FOURIER - SATO TRANSFORM, BRAID GROUP ACTIONS,

AND FACTORIZABLE SHEAVES

Vadim Schechtman

Talk at

Kavli Institute for the Physics and Mathematics of the Universe,

$$
\text { Kashiwa-no-ha, October } 2014
$$

Plan

1. Serre and Tits symmetries, and their quantization: Lusztig's symmetries.
2. Quantum groups, factorizable sheaves, and Fourier - Sato transform.
3. Balance and BV.

§1. Braid group actions

Let M be a finite dimensional representation of a complex semisimple Lie group G. Then two objects act on G :
a) the Lie algebra $\mathfrak{g}=\operatorname{Lie}(G)$; (b) (an extension of) the Weyl group W.

These two actions can be q-deformed.
1.1. Motivation : non-deformed case. Let \mathfrak{g} be a semisimple Lie algebra over \mathbb{C}. The set of weights Poids (L) of a finite dimensional \mathfrak{g}-module $L=L(\lambda)$ is a convex W-invariant body.
In fact, W acts on Poids (L) and almost acts on L. For $1 \leq i \leq r=$ rankg, define

$$
\begin{equation*}
\theta_{i, L}=e^{X_{i}} e^{-Y_{i}} e^{X_{i}}: L \xrightarrow{\sim} L \tag{1.1.1}
\end{equation*}
$$

where $\left\{X_{i}, Y_{i}, H_{i}\right\}$ is the corresponding $\mathfrak{s l}(2)$-triple. Then

$$
\begin{equation*}
\theta_{i}\left(L_{\mu}\right)=L_{s_{i}(\mu)} \tag{1.1.2}
\end{equation*}
$$

cf. [S], Ch. VII, §4, Remarque 1.
Let G be the simply connected Lie group corresponding to \mathfrak{g}; we have $W \cong N(T) / T$. The elements θ_{i} considered as elements of G, generate a subgroup $\tilde{W} \subset N(T)$, an extended Weyl group (Tits) included into an extension

$$
0 \longrightarrow(\mathbb{Z} / 2 \mathbb{Z})^{r} \longrightarrow \tilde{W} \longrightarrow W \longrightarrow 0
$$

cf. [T]. The adjoint action of G on \mathfrak{g} thus induces an action of \tilde{W} on \mathfrak{g}. On the other hand, (1.1.1) gives rise to an action of \tilde{W} on L, and we have

$$
\begin{equation*}
w(g x)=w(g) w(x), w \in \tilde{W}, \tag{1.1.3}
\end{equation*}
$$

$$
w \in \tilde{W}, g \in \mathfrak{g}, x \in L
$$

1.2. A q-deformation : Lusztig's action. When we replace \mathfrak{g} by $U_{q} \mathfrak{g}$, \tilde{W} will be replaced by the braid group $B=B(W)$.
Geometric definition of B. Let $R \subset \mathfrak{h}_{\mathbb{R}}^{*}$ be the root system of \mathfrak{g}. For each $\alpha \in \mathbb{R}$ consider

$$
H_{\alpha}=\operatorname{Ker}\left(\alpha_{\mathbb{C}}\right)=\{x \in \mathfrak{h} \mid \alpha(x)=0\} \subset \mathfrak{h}:=\mathfrak{h}_{\mathbb{C}} ;
$$

let

$$
\mathfrak{h}^{\text {reg }}=\mathfrak{h} \backslash \bigcup_{\alpha \in R} H_{\alpha}
$$

Then $P B=\pi_{1}\left(\mathfrak{h}^{\text {reg }}\right), B=\pi_{1}\left(\mathfrak{h}^{\text {reg }} / W\right)$; we have an exact sequence

$$
1 \longrightarrow P B \longrightarrow B \longrightarrow W \longrightarrow 1 .
$$

There is a distinguished central element $c \in P B$ which corresponds to a loop passing through the opposite Weyl chambers ("the square of the longest element of the Weyl group w_{0}. ")
In the simply laced case B is generated by $T_{i}, 1 \leq i \leq r$, subject to relations

$$
T_{i} T_{j} T_{i}=T_{j} T_{i} T_{j}
$$

if $a_{i j}=-1$, and $T_{i} T_{j}=T_{j} T_{i}$ if $a_{i j}=0$. \square
Theorem, cf. [L], Ch. 39. One can introduce an action of B on $\mathfrak{u}=\mathfrak{u}_{q} \mathfrak{g}$ and on integrable \mathfrak{u}-modules M in such a way that (1.1.3) holds true.
The action of the pure braid group on M respects the homogeneous components M_{μ}.
Our aim will be to give a geometric interpretation of the $P B$ action on M_{μ}.

§2. Factorizable sheaves and quantum groups

Quantum groups and their representations are realized in some spaces of (generalized) vanishing cycles.
Cf. [BFS].
2.1. We fix a finite root system $R \subset V$ where $(V,()$,$) is a Euclidean$ vector space with Cartan matrix $A=\left(a_{i j}\right)$, a base of simple roots $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$,
and $q \in \mathbb{C}^{*}$. Let \mathfrak{u}_{q} denote the Lusztig's small quantum group.

$$
Q_{+}=\oplus_{i=1}^{r} \mathbb{N} \alpha_{i} \subset Q=\oplus_{i=1}^{r} \mathbb{Z} \alpha_{i}
$$

For $\lambda \in \Lambda=\operatorname{Hom}_{\mathbb{Z}}(Q, \mathbb{Z})$ (the weight lattice), $L(\lambda)$ will denote the irreducible \mathfrak{u}_{q}-module of highest weight λ.

$$
L(\lambda)=\oplus_{\mu \in Q_{+}} L(\lambda)_{\lambda-\mu}
$$

2.2. Configurational spaces, local systems. For

$$
\mu=\sum_{i} n_{i} \alpha_{i} \in Q_{+}, n=\sum n_{i}
$$

we define the spaces

$$
X_{\mu}=\operatorname{Div}_{\mu}(\mathbb{C})=\mathbb{C}^{n} / \prod \Sigma_{i}=\left\{\left(t_{j}\right)\right\}
$$

and $X_{0, \mu}$ (one point is fixed at 0).
These spaces are naturally stratified; we denote by

$$
j_{\mu}: X_{\mu}^{o} \hookrightarrow X_{\mu}, j_{\lambda ; \mu}: X_{0, \mu}^{o} \hookrightarrow X_{0, \mu}
$$

the respective open strata.
Brading local system : \mathcal{L}_{μ} over X_{μ}^{o} has monodromy $-q^{(\alpha(i), \alpha(j))}$ when t_{i} turns around t_{j};
en plus, $\mathcal{L}_{\lambda ; \mu}$ has monodromy $-q^{-(\lambda, \alpha(i))}$ when t_{i} turns around 0 .
2.3. From perverse sheaves to quantum groups and their representations.
Middle extension. We set

$$
\mathcal{P}_{\mu}=j_{\mu!*} \mathcal{L}_{\mu} \in \operatorname{Perv}\left(X_{\mu}\right) ; \mathcal{P}_{\lambda ; \mu}=j_{\lambda ; \mu!*} \mathcal{L}_{\lambda ; \mu} \in \operatorname{Perv}\left(X_{\lambda ; \mu}\right)
$$

Consider a function "the sum of coordinates"

$$
\begin{equation*}
f: X_{\lambda ; \mu} \longrightarrow \mathbb{C} \tag{2.3.1}
\end{equation*}
$$

The complex of vanishing cycles $\Phi_{f}\left(\mathcal{P}_{\lambda, \mu}\right)$ is supported at the origin 0 ; denote

$$
\begin{equation*}
\left.\Phi\left(\mathcal{P}_{\lambda, \mu}\right)\right)=\Phi_{f}\left(\mathcal{P}_{\lambda, \mu}\right)_{0} . \tag{2.3.2}
\end{equation*}
$$

Theorem, cf. [BFS]. The complex $\left.\Phi\left(\mathcal{P}_{\lambda, \mu}\right)\right)$ may have only one, the zeroth, cohomology. We have natural isomorphisms

$$
\Phi\left(\mathcal{P}_{\lambda, \mu}\right) \cong L(\lambda)_{\lambda-\mu} .
$$

In the same manner, the space $\Phi\left(\mathcal{P}_{\mu}\right)$ of vanishing cycles on the main diagonal of X_{μ} is identified with the homogeneous component $\mathfrak{u}_{q, \mu}^{-}$.
This theorem is a part of equivalence of ribbon (= braided balanced) categories

$$
\Phi: \mathcal{F S} \xrightarrow{\sim} \mathfrak{u}-\bmod
$$

Objects of $\mathcal{F S}$ are certain special "factorizable" perverse sheaves on the spaces $X_{0 ; \mu}$.
2.4. Microlocalization (Fourier - Sato transform) and the braid group action. We may vary a function $f(2.3 .1)$ and get a local system of spaces of vanishing cycles

$$
\tilde{\Phi}_{\lambda, \mu}=\left\{\Phi_{y}\left(\mathcal{P}_{\lambda, \mu}\right)_{0}\right\}
$$

where $y=d g$ runs through a complement to a finite collection of hyperplanes in the cotangent space $T_{0}^{*}\left(X_{0 ; \mu}\right)$.

On the other hand we have natural maps

$$
\phi_{\mu}: \mathfrak{h} \longrightarrow T_{0}^{*}\left(X_{0 ; \mu}\right)
$$

whence a local system

$$
\Phi_{\lambda, \mu}^{\vee}=\phi_{\mu}^{*} \tilde{\Phi}_{\lambda, \mu}
$$

over some complement of hyperplanes in \mathfrak{h}.
Theorem, [FS]. Let $q=e^{v}$ where v is a formal parmeter. (a) The local system $\Phi_{\lambda, \mu}^{\vee}$ is smooth on $\mathfrak{h}^{\text {reg }}$ (i.e. it has no monodromy around the "superfluous" hyperplanes).

This way we get an action of $P B$ on a fiber

$$
\left(\Phi_{\lambda, \mu}^{\vee}\right)_{e}=\Phi\left(\mathcal{P}_{\lambda ; \mu}\right)
$$

(b) The isomorphism from [BFS]

$$
\Phi\left(\mathcal{P}_{\lambda ; \mu}\right) \xrightarrow{\sim} L(\lambda)_{\lambda-\mu}
$$

is $P B$-equivariant, where on the rhs we consider the Lusztig's action of PB. \square

§3. Ribbon, Casimir (Laplacian), and BV

3.1. Let \mathcal{C} be a braided tensor category, i.e. a tensor category equipped with natural isomorphisms

$$
R_{X, Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X, X, Y \in \mathcal{C}
$$

satisfying Yang - Baxter equations.
A balance, aka ribbon structure on \mathcal{C} is an automorphism of the identity functor Id_{C}, i.e. a collection of automorphisms

$$
\theta_{X}: X \xrightarrow{\sim} X
$$

such that

$$
\begin{equation*}
\theta_{X \otimes Y}\left(\theta_{X} \otimes \theta_{Y}\right)^{-1}=R_{X, Y} R_{Y, X} . \tag{3.1.1}
\end{equation*}
$$

Thus "the square of R-matrix is a coboundary".
Example. $\mathcal{C}=\mathfrak{u}_{q}-\operatorname{Mod}$. For each $M \in \mathcal{C}$ we have the action of the braid group B on M, and a central element $c \in P B \subset B$. The action of c on M gives rise to a balance θ_{M}.

In other words, the action of the braid group may be considered as a generalization of a balanced structure.

As was remarked by M.Kapranov, the formula (3.1.1) is analogous to the classical relation bertween the resultant and the discriminants of two polynomials

$$
\frac{D(f g)}{D(f) D(g)}=R(f, g)^{2}
$$

cf. [Kap].
3.2. Explicit formula and Casimir. Cf. [CP]. Consider a $\mathbb{C}[h]]$-Hopf algebra $U=U_{h} \mathfrak{g}$, with the antipode S and the R-matrix

$$
R \in U \otimes U, R \equiv 1 \otimes 1(h)
$$

Set

$$
u=\mu(S \otimes I d) R_{21} \in U,
$$

Then

$$
z=u S(u)=S(u) u \in Z(U)
$$

One has a canonical isomorphism

$$
\begin{equation*}
Z\left(U_{h} \mathfrak{g}\right) \cong Z\left(U_{\mathfrak{g}}\right) . \tag{3.2.1}
\end{equation*}
$$

The image of z under (3.2.1) is more or less e^{c} where $c \in U^{\imath}$ is the usual quadratic Casimir element.

Note that c is geometrically a Laplace operator.
3.3. Batalin - Vilkovisky structures : another appearance of a Laplacian. Recall that a Gerstenhaber algebra is a commutative dg algebra C, so that we have a multiplication $x y \in C^{i+j}, x \in C^{i}, y \in C^{j}$, equipped with a (shifted) Lie bracket

$$
[x, y] \in C^{i+j-1}, x \in C^{i}, y \in C^{j}
$$

such that two operations $x y,[x, y]$ form a (-1)-shifted \mathbb{Z}-graded Poisson algebra.
Example. If X is a variety, $\wedge \cdot T_{X}$, with the Schouten bracket.
A BV-algebra is a Gerstenhaber algebra C - equpped with an operator $\Delta: C^{i} \longrightarrow C^{i-1}$ such that $\Delta^{2}=0$ and

$$
\Delta(x y)-\Delta(x) y-(-1)^{i} x \Delta(y)=(-1)^{i}[x, y], x \in C^{i} .
$$

Δ is an odd differential operator of the second order with respect to the multiplication, "an odd Laplacian".
Example. $\wedge \cdot T_{X}$ if we have an integrable connection on ω_{X}, for example if X is Calabi - Yau.

Hopf algebras are Koszul dual to Gerstenhaber algebras, cf. [K].
Under this duality the even Laplacian from 3.1, 3.2 corresponds to the odd Laplacian from 3.3.

References

[BFS] R.Bezrukavnikov, M.Finkelberg, V.Schechtman, Factorizable sheaves and quantum groups, LNM 1691.
[B] Ph.Boalch, G-bundles, isomonodromy and quantum Weyl groups, arXiv :math/0108152.
[CP] V.Chari, A.Pressley, A guide to quantum groups.
[DCKP] C.De Concini, V.Kac, C.Procesi, Quantum coadjoint action, JAMS 5 (1992), 151 - 189.
[FS] M. Finkelberg, V. Schechtman, Microlocal approach to Lusztig's symmetries, arXiv :1401.5885.
[K] T.Kadeishvili, On the cobar construction of a bialgebra, arXiv :math/0406502.
[Kap] M.Kapranov, Colloquium talk, Fukuoka, September 2014.
[L] G. Lusztig, Introduction to quantum groups.
[S] J.-P. Serre, Algèbres de Lie semisimple complexes.
[T] J.Tits, Normalisateurs de tores, I. Croupes de Coxeter finis, J. Alg. 4 (1966), $96-116$.

