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§1. Some abstract nonsense: braided categories and braided bialgebras

PROP: products and permutations (Adams/MacLane, 1965)

PROB: products and braids

1.1. Braided categories. We will work with k-linear categories where k is a field.

A symmetric monoidal category C is equipped with a tensor product

(A,B) 7→ A⊗B,

an object 1, and natural isomorphisms:

unit
1⊗ A ∼−→ A

associativity
a = a(A,B,C) : A⊗ (B ⊗ C)

∼−→ (A⊗B)⊗ C

and commutativity (R-matrix)

c = c(A,B) = R(A,B) = RAB : A⊗B ∼−→ B ⊗ A

satisfying some axioms.

In particular:

a satisfies the Stasheff pentagon aciom;

c satisfies a hexagon property (or Yang - Baxter identity)

RBCRACRAB = RABRACRBC : A⊗B ⊗ C ∼−→ C ⊗B ⊗ A (Y B)

and a reflection property
RABRBA = IdA⊗B (R)

It follows that on any A⊗n the symmetric group Sn acts.

In a braided category we forget about the axiom (R). This implies that on each
A⊗n only the braid group Brn acts. See [JS].

Tensor functors F : C −→ C′
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1.2. Braided bialgebras. Inside a braided category we have a notion of a bialgebra
A:

it has a unit η : 1 −→ A, counit ε : A −→ 1, multiplication µ : A⊗2 −→ A and
comultiplication ∆ : A −→ A⊗2

(some people call it a Hopf algebra; other people require an antipode for a Hopf
algebra; we will not need it).

Main axiom: compatibility of µ with ∆:

µ should be a morphism of coalgebras, or, equivalently, ∆ should be a morphism of
algebras.

To make sense of it one should define a structure of an algebra on A⊗2: this is done
using the R-matrix (sic!).

1.3. Mother of all braided bialgebras. A universal braided category BBialg
with the universal B bialgebra inside it, cf. [H], 6.1.

Universal property:

a braided bialgebra A in a braided category C is the same as a tensor functor

fA : BBialg −→ C, fA(B) = A.

It is generated as a tensor category by one object B, so it has objects B⊗n, n ≥
0, B0 = 1.

Morphisms are generated by:

µ : B⊗2 −→ B, ∆ : B −→ B⊗2,

η : 1 −→ B, ε : B −→ 1,

c± = R± : B⊗2 ∼−→ B⊗2

subject to the relations which make of B a bialgebra.
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1.4. N-graded bialgebras. An N-graded bialgebra in a braided category C is a
collection of objects A• = {An}, n ≥ 0, A0 = 1 together with morphisms

µ : An ⊗ Am −→ An+m, ∆ : An+m −→ An ⊗ Am

satisfying the usual axioms.

1.5. Mother of all N-graded bialgebras is a category NBBialg together with a
N-graded bialgebra (NBB) B• inside it such that for a braided category C the category
NBB(C) is equivalent to the category of tensor functors

NBBialg −→ C

It is generated as a braided category by a collection of objects

B0 = 1, B1, B2, . . .

So, its objects are symbols
Bn = Bn1 ⊗ . . .⊗Bnk

defined for all sequences

n = (n1, . . . , nk) ∈ Nk, k ∈ N.

Define the weight
m(n) :=

∑
hi = m.

Maps in NBBialg are compositions of various multiplications and comultiplications

µ : Bn −→ Bn′ , ∆ : Bn′ −→ Bn

where m(n) = m(n′) (there are no nontrivial morphisms between objects of different
weights).

For any m ∈ N we will denote by NBBialgm ⊂ NBBialg the full subcategory with
objects Bn of weight m.

See a simplest nontrivial example in 2.1 below.
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§2. Relation to perverse sheaves

on symmetric powers of the complex affine line

2.1. Example. Perverse sheaves on a disc and NBBialg2.

2.1.1. Recall M(C; 0) = Perv(C, 0) ⊂ D(C, 0).

Let Constr(C, 0) denote the category of constructible sheaves on A1 = C smooth
over C∗. So an object F of it is a couple of finite dimensional vector spaces

F0 = Γ(F;D(0; 2)) = i∗0F, F1 = Γ(F;D(1; 1/2)) = i∗1F,

and morphisms
T : F1

∼−→ F1

(monodromy around 0), and
γ : F0 −→ FT1 ⊂ F1

("generalisation" ).

Let D(A1, 0) be its derived category (all sheaves will be with values in a V ectf (k)).

Functors Ψ,Φ.

(a) Usual fibers

For F ∈ D(A1, 0) consider complexes

i∗1F = RΓ(D(1; 1/2);F)

and
i∗0F = RΓ(C;F)

The complex i∗1F is equpped with an automorphism T - the monodromy around 0.

We have the obvious restriction ("generalization") map

g : i∗0F −→ i∗1F

which lands in fact in the invariants of T .
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(b) Hyperbolic fibers

We define
Ψ(F) := i∗1F[1]

("nearby cycles" ), and
Φ(F) := Cone(g)[1]

("vanishing cycles" ).

So we have a canonical map

u : Ψ(F) −→ Φ(F)

From the data above one can extract a map

v : Φ(F) −→ Ψ(F),

”variation”, such that
vu = 1− T

(exercise).

Hyperbolic, or "perverse" , or Lefschetz, sheaves

We define
M(C, 0) ⊂ D(C, 0)

as the full sucategory of complexes F such that

Ψ(F), Φ(F) ∈ Vect(k) ⊂ D(C, 0).

The category M(C, 0) is equivalent to a category of quadruples

(Φ,Ψ, v : Φ −→ Ψ, u : Ψ −→ Φ),Φ,Ψ ∈ V ectf (k)

such that
TΨ := 1− vu

is invertible.

Exercise. Prove that the last condition is equivalent to:

Tφ = 1− uv

is invertible.
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2.1.2. Let A• be an N-graded bialgebra. It follows from the axioms of a bialgebra
that for any z ∈ A⊗2

1

∆µ(z) = z +R(z).

It follows that NBBialg2 has two objects, B2 and B⊗2
1 , and the set of maps admits

two generators
µ : B⊗2

1 −→ B2, ∆ : B2 −→ B⊗2
1 ,

with
1−∆µ = −RB⊗2

1
.

We see that
M(C, 0)

∼−→ Funct(NBBialg2, V ect
f (k)).

Note that
M(C, 0)

∼
= Perv(Sym2A1,∆)

Our main theorem is a generalisation of the above.

2.1.3. Factorizable sheaves.

Let us call a factorizable perverse sheaf over (C, 0) a collection

A1, A2 ∈ V ectf (k),

u : A⊗2
1 −→ A2, v : A2 −→ A⊗2

1

such that vu− Id is invertible. They form a category Mfact(C, 0) equipped with an
obvious functor

Mfact(C, 0) −→M(C, 0).

This category is equivalent to the category of tensor functors

Functtens(NBBialg2, V ect
f (k)).
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2.2. Hochschild - Tate complex for the disc. We have a commutative square

A1 ⊗ A1
(1,R)−→ (A1 ⊗ A1)2

µ ↓ ↓ +

A2
∆−→ A1 ⊗ A1

whence a complex concentrated in degrees [−1, 1]

0 −→ A1 ⊗ A1 −→ A2 ⊕ (A1 ⊗ A1)2 −→ A1 ⊗ A1 −→ 0 (HT )

quasiisomorphic to A2. This is nothing else but Beilinson’s monad, cf [B], no. 3, p. 46.

2.3. Theorem. For every m ≥ 0 we have an equivalence of categories

Funct(NBBialgm, V ect
f (k))

∼−→ Perv(SymmA1,∆)

where to the right we have the category of perverse sheaves smooth along the diagonal
stratification.

For an arbitrarym the correspondind Hochschild - Tate complex (HT ) is concentrated
in degrees [−m,m], and is quasiisomorphic to Am.
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§3. Contingency tables and Yanus sheaves

Contingency: eventuality, chance; la contingence

They appeared in the work of Karl Pearson of 1904, [Pe]. See a good review in [DG].

Karl Pearson was one of three great statisticians; two other ones are Student
(William Gosset, a Head Brewer of Guinness), and Sir Ronald Fisher.

3.1. Contingency matrices, or tables.

3.1.1. Definition. A contingency matrix is a rectangular matrix A = (aij) with
aij ∈ N = Z≥0. We suppose that there is no row or column containing only zeros.

We may regard A as a bipartite directed graph.

Weight:
ΣA =

∑
i,j

aij ∈ N

3.1.2. Vertical and horizontal fusions

Given M = A as above and 1 ≤ j ≤ m− 1 we define an n× (m− 1) matrix Σh
j (M)

whose j-th column is the result of "fusing" the j-th and (j + 1)-th column of M , i.e.
the new

Σh
j (M)ij = aij + ai,j+1

Similarly we define vertically fused (n− 1)×m matrices Σv
i (M), 1 ≤ i ≤ n− 1.

We write M ≤h M ′ (resp M ≤v M ′′) if M is obtained from M ′ (resp. from M ′′) by
a composition of horizontal (resp. vertical) fusions.

A fusion is called anodyne if the nonzero elements of the fused matrix are the same
as for the original one.

We write
A ≤h B, A ≤v C

All contingency matrices form a bicategory CM .
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3.1.3. Definition. A category QCM as a k-linear category with the same objects
as CM , i.e. the contingency matrices, and arrows generated by

hAB : A −→ B for A ≤h B

and
vCA : C −→ A for A ≤v C,

subject to relations:

(a) transitivity wrt horizontal and vertical arrows

(b) mixed axiom:
hABvCA =

∑
D:B≤vD,C≤hD

vDBhCD

3.2. Braided category CM and a NBB inside it.

The set of anodyne arrows An ⊂Mor QCM has the Ore property. We define

CM = QCM [An−1].

For any n ≥ 0 let CMn ⊂ CM denote the full subcategory of matrices of weight n.

3.2.1. (Partial) braided structure. Introduce an operation

⊗ : (M,N) 7→M ⊗N = (M N)

by concatenation of matrices; it is defined when M and N have the same number of
rows.

Define braidings using the anodyne morphisms:

(M N) −→
(

0 N
M 0

)
−→

(
N
M

)
−→

(
N 0
0 M

)
−→ (N M)

Inside CM we have 1× 1 matrices

(n) ∈ CMn, n ≥ 1.

Each contingency table is isomorphic to a tensor product of them.
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3.3. Example: weight 2. The category CM2 has 5 objects:

(2), (1 1),

(
1
1

)
,

(
1 0
0 1

)
,

(
0 1
1 0

)
We have

Funct(CM2, V ect
f (k))

∼
= M(C, 0).

(see a picture with 9 contingency matrices)

3.4. Main equivalence and Yanus sheaves.

Theorem. We have an equivalence of categories

e : NBBialg
∼−→ CM, e(Bn) = (n)

compatible with tensor products. It induces for each n an equivalence

e : NBBialgn
∼−→ CMn.

Thus,
Perv(Symn(C))

∼
= Funkt(CMn, V ect

f (k))

A functor
CMn −→ V ectf (k)

isYanus (cf. [P]): it is covariant with respect to horizontal contractions and contravariant
with respect to vertical ones.

3.4. Interpretation using double cosets.

Ob CMn =
∐

I,J⊂[n]

Sn\(SI × SJ)
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