FOURIER - SATO TRANSFORM, BRAID GROUP ACTIONS, AND FACTORIZABLE SHEAVES

Vadim Schechtman

Talk at

Kavli Institute for the Physics and Mathematics of the Universe,

Kashiwa-no-ha, October 2014

Plan

- 1. Serre and Tits symmetries, and their quantization: Lusztig's symmetries.
- 2. Quantum groups, factorizable sheaves, and Fourier Sato transform.
- 3. Balance and BV.

§1. Braid group actions

Let M be a finite dimensional representation of a complex semisimple Lie group G. Then two objects act on G:

a) the Lie algebra $\mathfrak{g} = Lie(G)$; (b) (an extension of) the Weylegroup W_{\bullet} .

These two actions can be q-deformed.

1.1. Motivation: non-deformed case. Let \mathfrak{g} be a semisimple Lie

algebra over $\mathbb C$. The set of weights Poids(L) of a finite dimensional $\mathfrak g$ -module $L=L(\lambda)$ is a convex W-invariant body.

In fact, W acts on Poids(L) and almost acts on L. For $1 \leq i \leq r = \mathsf{rank}\mathfrak{g}$, define

$$\theta_{i,L} = e^{X_i} e^{-Y_i} e^{X_i} : L \xrightarrow{\sim} L,$$
 (1.1.1)

where $\{X_i, Y_i, H_i\}$ is the corresponding $\mathfrak{sl}(2)$ -triple. Then

$$\theta_i(L_\mu) = L_{s_i(\mu)},\tag{1.1.2}$$

cf. [S], Ch. VII, §4, Remarque 1.

Let G be the simply connected Lie group corresponding to \mathfrak{g} ; we have $W \stackrel{\sim}{=} N(T)/T$. The elements θ_i considered as elements of G, generate a subgroup $\tilde{W} \subset N(T)$, an extended Weyl group (Tits) included into an extension

$$0\longrightarrow (\mathbb{Z}/2\mathbb{Z})^r\longrightarrow \tilde{W}\longrightarrow W\longrightarrow 0, \text{ as a line of } \mathbb{Z}$$

cf. [T]. The adjoint action of G on ${\mathfrak g}$ thus induces an action of ${\widetilde W}$ on ${\mathfrak g}$. On the other hand, (1.1.1) gives rise to an action of \hat{W} on L, and we have

$$w(gx) = w(g)w(x), \ w \in \tilde{W},$$

$$w \in \tilde{W}, g \in \mathfrak{q}, x \in L.$$
(1.1.3)

1.2. A q-deformation: Lusztig's action. When we replace g by $U_a g$, W will be replaced by the braid group B = B(W).

Geometric definition of B. Let $R \subset \mathfrak{h}_{\mathbb{R}}^*$ be the root system of \mathfrak{g} . For each $lpha \in \mathbb{R}$ consider

$$H_{\alpha} = \operatorname{Ker}(\alpha_{\mathbb{C}}) = \{x \in \mathfrak{h} | \alpha(x) = 0\} \subset \mathfrak{h} := \mathfrak{h}_{\mathbb{C}};$$

let

$$\mathfrak{h}^{\mathsf{reg}} = \mathfrak{h} \setminus \bigcup_{\alpha} H_{\alpha}.$$

Then $PB=\pi_1(\mathfrak{h}^{\mathsf{reg}}), \ B=\pi_1(\mathfrak{h}^{\mathsf{reg}}/W)$; we have an exact sequence

(1.1.3)

There is a distinguished central element $c \in PB$ which corresponds to a loop passing through the opposite Weyl chambers ("the square of the longest element of the Weyl group w_0 .")

In the simply laced case B is generated by $T_i, 1 \leq i \leq r$, subject to relations

$$T_i T_j T_i = T_j T_i T_j$$

if $a_{ij}=-1$, and $T_iT_j=T_jT_i$ if $a_{ij}=0$. \Box

Theorem, cf. [L], Ch. 39. One can introduce an action of B on $\mathfrak{u}=\mathfrak{u}_q\mathfrak{g}$ and on integrable \mathfrak{u} -modules M in such a way that (1.1.3) holds true.

The action of the pure braid group on M respects the homogeneous components M_μ .

Our aim will be to give a geometric interpretation of the PB action on M_{μ} .

$\S 2.$ Factorizable sheaves and quantum groups

Quantum groups and their representations are realized in some spaces of (generalized) vanishing cycles.

Cf. [BFS].

2.1. We fix a finite root system $R \subset V$ where (V, (,)) is a Euclidean vector space with Cartan matrix $A = (a_{ij})$, a base of simple roots $\{\alpha_1, \ldots, \alpha_r\}$,

and $q \in \mathbb{C}^*$. Let \mathfrak{u}_q denote the Lusztig's small quantum group.

$$Q_+ = \bigoplus_{i=1}^r \mathbb{N}\alpha_i \subset Q = \bigoplus_{i=1}^r \mathbb{Z}\alpha_i$$

For $\lambda \in \Lambda = Hom_{\mathbb{Z}}(Q, \mathbb{Z})$ (the weight lattice), $L(\lambda)$ will denote the irreducible \mathfrak{u}_{σ} -module of highest weight λ .

$$L(\lambda) = \bigoplus_{\mu \in Q_+} L(\lambda)_{\lambda - \mu}$$

2.2. Configurational spaces, local systems. For

$$\mu = \sum_{i} n_{i} \alpha_{i} \in Q_{+}, \ n = \sum_{i} n_{i}$$

we define the spaces

$$X_{\mu} = \mathsf{Div}_{\mu}(\mathbb{C}) = \mathbb{C}^n / \prod \Sigma_i = \{(t_j)\}$$

and $X_{0,\mu}$ (one point is fixed at 0).

These spaces are naturally stratified; we denote by

$$j_{\mu}: X_{\mu}^{o} \hookrightarrow X_{\mu}, j_{\lambda;\mu}: X_{0,\mu}^{o} \hookrightarrow X_{0,\mu}$$

the respective open strata.

Brading local system : \mathcal{L}_{μ} over X_{μ}^{o} has monodromy $-q^{(lpha(i),lpha(j))}$ when t_{i} turns around t_{j} ;

en plus, $\mathcal{L}_{\lambda;\mu}$ has monodromy $-q^{-(\lambda,lpha(i))}$ when t_i turns around 0.

2.3. From perverse sheaves to quantum groups and their representations.

Middle extension. We set

$$\mathfrak{P}_{\mu} = j_{\mu!*}\mathcal{L}_{\mu} \in \mathit{Perv}(X_{\mu}); \, \mathfrak{P}_{\lambda;\mu} = j_{\lambda;\mu!*}\mathcal{L}_{\lambda;\mu} \in \mathit{Perv}(X_{\lambda;\mu})$$

Consider a function "the sum of coordinates"

$$f: X_{\lambda;\mu} \longrightarrow \mathbb{C}$$
 (2.3.1)

The complex of vanishing cycles $\Phi_f(\mathcal{P}_{\lambda,\mu})$ is supported at the origin 0 ; denote

$$\Phi(\mathcal{P}_{\lambda,\mu})) = \Phi_f(\mathcal{P}_{\lambda,\mu})_0. \tag{2.3.2}$$

Theorem, cf. [BFS]. The complex $\Phi(\mathcal{P}_{\lambda,\mu})$) may have only one, the zeroth, cohomology. We have natural isomorphisms

$$\Phi(\mathcal{P}_{\lambda,\mu}) \stackrel{\sim}{=} L(\lambda)_{\lambda-\mu}.$$

In the same manner, the space $\Phi(\mathcal{P}_{\mu})$ of vanishing cycles on the main diagonal of X_{μ} is identified with the homogeneous component $\mathfrak{u}_{q,\mu}^-$.

This theorem is a part of equivalence of ribbon (= braided balanced) categories

$$\Phi: \mathcal{FS} \xrightarrow{\sim} \mathfrak{u} - \mathsf{mod}$$

Objects of ${\mathcal FS}$ are certain special "factorizable" perverse sheaves on the spaces $X_{0;\mu}$.

2.4. Microlocalization (Fourier - Sato transform) and the braid group action. We may vary a function f (2.3.1) and get a local system of spaces of vanishing cycles

$$\tilde{\Phi}_{\lambda,\mu} = \{\Phi_y(\mathcal{P}_{\lambda,\mu})_0\}$$

where y=dg runs through a complement to a finite collection of hyperplanes in the cotangent space $T_0^*(X_{0;\mu})$.

On the other hand we have natural maps

$$\phi_{\mu}: \mathfrak{h} \longrightarrow T_0^*(X_{0;\mu}),$$

whence a local system

$$\Phi_{\lambda,\mu}^{\vee} = \phi_{\mu}^* \bar{\Phi}_{\lambda,\mu}$$

over some complement of hyperplanes in \mathfrak{h} .

Theorem, [FS]. Let $q=e^{\nu}$ where ν is a formal parmeter. (a) The local system $\Phi_{\lambda,\mu}^{\vee}$ is smooth on $\mathfrak{h}^{\mathsf{reg}}$ (i.e. it has no monodromy around the "superfluous" hyperplanes).

This way we get an action of *PB* on a fiber

$$(\Phi_{\lambda,\mu}^{\lor})_{\mathsf{e}} = \Phi(\mathcal{P}_{\lambda;\mu})$$

(b) The isomorphism from [BFS]

is PB-equivariant, where on the rhs we consider the Lusztig's action of PB. \square

§3. Ribbon, Casimir (Laplacian), and BV

3.1. Let $\mathcal C$ be a braided tensor category, i.e. a tensor category equipped with natural isomorphisms

$$R_{X,Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X, X, Y \in \mathfrak{C}$$

satisfying Yang - Baxter equations.

A **balance**, aka **ribbon structure** on $\mathbb C$ is an automorphism of the identity functor $\mathsf{Id}_{\mathbb C}$, i.e. a collection of automorphisms

$$\theta_X: X \xrightarrow{\sim} X$$

such that

$$\theta_{X\otimes Y}(\theta_X\otimes\theta_Y)^{-1}=R_{X,Y}R_{Y,X}.$$

Thus "the square of R-matrix is a coboundary". **Example.** $\mathcal{C} = \mathfrak{u}_q - Mod$. For each $M \in \mathcal{C}$ we have the action of the

braid group B on M, and a central element $c \in PB \subset B$. The action of c on M gives rise to a balance θ_M .

generalization of a balanced structure.

As was remarked by M.Kapranov, the formula (3.1.1) is analogous to the

In other words, the action of the braid group may be considered as a

classical relation bertween the resultant and the discriminants of two polynomials

$$\frac{D(fg)}{D(f)D(g)}=R(f,g)^2,$$

cf. [Kap].

3.2. Explicit formula and Casimir. Cf. [CP]. Consider a $\mathbb{C}[h]$ -Hopf algebra $U = U_h \mathfrak{g}$, with the antipode S and the R-matrix

$$R \in U \otimes U, \ R \equiv 1 \otimes 1(h).$$

Set

$$u = \mu(S \otimes \operatorname{Id})R_{21} \in U,$$

Then

$$z = uS(u) = S(u)u \in Z(U).$$

One has a canonical isomorphism

$$Z(U_h\mathfrak{g})\stackrel{\sim}{=} Z(U\mathfrak{g}).$$
 (3.2.1)

The image of z under (3.2.1) is more or less e^c where $c \in U$ is the usual quadratic Casimir element.

Note that c is geometrically a Laplace operator.

3.3. Batalin - Vilkovisky structures : another appearance of a Laplacian. Recall that a Gerstenhaber algebra is a commutative dg algebra C, so that we have a multiplication $xy \in C^{i+j}, x \in C^i, y \in C^j$, equipped with a (shifted) Lie bracket

$$[x,y] \in C^{i+j-1}, x \in C^i, y \in C^j$$

such that two operations xy,[x,y] form a (-1)-shifted \mathbb{Z} -graded Poisson algebra.

Example. If X is a variety, ΛT_X , with the Schouten bracket.

A **BV-algebra** is a Gerstenhaber algebra C equpped with an operator $\Delta:C^i\longrightarrow C^{i-1}$ such that $\Delta^2=0$ and

$$\Delta(xy) - \Delta(x)y - (-1)^{i}x\Delta(y) = (-1)^{i}[x, y], \ x \in C^{i}.$$

 Δ is an odd differential operator of the second order with respect to the multiplication, "an odd Laplacian".

Example. A T_X if we have an integrable connection on ω_X , for example if X is Calabi - Yau.

Hopf algebras are Koszul dual to Gerstenhaber algebras, cf. [K].

Under this duality the even Laplacian from 3.1, 3.2 corresponds to the odd Laplacian from 3.3.

References

- [BFS] R.Bezrukavnikov, M.Finkelberg, V.Schechtman, Factorizable sheaves and quantum groups, *LNM* **1691**.
- [B] Ph.Boalch, G-bundles, isomonodromy and quantum Weyl groups, arXiv :math/0108152.
- [CP] V.Chari, A.Pressley, A guide to quantum groups.
- [DCKP] C.De Concini, V.Kac, C.Procesi, Quantum coadjoint action, JAMS **5** (1992), 151 - 189.
- [FS] M. Finkelberg, V. Schechtman, Microlocal approach to Lusztig's symmetries, arXiv:1401.5885.
- [K] T.Kadeishvili, On the cobar construction of a bialgebra, arXiv:math/0406502.
- [Kap] M.Kapranov, Colloquium talk, Fukuoka, September=2014.

- [L] G. Lusztig, Introduction to quantum groups.[S] J.-P. Serre, Algèbres de Lie semisimple complexes.
- [o] 5. 1. Serre, Algebres de Ele Serrismiple complexes.
- [T] J.Tits, Normalisateurs de tores, I. Croupes de Coxeter finis, *J. Alg.* 4 (1966), 96 116.