FLOPS AND SCHOBERS

Grothendieck resolutions and the web of parabolics

Vadim Schechtman

Talk in Toulouse, May, 2018

PLAN

1. Perverse sheaves on the disc, vanishing cycles, cohomology.
2. Atiyah flop and $\mathfrak{s l}_{2}$; flober.
3. Parabolic Grothendieck resolutions. $\mathfrak{s l}_{3}$ and spaces of triangles.

This is a report on a joint work with Alexei Bondal and Mikhail Kapranov, see [BKS].

§1. Vanishing cycles and perverse sheaves

1.1. What is the vanishing cycles? Let $\mathcal{D}\left(\mathbb{A}^{1} ; 0\right)$ denote the bounded derived category of complexes \mathcal{F} of sheaves over $\mathbb{A}^{1}=\mathbb{C}$ (in the usual topology) with values in vector spaces over a fixed field k; we require the cohomology of these complexes to be locally constant over $U=\mathbb{A}^{1} \backslash\{0\}$, and of finte type over k.

In other words $H^{*}(\mathcal{F}) \in \operatorname{Constr}\left(\mathbb{A}^{1}, 0\right)$.
VARIANT: one could take $\mathcal{D}^{b}\left(\operatorname{Constr}\left(\mathbb{A}^{1}, 0\right)\right)$.
We have

$$
\mathcal{F}_{0} \cong R \Gamma\left(\mathbb{A}^{1}, \mathcal{F}\right) \in \mathcal{D}(*)
$$

We define

$$
\Phi(\mathcal{F}):=\operatorname{Cone}\left(\mathcal{F}_{0}=R \Gamma\left(\mathbb{A}^{1}, \mathcal{F}\right) \longrightarrow R \Gamma\left(U_{1}, \mathcal{F}\right)=\mathcal{F}_{1}\right)
$$

where $U_{1}=D(1, \epsilon)$ - small disc with center at 1 ;

$$
\Psi(\mathcal{F})=\mathcal{F}_{1} .
$$

Thus we have a canonical map

$$
u: \Psi(\mathcal{F}) \longrightarrow \Phi(\mathcal{F}) .
$$

Duality theorem. The functors Φ, Ψ commute with (Verdier) duality.
Corollary. We define the variation map

$$
v(\mathcal{F})=u\left(\mathcal{F}^{*}\right)^{*}: \Phi(\mathcal{F}) \longrightarrow \Psi(\mathcal{F}) .
$$

Unravelling the definitions,

$$
v u=1-T
$$

where

$$
T: \Psi \xrightarrow{\sim} \Psi
$$

is the monodromy.
It follows that

$$
R \Gamma\left(\mathbb{A}^{1} ; \mathcal{F}\right)=\operatorname{Cone}(u: \Psi(\mathcal{F}) \longrightarrow \Phi(\mathcal{F}))[-1]
$$

Dually,

$$
R \Gamma_{c}\left(\mathbb{A}^{1} ; \mathcal{F}\right)=\operatorname{Cone}(v: \Phi(\mathcal{F}) \longrightarrow \Psi(\mathcal{F}))[? ? ?]
$$

1.2. What is a perverse sheaf?

Definition. \mathcal{F} is called a perverse sheaf if $\Psi(\mathcal{F}), \Phi(\mathcal{F}) \in \operatorname{Constr}\left(\mathbb{A}^{1}, 0\right)$.
The full subcategory

$$
\operatorname{Perv}\left(\mathbb{A}^{1}, 0\right) \subset \mathcal{D}\left(\mathbb{A}^{1} ; 0\right)
$$

whose objects are perverse sheaves, is an abelian category.
Let $H y p^{\prime}\left(\mathbb{A}^{1}, 0\right)$ denote an abelian category whose objects ("hyperbolic sheaves") are collections

$$
E=(\Phi, \Psi, v: \Phi \longrightarrow \Psi, u: \Psi \longrightarrow \Phi)
$$

where $\Phi, \Psi \in \operatorname{Vect}^{f}(k), u, v$ are k-linear maps such that

$$
\begin{equation*}
T_{\psi}: 1-v u \tag{Inv}
\end{equation*}
$$

is invertible.
Lemma. (Inv) is equivalent to

$$
T_{\phi}: 1-u v \quad(I n v)^{\prime}
$$

is invertible.
Theorem (Kashiwara, Malgrange, Beilinson, ...). The above functors induce an equivalence of categories

$$
\operatorname{Perv}\left(\mathbb{A}^{1}, 0\right) \xrightarrow{\sim} H y p^{\prime}\left(\mathbb{A}^{1}, 0\right)
$$

UNITARY SHEAVES

1.3. DIRAC VERSION

1.3.1. For $\mathcal{F} \in \mathcal{D}\left(\mathbb{A}^{1}, 0\right)$ we define

$$
E_{ \pm}(\mathcal{F})=\mathcal{F}_{ \pm 1}=R \Gamma\left(\mathcal{F} ; U_{i}\right) \in \mathcal{D}(k), i= \pm 1
$$

where $U(a)=D(a ; \epsilon)$ - small disc with center a.

$$
E_{0}(\mathcal{F})=\operatorname{Cone}\left(R \Gamma\left(\mathbb{A}^{1} ; \mathcal{F}\right) \longrightarrow R \Gamma\left(\mathcal{F} ; U_{1} \cup U_{-1}\right)\right)
$$

Thus we have canonical maps

$$
\delta_{ \pm}: E_{ \pm}(\mathcal{F}) \longrightarrow E_{0}(\mathcal{F})
$$

1.3.2. Duality. The functors $E_{ \pm}, E_{0}$ commute with Verdier duality.

As a corollary we get maps

$$
\gamma_{ \pm}(\mathcal{F}):=\delta_{ \pm}\left(\mathcal{F}^{*}\right)^{*}: E_{0}(\mathcal{F}) \longrightarrow E_{ \pm}(\mathcal{F})
$$

The compositions

$$
T_{+}=\gamma_{-} \delta_{+}: \mathcal{F}_{1} \longrightarrow \mathcal{F}_{-1}, T_{-}=\gamma_{+} \delta_{-}: \mathcal{F}_{-1} \longrightarrow \mathcal{F}_{1}
$$

are (upper, lower) half-monodromies.

1.3.3.

$$
R \Gamma\left(\mathbb{A}^{1} ; \mathcal{F}\right)=\left[E_{+}(\mathcal{F}) \oplus E_{-}(\mathcal{F}) \xrightarrow{\delta} E_{0}(\mathcal{F})\right],
$$

in horizontal degrees 0,1 ;

$$
R \Gamma_{c}\left(\mathbb{A}^{1} ; \mathcal{F}\right)=\left[E_{0}(\mathcal{F}) \xrightarrow{\gamma} E_{+}(\mathcal{F}) \oplus E_{-}(\mathcal{F})\right],
$$

in horizontal degrees 1,2 (NON STANDARD NORMALIZATION)
1.3.4. A complex $\mathcal{F} \in \mathcal{D}\left(\mathbb{A}^{1}, 0\right)$ belongs to $\operatorname{Perv}\left(\mathbb{A}^{1}, 0\right)$ iff $E_{*}(\mathcal{F}) \in \operatorname{Vect}{ }^{f}(k) \subset$ $\mathcal{D}(k), *=0, \pm$.

Let us denote \mathcal{S} a stratification of \mathbb{R} into 3 strata:

$$
C_{0}=\{0\}, C_{+}=\mathbb{R}_{>0}, C_{-}=\mathbb{R}_{<0}
$$

and by $\operatorname{Hyp}(\mathcal{S})$ a category whose objects are collections

$$
E_{0}, E_{ \pm} \in \operatorname{Vect}^{f}(k), \gamma_{ \pm}: E_{0} \longrightarrow E_{ \pm}, \delta_{ \pm}: E_{ \pm} \longrightarrow E_{0}
$$

such that:
(a) $\gamma_{ \pm} \delta_{ \pm}=\mathrm{Id}$;
(b) The maps $\gamma_{\mp} \delta_{ \pm}: E_{ \pm} \longrightarrow E_{\mp}$ are isomorphisms.

Theorem [KS] (a). The above functors induce an equivalence of categories

$$
E: \operatorname{Perv}\left(\mathbb{A}^{1}, 0\right) \xrightarrow{\sim} \operatorname{Hyp}(\mathcal{S})
$$

1.4. CATEGORICAL VERSIONS: SPHERICAL FUNCTORS AND SPHERICAL PAIRS

Fig. Schober.

Fig. Another Schober.

§2. Grothendieck resolution for $\mathfrak{s l}_{2}$ and the Atiyah flop

2.1. Let $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{C}), \mathfrak{h} \subset \mathfrak{g}$ the Cartan subalgebra of diagonal matrices. The Weyl group $W=\{1, s\}$ acts on $\mathfrak{h}, s h=-h$.

$$
c h: \mathfrak{g} \longrightarrow \mathfrak{h} / W, p(A)=-\operatorname{det} A=-a d+b c=\lambda^{2}
$$

where $\operatorname{Spec}(A)=\{\lambda,-\lambda\}$.

$$
\mathcal{F} \ell=G / B=\left\{0=V_{0} \subset V_{1} \subset V_{2}=V=\mathbb{C}^{2}\right\} \cong \mathbb{P}^{1}
$$

- the variety of flags.

We denote by $\tilde{\mathfrak{g}}$ the variety

$$
\tilde{\mathfrak{g}}=\left\{(A \in \mathfrak{g}, \mathcal{F} \in \mathcal{F} \ell) \mid A\left(V_{1}\right) \subset V_{1}\right\}
$$

We have an obvious projection $\tilde{\mathfrak{g}} \longrightarrow \mathcal{F} \ell$ which identifies $\tilde{\mathfrak{g}}$ with the cotangent bundle $T^{*} \mathcal{F} \ell$.

A map

$$
\tilde{\mathfrak{g}} \longrightarrow \mathfrak{h},\left.\quad(A, \mathcal{F}) \mapsto A\right|_{V_{1}} \in \mathbb{C}
$$

Another obvious projection

$$
\pi: \tilde{\mathfrak{g}} \longrightarrow \mathfrak{g}
$$

is nonramified two-fold covering over the open subvariety $\mathfrak{g}^{r s s}$ of matrices A with $\lambda(A) \neq 0$. Its complement

$$
\mathcal{N}=\{A \mid \lambda(A)=0\}=\{A \mid \operatorname{det} A=0\}
$$

is the subvariety of nilpotent matrices, a quadratic cone.
For $A \in \mathcal{N} \backslash\{0\} \pi^{-1}(A)$ consists of 1 element; $\pi^{-1}(0)=G / B=\mathbb{P}^{1}$.
We have a commutatice square

2.2. Atiyah flop. We define

$$
Z=\mathfrak{h} \times_{\mathfrak{h} / W} \mathfrak{g}
$$

Explicitely, a point of Z is a couple (A, λ), where A is a matrix from $\mathfrak{s l}_{2}$ and λ is a square root of its determinant:

$$
-a^{2}-b c=\lambda^{2}
$$

In other words, Z is a quadratic cone in \mathbb{C}^{4}.
Thus, we have canonical maps

$$
\tilde{\mathfrak{g}} \xrightarrow{\pi_{1}} Z \xrightarrow{\pi_{2}} \mathfrak{g}
$$

In fact, (3.2) is the Stein decomposition of π :

$$
Z=\Gamma\left(\tilde{\mathfrak{g}} ; \mathcal{O}_{\tilde{\mathfrak{g}}}\right)
$$

and π_{1} is the canonical map (EXPLAIN)
π_{2} is a ramified covering, whereas the fibers of π_{1} are connected.
π_{1} is a blowing down of a curve $C \cong \mathbb{P}^{1}$; it is a small resolution of the isolated singularity $0 \in Z$.

We denote

$$
\pi_{+}=\pi_{1}: \quad X_{+}=\tilde{\mathfrak{g}} \longrightarrow Z .
$$

Let $s: \mathfrak{h} \longrightarrow \mathfrak{h}$ be the Weyl reflection, $s(\lambda)=-\lambda$ on \mathfrak{h}.
We define $X_{-}:=s^{*} \tilde{\mathfrak{g}}$, i.e. it fits into the Cartesian square

We have a canonical map

$$
\pi_{-}: X_{-} \longrightarrow Z
$$

which is a small resolution.
Finally, we define

$$
X_{0}:=X_{-} \times_{Z} X_{+}
$$

it is the blowing up of the singularity $0 \in Z$.
The diagram

$$
\begin{equation*}
X_{-} \stackrel{p_{-}}{\rightleftarrows} X_{0} \xrightarrow{p_{+}} X_{+} \tag{At}
\end{equation*}
$$

is an example of an Atiyah flop. The maps $p_{ \pm}$are proper.
2.3. Atiyah - Grothendieck flober. For a variety X let $\mathcal{D}(X)$ denote the bounded derived category of coherent sheaves on X, and $\operatorname{Perf}(X)$ the trangulated category of perfect complexes; if X is smooth these categories are equivalent.

The diagram $(A t)$ induces two diagrams functors between triangulated categories

$$
\begin{equation*}
\mathcal{D}\left(X_{-}\right) \stackrel{p_{-*}}{\rightleftharpoons} \mathcal{D}\left(X_{0}\right) \xrightarrow{p_{+*}} \mathcal{D}\left(X_{+}\right) \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{D}\left(X_{-}\right) \xrightarrow{p_{-}^{*}} \mathcal{D}\left(X_{0}\right) \stackrel{p_{+}^{*}}{\rightleftarrows} \mathcal{D}\left(X_{+}\right) \tag{*}
\end{equation*}
$$

which is a categorical analog of a hyperbolic shea f over \mathbb{A}^{1}, in the Dirac form.
This means that it satisfies the properties:
???
Let us denote it $\mathcal{A G}$.

2.4. $R \Gamma$ and $R \Gamma_{c}$ for a Schober.

Definition.

$$
H^{0}\left(\mathbb{A}^{1}, \mathcal{A G}\right)=\operatorname{holim}\left(A t^{*}\right)
$$

this is the homotopy kernel of a couple of arrows;

$$
H_{c}^{2}\left(\mathbb{A}^{1}, \mathcal{A G}\right)=\operatorname{hocolim}\left(A t_{*}\right)
$$

this is the homotopy cokernel of a couple of arrows.
Theorem. We have equivalences of stable categories

$$
\operatorname{Per} f(Z) \cong H^{0}\left(\mathbb{A}^{1}, \mathcal{A G}\right) ; \mathcal{D}(Z) \cong H_{c}^{2}\left(\mathbb{A}^{1}, \mathcal{A G}\right)
$$

????????????????????

§3. Parabolic Grothendieck resolutions: the case of $\mathfrak{s l}_{3}$

3.1. Levis, parabolics, complex and real strata. Let $L_{0} \subset G=G L_{n}(\mathbb{R})$ be the subgroup of diagonal matrices, the minimal Levi subgroup, $\mathfrak{h}=\operatorname{Lie}\left(L_{0}\right)=\mathbb{R}^{n}$, with coordinates x_{1}, \ldots, x_{n}.

In \mathfrak{h} consider the root arrangement consisting of hyperplanes $x_{i}=x_{j}$. Let \mathcal{S} (resp. $\mathcal{S}_{\mathbb{C}}$) denote the corresponding stratification of \mathfrak{h} (resp. the corresponding complex stratification of $\mathfrak{h}_{\mathbb{C}}$).

We have a canonical map

$$
\begin{equation*}
\mathcal{S} \longrightarrow \mathcal{S}_{\mathbb{C}} \tag{3.1.1}
\end{equation*}
$$

We have bijections

$$
\mathcal{S}_{\mathbb{C}} \xrightarrow{\sim}\left\{\text { Levi subgroups } L \supset L_{0}\right\}
$$

Given a Levi $L \supset L_{0}$, the corresponding complex stratum is $\operatorname{Lie}(Z(L))$.

$$
\mathcal{S} \xrightarrow{\sim}\left\{\text { Parabolic subgroups } P \supset L_{0}\right\}
$$

The map (3.1.1) corresponds to associating to a parabolic its Levi factor.

Example. $n=3$. (we list the closures of strata).
L_{0} corresponds to $\mathfrak{h}_{\mathbb{C}} .6$ real chambers in \mathfrak{h} are in bijection with 6 parabolics $P_{i j k}$ where $(i j k)$ is a permutation of (123) and $P_{i j k}$ consists of matrices respecting the flag $V_{i} \mathbb{R} e_{i} \subset V_{i} \oplus V_{j}$.

There are 3 Levi's $L_{i j}$ corresponding to three complex lines $\ell_{i j, \mathbb{C}}: x_{i}=x_{j}$,

$$
L_{i j}=G L\left(V_{i} \oplus V_{j}\right) \times G L\left(V_{k}\right) .
$$

Each $L_{i j}$ is contained in 2 parabolics $P_{i j}^{ \pm}$corresponding to two rays of the real line $\ell_{i j}$.

For example:

$$
\begin{gathered}
L_{12}=\left\{\left(\begin{array}{lll}
* & * & 0 \\
* & * & 0 \\
0 & 0 & *
\end{array}\right)\right\}, Z\left(L_{12}\right)=\left\{\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & b
\end{array}\right)\right\} \\
P_{12}^{+}=\left\{\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
0 & 0 & *
\end{array}\right)\right\}, P_{12}^{-}=\left\{\left(\begin{array}{ccc}
* & * & 0 \\
* & * & 0 \\
* & * & *
\end{array}\right)\right\} .
\end{gathered}
$$

We have 6 one-dimensional real strata.
Finally, G corresponds to the smallest stratum $x_{1}=x_{2}=x_{3}$.
3.2. Parabolic Grothendieck resolutions. Let $P \subset G$ be a parabolic, so

$$
\mathcal{F} \ell_{P}=G / P=\left\{P^{x}:=x P x^{-1}\right\}
$$

is a partial flag variety.
By definition

$$
\tilde{\mathfrak{g}}_{P}=\left\{\left(A, P^{\prime}\right), P^{\prime} \in G / P, A \in \mathfrak{p}^{\prime}=\operatorname{Lie}\left(P^{\prime}\right)\right\}
$$

Thus $\tilde{\mathfrak{g}}=\tilde{\mathfrak{g}}_{B}$, whereas $\mathfrak{g}=\tilde{\mathfrak{g}}_{G}$.
For $P \subset P^{\prime}$ we have a commutative square

3.3. SEVERAL DEFINITIONS OF SINGULAR VARIETIES Z_{P}

(i) Stein factorization

$$
\tilde{\mathfrak{g}}_{P} \xrightarrow{\pi_{1}} Z_{P}=\operatorname{Spec}\left(\tilde{\mathfrak{g}}_{P}, \Theta_{\tilde{\mathfrak{g}}_{P}}\right) \xrightarrow{\pi_{2}} \tilde{\mathfrak{g}}_{G}=\mathfrak{g}
$$

where π_{2} is finite, and π_{1} has connected fibers and is birational.
(ii) Let $\mathfrak{p}=\operatorname{Lie}(P), \mathfrak{n}_{\mathfrak{p}} \subset \mathfrak{p}$ its nilpotent radical, $\mathfrak{l}_{\mathfrak{p}}=\mathfrak{p} / \mathfrak{n}_{\mathfrak{p}}$ the Levi quotient, $\mathfrak{m}=\mathfrak{l} / Z(\mathfrak{l})$.

Let

$$
\tilde{\mathfrak{l}} \longrightarrow Z(\mathfrak{l}) \longrightarrow \mathfrak{l}
$$

be the Grothendieck resolution and its affinization. We define

$$
Z(\mathfrak{p})=\mathfrak{p} \times_{\mathfrak{l}} Z(\mathfrak{l})
$$

and varying P we get the unversal family

$$
Z_{P}=G \times_{P} Z(\mathfrak{p}):=(G \times Z(\mathfrak{p})) / P \longrightarrow \mathcal{F} \ell_{P}=G / P
$$

???????????????????????

3.4. Triangle and its flags. We consider the case of $\mathfrak{s l}_{3}$.

We have a map

$$
\tilde{\mathfrak{g}} \longrightarrow \mathcal{F} \ell
$$

whose fiber over $B \in \mathcal{F} \ell$, or over a flag

$$
\begin{equation*}
F: 0 \subset V_{1} \subset V_{2} \subset V_{3}=\mathbb{C}^{3} \tag{3.4.2}
\end{equation*}
$$

is $\mathfrak{b}=\operatorname{Lie}(B)$, or the space of matrices $A \in \mathfrak{g}=\mathfrak{s l}_{3}(\mathbb{C})$ such that $A\left(V_{i}\right) \subset V_{i}$, $i=1,2$.

Or we can consider the flag F as a pair

$$
\text { point } *=\mathbb{P}\left(V_{1}\right) \subset \text { straight line } \mathbb{P}\left(V_{2}\right) \cong \mathbb{P}^{1} \subset \mathbb{P}^{2}=\mathbb{P}\left(V_{3}\right)
$$

Fig. Triangle.

Consider a triangle

$$
\Delta=\cup_{1 \leq i, j \leq 3} \ell_{i j} \subset \mathbb{P}(V), \ell_{i j}=\ell_{j i}
$$

as on Fig. above, with vertices

$$
p_{1}=\ell_{12} \cap \ell_{13}, p_{2}=\ell_{12} \cap \ell_{23}, p_{3}=\ell_{13} \cap \ell_{23}
$$

To Δ we associate a Cartan subalgebra

$$
\mathfrak{h}(\Delta)=\left\{A \in \mathfrak{g} \mid A p_{i} \subset p_{i}\right\}
$$

(where p_{i} is considered as a line in V).

To Δ there correspond 13 elements which are in bijection with the cells of the root stratification $\mathcal{S}\left(A_{2}\right)$ on \mathbb{R}^{2}, and with parabolics containing $\mathfrak{h}(\Delta)$.
(a) Let us call a 0-element a flag $F=(p \ell)$ in $\mathbb{P}=\mathbb{P}(V)$.

To each $F \in \Delta$ there corresponds a Borel subalgebra $\mathfrak{b}(F) \subset \mathfrak{g}$ as above.
We denote

$$
\mathfrak{p}(F)=\mathfrak{q}(F)=\mathfrak{b}(F)
$$

We have $\operatorname{dim} \mathfrak{b}(F)=5$;
The space of flags

$$
\text { Flags }=\text { Elements }_{0}
$$

has dimension 3 .
The borels $\mathfrak{b}(F)$ form a 2-dimensional vector bundle over Flags, whose total space is nothing but the 8 -dimensional Grothendieck resolution $\tilde{\mathfrak{g}}$.

0 -elements belonging to a given triangle Δ are in bijection with 6 chambers of $\mathcal{S}\left(A_{2}\right)$.
?????????????????????????????????
(b) By definition, 1-elements are of two kinds:
(b1) A 1-element of the first kind is a pair of distinct straight lines $E=\left(\ell, \ell^{\prime}\right)$ in \mathbb{P}. Let $p=\ell \cap \ell^{\prime}$.

The element E contains 2 flags: $F=(p \subset \ell)$ and $F^{\prime}=\left(p \subset \ell^{\prime}\right)$. We write $F \in E$.

Define two Lie subalgebras

$$
\mathfrak{p}(E)=\mathfrak{b}(F) \cup \mathfrak{b}\left(F^{\prime}\right)
$$

it is a parabolic; and

$$
\mathfrak{q}(E)=\mathfrak{b}(F) \cap \mathfrak{b}\left(F^{\prime}\right), \operatorname{dim} \mathfrak{q}(E)=4
$$

The space of 1-elements of the first kind is an open subspace

$$
\text { Elements }_{1}^{\prime} \subset \mathbb{P} \times \mathbb{P}, \operatorname{dim} \text { Elements }_{1}^{\prime}=4
$$

(b2) A 1-element of the second kind is a 1-element of the first kind in the dual projective plane P^{\vee}.

Explicitely, it is a pair of distinct points $E^{\prime}=\left(p, p^{\prime}\right)$ in \mathbb{P}. Let ℓ be the straight line through p, p^{\prime}.

Two flags belong to this element $F=(p \subset \ell)$ and $F^{\prime}=\left(p^{\prime} \subset \ell\right)$.
Define two Lie subalgebras

$$
\mathfrak{p}\left(E^{\prime}\right)=\mathfrak{b}(F) \cup \mathfrak{b}\left(F^{\prime}\right), \operatorname{dim} \mathfrak{p}(E)=6
$$

it is a parabolic; and

$$
\mathfrak{q}(E)=\mathfrak{b}(F) \cap \mathfrak{b}\left(F^{\prime}\right), \quad \operatorname{dim} \mathfrak{q}(E)=4
$$

The space of 1-elements of the second kind is an open subspace

$$
\text { Elements }_{1}^{\prime \prime} \subset \mathbb{P}^{\vee} \times \mathbb{P}^{\vee}, \text { dim Elements }{ }_{1}^{\prime \prime}=4
$$

$3+3$ elements belonging to a fixed triangle Δ are in bijection with $3+3$ 1-cells of $\mathcal{S}\left(A_{2}\right)$, see Fig. ??? below.

FIGURE: TRIANGLE AND ITS 1-ELEMENTS

Fig. ???. 1-elements and 1-cells.
(c) A 2-element is a triple of distinct points p_{1}, p_{2}, p_{3} in \mathbb{P}, i.e. a triangle Δ. It corresponds to the unique 0 -cell in $\mathcal{S}\left(A_{2}\right)$.

There are 6 flags $F: p_{i} \subset \ell_{i j}$ in Δ; we write this as $F \in \Delta$.
We define two Lie subalgebras

$$
\mathfrak{p}(\Delta)=\cup_{F \in \Delta} \mathfrak{b}(F)=G
$$

and

$$
\mathfrak{q}(\Delta)=\cap_{F \in \Delta} \mathfrak{b}(F)=\mathfrak{h}(\Delta), \operatorname{dim}(\mathfrak{q}(\Delta))=2
$$

The space of triangles

$$
\text { Triangles }=\text { Elements }_{2} \subset\left(\mathbb{P}^{2}\right)^{3}
$$

has dimension 6 .
It carries a vector bundle whose fiber over Δ is $\mathfrak{q}(\Delta)$.
The total space of this bundle has dimension 8 and is birational with \mathfrak{g}.
?????????????????????
TO RECUPERATE:

Let E be an element ($=$ a triangle element), and $\operatorname{Cell}(E)$ the corresponding cell of $\mathcal{S}\left(A_{2}\right)$.

The flags $F \in E$ are in bijection with chambers adjacent to $\operatorname{Cell}(E)$.
The parabolic corresponding to E is

$$
\mathfrak{p}(E)=\sum_{F \in F l(E)} \mathfrak{b}(F) .
$$

On the other hand

$$
\mathfrak{q}(E)=\cap_{F \in F l(E)} \mathfrak{b}(F)
$$

We call Lie algebras $\mathfrak{q}(E)$ carabolic ones, for Cartan, indicating that they lie between a Cartan $\mathfrak{q}(\Delta)=\mathfrak{h}(\Delta)$ and a Borel.

The carabolics (resp. parabolics) containing a given Cartan are in bijection with $\mathcal{S}\left(A_{2}\right)$.
??????????????????????,

COMPACTIFICATIONS AND DESINGULARIZATIONS

3.5. Origin: the Schubert variety. We have an embedding

$$
\begin{equation*}
i: \text { Triangles } \hookrightarrow \mathbb{P}(V)^{3} \times \mathbb{P}(V)^{\vee 3}, i(\Delta)=\left(p_{1}, p_{2}, p_{3} ; \ell_{12}, \ell_{13}, \ell_{23}\right) . \tag{3.5.1}
\end{equation*}
$$

Let Tr denote the Zarisky closure of i (Triangles).

SCHUBERT DESINGULARIZATION

For $T=\left(p_{i}\right) \in$ Triangles quadrics $q \in S^{2}\left(V^{*}\right)$ circumscribed around T, i.e. such that

$$
q\left(p_{1}\right)=q\left(p_{2}\right)=q\left(p_{3}\right)=0
$$

form a 3 -dimensional linear subspace of $S^{2}\left(V^{*}\right)$, whence an embedding

$$
\text { Triangles } \hookrightarrow \mathbb{P}(V)^{3} \times \mathbb{P}(V)^{\vee 3} \times \operatorname{Gr}\left(3, S^{2}\left(V^{*}\right)\right.
$$

By definition $T r^{S c h}$ is the closure of its image, cf. [Sch], [Se], [KM]; according to loc. cit. it is nonsingular.

It comes together with an obvous map

$$
T r^{S c h} \longrightarrow \operatorname{Tr}
$$

which is an isomorphism over an open Triangles $\subset T r$, and is therefore a desingularization of the compact variety Tr .
????????????????????
ANOTHER REALIZATION OF THE SCHUBERT VARIETY; THE CARTAN VECTOR BUNDLE ON IT

Variety of reductions

Let R^{o} denote the variety of Cartan subalgebras in \mathfrak{g}. We have an embedding

$$
R^{o} \hookrightarrow \operatorname{Gr}(2, \mathfrak{g}) ;
$$

let R denote its closure, cf. [IM]. R carries a tautological rank 2 vector bundle ???

We have an embedding

$$
\hat{i}: \text { Triangles } \longrightarrow \mathbb{P}^{3} \times \mathbb{P}^{\vee 3} \times R,
$$

with

$$
\hat{i}(\Delta)=(i(\Delta), \mathfrak{h}(\Delta)) .
$$

We define $\widehat{T r}$ as the Zarisky closure of the image of \hat{i}.

Proposition.

$$
\widehat{T r} \cong T r^{S c h}
$$

Therefore we have over $T r^{S c h}$ the tautological 2-dimensional fiber bundle; denote its total space X_{0}.
3.6. 1-rays. Define two open 8-dimensional 1-element variety: Y_{1}^{\prime} (resp. $Y_{1}^{\prime \prime}$) as the total space of a 4-dimensional fiber bundle over the 4-dimensional space of 1-elements Elements 1_{1}^{\prime} (resp. Elements ${ }_{1}^{\prime \prime}$).

The fiber of Y_{1}^{\prime} (resp. of $Y_{1}^{\prime \prime}$) over an element $E^{\prime}=\left(p, p^{\prime}, \ell\right)$ (resp. over $E^{\prime \prime}=$ ($\left.p, \ell, \ell^{\prime}\right)$) is the corresponding carabolic subalgebra: interesection of two borels

$$
\mathfrak{q}(E)=\cap_{F \in E} \mathfrak{b}(F)
$$

We compactify Elements 1_{1}^{\prime} as follows: we have an open embedding

$$
\text { Elements }{ }_{1}^{\prime} \hookrightarrow \text { Flags } \times_{\mathbb{P}^{\vee}} \text { Flags },
$$

and we set

$$
E l_{1}^{\prime}:=\text { Flags } \times_{\mathbb{P} V} \text { Flags. }
$$

Similarly we set

$$
E l_{1}^{\prime \prime}:=\text { Flags } \times_{\mathbb{P}} \text { Flags } .
$$

The carabolic fiber bundles $Y_{1}^{\prime}, Y_{1}^{\prime \prime}$ may be extended to the compactfied spaces.
????????????
This may be proved by constructing them as fiber products, similarly to Atiyah case.
???????????????
We have an embedding

$$
Y_{1}^{\prime} \hookrightarrow X_{w} \times X_{w^{\prime}}=\tilde{\mathfrak{g}}_{w} \times \tilde{\mathfrak{g}}_{w^{\prime}}
$$

(resp. $Y_{1}^{\prime \prime} \hookrightarrow X_{w} \times X_{w^{\prime}}$) corresponding to two chambers neighboring a wall. We define X_{1}^{\prime} (resp. $\left.X_{1}^{\prime \prime}\right)$ as the closure of its image.
3.7. Résumé. We have constructed a web of 13 smooth projective varieties $X(C), C \in \mathcal{S}\left(A_{2}\right)$, and proper morphisms

$$
X(C) \longrightarrow X\left(C^{\prime}\right), C \leq C^{\prime}
$$

References

[BR] R.Bezrukavnikov, S.Riche,
[BKS] A.Bondal, M.Kapranov, V. Schechtman
[CS] N.Chriss, V.Ginzburg
[IM] Iliev, Manivel
[KM] W. van der Kallen, P.Magyar, The space of triangles
[KS] M.Kapranov, V. Schechtman (a) ??? (b) Schobers ???
[Sch] H.Schubert, Anzahlgeometrische Behandlung des Dreiecks
[Se] J.G.Semple, The triangle as a geometric variable

