resembles the number of points of an elliptic curve X over a finite field \mathbb{F}_{q}. To better appreciate this resemblance, note that in all our examples λ will have the form

$$
\lambda=2-2 \cos \theta,
$$

so if we set

$$
\alpha=\sqrt{q} e^{i \theta}
$$

("a Frobenius root") then $|\alpha|=\sqrt{q}$, and

$$
\lambda(q)=1-\alpha-\bar{\alpha}+q,
$$

cf. [IR], Chapter 11, $\S 1,[\mathrm{Kn}]$, Chapter 10, Theorem 10.5.
So, the Coxeter eigenvalues $e^{2 i \theta}$ may be seen as analogs of "Frobenius roots of an elliptic curve over \mathbb{F}_{1} ".
4.4. Standard deformation for A_{n}. Let us consider the following q-deformation of $A=A\left(A_{n}\right)$:

$$
A(q)=\left(\begin{array}{ccccc}
1+q & -1 & 0 & \ldots & 0 \\
-q & 1+q & -1 & \ldots & 0 \\
\cdots & \cdots & \ldots & \ldots & \ldots \\
0 & \cdots & 0 & -q & 1+q
\end{array}\right)
$$

Then

$$
\operatorname{Spec}(A(q))=\{\lambda(q):=1+(\lambda-2) \sqrt{q}+q \mid \lambda \in \operatorname{Spec}(A(1))\} .
$$

If $x=\left(x_{1}, \ldots, x_{n}\right)$ is an eigenvector of $A=A(1)$ with eigenvalue λ then

$$
x(q)=\left(x_{1}, q^{1 / 2} x_{2}, \ldots, q^{(n-1) / 2} x_{n}\right)
$$

is an eigenvector of $A(q)$ with eigenvalue $\lambda(q)$.
4.5. Standard deformation for E_{8}. A q-deformation:

$$
A_{E_{8}}(q)=\left(\begin{array}{cccccccc}
1+q & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1+q & 0 & -1 & 0 & 0 & 0 & 0 \\
-q & 0 & 1+q & -1 & 0 & 0 & 0 & 0 \\
0 & -q & -q & 1+q & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -q & 1+q & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -q & 1+q & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -q & 1+q & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -q & 1+q
\end{array}\right)
$$

Its eigenvalues are

$$
\lambda(q)=1+q+(\lambda-2) \sqrt{q}=1+q-2 \sqrt{q} \cos \theta
$$

where $\lambda=2-2 \cos \theta$ is an eigenvalue of $A\left(E_{8}\right)$.
If $X=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right)$ is an eigenvector of $A\left(E_{8}\right)$ for the eigenvalue λ, then

$$
\begin{equation*}
X=\left(x_{1}, \sqrt{q} x_{2}, \sqrt{q} x_{3}, q x_{4}, q \sqrt{q} x_{5}, q^{2} x_{6}, q^{2} \sqrt{q} x_{7}, q^{3} x_{8}\right) \tag{4.5.1}
\end{equation*}
$$

is an eigenvector of $A_{E_{8}}(q)$ for the eigenvalue $\lambda(q)$.
We see the patterns here:
(i) The eigenvalues are always $\lambda(q)$, as in the black/white case, so the q deformed Cartan matrices for different orderings are conjugate.
(ii) The coordinates of the q-deformed eigenvectors are equal to $q^{?} \times$ the coordinates of the original eigenvector.

For an explanation, see 4.7, 4.8 below.

4.6. Examples of conjugation.

(a) Let

$$
A\left(A_{4} ; q\right)=\left(\begin{array}{cccc}
1+q & -1 & 0 & 0 \\
-q & 1+q & -1 & 0 \\
0 & -q & 1+q & -1 \\
0 & 0 & -q & 1+q
\end{array}\right)
$$

be the q-deformation of the standard $A\left(A_{4}\right)$, and

$$
A_{B W}\left(A_{4} ; q\right)=\left(\begin{array}{cccc}
1+q & 0 & -1 & 0 \\
0 & 1+q & -1 & -1 \\
-q & -q & 1+q & 0 \\
0 & -q & 0 & 1+q
\end{array}\right)
$$

that of the "black/white" one. Then

$$
A\left(A_{4} ; q\right)=P(q) \cdot A_{B W}\left(A_{4} ; q\right) \cdot P^{-1}(q),
$$

with

$$
P(q)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & q & 0 & 0 \\
0 & 0 & 0 & q
\end{array}\right) \text { and } P^{-1}(q)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & q^{-1} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & q^{-1}
\end{array}\right)
$$

The matrix $P(q)$ is a deformation of a permutation matrix.
(b) A similar example for E_{8} :

$$
A\left(E_{8} ; q\right)=P(q) \cdot A_{B W}\left(E_{8} ; q\right) \cdot P^{-1}(q)
$$

with

$$
P(q)=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & q & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & q & 0 \\
0 & 0 & q^{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{2} \\
0 & 0 & 0 & q^{3} & 0 & 0 & 0 & 0
\end{array}\right)
$$

In fact, always

$$
P(q)=D(q) P(1)=P(1) D^{\prime}(q)
$$

where $P(1)$ is a permutation matrix, and $D(q), D^{\prime}(q)$ are diagonal matrices, with some natural powers q^{n} on the diagonal.

Below follows an explanation of what is going on.

4.7. Conjugacy of different q-deformations.

Let $A=\left(a_{i j}\right) \in \mathfrak{g l}_{r}(\mathbb{C})$ be a symmetric matrix, and

$$
A=L+L^{t}
$$

the standard polarization, with L upper triangular. Thus, $L=\left(\ell_{i j}\right)$, with $\ell_{i i}=$ $a_{i i} / 2$, and

$$
\ell_{i j}=\left\{\begin{array}{cc}
a_{i j} & \text { if } i<j \\
0 & \text { if } i>j
\end{array}\right.
$$

For a bijection

$$
\sigma:\{1, \ldots, r\} \xrightarrow{\sim}\{1, \ldots, r\}
$$

define a matrix $L_{\sigma}=\left(\ell_{i j}^{\sigma}\right)$ with $\ell_{i i}^{\sigma}=a_{i i} / 2$, and

$$
\ell_{i j}^{\sigma}=\left\{\begin{array}{cl}
a_{i j} & \text { if } \sigma(i)<\sigma(j) \\
0 & \text { if } \sigma(i)>\sigma(j)
\end{array}\right.
$$

Obviously

$$
A=L_{\sigma}+L_{\sigma}^{t}
$$

i.e. we have got a different, " σ - twisted", polarization of A.

Consider the q-deformations of A corresponding to these two polarizations:

$$
A(q)=L+q L^{t}
$$

and

$$
A(\sigma ; q)=L_{\sigma}+q L_{\sigma}^{t}
$$

Let us ask a
4.7.1. Question. Find a diagonal matrix of the form

$$
\begin{equation*}
D=D(\sigma ; q)=\operatorname{Diag}\left(q^{n_{1}}, \ldots, q^{n_{r}}\right) \tag{4.7.1}
\end{equation*}
$$

such that

$$
\begin{equation*}
A(\sigma ; q)=D^{-1} A(q) D \tag{4.7.2}
\end{equation*}
$$

This equation means that

$$
A(\sigma ; q)_{i j}=q^{-n_{i}+n_{j}} A(q)_{i j}
$$

for all i, j. This is an overdertermined system of $r(r-1) / 2$ equations on r variables n_{i}, not solvable in general.

However, we have something positive to say.
Let $A=\left(a_{i j}\right)$ be any matrix having the property

$$
\begin{equation*}
a_{i j} \neq 0 \text { implies } a_{j i} \neq 0 \tag{4.7.3}
\end{equation*}
$$

Let us assign to A its "Dynkin graph" $\Gamma(A)$ having $[r]:=\{1, \ldots, r\}$ as the set of vertices, vertices i and j being connected iff $a_{i j} \neq 0$.

Now let us return to our symmetric matrix A.
4.7.1. Tree lemma. If $\Gamma(A)$ is a tree then for each $\sigma \in S_{r}=\operatorname{Aut}([r])$ there exists $D=D(\sigma ; q)$ such that (4.7.2) holds true.

A proof will be given in 4.9 below (the reader may also wish to take it as an excercise).

For the moment we assume this assertion.

4.8. Now let us turn a permutation matrix P on.

Define a permutation matrix $P=P(\sigma)=\left(p_{i j}\right) \in G L_{r}(\mathbb{Z})$, by

$$
p_{i j}=\delta_{i, \sigma(j)} .
$$

Then its inverse

$$
\begin{equation*}
P^{-1}=\left(p_{i j}^{\prime}\right), p_{i j}^{\prime}=\delta_{\sigma(i), j}=\delta_{i, \sigma^{-1}(j)}=P^{t} \tag{4.8.1}
\end{equation*}
$$

Define

$$
A^{\prime}=P^{-1} A P=\left(a_{i j}^{\prime}\right) .
$$

Then

$$
\begin{equation*}
a_{i j}^{\prime}=a_{\sigma(i), \sigma(j)} \tag{4.8.2}
\end{equation*}
$$

It follows that A^{\prime} is symmetric as well.
Decompose

$$
\begin{equation*}
A^{\prime}=L^{\prime}+L^{\prime t} \tag{4.8.3}
\end{equation*}
$$

with L^{\prime} upper triangular.
Define a q-deformation

$$
A^{\prime}(q)=L^{\prime}+q L^{\prime t},
$$

Let us look for a matrix $P(q)$ of the form

$$
P(q)=P D(q),
$$

$D(q)=D(\sigma ; q)$ being as in (4.7.1), such that

$$
\begin{equation*}
A^{\prime}(q)=P(q)^{-1} A(q) P(q) . \tag{4.8.4}
\end{equation*}
$$

(Note that

$$
D(q) P=P D^{\prime}(q)
$$

where

$$
D^{\prime}(q)=\operatorname{diag}\left(q^{n_{1}^{\prime}}, \ldots, q^{n_{r}^{\prime}}\right), n_{i}^{\prime}=n_{\sigma^{-1}(i)}
$$

cf. (4.8.2).)
The matrix A^{\prime} has two polarizations: the first, the standard one, (4.8.3), and the second, the σ-twisted one:

$$
A^{\prime}=L_{\sigma}+L_{\sigma}^{t}, L_{\sigma}:=P^{-1} L P
$$

So, we are in the situation 4.7, and we are looking for a diagonal matrix D.
If we are lucky, and D exists, for example, according to the Tree lemma 4.7.1, if $\Gamma(A)$ is a tree, then the problem (4.8.4) is solved.

This is the case for the finite Cartan matrices of types A, D or E.
4.9. Homology of the Dynkin graph, the diagonal conjugacy, and a proof of Tree Lemma. Under the assumptions of Lemma 4.7.1, pick any orientation on the Dynkin graph $\Gamma=\Gamma(A)$; let $\vec{\Gamma}$ denote the oriented graph thus obtained.

Consider a cochain complex

$$
O \longrightarrow C^{0}\left(\vec{\Gamma} ; \mathbb{C}^{*}\right) \xrightarrow{d} C^{1}\left(\vec{\Gamma} ; \mathbb{C}^{*}\right) \longrightarrow 0
$$

We have $\operatorname{Coker}(d)=H^{1}\left(\vec{\Gamma} ; \mathbb{C}^{*}\right)=0$ since Γ is a tree. This means the following:
(i) For any collection of numbers $\left\{b_{i j} \in \mathbb{C}^{*},(i, j) \in[r]^{2}, i \neq j\right\}$ such that

$$
\begin{equation*}
b_{j i}=b_{i j}^{-1}, \tag{4.9.1}
\end{equation*}
$$

there exists a collection $\left\{c_{i} \in \mathbb{C}^{*}, i \in[r]\right\}$ such that

$$
\begin{equation*}
b_{i j}=c_{j} / c_{i} . \tag{4.9.2}
\end{equation*}
$$

Moreover, we can choose the numbers c_{i} in such a way that they are products of some $b_{i j}$.

To prove the last assertion, let us choose a trunk of our tree Γ, and partially order its vertices by taking the minimal vertex i_{0} to be the beginning of the trunk, and then going "upstairs". This defines an orientation on Γ. Now, given a 1 -cochain $\left(b_{i j}\right)$, we set $c_{i_{0}}=1$ and then define the other c_{i} one by one, by going upstairs, and using as a definition

$$
c_{j}=b_{i j} c_{i}, i<j
$$

Obviously, the numbers c_{i} defined in such a way, are products of $b_{a b}$.

If we don't suppose Γ to be a tree then to get a solution of (4.9.2), in addition to (4.9.1) one should impose on $\left\{b_{i j}\right\}$ one more condition:
for any non-contractible loop $i_{1} \longrightarrow i_{2} \longrightarrow \ldots i_{k} \longrightarrow i_{1}$ in Γ,

$$
\begin{equation*}
b_{i_{1} i_{2}} b_{i_{2} i_{3}} \ldots b_{i_{k} i_{1}}=1 \tag{4.9.1a}
\end{equation*}
$$

(One could restrict to the loops representing some set of generators of $H_{1}(\vec{\Gamma} ; \mathbb{Z})$.)
Let us return to the conditions of Lemma 4.7.1.
(ii) Let $A^{\prime}=\left(a_{i j}^{\prime}\right)$ be another matrix with $\Gamma\left(A^{\prime}\right)=\Gamma(A)$ such that $a_{i i}^{\prime}=a_{i i}$ for all i, and

$$
a_{i j}^{\prime} / a_{i j}=a_{j i} / a_{j i}^{\prime}
$$

for all $i \neq j$. Then there exists a diagonal matrix

$$
D=\operatorname{Diag}\left(c_{1}, \ldots, c_{r}\right)
$$

such that $A^{\prime}=D^{-1} A D$.
This is a corollary of (i), namely, set $b_{i j}=a_{i j}^{\prime} / a_{i j}$.
Now we can prove the Tree Lemma. In fact, two matrices $A(q)$ and $A_{\sigma}(q)$ satisfy the conditions of (ii), with $b_{i j}=1, q$, or q^{-1}.

We can choose c_{i} to be the integer powers of q due to the last assertion of (i).
4.10. Another way to compute the eigenvalues and eigenvectors of $A(q)$. Let A be a symmetric generalized Cartan matrix, and $A(q)$ its standard q-deformation.

We can apply 4.9 (ii) to the matrices $A(q)$ and a symmetric

$$
A^{\prime}(q)=\sqrt{q} A+(1-\sqrt{q})^{2} I
$$

So, there exists a diagonal matrix D as above such that

$$
A(q)=D^{-1} A^{\prime}(q) D
$$

But the eigenvalues of $A^{\prime}(q)$ are obviously

$$
\lambda(q)=\sqrt{q} \lambda+(1-\sqrt{q})^{2}=1+(\lambda-2) \sqrt{q}+q
$$

If v is an eigenvector of A for λ then v is an eigenvector of $A^{\prime}(q)$ for $\lambda(q)$, and $D v$ will be an eigenvector of $A(q)$ for $\lambda(q)$.

References

[AGV] V.Arnold, S.Gusein-Zade, A,Varchenko, Singularities of differentiable maps, vol. II, Monodrmomy and asymptotic of integrals. В.И.Арнольд, А.Н.Варченко, С.М.Гусейн-Заде, Особенности дифференцируемых отображений, т. 2, М., 1984.
[B] N.Bourbaki, Groupes et algèbres de Lie, Chapitres IV - VI.
[BS] L.Brillon, V.Schechtman, Coxeter element and particle masses, http://www.math.univ-toulouse.fr/ schechtman/masse.pdf.
[C] B.Casselman, Essays on Coxeter groups. Coxeter elements in finite Coxeter groups, https://www.math.ubc.ca/ cass/research/pdf/Element.pdf
[D] P.Dorey, (a) Root systems and purely elastic S-matrices, Nucl. Phys. B358 (1991), 654-676. (b) The exact S-matrices of affine Toda field theories, Durham PhD thesis (1990).
[F] M.D.Freeman, (a) On the mass spectrum of an affine Toda field theory, Phys. Let. B 261 (1991), 57-61. (b) Conserved charges and soliton solutions in affine Toda theory, arXiv:hep/9408092.
[Gab] A.Gabrielov, Intersection matrices for some singularities. A.М.Габриэлов, Матрицы пересечений для некоторых особенностей, Функц. анализ и его прил., 7 (1973), вып. 3, 18-32.
[Giv] A.Givental, Twisted Picard - Lefschetz formulas. А.Б.Гивенталь, Скрученные формулы Пикара - Лефшеца, Функи. анализ и его прил., 22 (1988), вып. 1, 12 - 22.
[IR] K.Ireland, M.Rosen, A classical introduction to modern Number theory.
[Kn] A.Knapp, Elliptic curves.
[L] K.Lamotke, Die Homologie isolierter Singularitäten, Math. Z. 143 (1975), 27-44.
[Lef] S.Lefschetz, L'analysis situs et la géométrie algébrique, Gauthier-Villars, 1950.
[M] J.Milnor, Singular points of complex hypersurfaces.
[ST] M.Sebastiani, R.Thom, Un résultat sur la monodromie, Inv. Math. 13 (1971), $90-96$.
[Serre] J.-P.Serre, Cours d'arithmétique.
[Stein] R.Steinberg, Finite subgroups of $S U_{2}$, Dynkin diagrams and affine Coxeter elements, Pacific J. Math. 118 (1985), 587-598.
[Z] A.Zamolodchikov, (a) Integrable field theory from Conformal field theory, in: Integrable Systems in Quantum Field Theory and Statistical Mechanics, Adv. Studies in Pure Math. 19 (1989), 641-674. (b) Integrals of motion and S-matrix of the (scaled) $T=T_{c}$ Ising model with magnetic field.

