PROBS AND SHEAVES

Vadim Schechtman

Talk at

Winter STARS Workshop 2021

Weizmann Institute of Science

December 29, 2021

This talk is based on a joint work with Mikhail Kapranov

Contents

§1. Braided categories and braided bialgebras
§2. Relation to perverse sheaves over Sym \mathbb{C}
§3. Contingency tables

§1. Some abstract nonsense: braided categories and braided bialgebras

PROP: products and permutations (Adams/MacLane, 1965)
PROB: products and braids
1.1. Braided categories. We will work with \mathbf{k}-linear categories where \mathbf{k} is a field.

A symmetric monoidal category \mathcal{C} is equipped with a tensor product

$$
(A, B) \mapsto A \otimes B,
$$

an object 1 , and natural isomorphisms:
unit

$$
\mathbf{1} \otimes A \xrightarrow{\sim} A
$$

associativity

$$
a=a(A, B, C): A \otimes(B \otimes C) \xrightarrow{\sim}(A \otimes B) \otimes C
$$

and commutativity (R-matrix)

$$
c=c(A, B)=R(A, B)=R_{A B}: A \otimes B \xrightarrow{\sim} B \otimes A
$$

satisfying some axioms.
In particular:
a satisfies the Stasheff pentagon aciom;
c satisfies a hexagon property (or Yang - Baxter identity)

$$
\begin{equation*}
R_{B C} R_{A C} R_{A B}=R_{A B} R_{A C} R_{B C}: A \otimes B \otimes C \xrightarrow{\sim} C \otimes B \otimes A \tag{YB}
\end{equation*}
$$

and a reflection property

$$
\begin{equation*}
R_{A B} R_{B A}=\operatorname{Id}_{A \otimes B} \tag{R}
\end{equation*}
$$

It follows that on any $A^{\otimes n}$ the symmetric group S_{n} acts.
In a braided category we forget about the axiom (R). This implies that on each $A^{\otimes n}$ only the braid group $B r_{n}$ acts. See [JS].

Tensor functors $F: \mathcal{C} \longrightarrow \mathcal{C}^{\prime}$
1.2. Braided bialgebras. Inside a braided category we have a notion of a bialgebra A:
it has a unit $\eta: \mathbf{1} \longrightarrow A$, counit $\epsilon: A \longrightarrow \mathbf{1}$, multiplication $\mu: A^{\otimes 2} \longrightarrow A$ and comultiplication $\Delta: A \longrightarrow A^{\otimes 2}$
(some people call it a Hopf algebra; other people require an antipode for a Hopf algebra; we will not need it).

Main axiom: compatibility of μ with Δ :
μ should be a morphism of coalgebras, or, equivalently, Δ should be a morphism of algebras.

To make sense of it one should define a structure of an algebra on $A^{\otimes 2}$: this is done using the R-matrix (sic!).
1.3. Mother of all braided bialgebras. A universal braided category BBialg with the universal B bialgebra inside it, cf. [H], 6.1.

Universal property:
a braided bialgebra A in a braided category C is the same as a tensor functor

$$
f_{A}: B \text { Bialg } \longrightarrow C, f_{A}(B)=A
$$

It is generated as a tensor category by one object B, so it has objects $B^{\otimes n}, n \geq$ $0, B^{0}=1$.

Morphisms are generated by:

$$
\begin{gathered}
\mu: B^{\otimes 2} \longrightarrow B, \Delta: B \longrightarrow B^{\otimes 2}, \\
\eta: \mathbf{1} \longrightarrow B, \epsilon: B \longrightarrow \mathbf{1} \\
c^{ \pm}=R^{ \pm}: B^{\otimes 2} \xrightarrow{\sim} B^{\otimes 2}
\end{gathered}
$$

subject to the relations which make of B a bialgebra.
1.4. \mathbb{N}-graded bialgebras. An \mathbb{N}-graded bialgebra in a braided category \mathcal{C} is a collection of objects $A_{\bullet}=\left\{A_{n}\right\}, n \geq 0, A_{0}=\mathbf{1}$ together with morphisms

$$
\mu: A_{n} \otimes A_{m} \longrightarrow A_{n+m}, \Delta: A_{n+m} \longrightarrow A_{n} \otimes A_{m}
$$

satisfying the usual axioms.
1.5. Mother of all \mathbb{N}-graded bialgebras is a category $N B$ Bialg together with a \mathbb{N}-graded bialgebra (NBB) $B \bullet$ inside it such that for a braided category \mathcal{C} the category $N B B(C)$ is equivalent to the category of tensor functors

$$
N \text { BBialg } \longrightarrow \mathcal{C}
$$

It is generated as a braided category by a collection of objects

$$
B_{0}=1, B_{1}, B_{2}, \ldots
$$

So, its objects are symbols

$$
B_{\mathbf{n}}=B_{n_{1}} \otimes \ldots \otimes B_{n_{k}}
$$

defined for all sequences

$$
\mathbf{n}=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k}, k \in \mathbb{N}
$$

Define the weight

$$
m(\mathbf{n}):=\sum h_{i}=m .
$$

Maps in NBBialg are compositions of various multiplications and comultiplications

$$
\mu: B_{\mathbf{n}} \longrightarrow B_{\mathbf{n}^{\prime}}, \Delta: B_{\mathbf{n}^{\prime}} \longrightarrow B_{\mathbf{n}}
$$

where $m(\mathbf{n})=m\left(\mathbf{n}^{\prime}\right)$ (there are no nontrivial morphisms between objects of different weights).

For any $m \in \mathbb{N}$ we will denote by $N B$ Bialg $_{m} \subset N B$ Bialg the full subcategory with objects $B_{\mathbf{n}}$ of weight m.

See a simplest nontrivial example in 2.1 below.

§2. Relation to perverse sheaves
 on symmetric powers of the complex affine line

2.1. Example. Perverse sheaves on a disc and $N B B_{i a l} g_{2}$.

2.1.1. Recall $\mathcal{M}(\mathbb{C} ; 0)=\operatorname{Perv}(\mathbb{C}, 0) \subset \mathcal{D}(\mathbb{C}, 0)$.

Let $\operatorname{Constr}(\mathbb{C}, 0)$ denote the category of constructible sheaves on $A^{1}=\mathbb{C}$ smooth over \mathbb{C}^{*}. So an object \mathcal{F} of it is a couple of finite dimensional vector spaces

$$
\mathcal{F}_{0}=\Gamma(\mathcal{F} ; D(0 ; 2))=i_{0}^{*} \mathcal{F}, \mathcal{F}_{1}=\Gamma(\mathcal{F} ; D(1 ; 1 / 2))=i_{1}^{* \mathcal{F}},
$$

and morphisms

$$
T: \mathcal{F}_{1} \xrightarrow{\sim} \mathcal{F}_{1}
$$

(monodromy around 0), and

$$
\gamma: \mathcal{F}_{0} \longrightarrow \mathcal{F}_{1}^{T} \subset \mathcal{F}_{1}
$$

("generalisation").
Let $\mathcal{D}\left(A^{1}, 0\right)$ be its derived category (all sheaves will be with values in a $\operatorname{Vect}{ }^{f}(\mathbf{k})$).

Functors Ψ, Φ.
(a) Usual fibers

For $\mathcal{F} \in \mathcal{D}\left(A^{1}, 0\right)$ consider complexes

$$
i_{1}^{* \mathcal{F}}=R \Gamma(D(1 ; 1 / 2) ; \mathcal{F})
$$

and

$$
i_{0}^{*} \mathcal{F}=R \Gamma(\mathbb{C} ; \mathcal{F})
$$

The complex $i_{1}^{* \mathcal{F}}$ is equpped with an automorphism T - the monodromy around 0 .
We have the obvious restriction ("generalization") map

$$
g: i_{0}^{*} \mathcal{F} \longrightarrow i_{1}^{*} \mathcal{F}
$$

which lands in fact in the invariants of T.
(b) Hyperbolic fibers

We define

$$
\Psi(\mathcal{F}):=i_{1}^{*} \mathcal{F}[1]
$$

("nearby cycles"), and

$$
\Phi(\mathcal{F}):=\operatorname{Cone}(g)[1]
$$

("vanishing cycles").
So we have a canonical map

$$
u: \Psi(\mathcal{F}) \longrightarrow \Phi(\mathcal{F})
$$

From the data above one can extract a map

$$
v: \Phi(\mathcal{F}) \longrightarrow \Psi(\mathcal{F}),
$$

"variation", such that

$$
v u=1-T
$$

(exercise).

Hyperbolic, or "perverse", or Lefschetz, sheaves

We define

$$
\mathcal{M}(\mathbb{C}, 0) \subset \mathcal{D}(\mathbb{C}, 0)
$$

as the full sucategory of complexes \mathcal{F} such that

$$
\Psi(\mathcal{F}), \Phi(\mathcal{F}) \in \operatorname{Vect}(\mathbf{k}) \subset \mathcal{D}(\mathbb{C}, 0)
$$

The category $\mathcal{N}(\mathbb{C}, 0)$ is equivalent to a category of quadruples

$$
(\Phi, \Psi, v: \Phi \longrightarrow \Psi, u: \Psi \longrightarrow \Phi), \Phi, \Psi \in V e c t{ }^{f}(\mathbf{k})
$$

such that

$$
T_{\Psi}:=1-v u
$$

is invertible.
Exercise. Prove that the last condition is equivalent to:

$$
T_{\phi}=1-u v
$$

is invertible.
2.1.2. Let A_{\bullet} be an \mathbb{N}-graded bialgebra. It follows from the axioms of a bialgebra that for any $z \in A_{1}^{\otimes 2}$

$$
\Delta \mu(z)=z+R(z)
$$

It follows that $N B B_{i a l} g_{2}$ has two objects, B_{2} and $B_{1}^{\otimes 2}$, and the set of maps admits two generators

$$
\mu: B_{1}^{\otimes 2} \longrightarrow B_{2}, \Delta: B_{2} \longrightarrow B_{1}^{\otimes 2}
$$

with

$$
1-\Delta \mu=-R_{B_{1}^{\otimes 2}}
$$

We see that

$$
\mathcal{M}(\mathbb{C}, 0) \xrightarrow{\sim} \text { Funct }\left(N B \text { Bialg }_{2}, \text { Vect }^{f}(\mathbf{k})\right) .
$$

Note that

$$
\mathcal{M}(\mathbb{C}, 0) \cong \operatorname{Perv}\left(\operatorname{Sym}^{2} A^{1}, \Delta\right)
$$

Our main theorem is a generalisation of the above.

2.1.3. Factorizable sheaves.

Let us call a factorizable perverse sheaf over $(\mathbb{C}, 0)$ a collection
$A_{1}, A_{2} \in \operatorname{Vect}^{f}(\mathbf{k})$,
$u: A_{1}^{\otimes 2} \longrightarrow A_{2}, v: A_{2} \longrightarrow A_{1}^{\otimes 2}$
such that $v u-\mathrm{Id}$ is invertible. They form a category $\mathcal{M}^{\text {fact }}(\mathbb{C}, 0)$ equipped with an obvious functor

$$
\mathcal{M}^{f a c t}(\mathbb{C}, 0) \longrightarrow \mathcal{M}(\mathbb{C}, 0)
$$

This category is equivalent to the category of tensor functors

$$
\text { Funct }{ }^{\text {tens }}\left(N B B i a l g_{2}, V_{e c t}(\mathbf{k})\right) \text {. }
$$

2.2. Hochschild - Tate complex for the disc. We have a commutative square

$$
\begin{array}{ccc}
A_{1} \otimes A_{1} & \xrightarrow{(1, R)} & \left(A_{1} \otimes A_{1}\right)^{2} \\
\mu \downarrow & & \downarrow+ \\
A_{2} & \xrightarrow{\Delta} & A_{1} \otimes A_{1}
\end{array}
$$

whence a complex concentrated in degrees $[-1,1]$

$$
\begin{equation*}
0 \longrightarrow A_{1} \otimes A_{1} \longrightarrow A_{2} \oplus\left(A_{1} \otimes A_{1}\right)^{2} \longrightarrow A_{1} \otimes A_{1} \longrightarrow 0 \tag{HT}
\end{equation*}
$$

quasiisomorphic to A_{2}. This is nothing else but Beilinson's monad, cf [B], no. 3, p. 46.
2.3. Theorem. For every $m \geq 0$ we have an equivalence of categories

$$
\text { Funct }\left(N B B i a l g_{m}, \operatorname{Vect}^{f}(\mathbf{k})\right) \xrightarrow{\sim} \operatorname{Perv}\left(\operatorname{Sym}^{m} A^{1}, \Delta\right)
$$

where to the right we have the category of perverse sheaves smooth along the diagonal stratification.

For an arbitrary m the correspondind Hochschild - Tate complex $(H T)$ is concentrated in degrees $[-m, m]$, and is quasiisomorphic to A_{m}.

§3. Contingency tables and Yanus sheaves

Contingency: eventuality, chance; la contingence

They appeared in the work of Karl Pearson of 1904, [Pe]. See a good review in [DG].
Karl Pearson was one of three great statisticians; two other ones are Student (William Gosset, a Head Brewer of Guinness), and Sir Ronald Fisher.

3.1. Contingency matrices, or tables.

3.1.1. Definition. A contingency matrix is a rectangular matrix $A=\left(a_{i j}\right)$ with $a_{i j} \in \mathbb{N}=\mathbb{Z}_{\geq 0}$. We suppose that there is no row or column containing only zeros.

We may regard A as a bipartite directed graph.
Weight:

$$
\Sigma A=\sum_{i, j} a_{i j} \in \mathbb{N}
$$

3.1.2. Vertical and horizontal fusions

Given $M=A$ as above and $1 \leq j \leq m-1$ we define an $n \times(m-1)$ matrix $\Sigma_{j}^{h}(M)$ whose j-th column is the result of "fusing" the j-th and $(j+1)$-th column of M, i.e. the new

$$
\Sigma_{j}^{h}(M)_{i j}=a_{i j}+a_{i, j+1}
$$

Similarly we define vertically fused $(n-1) \times m$ matrices $\Sigma_{i}^{v}(M), 1 \leq i \leq n-1$.
We write $M \leq_{h} M^{\prime}\left(\operatorname{resp} M \leq_{v} M^{\prime \prime}\right)$ if M is obtained from $M^{\prime}\left(\right.$ resp. from $\left.M^{\prime \prime}\right)$ by a composition of horizontal (resp. vertical) fusions.

A fusion is called anodyne if the nonzero elements of the fused matrix are the same as for the original one.

We write

$$
A \leq_{h} B, A \leq_{v} C
$$

All contingency matrices form a bicategory $C M$.
3.1.3. Definition. A category $Q C M$ as a k-linear category with the same objects as $C M$, i.e. the contingency matrices, and arrows generated by

$$
h_{A B}: A \longrightarrow B \text { for } A \leq_{h} B
$$

and

$$
v_{C A}: C \longrightarrow A \text { for } A \leq_{v} C,
$$

subject to relations:
(a) transitivity wrt horizontal and vertical arrows
(b) mixed axiom:

$$
h_{A B} v_{C A}=\sum_{D: B \leq{ }_{v} D, C \leq{ }_{h} D} v_{D B} h_{C D}
$$

3.2. Braided category $\mathfrak{C M}$ and a $N B B$ inside it.

The set of anodyne arrows $A n \subset M$ or $Q C M$ has the Ore property. We define

$$
\mathfrak{C M}=Q C M\left[A n^{-1}\right]
$$

For any $n \geq 0$ let $\mathfrak{C M}_{n} \subset \mathfrak{C M}$ denote the full subcategory of matrices of weight n.
3.2.1. (Partial) braided structure. Introduce an operation

$$
\otimes:(M, N) \mapsto M \otimes N=(M N)
$$

by concatenation of matrices; it is defined when M and N have the same number of rows.

Define braidings using the anodyne morphisms:

$$
\left(\begin{array}{ll}
M & N
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
0 & N \\
M & 0
\end{array}\right) \longrightarrow\binom{N}{M} \longrightarrow\left(\begin{array}{cc}
N & 0 \\
0 & M
\end{array}\right) \longrightarrow\left(\begin{array}{l}
N
\end{array}\right)
$$

Inside $\mathfrak{C M}$ we have 1×1 matrices

$$
(n) \in \mathfrak{C M}_{n}, n \geq 1
$$

Each contingency table is isomorphic to a tensor product of them.
3.3. Example: weight 2 . The category $\mathfrak{C M}_{2}$ has 5 objects:

$$
(2),\left(\begin{array}{ll}
1 & 1
\end{array}\right),\binom{1}{1},\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

We have

$$
\text { Funct }\left(\mathfrak{C M}_{2}, \operatorname{Vect}^{f}(\mathbf{k})\right) \cong \mathcal{M}(\mathbb{C}, 0) .
$$

(see a picture with 9 contingency matrices)

3.4. Main equivalence and Yanus sheaves.

Theorem. We have an equivalence of categories

$$
e: N B B i a l g \xrightarrow{\sim} \mathfrak{C M}, e\left(B_{n}\right)=(n)
$$

compatible with tensor products. It induces for each n an equivalence

$$
e: N \text { BBialg }_{n} \xrightarrow{\sim} \mathfrak{C M}_{n} .
$$

Thus,

$$
\operatorname{Perv}\left(\operatorname{Sym}^{n}(\mathbb{C})\right) \cong \operatorname{Funkt}\left(\mathfrak{C M}_{n}, \operatorname{Vect}^{f}(\mathbf{k})\right)
$$

A functor

$$
\mathfrak{C M}_{n} \longrightarrow \operatorname{Vect}^{f}(\mathbf{k})
$$

is Yanus (cf. $[\mathrm{P}]$): it is covariant with respect to horizontal contractions and contravariant with respect to vertical ones.

3.4. Interpretation using double cosets.

$$
O b \mathfrak{C M}_{n}=\coprod_{I, J \subset[n]} S_{n} \backslash\left(S_{I} \times S_{J}\right)
$$

References

[B] A.Beilinson, How to glue perverse sheaves, in: K-theory, arithmetic and geometry, Lect. Notes in Math. 1289, 1987.
[BFS] R.Bezrukavnikov, M.Finkelberg, V.Schechtman, Factorizable sheaves and quantum groups, Lect. Notes in Math. 1691, Springer-Verlag, 1998.
[DG] P.Diaconis, A.Gangolli, Rectangular arrays with fixed margins, in: Discrete probability and algorithms, The IMA volumes in Math. and its Appl, 72 (1995), 15 42.
[H] K.Habiro, Bottom tangles and unversal invariants, arXiv:math/0505219; Alg. Geom. Topol. 6 (2006), 1113-1214.
[JS] A.Joyal, R.Street, Braided tensor categories, Adv. Math. 102 (1993), 20-78.
[KS] M.Kapranov, V.Schechtman, PROBs and perverse sheaves I. Symmetric products, arXiv:math/2102.13321.
[KSE] M.Kapranov, V.Schechtman, with Appendix by P.Etingof, Contingency matrices with variable margins, SIGMA 16 (2020), 22 pp .
[M] S.MacLane, Categorical algebra, Bull. Amer. Math. Soc. 71 (1965), 40-106.
[Pe] K. Pearson, F. R. S. On the theory of contingency and its relation to association and normal distribution, Drapers' Company Research Memoirs. Biometric Series, I. Mathematical contributions to the theory of evolution, Dulau and Co., London, 1904. Price Four Shillings.
[P] T.Pirashvili, On the PROP corresponding to bialgebras, arXiv:math/0110014; Cah. Topol Géom. Différ. Catég. 43 (2002), 221-239.

