MCKAY CORRESPONDENCE

Vadim Schechtman

Colloquium talk, Institut de Mathématiques de Toulouse

September 2014

Plan

§1. Classical

1.1. Platonic solids.
1.2. Finite subgroups of $S U(2)$.
1.3. Kleinian singularities and graphs A, D, E.
1.4. Root systems, Cartan matrices and Dynkin graphs.
1.5. Root systems, simple and affine Lie algebras.
1.6. Representations of finite groups.
1.7. McKay correspondence : two formulations.

§2. Derived categories

2.1. Gonzalez-Sprinberg - Verdier.
2.2. Kapranov - Vasserot.
2.3. Bezrukavnikov - Kaledin mathematician at Concordia University, known for his discovery of monstrous moonshine, his joint construction of some sporadic simple groups, and for the McKay correspondence relating certain finite groups to Lie groups.

§1. Classical

1.1. Platonic solids and their symmetry groups.

Platon, dialogue Tı $\alpha \iota \circ \varsigma, 360$ AD
Tetraèdre
Cube - Octaèdre
Icosaèdre - Dodecaèdre
Their symmetry groups :

$$
G_{\text {tetr }}=A_{4}, G_{o c t}=S_{4}, G_{\text {coos }}=A_{5} \subset S O(3) .
$$

Среди пнти платоновых тел икосаэдр запимае "жнвое" место: в природе кристаллов в форме
ча нет, но есть жъвые организмы (радиолярии

Самая древняя рукотворная модель нкосаздра - згная кость эпохи Птоломеев, вайденная в Егмите, нтсл ныне в Британском музее. Новейпая модедь-

Vadim Schechtman
1.2. Finite subgroups of $S L(2)$. We can consider the groups G above as subgroups

$$
G \subset \operatorname{Aut}\left(\mathbb{P}^{1}(\mathbb{C})\right)=P G L(2, \mathbb{C})=\operatorname{PSL}(2, \mathbb{C}) .
$$

We have an exact sequence

$$
1 \longrightarrow\{ \pm 1\} \longrightarrow S L(2, \mathbb{C}) \xrightarrow{p} \operatorname{PSL}(2, \mathbb{C}) \longrightarrow 1 .
$$

Exercise. Construct a double covering $S U(2) \longrightarrow S O$ (3). (Use quaternions; note that $S U(2)=\{x \in Q \mid N(x)=1\}=S^{3}$.)
Finite subgroups of $S L(2, \mathbb{C})$ (or of $S U(2)$).
Cyclic $G\left(A_{n}\right)$, of order $n+1$;
Binary dihedral $G\left(D_{n}\right)$, of order $4(n-2)$;
Binary tetrahedral, $G\left(E_{6}\right)=\pi^{-1}\left(G_{\text {tetr }}\right)$, of order 24 ;
Binary octahedral, $G\left(E_{7}\right)=\pi^{-1}\left(G_{\text {cube }}\right)$, of order 48;
Binary icosahedral, $G\left(E_{8}\right)=\pi^{-1}\left(G_{i c o s}\right)$, of order 120.

Felix Klein, 25 avril 1849 [Düsseldorf] - 22 juin 1925 [Göttingen]

Leçons sur l'icosahèdre et sur la solution des équations de 5 me degré.
1.3. Kleinian singularities and Dynkin graphs. A finite
$G \subset S L(2, \mathbb{C})$ acts on \mathbb{C}^{2}; let $X=\mathbb{C}^{2} / G$.
It is a singular surface ; let $p: Y \longrightarrow X$ be its minimal desingularization.
The exceptional divizor

$$
Y_{0}=p^{-1}(0)=D_{1} \cup \ldots D_{r}, D_{i} \cong \mathbb{P}^{1}(\mathbb{C}) .
$$

The incidence graph $\operatorname{Inc}(\Gamma)$ is one of the simply laced Dynkin graphs $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$, cf. [Brie], see the picture.

-4-…-H
 A_{n}

, m

The intersection matrix

$$
A(G)=\left(D_{i} \cdot D_{j}\right)_{i, j=1}^{r}
$$

is the corresponding Cartan matrix, defined by

$$
A(\Gamma)=2 I-\operatorname{lnc}(\Gamma)
$$

Example. Singularity E_{8} :

$$
X=\left\{x^{2}+y^{3}+z^{5}=0\right\} \subset \mathbb{C}^{3}
$$

H.Schwarz (1872).
1.4. Root systems. These graphs arise in the classification of finite reflection groups, root systems, and simple Lie algebras (Killing, Cartan, Coxeter).
Let $(V,(.,)$.$) be a real Euclidean space. To a nonzero \alpha \in V$ we can associate an orthogonal reflection $s_{\alpha}: V \xrightarrow{\sim} V$,

$$
s_{\alpha}(x)=x-\frac{2(x, \alpha)}{2(\alpha, \alpha)}
$$

A reduced irreducible root system is a finite subset $R \subset V \backslash\{0\}$ which generates V such that for all $\alpha, \beta \in R$
$(\mathrm{R} 1) s_{\alpha}(R) \subset R$ for all $\alpha \in R$;
(R2) $\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z}$;
(R3) (reduced) $\mathbb{R} \alpha \cap R=\{ \pm \alpha\}$.
(R4) (irreducible) $R \neq R^{\prime} \oplus R^{\prime \prime}$ with nonempty root systems $R^{\prime}, R^{\prime \prime}$.
A base of simple roots : a base of V

$$
\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset R
$$

such that for all $\alpha \in R, \alpha=\sum n_{i} \alpha_{i}$ where the numbers n_{i} are all negative or all positive. Such bases exist ; fix one.
The Cartan matrix

$$
A=\left\{a_{i j}\right)=\left(2\left(\alpha_{i}, \alpha_{j}\right) /\left(\alpha_{i}, \alpha_{i}\right)\right) \in G L(r, \mathbb{Z}),
$$

$a_{i i}=2, a_{i j} \leq 0$ for $i \neq j$.

Dynkin graph Γ : Vertices $V(\Gamma)=\{1, \ldots, r\}$
The possible angles between α_{i}, α_{j} are : $\pi / 2,2 \pi / 3,3 \pi / 4,5 \pi / 6$; we join the corresponding vertices by $0,1,2,3$ edges respectively.
(This does not interest us : if the number of edges is >1, we draw an arrow from the shorter root to the longer one.)

Classification :

$$
A_{n}, B_{n}, C_{n}, D_{n}, E_{6}, E_{7}, E_{8}, F_{4}, G_{2} .
$$

Simply laced :
$A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$.

These root systems are in one-to-one correspondence with finite dimensional simple Lie algebras.

Examples. $\mathfrak{g}\left(A_{n}\right)=\mathfrak{s l}(n+1)$;
$\mathfrak{g}\left(B_{n}\right)=\mathfrak{s o}(2 n+1) ; \mathfrak{g}\left(C_{n}\right)=\mathfrak{s p}(2 n) ; \mathfrak{g}\left(D_{n}\right)=\mathfrak{s o}(2 n)$.
Example. A_{n}.

$$
V=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \mid \sum x_{i}=0\right\}
$$

All roots :

$$
R=\left\{\epsilon_{i}-\epsilon_{j}, 0 \leq i \neq j \leq n\right\}
$$

where $\epsilon_{i}=(0, \ldots, 1, \ldots, 0)(1$ on i-th place $)$.
Simple roots :

$$
\begin{gathered}
\alpha_{1}=\epsilon_{1}-\epsilon_{0}, \alpha_{2}=\epsilon_{2}-\epsilon_{1} \ldots, \alpha_{n}=\epsilon_{n}-\epsilon_{n-1} \\
\angle\left(\alpha_{i}, \alpha_{i+1}\right)=2 \pi / 3
\end{gathered}
$$

Example. E_{8}. Cartan matrix :

$$
\begin{aligned}
A\left(E_{8}\right)= & \left(\begin{array}{cccccccc}
2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2
\end{array}\right)
\end{aligned}
$$

Affine root systems and affine Cartan matrices Let

$$
\theta=\sum_{i=1}^{r} n_{i} \alpha_{i}
$$

be the longest root. We set

$$
\alpha_{0}=-\theta
$$

and define the extended Cartan matrix

$$
\hat{A}=\left(a_{i j}\right)_{i, j=0}^{r} \in \operatorname{Mat}(r+1, \mathbb{Z})
$$

and the extended Dynkin graph $\hat{\Gamma}$ as before. It has a distinguished vertex 0.

The matrix \hat{A} is degenerate now ; it has a multiplicity one eigenvector with eigenvalue 0 :

$$
\delta=\left(1, n_{1}, \ldots, n_{r}\right)
$$

1.5. Representations of finite groups. Let G be a finite group. A (complex, finite dimensional) representation of G is a pair (V, ρ) where V is a finite dimensional complex vector space, and ρ is a homomorphism

$$
\rho: G \longrightarrow G L(V) .
$$

They form a category $\operatorname{Rep}(G)$.
One has two operations in $\operatorname{Rep}(G): \oplus$ and \otimes which are commutative, associative and distrubutive.

Important fact : $\operatorname{Rep}(G)$ is semisimple. There is a finite number of simple reps V_{1}, \ldots, V_{m}, and every $V \cong \oplus V_{i}^{n_{i}}$.
The Grothendieck ring $R(G)=K_{0}(\operatorname{Rep}(G))$.

Characters. For $\rho \in \operatorname{Rep}(G)$ define $\chi_{\rho}: G \longrightarrow \mathbb{C}, \chi_{\rho}(g)=\operatorname{tr} \rho(g)$.
Then

$$
\underset{\text { Vadim Schechtman }}{\chi_{\rho_{1} \oplus \rho_{2}}=\chi_{\rho_{1}}+\chi_{\rho_{2}}, \chi_{\rho_{1} \otimes \rho_{2}}=\chi_{\rho_{1}} \chi_{\rho_{2}} .}
$$

A character is a central function : $\chi\left(x y x^{-1}\right)=\chi(y)$.

Denote by G / G the set of conjugacy classes of G, and consider the ring $\operatorname{Maps.centr}(G, \mathbb{C})=\operatorname{Maps}(G / G, \mathbb{C})$.

Main Theorem. The mapping $\rho \mapsto \chi_{\rho}$ induces an isomorphism of \mathbb{C}-algebras

$$
\chi: R(G)_{\mathbb{C}} \xrightarrow{\sim} \operatorname{Maps}(G / G, \mathbb{C}) .
$$

A base of the vector space on the left: irreducible reps, $\rho_{1}, \ldots, \rho_{m}$. a possible base on the right - the delta faunctions of conjugacy classes, $C_{i} \subset G, 1 \leq i \leq m$.

Corollary. There are as many irreducibles as conjugacy classes :

$$
|\operatorname{lrr}(G)|=|G / G|
$$

Table of characters of G is the matrix

$$
X(G)=\left\{\chi_{i}\left(c_{j}\right)\right\}
$$

It follows from the Main Thm that $X(G) \in G L_{m}(\mathbb{C})$.
The following immediate fact will be crucial.
Steinberg Lemma, (R.Steinberg), [St]. Let $y \in R(G)$ be an arbitrary element. Consider the operator $M_{y}=\left(m_{i j}\right)$ of multiplication by y in $R(G):$

$$
y \chi_{i}=\sum_{i=1}^{m} m_{i j} \chi_{j} .
$$

Then for all $g \in G$ the vector

$$
\left(\chi_{1}(g), \ldots, \chi_{m}(g)\right)
$$

is an eigenvector of $M(y)$ with eigenvalue $\chi_{y}(g)$.
Equivalently,

$$
X_{G} M_{y} X_{G}^{-1}=\operatorname{Diag}\left(\chi_{y}\left(C_{1}\right), \ldots, \chi_{y}\left(C_{m}\right)\right) .
$$

Let $\rho \in \operatorname{Rep}(G)$ be a representation of dimension d; we define, with Steinberg

$$
A=A(\rho)=d l-M([\rho]) .
$$

Let us call $A(\rho)$ the Steinberg matrix of ρ.
1.6. Theorem (McKay correspondence), [Mc]. Let
$\rho: G=G(\Gamma) \hookrightarrow S U(2)$ be a finite subgroups as in 1.2, with
$\Gamma=A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$.
There exist bijections

$$
\operatorname{lrr}(G) \cong \operatorname{Vert}(\hat{\Gamma}))
$$

with the trivial representation 1 corresponding to the distinguished vertex of $\hat{\Gamma}$, and

$$
G / G \cong \operatorname{Vert}(\hat{\Gamma})),
$$

such that the Steinberg matrix $A(\rho)$ coincides with the Cartan matrix of the extended graph $\hat{\Gamma}$.

Corollary. The dimensions $n_{i}=\operatorname{dim} \rho_{i}$ coincide with the coefficients in the decomposition

$$
\theta=\sum n_{i} \alpha_{i}
$$

Corollary. There is a bijection

$$
G / G \cong \operatorname{lrr}(G) .
$$

Proof. As was pointed out by Brylinski, $[B]$, the vertices of Γ are in natural bijection with G / G : to a component D_{i} of the exceptional divizor Y_{0} we associate a loop $\gamma\left(D_{i}\right)$ around D_{i} which gives a conjugacy class in $G=\pi_{1}\left(Y \backslash Y_{0}\right)$.

§2. K-functor and derived categories

2.1. Let $\rho: G \hookrightarrow S L(2, \mathbb{C})$ as before ; we can consider a twisted group ring $A_{\rho}[G], A=\mathbb{C}[x, y]$.

Left $A_{\rho}[G]$-modules $=G$-equivariant coherent sheaves on
$V=\mathbb{C}^{2}=\operatorname{Spec} A$.
We can assign to each $\pi \in \operatorname{Rep}(G), \pi: G \longrightarrow G L\left(E_{\pi}\right)$, an $A_{\rho}[G]$-module $V \otimes E_{\pi}$; this gives rise to a morphism

$$
R(G)=K_{0}(\operatorname{Rep}(G)) \longrightarrow K_{0}\left(\operatorname{Coh}_{G}(V)\right) .
$$

Consider a Cartesian square

Categorical McKay equivalence

Theorem (Kapranov - Vasserot), [KV]. (i) A functor

$$
\begin{gathered}
F: D^{b}\left(\operatorname{Coh}_{G}(V)\right) \longrightarrow D^{b}(\operatorname{Coh}(Y)), \\
F(M)=\left(p_{1 *} p_{2}^{*} M\right)^{G}
\end{gathered}
$$

is an equivalence of categories.
(ii) For $\pi \in \operatorname{lrr}(G)$ let $\pi!\in \operatorname{Coh}_{G}(V)$ denote the skyscraper sheaf whose fiber at 0 is π, and 0 everywhere else.

Then

$$
F\left(1^{!}\right)=\mathcal{O}_{Y_{0}}, F\left(\rho_{i}^{\prime}\right)=\mathcal{O}_{D_{i}}(-1)[1], 1 \leq i \leq r .
$$

On the level of Grothendieck groups this was proven earlier by Gonzalez-Sprinberg - Verdier.

The following remarkable generalization was obtained by Bezrukavnikov and Kaledin. Let V be a finite-dimensional \mathbb{C}-vector space equipped with a non-degenerate skew-symmetric form ω, and let $G \subset S p(V)$ be a finite subgroup. Suppose that there exists a resolution of singularities
$p: X \longrightarrow V / G$ such that $\left.\omega\right|_{X \backslash p^{-1}(0)}$ extends to a non-degenerate closed form on the whole X.

Theorem, [BK]. There exists an equivalence of triangulated categories

$$
F: D^{b}\left(\operatorname{Coh}_{G}(V)\right) \cong D^{b}(\operatorname{Coh}(X))
$$

Remark. There is no doubt that the equivalence F may be upgraded to the level of "fine" derived categories ($d g$-categories, or stable ∞-categories), and hence induces the isomorphism of all Quillen groups K_{i}.

§3. Perron - Frobenius and Gamma products

3.1. Let $G \subset S L(2, \mathbb{C})$ as before correspond to a Dynkin graph Γ,

$$
\operatorname{lrr}(G)=\left\{1=\rho_{0}, \rho_{1}, \ldots, \rho_{r}\right\} \cong \operatorname{Vert}(\Gamma) .
$$

The vector

$$
p=\left(n_{0}=1, n_{1}, \ldots, n_{r}\right) \in \mathbb{N}^{r+1}, n_{i}=\operatorname{deg} \rho_{i}
$$

is a Perron - Frobenius eigenvector of the extended Cartan matrix $A(\hat{\Gamma})$ with eigenvalue 0 . Let R be the finite root system corresponding to Γ;

$$
\operatorname{Vert}(\Gamma) \cong\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}
$$

(the set of simple roots). The number

$$
h=\sum_{i=0}^{r} n_{i}
$$

is called the Coxeter number of R; the longest root $\theta_{0}=\sum_{i=1}^{r} n_{i} \alpha_{i}$.

Set

$$
k=\left(\prod_{j=1}^{r} n_{j}^{n_{j}}\right)^{1 / h} .
$$

The following formula has been discovered by physicists and proven in [CA].
Theorem, [CA]. For all $1 \leq i \leq r$

$$
n_{i}=k \prod_{\alpha>0} \gamma((\alpha, \rho) / h)^{-\left(\alpha, \alpha_{i}\right)} .
$$

Here ρ is as usually the half-sum of positive roots, and $\gamma(x):=\Gamma(x) / \Gamma(1-x)$.
A similar formula exists for the Perron-Frobenius vector of a finite Cartan matrix (one should replace $\gamma(x)$ by $\Gamma(x)$), cf. [CAS].
It would be interesting to find a motivic interpretation of these formulas.

References

[BGP] J.Bernstein, I.Gelfand, V.Ponomarev, Coxeter functors and the Gabriel's theorem, UMN XXVIII, Issue 2(170) (1973), 19-33.
[BK] R.Bezrukavnikov, D.Kaledin, McKay equivalence for symplectic resolutions of singularities, arXiv :math/0401002.
[Br] T.Bridgeland, Stability conditions and Kleinian singularities, IMRN 21 (2009), 4142-4157.
[Brie] E.Brieskorn, Singular elements of semisimple algebraic groups, Proc ICM 1970 (Nice), t. 2, 279-284.
[B] J.-L.Brylinski, A correspondence dual to McKay's, arXiv :alg-geom/9612003.
[CA] V.Cohen - Aptel, Produits Gamma associés aux systèmes de racines, Thése, 2012, Toulouse.
[CAS] V.Cohen - Aptel, V.Schechtman, Vecteurs de Perron - Frobenius et produits Gamma, CRAS, Ser. I 250 (2012), 1003-1006.
[GSV] G.Gonzales-Sprinberg, J.L.Verdier, Construction géométrique de la correspondance de McKay, Ann. Sci. ENS 16 (1983), 409-449.
[KV] M.Kapranov, E.Vasserot, Kleinian singulatities, derived categories and Hall algebras, arXiv :math/9812016.
[Mc] J.McKay, Cartan matrices, finite groups of quaternions and Klein singularities, Proc. AMS.
[St] R.Steinberg, Finite subgroups of SU_{2}, Dynkin diagrams and affine Coxeter elements, Pacific J. Math. 118 (1985), 587-597.

