FLOPS AND SCHOBERS

Grothendieck resolutions and the web of parabolics

Vadim Schechtman

Talk in Toulouse, May, 2018

PLAN

1. Perverse sheaves on the disc, vanishing cycles, cohomology.

2. Atiyah flop and \mathfrak{sl}_2 ; flober.

3. Parabolic Grothendieck resolutions. \mathfrak{sl}_3 and spaces of triangles.

This is a report on a joint work with Alexei Bondal and Mikhail Kapranov, see [BKS].

§1. Vanishing cycles and perverse sheaves

1.1. What is the vanishing cycles? Let $\mathcal{D}(\mathbb{A}^1; 0)$ denote the bounded derived category of complexes \mathcal{F} of sheaves over $\mathbb{A}^1 = \mathbb{C}$ (in the usual topology) with values in vector spaces over a fixed field k; we require the cohomology of these complexes to be locally constant over $U = \mathbb{A}^1 \setminus \{0\}$, and of finite type over k.

In other words $H^*(\mathcal{F}) \in Constr(\mathbb{A}^1, 0)$.

VARIANT: one could take $\mathcal{D}^b(Constr(\mathbb{A}^1, 0))$.

We have

$$\mathcal{F}_0 \stackrel{\sim}{=} R\Gamma(\mathbb{A}^1, \mathcal{F}) \in \mathcal{D}(*)$$

We define

$$\Phi(\mathfrak{F}) := Cone(\mathfrak{F}_0 = R\Gamma(\mathbb{A}^1, \mathfrak{F}) \longrightarrow R\Gamma(U_1, \mathfrak{F}) = \mathfrak{F}_1)$$

where $U_1 = D(1, \epsilon)$ - small disc with center at 1;

$$\Psi(\mathcal{F}) = \mathcal{F}_1$$

Thus we have a canonical map

$$u: \Psi(\mathcal{F}) \longrightarrow \Phi(\mathcal{F}).$$

Duality theorem. The functors Φ , Ψ commute with (Verdier) duality. **Corollary.** We define the variation map

$$v(\mathfrak{F}) = u(\mathfrak{F}^*)^* : \Phi(\mathfrak{F}) \longrightarrow \Psi(\mathfrak{F}).$$

Unravelling the definitions,

$$vu = 1 - T$$

where

$$T:\Psi \xrightarrow{\sim} \Psi$$

is the monodromy.

It follows that

$$R\Gamma(\mathbb{A}^1; \mathfrak{F}) = Cone(u : \Psi(\mathfrak{F}) \longrightarrow \Phi(\mathfrak{F}))[-1]$$

Dually,

$$R\Gamma_c(\mathbb{A}^1; \mathcal{F}) = Cone(v : \Phi(\mathcal{F}) \longrightarrow \Psi(\mathcal{F}))[???]$$

1.2. What is a perverse sheaf?

Definition. \mathcal{F} is called a perverse sheaf if $\Psi(\mathcal{F}), \Phi(\mathcal{F}) \in Constr(\mathbb{A}^1, 0)$.

The full subcategory

$$Perv(\mathbb{A}^1,0) \subset \mathcal{D}(\mathbb{A}^1;0)$$

whose objects are perverse sheaves, is an abelian category.

Let $Hyp'(\mathbb{A}^1,0)$ denote an abelian category whose objects ("hyperbolic sheaves") are collections

$$E = (\Phi, \Psi, v : \Phi \longrightarrow \Psi, u : \Psi \longrightarrow \Phi)$$

where $\Phi, \Psi \in Vect^{f}(k), u, v$ are k-linear maps such that

$$T_{\psi}: 1 - vu \tag{Inv}$$

is invertible.

Lemma. (Inv) is equivalent to

$$T_{\phi}: 1 - uv \qquad (Inv)'$$

is invertible.

Theorem (Kashiwara, Malgrange, Beilinson, ...). The above functors induce an equivalence of categories

$$Perv(\mathbb{A}^1, 0) \xrightarrow{\sim} Hyp'(\mathbb{A}^1, 0)$$

1.3. DIRAC VERSION

1.3.1. For $\mathcal{F} \in \mathcal{D}(\mathbb{A}^1, 0)$ we define

$$E_{\pm}(\mathcal{F}) = \mathcal{F}_{\pm 1} = R\Gamma(\mathcal{F}; U_i) \in \mathcal{D}(k), \ i = \pm 1$$

where $U(a) = D(a; \epsilon)$ - small disc with center a.

$$E_0(\mathcal{F}) = Cone(R\Gamma(\mathbb{A}^1; \mathcal{F}) \longrightarrow R\Gamma(\mathcal{F}; U_1 \cup U_{-1}))$$

Thus we have canonical maps

$$\delta_{\pm}: E_{\pm}(\mathcal{F}) \longrightarrow E_0(\mathcal{F})$$

1.3.2. Duality. The functors E_{\pm} , E_0 commute with Verdier duality.

As a corollary we get maps

$$\gamma_{\pm}(\mathfrak{F}) := \delta_{\pm}(\mathfrak{F}^*)^* : E_0(\mathfrak{F}) \longrightarrow E_{\pm}(\mathfrak{F})$$

The compositions

$$T_{+} = \gamma_{-}\delta_{+}: \ \mathcal{F}_{1} \longrightarrow \mathcal{F}_{-1}, \ T_{-} = \gamma_{+}\delta_{-}: \ \mathcal{F}_{-1} \longrightarrow \mathcal{F}_{1}$$

are (upper, lower) half-monodromies.

1.3.3.

$$R\Gamma(\mathbb{A}^1; \mathfrak{F}) = [E_+(\mathfrak{F}) \oplus E_-(\mathfrak{F}) \xrightarrow{\delta} E_0(\mathfrak{F})],$$

in horizontal degrees 0, 1;

$$R\Gamma_c(\mathbb{A}^1; \mathfrak{F}) = [E_0(\mathfrak{F}) \xrightarrow{\gamma} E_+(\mathfrak{F}) \oplus E_-(\mathfrak{F})],$$

in horizontal degrees 1,2 (NON STANDARD NORMALIZATION)

1.3.4. A complex $\mathcal{F} \in \mathcal{D}(\mathbb{A}^1, 0)$ belongs to $Perv(\mathbb{A}^1, 0)$ iff $E_*(\mathcal{F}) \in Vect^f(k) \subset \mathcal{D}(k), * = 0, \pm$.

Let us denote S a stratification of \mathbb{R} into 3 strata:

$$C_0 = \{0\}, \ C_+ = \mathbb{R}_{>0}, \ C_- = \mathbb{R}_{<0},$$

and by Hyp(S) a category whose objects are collections

$$E_0, E_{\pm} \in Vect^f(k), \ \gamma_{\pm} : E_0 \longrightarrow E_{\pm}, \delta_{\pm} : E_{\pm} \longrightarrow E_0$$

such that:

(a)
$$\gamma_{\pm}\delta_{\pm} = \mathrm{Id};$$

(b) The maps $\gamma_{\mp}\delta_{\pm}: E_{\pm} \longrightarrow E_{\mp}$ are isomorphisms.

Theorem [KS] (a). The above functors induce an equivalence of categories

$$E: Perv(\mathbb{A}^1, 0) \xrightarrow{\sim} Hyp(\mathbb{S})$$

4

 ${\bf 1.4.} \ {\rm CATEGORICAL} \ {\rm VERSIONS:} \ {\rm SPHERICAL} \ {\rm FUNCTORS} \ {\rm AND} \ {\rm SPHERICAL} \ {\rm PAIRS}$

Fig. Schober.

Fig. Another Schober.

§2. Grothendieck resolution for \mathfrak{sl}_2 and the Atiyah flop

2.1. Let $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$, $\mathfrak{h} \subset \mathfrak{g}$ the Cartan subalgebra of diagonal matrices. The Weyl group $W = \{1, s\}$ acts on \mathfrak{h} , sh = -h.

$$ch: \mathfrak{g} \longrightarrow \mathfrak{h}/W, \ p(A) = -\det A = -ad + bc = \lambda^2$$

where $\operatorname{Spec}(A) = \{\lambda, -\lambda\}.$

$$\mathfrak{F}\ell = G/B = \{0 = V_0 \subset V_1 \subset V_2 = V = \mathbb{C}^2\} \stackrel{\sim}{=} \mathbb{P}^1$$

- the variety of flags.

We denote by $\tilde{\mathfrak{g}}$ the variety

$$\tilde{\mathfrak{g}} = \{ (A \in \mathfrak{g}, \mathfrak{F} \in \mathfrak{F}\ell) | A(V_1) \subset V_1 \}$$

We have an obvious projection $\tilde{\mathfrak{g}} \longrightarrow \mathcal{F}\ell$ which identifies $\tilde{\mathfrak{g}}$ with the cotangent bundle $T^*\mathcal{F}\ell$.

A map

$$\tilde{\mathfrak{g}} \longrightarrow \mathfrak{h}, \ (A, \mathcal{F}) \mapsto A|_{V_1} \in \mathbb{C}$$

Another obvious projection

$$\pi:\tilde{\mathfrak{g}}\longrightarrow\mathfrak{g}$$

is nonramified two-fold covering over the open subvariety \mathfrak{g}^{rss} of matrices A with $\lambda(A) \neq 0$. Its complement

$$\mathcal{N} = \{A | \lambda(A) = 0\} = \{A | \det A = 0\}$$

is the subvariety of nilpotent matrices, a quadratic cone.

For $A \in \mathbb{N} \setminus \{0\} \ \pi^{-1}(A)$ consists of 1 element; $\pi^{-1}(0) = G/B = \mathbb{P}^1$.

We have a commutatice square

$$\begin{array}{ccc} \tilde{\mathfrak{g}} & \longrightarrow & \mathfrak{g} \\ \downarrow & & \downarrow \\ \mathfrak{h} & \longrightarrow & \mathfrak{h}/W \end{array}$$

2.2. Atiyah flop. We define

$$Z = \mathfrak{h} \times_{\mathfrak{h}/W} \mathfrak{g}$$

Explicitly, a point of Z is a couple (A, λ) , where A is a matrix from \mathfrak{sl}_2 and λ is a square root of its determinant:

$$-a^2 - bc = \lambda^2.$$

In other words, Z is a quadratic cone in \mathbb{C}^4 .

Thus, we have canonical maps

$$\tilde{\mathfrak{g}} \xrightarrow{\pi_1} Z \xrightarrow{\pi_2} \mathfrak{g}$$

In fact, (3.2) is the Stein decomposition of π :

$$Z = \Gamma(\tilde{\mathfrak{g}}; \mathfrak{O}_{\tilde{\mathfrak{g}}}),$$

and π_1 is the canonical map (EXPLAIN)

 π_2 is a ramified covering, whereas the fibers of π_1 are connected.

 π_1 is a blowing down of a curve $C \cong \mathbb{P}^1$; it is a small resolution of the isolated singularity $0 \in \mathbb{Z}$.

We denote

$$\pi_+ = \pi_1 : X_+ = \tilde{\mathfrak{g}} \longrightarrow Z.$$

Let $s : \mathfrak{h} \longrightarrow \mathfrak{h}$ be the Weyl reflection, $s(\lambda) = -\lambda$ on \mathfrak{h} .

We define $X_{-} := s^* \tilde{\mathfrak{g}}$, i.e. it fits into the Cartesian square

$$\begin{array}{cccc} X_{-} & \longrightarrow & \tilde{\mathfrak{g}} \\ \downarrow & & \downarrow \\ \mathfrak{h} & \stackrel{s}{\longrightarrow} & \mathfrak{h} \end{array}$$

We have a canonical map

$$\pi_{-}: X_{-} \longrightarrow Z.$$

which is a small resolution.

Finally, we define

$$X_0 := X_- \times_Z X_+$$

it is the blowing up of the singularity $0 \in \mathbb{Z}$.

The diagram

$$X_{-} \xleftarrow{p_{-}} X_{0} \xrightarrow{p_{+}} X_{+} \tag{At}$$

is an example of an Atiyah flop. The maps p_{\pm} are proper.

2.3. Atiyah - Grothendieck flober. For a variety X let $\mathcal{D}(X)$ denote the bounded derived category of coherent sheaves on X, and Perf(X) the trangulated category of perfect complexes; if X is smooth these categories are equivalent.

The diagram (At) induces two diagrams functors between triangulated categories

$$\mathcal{D}(X_{-}) \stackrel{p_{-*}}{\longleftarrow} \mathcal{D}(X_{0}) \stackrel{p_{+*}}{\longrightarrow} \mathcal{D}(X_{+}) \tag{At_{*}}$$

and

$$\mathcal{D}(X_{-}) \xrightarrow{p_{-}^{*}} \mathcal{D}(X_{0}) \xleftarrow{p_{+}^{*}} \mathcal{D}(X_{+})$$

$$(At^{*})$$

which is a categorical analog of a hyperbolic shea f over \mathbb{A}^1 , in the Dirac form.

This means that it satisfies the properties:

???

Let us denote it AG.

2.4. $R\Gamma$ and $R\Gamma_c$ for a Schober. Definition.

 $H^0(\mathbb{A}^1, \mathcal{AG}) = \operatorname{holim}(At^*),$

this is the homotopy kernel of a couple of arrows;

 $H^2_c(\mathbb{A}^1, \mathcal{AG}) = \operatorname{hocolim}(At_*),$

this is the homotopy cokernel of a couple of arrows.

Theorem. We have equivalences of stable categories

$$Perf(Z) \cong H^0(\mathbb{A}^1, \mathcal{AG}); \ \mathfrak{D}(Z) \cong H^2_c(\mathbb{A}^1, \mathcal{AG}).$$

§3. Parabolic Grothendieck resolutions: the case of \mathfrak{sl}_3

3.1. Levis, parabolics, complex and real strata. Let $L_0 \subset G = GL_n(\mathbb{R})$ be the subgroup of diagonal matrices, the minimal Levi subgroup, $\mathfrak{h} = Lie(L_0) = \mathbb{R}^n$, with coordinates x_1, \ldots, x_n .

In \mathfrak{h} consider the root arrangement consisting of hyperplanes $x_i = x_j$. Let \mathfrak{S} (resp. $\mathfrak{S}_{\mathbb{C}}$) denote the corresponding stratification of \mathfrak{h} (resp. the corresponding complex stratification of $\mathfrak{h}_{\mathbb{C}}$).

We have a canonical map

$$S \longrightarrow S_{\mathbb{C}}.$$
 (3.1.1)

We have bijections

$$\mathcal{S}_{\mathbb{C}} \xrightarrow{\sim} \{Levi \ subgroups \ L \supset L_0\}$$

Given a Levi $L \supset L_0$, the corresponding complex stratum is Lie(Z(L)).

 $\mathbb{S} \xrightarrow{\sim} \{ Parabolic \ subgroups \ P \supset L_0 \}$

The map (3.1.1) corresponds to associating to a parabolic its Levi factor.

Example. n = 3. (we list the closures of strata).

 L_0 corresponds to $\mathfrak{h}_{\mathbb{C}}$. 6 real chambers in \mathfrak{h} are in bijection with 6 parabolics P_{ijk} where (ijk) is a permutation of (123) and P_{ijk} consists of matrices respecting the flag $V_i \mathbb{R} e_i \subset V_i \oplus V_j$.

There are 3 Levi's L_{ij} corresponding to three complex lines $\ell_{ij,\mathbb{C}}: x_i = x_j$,

$$L_{ij} = GL(V_i \oplus V_j) \times GL(V_k).$$

Each L_{ij} is contained in 2 parabolics P_{ij}^{\pm} corresponding to two rays of the real line ℓ_{ij} .

For example:

$$L_{12} = \left\{ \begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{pmatrix} \right\}, Z(L_{12}) = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix} \right\}$$
$$P_{12}^{+} = \left\{ \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & 0 & * \end{pmatrix} \right\}, P_{12}^{-} = \left\{ \begin{pmatrix} * & * & 0 \\ * & * & 0 \\ * & * & * \end{pmatrix} \right\}.$$

We have 6 one-dimensional real strata.

Finally, G corresponds to the smallest stratum $x_1 = x_2 = x_3$.

3.2. Parabolic Grothendieck resolutions. Let $P \subset G$ be a parabolic, so

$$\mathcal{F}\ell_P = G/P = \{P^x := xPx^{-1}\}$$

is a partial flag variety.

By definition

$$\tilde{\mathfrak{g}}_P = \{(A, P'), P' \in G/P, A \in \mathfrak{p}' = Lie(P')\}$$

Thus $\tilde{\mathfrak{g}} = \tilde{\mathfrak{g}}_B$, whereas $\mathfrak{g} = \tilde{\mathfrak{g}}_G$.

For $P \subset P'$ we have a commutative square

$$\begin{array}{ccc} \tilde{\mathfrak{g}}_P & \longrightarrow & \tilde{\mathfrak{g}}_{P'} \\ \downarrow & & \downarrow \\ G/P & \longrightarrow & G/P' \end{array}$$

3.3. SEVERAL DEFINITIONS OF SINGULAR VARIETIES Z_P (i) Stein factorization

10

where π_2 is finite, and π_1 has connected fibers and is birational.

(ii) Let $\mathfrak{p} = Lie(P)$, $\mathfrak{n}_{\mathfrak{p}} \subset \mathfrak{p}$ its nilpotent radical, $\mathfrak{l}_{\mathfrak{p}} = \mathfrak{p}/\mathfrak{n}_{\mathfrak{p}}$ the Levi quotient, $\mathfrak{m} = \mathfrak{l}/Z(\mathfrak{l})$.

Let

$$\tilde{\mathfrak{l}} \longrightarrow Z(\mathfrak{l}) \longrightarrow \mathfrak{l}$$

be the Grothendieck resolution and its affinization. We define

 $Z(\mathfrak{p}) = \mathfrak{p} \times_{\mathfrak{l}} Z(\mathfrak{l}),$

and varying P we get the unversal family

$$Z_P = G \times_P Z(\mathfrak{p}) := (G \times Z(\mathfrak{p}))/P \longrightarrow \mathcal{F}\ell_P = G/P$$

3.4. Triangle and its flags. We consider the case of \mathfrak{sl}_3 .

We have a map

$$\tilde{\mathfrak{g}} \longrightarrow \mathfrak{F}\ell$$

whose fiber over $B \in \mathcal{F}\ell$, or over a flag

$$F: 0 \subset V_1 \subset V_2 \subset V_3 = \mathbb{C}^3 \tag{3.4.2}$$

is $\mathfrak{b} = Lie(B)$, or the space of matrices $A \in \mathfrak{g} = \mathfrak{sl}_3(\mathbb{C})$ such that $A(V_i) \subset V_i$, i = 1, 2.

Or we can consider the flag F as a pair

point $* = \mathbb{P}(V_1) \subset \text{straight line } \mathbb{P}(V_2) \stackrel{\sim}{=} \mathbb{P}^1 \subset \mathbb{P}^2 = \mathbb{P}(V_3)$

Fig. Triangle.

Consider a triangle

$$\Delta = \cup_{1 \le i, j \le 3} \ell_{ij} \subset \mathbb{P}(V), \ \ell_{ij} = \ell_{ji}$$

as on Fig. above, with vertices

$$p_1 = \ell_{12} \cap \ell_{13}, \ p_2 = \ell_{12} \cap \ell_{23}, \ p_3 = \ell_{13} \cap \ell_{23}$$

To Δ we associate a Cartan subalgebra

$$\mathfrak{h}(\Delta) = \{ A \in \mathfrak{g} | A p_i \subset p_i \}$$

(where p_i is considered as a line in V).

To Δ there correspond 13 *elements* which are in bijection with the cells of the root stratification $S(A_2)$ on \mathbb{R}^2 , and with parabolics containing $\mathfrak{h}(\Delta)$.

(a) Let us call a 0-element a flag $F = (p\ell)$ in $\mathbb{P} = \mathbb{P}(V)$.

To each $F \in \Delta$ there corresponds a Borel subalgebra $\mathfrak{b}(F) \subset \mathfrak{g}$ as above.

We denote

$$\mathfrak{p}(F) = \mathfrak{q}(F) = \mathfrak{b}(F)$$

We have dim $\mathfrak{b}(F) = 5$;

The space of flags

$$Flags = Elements_0$$

has dimension 3.

The borels $\mathfrak{b}(F)$ form a 2-dimensional vector bundle over *Flags*, whose total space is nothing but the 8-dimensional Grothendieck resolution $\tilde{\mathfrak{g}}$.

0-elements belonging to a given triangle Δ are in bijection with 6 chambers of $S(A_2)$.

(b) By definition, 1-elements are of two kinds:

(b1) A 1-element of the first kind is a pair of distinct straight lines $E = (\ell, \ell')$ in \mathbb{P} . Let $p = \ell \cap \ell'$.

The element E contains 2 flags: $F = (p \subset \ell)$ and $F' = (p \subset \ell')$. We write $F \in E$.

Define two Lie subalgebras

$$\mathfrak{p}(E)=\mathfrak{b}(F)\cup\mathfrak{b}(F')$$

it is a parabolic; and

$$\mathfrak{q}(E) = \mathfrak{b}(F) \cap \mathfrak{b}(F'), \dim \mathfrak{q}(E) = 4.$$

The space of 1-elements of the first kind is an open subspace

 $Elements'_1 \subset \mathbb{P} \times \mathbb{P}, \text{ dim } Elements'_1 = 4.$

(b2) A 1-element of the second kind is a 1-element of the first kind in the dual projective plane P^{\vee} .

Explicitely, it is a pair of distinct points E' = (p, p') in \mathbb{P} . Let ℓ be the straight line through p, p'.

Two flags belong to this element $F = (p \subset \ell)$ and $F' = (p' \subset \ell)$.

Define two Lie subalgebras

$$\mathfrak{p}(E') = \mathfrak{b}(F) \cup \mathfrak{b}(F'), \dim \mathfrak{p}(E) = 6.$$

it is a parabolic; and

$$\mathbf{q}(E) = \mathbf{b}(F) \cap \mathbf{b}(F'), \ \dim \mathbf{q}(E) = 4.$$

The space of 1-elements of the second kind is an open subspace

 $\text{Elements}_1'' \subset \mathbb{P}^{\vee} \times \mathbb{P}^{\vee}, \text{ dim Elements}_1'' = 4.$

3+3 elements belonging to a fixed triangle Δ are in bijection with 3+3 1-cells of $S(A_2)$, see Fig. ??? below.

FIGURE: TRIANGLE AND ITS 1-ELEMENTS

Fig. ???. 1-elements and 1-cells.

(c) A 2-element is a triple of distinct points p_1, p_2, p_3 in \mathbb{P} , i.e. a triangle Δ . It corresponds to the unique 0-cell in $S(A_2)$.

There are 6 flags $F : p_i \subset \ell_{ij}$ in Δ ; we write this as $F \in \Delta$.

We define two Lie subalgebras

$$\mathfrak{p}(\Delta) = \bigcup_{F \in \Delta} \mathfrak{b}(F) = G,$$

and

$$\mathfrak{q}(\Delta) = \bigcap_{F \in \Delta} \mathfrak{b}(F) = \mathfrak{h}(\Delta), \ \dim(\mathfrak{q}(\Delta)) = 2.$$

The space of triangles

$$Triangles = \text{Elements}_2 \subset (\mathbb{P}^2)^3$$

has dimension 6.

It carries a vector bundle whose fiber over Δ is $\mathfrak{q}(\Delta)$.

The total space of this bundle has dimension 8 and is birational with \mathfrak{g} .

TO RECUPERATE:

Let E be an element (= a triangle element), and Cell(E) the corresponding cell of $S(A_2)$.

The flags $F \in E$ are in bijection with chambers adjacent to Cell(E).

The parabolic corresponding to E is

$$\mathfrak{p}(E) = \sum_{F \in Fl(E)} \mathfrak{b}(F).$$

On the other hand

$$\mathfrak{q}(E) = \bigcap_{F \in Fl(E)} \mathfrak{b}(F).$$

We call Lie algebras $\mathfrak{q}(E)$ carabolic ones, for Cartan, indicating that they lie between a Cartan $\mathfrak{q}(\Delta) = \mathfrak{h}(\Delta)$ and a Borel.

The carabolics (resp. parabolics) containing a given Cartan are in bijection with $S(A_2)$.

COMPACTIFICATIONS AND DESINGULARIZATIONS

3.5. Origin: the Schubert variety. We have an embedding

 $i: Triangles \hookrightarrow \mathbb{P}(V)^3 \times \mathbb{P}(V)^{\vee 3}, i(\Delta) = (p_1, p_2, p_3; \ell_{12}, \ell_{13}, \ell_{23}).$ (3.5.1)

Let Tr denote the Zarisky closure of i(Triangles).

16

SCHUBERT DESINGULARIZATION

For $T = (p_i) \in Triangles$ quadrics $q \in S^2(V^*)$ circumscribed around T, i.e. such that

$$q(p_1) = q(p_2) = q(p_3) = 0$$

form a 3-dimensional linear subspace of $S^2(V^*)$, whence an embedding

$$Triangles \hookrightarrow \mathbb{P}(V)^3 \times \mathbb{P}(V)^{\vee 3} \times \operatorname{Gr}(3, S^2(V^*).$$

By definition Tr^{Sch} is the closure of its image, cf. [Sch], [Se], [KM]; according to *loc. cit.* it is nonsingular.

It comes together with an obvous map

$$Tr^{Sch} \longrightarrow Tr$$

which is an isomorphism over an open $Triangles \subset Tr$, and is therefore a desingularization of the compact variety Tr.

ANOTHER REALIZATION OF THE SCHUBERT VARIETY; THE CARTAN VECTOR BUNDLE ON IT

Variety of reductions

Let R^o denote the variety of Cartan subalgebras in \mathfrak{g} . We have an embedding

$$R^{o} \hookrightarrow \operatorname{Gr}(2, \mathfrak{g});$$

let R denote its closure, cf. [IM]. R carries a tautological rank 2 vector bundle ???

We have an embedding

$$\hat{i}: Triangles \longrightarrow \mathbb{P}^3 \times \mathbb{P}^{\vee 3} \times R,$$

with

$$\hat{i}(\Delta) = (i(\Delta), \mathfrak{h}(\Delta)).$$

We define \widehat{Tr} as the Zarisky closure of the image of \hat{i} .

Proposition.

$$\widehat{Tr} \stackrel{\sim}{=} Tr^{Sch}$$

Therefore we have over Tr^{Sch} the tautological 2-dimensional fiber bundle; denote its total space X_0 .

3.6. 1-rays. Define two open 8-dimensional 1-element variety: Y'_1 (resp. Y''_1) as the total space of a 4-dimensional fiber bundle over the 4-dimensional space of 1-elements $Elements'_1$ (resp. $Elements''_1$).

The fiber of Y'_1 (resp. of Y''_1) over an element $E' = (p, p', \ell)$ (resp. over $E'' = (p, \ell, \ell')$) is the corresponding carabolic subalgebra: interesection of two borels

$$\mathfrak{q}(E) = \bigcap_{F \in E} \mathfrak{b}(F)$$

We compactify $Elements'_1$ as follows: we have an open embedding

 $Elements'_1 \hookrightarrow Flags \times_{\mathbb{P}^{\vee}} Flags,$

and we set

$$El'_1 := Flags \times_{\mathbb{P}^\vee} Flags.$$

Similarly we set

$$El_1'' := Flags \times_{\mathbb{P}} Flags.$$

The carabolic fiber bundles Y'_1, Y''_1 may be extended to the compactified spaces.

This may be proved by constructing them as fiber products, similarly to Atiyah case.

We have an embedding

$$Y_1' \hookrightarrow X_w \times X_{w'} = \tilde{\mathfrak{g}}_w \times \tilde{\mathfrak{g}}_{w'}$$

(resp. $Y_1'' \hookrightarrow X_w \times X_{w'}$) corresponding to two chambers neighboring a wall. We define X_1' (resp. X_1'') as the closure of its image.

3.7. Résumé. We have constructed a web of 13 smooth projective varieties X(C), $C \in S(A_2)$, and proper morphisms

$$X(C) \longrightarrow X(C'), \ C \le C'$$

References

[BR] R.Bezrukavnikov, S.Riche,

[BKS] A.Bondal, M.Kapranov, V. Schechtman

[CS] N.Chriss, V.Ginzburg

[IM] Iliev, Manivel

[KM] W. van der Kallen, P.Magyar, The space of triangles

[KS] M.Kapranov, V. Schechtman (a) ??? (b) Schobers ???

[Sch] H.Schubert, Anzahlgeometrische Behandlung des Dreiecks

[Se] J.G.Semple, The triangle as a geometric variable