FOURIER - SATO TRANSFORM

AND LUSZTIG SYMMETRIES

Hyperbolic calculus

Vadim Schechtman
(joint work with Michael Finkelberg and Mikhail Kapranov)

Arbeitstagung for Yu. I. Manin's 80-th anniversary

Bonn, June 19, 2017

Contents

§1. Quantum group of a hyperplane arrangement
§2. Fourier - Sato transform
§3. Lusztig symmetries and vanishing cycles
§4. Combinatorics of Young tableaux
and a duality for representations of S_{n} and of $G L_{n}\left(\mathbb{F}_{q}\right)$

§1. Quantum group of a hyperplane arrangement

1.1. A quantum group of a hyperplane arrangement. Let $V=\mathbb{C}^{n}, \mathcal{H}=\left\{H_{i}\right\}$ a finite collection of hyperplanes $H_{i}: f_{i}(x)=0$ where f_{i} are linear functions with real coefficients.

This arrangement gives rise to a complex stratification $\mathcal{S}_{\mathbb{C}}$ of V and to a real stratification \mathcal{S} of $V_{\mathbb{R}}=\mathbb{R}^{n}$.
For $S, S^{\prime} \in \mathcal{S}$ we write $S \leq S^{\prime}$ if $S \subset \bar{S}^{\prime}$.
Let us call two strata S, S^{\prime} neighbours if $\operatorname{dim} S=\operatorname{dim} S^{\prime}, L(S)=L\left(S^{\prime}\right)$, and there exists $S^{\prime \prime}$ (a wall between S and S^{\prime}) $S^{\prime \prime} \leq S, S^{\prime \prime} \leq S^{\prime}$, $\operatorname{dim} S^{\prime \prime}=\operatorname{dim} S-1$.

A triple of real strata $\left(S_{1}, S_{2}, S_{3}\right)$ is called a collinear triple if there exist $x_{i} \in S_{i}$ lying on the same line, and such that $x_{2} \in\left[x_{1}, x_{3}\right]$.

Let us define a category $\operatorname{Hyp}(\mathcal{S})$ whose objects will be called hyperbolic sheaves over \mathcal{S}, which are the following linear algebra data:

- a collection of complex vector spaces $E=\left\{E_{S}, S \in S\right\}$;
- for each $S \leq S^{\prime}$ we have two linear maps: $\gamma_{S S^{\prime}}: E_{S} \longrightarrow E_{S^{\prime}}$ (generalization), and $\delta_{S^{\prime} S}: E_{S^{\prime}} \longrightarrow E_{S}$ (boundary), transitive wrt $S \leq S^{\prime} \leq S^{\prime \prime}$.
They should also sarisfy the following properties:
(i) (idempotence) $\gamma_{S S^{\prime}} \delta_{S^{\prime} S}=\operatorname{ld}\left(E_{S^{\prime}}\right)$.

Let S, S^{\prime} be arbitrary strata. Choose a stratum $S^{\prime \prime} \leq S, S^{\prime \prime} \leq S^{\prime}$, and define a flopping map

$$
\phi_{S S^{\prime}}:=\gamma_{S^{\prime \prime} S^{\prime}} \delta_{S S^{\prime \prime}} .
$$

Due to (i) this definition does not depend on $S^{\prime \prime}$.
(ii) (collinearity) If $\left(S, S^{\prime}, S^{\prime \prime}\right)$ is a collinear triple,

$$
\phi_{S S^{\prime \prime}}=\phi_{S^{\prime} S^{\prime \prime}} \phi_{S S^{\prime}} .
$$

(iii) (invertibility) If S and S^{\prime} are neighbours, $\phi_{S S^{\prime}}$ is an isomorphism.

In other words, the category $\operatorname{Hyp}(\mathcal{S})$ is a category $\operatorname{Rep}(\mathcal{A}(\mathcal{S}))$ of representations in Vect of certain associative algebra $\mathcal{A}(\mathcal{S})$.
1.2. Let $\mathcal{M} \in \operatorname{Perv}\left(V ; \mathcal{S}_{\mathbb{C}}\right)$. Let $i: V_{\mathbb{R}} \hookrightarrow V$. One can show that

$$
R^{\prime}(\mathcal{M}) \in \mathcal{D}_{c}^{b}\left(V_{\mathbb{R}}, S\right)
$$

which is a priori a complex of sheaves, is actually a single sheaf. Denote by

$$
E(\mathcal{M})_{A}=\Gamma\left(A ; R i^{!}(\mathcal{M})\right) \in \operatorname{Vect}, A \in \mathcal{S}
$$

its fibers, and by

$$
\gamma_{A B}: E(\mathcal{M})_{A} \longrightarrow E(\mathcal{M})_{B}, A \leq B
$$

the generalization maps.
One can show that

$$
E\left(\mathcal{M}^{*}\right)_{A} \cong E(\mathcal{M})_{A}^{*}
$$

where \mathcal{M}^{*} is the Verdier dual sheaf, whence maps

$$
\delta_{B A}(\mathcal{M}):=\gamma_{A B}\left(\mathcal{M}^{*}\right)^{*}
$$

1.3. Theorem, [KS]. The association $\mathcal{M} \mapsto E(\mathcal{M})$ gives rise to a functor

$$
E: \operatorname{Perv}\left(V ; \mathcal{S}_{s}\right) \longrightarrow \operatorname{Hyp}(\mathcal{S})
$$

which is an equivalence of categories.
1.4. $R \Gamma(V ; \mathcal{M})$ AND $R \Gamma_{c}(V ; \mathcal{N})$ IN TERMS OF $E(\mathcal{M})$. Suppose our arrangement is central, i.e. $\{0\}$ is one of its faces. Let $S_{i} \in \mathcal{S}$ denote the subset of faces of dimension i.
If $E(\mathcal{M})=\left(E_{A}, \gamma, \delta\right)$ then

$$
R \Gamma_{c}(V ; \mathcal{M}): 0 \longrightarrow E_{0} \longrightarrow \oplus_{\ell \in s_{1}} E_{\ell} \longrightarrow \ldots,
$$

the differential being γ 's with signs. The complex sits in nonnegative degrees.
Dually,

$$
R \Gamma(V ; \mathcal{M}): \ldots \longrightarrow \oplus_{\ell \in s_{1}} E_{\ell} \longrightarrow E_{0} \longrightarrow 0
$$

the differential being δ 's with signs. The complex sits in negative degrees.
1.5. Elementary version: the braid groupoid. Let

$$
U:=V \backslash \cup_{i} H_{i}
$$

The fundamental groupoid $\Pi(U)$ admits the following description:
Objects: chambers, i.e. strata C of maximal dimension.
Morphisms.
Generators: for each two chambers C, C^{\prime} we have one generator $\phi_{C C^{\prime}}: C \longrightarrow C^{\prime}$.

Relations: for each collinear triple $\left(C, C^{\prime}, C^{\prime \prime}\right)$,

$$
\phi_{C C^{\prime \prime}}=\phi_{C^{\prime} C^{\prime \prime}} \phi_{C C^{\prime}} .
$$

§2. Fourier - Sato transform

2.1. Fourier - Sato transformation. Cf. [KaScha]. Let V be a complex finite dimensional vector space, V^{*} its complex dual,

$$
P=\left\{(x, \ell) \in V \times V^{*} \mid \Re \ell(x) \geq 0\right\} \subset V \times V^{*} .
$$

Let $p_{1}: P \longrightarrow V, p_{2}: P \longrightarrow V^{*}$ be the projections.
Let $\operatorname{Perv}(V)$ denote the abelian category of monodromic perverse sheaves over V.
The Fourier - Sato transformation

$$
F S: \operatorname{Perv}(V) \xrightarrow{\sim} \operatorname{Perv}\left(V^{*}\right)
$$

is defined by

$$
F S(\mathcal{M})=p_{2 *} p_{1}^{!} \mathcal{M}=p_{2!} p_{1}^{*} \mathcal{N}
$$

see [KaScha], Definition 3.7.8.
2.1.1. Fourier - Sato and vanishing cycles. Let $f \in V^{*}$, $V_{f}=\left\{f^{-1}(0) \subset V\right\}$,

$$
i_{\{f\}}:\{f\} \hookrightarrow V^{*} .
$$

We have the vanishing cycles functor

$$
\Phi_{f}: \operatorname{Perv}(V) \longrightarrow \operatorname{Perv}\left(V_{f}\right)
$$

Then the fiber

$$
i_{\{f\}}^{*} F S(\mathcal{M})=R \Gamma_{c}\left(V_{f} ; \mathcal{M}\right)
$$

2.2. Let us return to the framework of $\S 1$. Let \mathcal{H}^{*} denote an arrangement in V^{*} whose hyperplanes are orthogonals $H^{*}=\ell^{\perp}$ where $\ell=\cap H_{j} \subset V$ is a line. Let \mathcal{S}^{*} denote the corresponding stratification of $V_{\mathbb{R}}^{*}$.

Warning: $\mathcal{H} \subset \mathcal{H}^{* *}$, but $\mathcal{H}^{* *}$ is much bigger if $n=\operatorname{dim} V>2$.
The Fourier - Sato transformation acts as

$$
F S: D_{c}^{b}(V, \mathcal{S}) \longrightarrow \mathcal{D}_{c}^{b}\left(V^{*}, \mathcal{S}^{*}\right)
$$

2.2.1. Relation to vanishing cycles. For example, let

$$
V^{* 0}=V \backslash \cup_{H^{*} \in \mathcal{H}^{*}} H^{*}
$$

A point in $V^{* o}$ is nothing else as a linear function $f: V \longrightarrow \mathbb{C}$ in general position to \mathcal{H}.
For $\mathcal{M} \in \mathcal{D}_{c}^{b}(V, \mathcal{S})$ let

$$
\Phi_{f}(\mathcal{M}) \in D^{b}\left(f^{-1}(0)\right)
$$

denote the sheaf of vanishing cycles. It is concentrated at $0 \in f^{-1}(0)$, and the fiber

$$
\Phi_{f}(\mathcal{M})_{0}=F S(\mathcal{M})_{f}
$$

Thus, over $V^{* o}$ the sheaf $F S(\mathcal{M})$ decribes the variation of the space of vanishing cycles when a function f varies.
2.3. Now let $\mathcal{M} \in \operatorname{Perv}\left(V, \mathcal{S}_{\mathbb{C}}\right), E=E(\mathcal{M}) \in \operatorname{Hyp}(\mathcal{S})$,
$\mathcal{M}^{\vee}=F S(\mathcal{M}) \in \operatorname{Perv}\left(V^{*} ; \mathcal{S}^{*}\right)$.
Let us describe $E^{\vee}:=E\left(\mathcal{M}^{\vee}\right)$ in terms of E.
First let $A^{\vee} \in \mathcal{S}^{*}$ be a chamber. Choose $f \in A^{\vee}$, and denote

$$
V_{f}^{+}=\left\{x \in V_{\mathbb{R}} \mid f(x)>0\right\} .
$$

Consider a complex

$$
E\left(A^{\vee}\right)^{\bullet}:
$$

$$
\begin{equation*}
0 \longrightarrow E_{\{0\}} \longrightarrow \oplus_{B \subset V_{f}^{+}, \operatorname{dim} B=1} E_{B} \longrightarrow \oplus_{B \subset V_{f}^{+}, \operatorname{dim} B=2} E_{B} \longrightarrow \ldots \tag{2.3.1}
\end{equation*}
$$

concentrated in degrees ≥ 0. The boundary maps are γ 's with appropriate signs.
Dually, we can consider a complex
$E\left(A^{\vee}\right)_{\delta}^{\bullet}: 0 \longrightarrow E_{\{0\}} \longleftarrow \oplus_{B \subset V_{f}^{+}, \operatorname{dim} B=1} E_{B} \longleftarrow \oplus_{B \subset V_{f}^{+}, \operatorname{dim} B=2} E_{B} \longleftarrow \ldots$ concentrated in degrees ≤ 0, whose boundary maps are δ 's with appropriate signs.
2.4. Main Acyclicity Theorem.
(i) The complexes $E\left(A^{\vee}\right)^{\bullet}$ and $E\left(A^{\vee}\right)_{\delta}^{\bullet}$ are acyclic except for degree 0 .
(ii) Its zeroth cohomology computes the vanishing cycles

$$
E\left(A^{\vee}\right):=H^{0}\left(E\left(A^{\vee}\right) \bullet\right) \cong E_{A^{\vee}}^{\vee} \cong H^{0}\left(E\left(A^{\vee}\right)_{\delta}^{\bullet}\right)
$$

2.5. Now let $A^{\vee} \in S^{*}$ be an arbitrary face, $A^{\vee} \neq 0$.

As previously, choose $f \in A^{\vee}$, and consider a complex similar to (2.3.1):

$$
\begin{gather*}
E\left(A^{\vee}\right)^{\bullet}: \\
0 \longrightarrow E_{\{0\}} \longrightarrow \oplus_{B \subset v_{f}^{+}, \operatorname{dim} B=1} E_{B} \longrightarrow \oplus_{B \subset v_{f}^{+}, \operatorname{dim} B=2} E_{B} . \tag{2.5.1}
\end{gather*}
$$

concentrated in degrees ≥ 0.
The boundary maps are γ 's with signs.
2.6. Theorem. (i) The complex $E\left(A^{\vee}\right)^{\bullet}$ is acyclic except for degree 0 . Its zeroth cohomology computes

$$
\left.E\left(A^{\vee}\right):=H^{0}\left(E\left(A^{\vee}\right)\right)^{\bullet}\right) \cong E_{A^{\vee}}^{\vee}
$$

(ii)

$$
E^{\vee}(0)=E_{0} .
$$

Part (ii) is a version of Braden's theorem.
2.8. EXAMPLE: THREE LINES ON THE PLANE
2.9. EXAMPLE WITH LIE OPERAD

§3. Lusztig symmetries and vanishing cycles

3.1. Braid group actions. Let \mathfrak{g} be a complex semisimple Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra, $R \subset \mathfrak{h}^{*}$ the set of roots with respect to \mathfrak{h}. Let us fix a Borel subalgebra $\mathfrak{h} \subset \mathfrak{b} \subset \mathfrak{g}$; let $\left\{\alpha_{i}\right\}_{i \in I} \subset \mathfrak{h}^{*}$ be the corresponding set of simple roots.
Let L be a finite dimensional \mathfrak{g}-module. The Weyl group W of \mathfrak{g} acts on the set of weights of L.

This action may be lifted to an action on L of an extended Weyl group ("Tits - Weyl group") defined by Tits, which is an extension

$$
0 \longrightarrow(\mathbb{Z} / 2 \mathbb{Z})^{r} \longrightarrow \tilde{W} \longrightarrow W \longrightarrow 1
$$

where $r=\operatorname{dim} \mathfrak{h}$, cf. [Tits].
This action may be q-deformed.

Let $q \in \mathbb{C}^{*}$; consider the quantum deformation $U_{q} \mathfrak{g}$ of $U_{\mathfrak{g}}$. Let us suppose for simplicity that q is generic (not a root of unity).

Let

$$
\mathfrak{h}^{\circ}=\mathfrak{h} \backslash \cup_{\alpha \in R} \alpha^{\perp}
$$

The braid group Br of R (resp. the pure braid group $P B r$) is defined by

$$
B r=\pi_{1}\left(\mathfrak{h}^{\circ} / W\right), P B r=\pi_{1}\left(\mathfrak{h}^{\circ}\right)
$$

They fit into an extentsion

$$
1 \longrightarrow \mathrm{PBr} \longrightarrow \mathrm{Br} \xrightarrow{\pi} W \longrightarrow 1
$$

According to Lusztig [L], Prop. 41.2.4, a finite dimensional module L over $U_{q} \mathfrak{g}$ is acted upon by Br .

The generators $T_{i}, i \in l$, of Br act as certain combinations of the operators $E_{i}, F_{i} \in U_{q} \mathfrak{g}$.
For $b \in B r$ and a weight subspace $L_{\mu} \subset L, \mu \in \mathfrak{h}^{*}$,

$$
b\left(L_{\mu}\right) \subset L_{\pi(\mu)}
$$

whence the pure braid group $P B r$ respects weight subspaces $L_{\mu} \subset L$.
3.2. Vanishing cycles and weight components. For a dominant integral weight λ, let $L(\lambda)$ be the irreducible $U_{q} \mathfrak{g}$-module with highest weight λ.

$$
\text { Let } J \subset I ; \beta_{J}=\sum_{i \in J} \alpha_{i} \text {. }
$$

We are going to describe geometrically the weight subspace

$$
L(\lambda)_{J}:=L(\lambda)_{\lambda_{J}}, \quad \lambda_{J}=\lambda-\beta_{J} .
$$

Let us consider the space $\mathbb{A}^{J}=\mathbb{C}^{J}$ with coordinates $t_{j}, j \in J$. Inside it, let us consider hypersurfaces

$$
H_{j}=\left\{t_{j}=0\right\}, H_{j k}=\left\{t_{j}=t_{k}\right\} \subset \mathbb{A}^{J}
$$

and the open complement

$$
\mathbb{A}^{J o}=\mathbb{A}^{J} \backslash\left(\cup H_{j}\right) \backslash\left(\cup H_{k l}\right)
$$

We have a one-dimensional local system $\mathcal{L} J$ over $\mathbb{A}^{J o}$ with monodromies
$q^{-\left(\lambda, \alpha_{j}\right)}$ around H_{j}
and
$q^{\left(\alpha_{j}, \alpha_{j^{\prime}}\right)}$ around $H_{j j^{\prime}}$.
Let \mathcal{M}_{J} denote a perverse sheaf over \mathbb{A}^{J}, the intermediate extension of \mathcal{L}_{J}.

Consider a function

$$
f: \mathbb{A}^{J} \longrightarrow \mathbb{A}^{1}=\mathbb{C}, f\left(\left(t_{j}\right)\right)=\sum_{J} t_{j}
$$

The sheaf of vanishing cycles

$$
\Phi_{f}\left(\mathcal{M}_{J}\right) \in \operatorname{Perv}\left(f^{-1}(0)\right)
$$

is supported at the origin $0 \in f^{-1}(0)$
One of the main results of [BFS] establishes an isomorphism of vector spaces

$$
\Phi_{f}\left(\mathcal{M}_{J}\right)_{0} \cong L(\lambda)_{J}
$$

More generally, for any $J^{\prime} \subset J$, the component $L(\lambda)_{J^{\prime}}$ is realized as an appropriate space of vanishing cycles living on a subspace $\mathbb{A}^{J \backslash J^{\prime}} \subset \mathbb{A}^{J}$.

The operators

$$
\operatorname{var}=E_{i}: L(\lambda)_{K} \leftrightarrows L(\lambda)_{K \backslash\{i\}}: F_{i}=\mathrm{can}
$$

of the quantum group are being identified with the operators var and can acting on vanishing cycles.
A similar description holds true for any weight component (one has to use the spaces of divisors on \mathbb{A}^{1}), and for any finite dimensional $U_{g} \mathfrak{g}$-module.
3.3. Geometric braid group action. Now let us vary the function f.

Let

$$
\mathfrak{h}_{J}=\oplus_{j \in J} \mathbb{C} \alpha_{j}
$$

(recall that we have identified \mathfrak{h} with \mathfrak{h}^{*}).
For each

$$
c=\sum_{J} c_{j} \alpha_{j} \in \mathfrak{h}_{J}
$$

consider a function

$$
f_{c}: \mathbb{A}^{\beta} \longrightarrow \mathbb{A}^{1}, f\left(t_{j}\right)=\sum_{j \in J} c_{j} t_{j} .
$$

For generic c again the sheaf $\Phi_{f_{c}}\left(\mathcal{M}_{\beta}\right)$ will be concentrated at $0 \in f_{c}^{-1}(0)$, and when c varies, we get a local system of vector spaces over some open part of \mathfrak{h}_{J}, whose fiber at c is $\Phi_{f_{c}}\left(\mathcal{M}_{\beta}\right)_{0}$.
One can show that for q sufficiently close to 1 , this local system is well defined over \mathfrak{h}_{j}^{0} (a priori it has singularities at a bigger set of hyperpanes).
3.3.1. Theorem. Let q be formal at the infinitesimal neighbourhood of 1. The resulting representation of $\pi_{1}\left(\mathfrak{h}_{j}^{\circ}\right) \subset \operatorname{PBr}(\mathfrak{g})$ on $\Phi_{f}\left(\mathcal{M}_{\beta}\right)_{0}=L(\lambda)_{\mu}$ is equivalent to the Lusztig representation.
3.3.2. Conjecture. The same holds true for any q.
3.4. Comments. Relation to the theory from $\S 1$.

Operators -

$$
\begin{aligned}
& \delta \longleftrightarrow E_{i} \\
& \gamma \longleftrightarrow F_{i}
\end{aligned}
$$

§4. Combinatorics of Young tableaux

and duality for representations of S_{n} and $G L_{n}\left(\mathbb{F}_{q}\right)$

4.1. Representations of symmetric groups. Let $A=\mathbb{C}\left[S_{n+1}\right]$.

Denote by:
$[n]=\{1, \ldots, n\} ;$ Sub $_{n}$ the set of subsets of $[n]$;
\mathcal{P}_{n+1} the set of partitions of $[n+1]=$ the set of Young diagrams with $n+1$ boxes;
\mathcal{T}_{λ} the set of standard Young tableaux of shape λ, for $\lambda \in \mathcal{P}_{n+1}$;

$$
\mathcal{T}_{n+1}=\cup_{\lambda \in \mathcal{P}_{n+1}} \text { for } \mathcal{T}_{\lambda} .
$$

For each $T \in \mathcal{T}_{n+1}$ we have the corresponding Young symmetrizer $y_{T} \in A$,

$$
y_{T}^{2}=y_{T}, y_{T} y_{T^{\prime}}=0 T \neq T^{\prime} .
$$

The left ideal

$$
\begin{equation*}
L_{T}:=A \cdot y_{T} \subset A \tag{4.1.1}
\end{equation*}
$$

is an irreducible representation of $S_{n+1} ; L_{T} \cong L_{T^{\prime}}$ iff T and T^{\prime} have the same shape.
We have

$$
\begin{equation*}
A=\oplus_{T \in \mathcal{J}_{n+1}} L_{T}, \tag{4.1.2}
\end{equation*}
$$

cf. [W], Theorem 4.3.J.
4.2. A.Postnikov's descent map and projectors. Let T be a standard Young tableau of shape λ. We say that an index i in $\{1, \ldots, n\}$ is a descent of T if the number $i+1$ is located in T below the number i (that is, the row containing $i+1$ is below the row containing i).
Let $\operatorname{Des}(T)$ denote the set of all descents of T.

For example, for $T=$| 1 | 2 | 4 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 5 | 7 | | |
| 6 | | | | | we have $\operatorname{Des}(T)=\{2,4,5\}$.

This way we get a map

$$
\begin{equation*}
\text { Des : } \mathcal{T}_{n+1} \longrightarrow \text { Sub }_{n} \text {. } \tag{4.2.1}
\end{equation*}
$$

For each $I \in \mathcal{P}_{n}$, we denote

$$
\mathcal{T}_{1}:=\operatorname{Des}^{-1}(I),
$$

and we define Postnikov projectors

$$
\begin{equation*}
p_{I}^{\prime}=\sum_{T \in \mathcal{I}_{I}} y_{T} \in A, \tag{4.2.2}
\end{equation*}
$$

$$
\begin{equation*}
p_{I}=\sum_{J \subset I} p_{J}^{\prime} \tag{4.2.3}
\end{equation*}
$$

4.3. Kostka numbers and multiplicities.

To each $\lambda \in \mathcal{P}_{n+1}$ there corresponds a subgroup $S_{\lambda} \subset S_{n+1}$ on the one hand, and (an isomorphism class of) an irreducible representation L_{λ} of S_{n+1} on the other, such that

$$
\begin{equation*}
M_{\lambda}:=\operatorname{lnd}_{S_{\lambda}}^{S_{n+1}}\left(1_{S_{\lambda}}\right) \cong \oplus_{\mu \geq \lambda} L_{\mu}^{K_{\lambda \mu}} \tag{4.3.1}
\end{equation*}
$$

with $K_{\lambda \lambda}=1$, cf. [Ko], [F], [FH], Corollary 4.39.

4.4. Numbers $\kappa_{\lambda, l}$.

We define a map

$$
\begin{equation*}
\mu: \operatorname{Sub}_{n} \longrightarrow \mathcal{P}_{n+1} \tag{4.4.1}
\end{equation*}
$$

as follows. Given a subset $J=\left\{j_{1}<j_{2}<\ldots<j_{r}\right\} \subset\{1,2, \ldots, n\}$, we consider a decomposition $\left(j_{1}, j_{2}-j_{1}, \ldots, j_{r}-j_{r-1}, n+1-j_{r}\right)$ of $n+1$, and we denote the corresponding partition by $\mu(J)$.

For example, if $n=4$, then $\mu(13)=(221)$.
4.4.1. Remark. Let $G=G L(n+1)$. The set $S u b_{n}$ may be identified with the set of G-conjugacy classes of parabolics $P \subset G$, whereas \mathcal{P}_{n+1} may be identified with the set of G-conjugacy classes of nilpotent elements $x \in \operatorname{Lie}(G)$.
The map (4.4.1) assigns to P the class of a generic nilpotent $x \in \operatorname{Lie}(U(P))$.
Dually, we could assign to P the class of a generic nilpotent $y \in \operatorname{Lie}(L(P))$; this would give the conjugate partition.
4.4.2. Definition. We define small Kostka numbers: for
$\lambda \in \mathcal{P}_{n+1}, l \in \operatorname{Sub}_{n}$,

$$
\kappa_{\lambda, I}=\sum_{J \subset I}(-1)^{|J|-|I|} K_{\lambda, \mu(J)}
$$

4.4.3. Proposition. We have

$$
\begin{equation*}
K_{\lambda, \mu(I)}=\sum_{J \subset l} \kappa_{\lambda, J} . \tag{4.4.3.1}
\end{equation*}
$$

This formula defines the numbers $\kappa_{\lambda, I}$ uniquely.
4.5. Theorem (A.Postnikov) The number $\kappa_{\lambda, I}$ equals the number of

SYT's of shape λ with descent set $\operatorname{Des}(T)=1$.

4.6. A hyperbolic sheaf over \mathbb{R}^{n}.

4.6.1. Consider $V=\mathbb{C}^{n} \supset V_{\mathbb{R}}=\mathbb{R}^{n}$ equipped with the coordinate arrangement

$$
\mathcal{H}=\left\{H_{i}: x_{i}=0,1 \leq i \leq N\right\}
$$

Let \mathcal{S} be the corresponding stratification of $V_{\mathbb{R}}$. For each $S \in \mathcal{S}$ its linear span

$$
L(S)=H_{l}:=\cap_{i \in I} H_{i}
$$

for some $I \subset[n]$.
In this manner we get a surjective map

$$
\nu: \mathcal{S} \longrightarrow S_{n} b_{n}
$$

We have $|\mathcal{S}|=3^{n}$, and

$$
\left|\nu^{-1}(I)\right|=\binom{|I|}{n} .
$$

In fact, $S_{u} b_{n}$ is in bijection with the set of complex strata $\mathcal{S}_{\mathbb{C}}$, and ν is the complexification map.
4.6.2. Recall that for each $T \in \mathcal{T}_{n+1}$ we have an irreducible constituent

$$
L_{T} \subset A=\mathbb{C}\left[S_{n+1}\right],
$$

cf. (4.1.1), and for any $I \in S u b_{n}$ the submodules

$$
L_{I}=\oplus_{T \in \mathcal{T}_{l}} L_{T}
$$

and

$$
M_{l}=\oplus_{J \subset I} L_{J}
$$

We define S_{n+1}-modules

$$
E_{S}:=M_{\nu(S)}, S \in \mathcal{S} .
$$

For $S^{\prime} \geq S$ we have obvious inclusions

$$
\delta_{S^{\prime} S}: E_{S^{\prime}} \hookrightarrow E_{S}
$$

and projections

$$
\gamma_{S S^{\prime}}: E_{S} \hookrightarrow E_{S^{\prime}}
$$

4.6.3. Theorem - definition. The collection

$$
E=\left(E_{S}, \gamma_{S S^{\prime}}, \delta_{S^{\prime} S}\right)
$$

is a $\operatorname{Rep}\left(S_{n+1}\right)$-valued hyperbolic sheaf over \mathcal{S} We call it the Postnikov sheaf.

HYPERBOLIC FIBERS OF E: INDUCED MODULES
4.6.4. Proposition. Recall the map $\mu: \operatorname{Sub}_{n} \longrightarrow \mathcal{P}_{n+1}$, (4.4.1). We have isomorphisms of representations

$$
E_{S_{I}} \cong M_{\mu(I)} .
$$

4.6.5. Let $\mathcal{M} \in \operatorname{Perv}\left(V ; \mathcal{S}_{\mathbb{C}}\right)$ be the perverse sheaf corresponding to E. Recall that the poset $\mathcal{S}_{\mathbb{C}}$ may be identified with $S u b_{n}$, in such a way that [n] corresponds to $\{0\}$, and \emptyset corresponds to the unique open stratum. We denote this bijection $/ \mapsto S_{I}$.

For $\lambda \in \mathcal{P}_{n+1}, I \in S u b_{n}$ denote an irreducible perverse sheaf

$$
\mathcal{L}_{\lambda, I}:=i_{* *} \underline{L}_{\lambda}
$$

where $i_{I}:=\bar{S}_{I} \hookrightarrow V$, and \underline{L}_{λ} is the (shifted) constant sheaf with fiber L_{λ}. Then

$$
\mathcal{M} \cong \oplus_{I \in S u b_{n}} \mathcal{L}_{\lambda, l}^{\kappa_{\lambda, l}}
$$

is the decomposition of \mathcal{M} into irreducible constituents in $\operatorname{Perv}\left(V, S_{\mathbb{C}} ; \operatorname{Rep}\left(S_{n+1}\right)\right)$, and the small Kostka numbers $\kappa_{\lambda, I}$ are the multiplicities.
4.7. DUAL SHEAF AND Alt.

The arrangement \mathcal{S} is self-dual. The dual hyperbolic sheaf E^{\vee} has a general fiber isomorphic to the alternating representation Alt of S_{n+1}.
More spevifically, its fiber at the main octant is the complex of vanishing cycles

$$
E_{\emptyset}^{V_{\bullet}^{\bullet \bullet}}
$$

is a resolution of A / t by the induced modules.
4.8. More generally, let $L \in \operatorname{Rep}\left(S_{n+1}\right)$.

For every $\lambda \in \mathcal{P}_{n+1}$ we have

$$
M(L)_{\lambda}:=\operatorname{Ind}_{S_{\lambda}}^{S_{n+1}}(L) \cong M_{\lambda} \otimes L
$$

We define a $\operatorname{Rep}\left(S_{n+1}\right)$-valued hyperbolic sheaf over \mathcal{S}

$$
E(L):=E \otimes L
$$

with fibers

$$
E(L)_{I}:=E_{I} \otimes L
$$

We have

$$
E(L)^{\vee}=E\left(L^{\vee}\right)
$$

where

$$
L^{V}=L \otimes A / t
$$

("transposition of a Young diagram").
4.9. Let $G=G L_{n+1}\left(\mathbb{F}_{q}\right)$; fix a Borel subgroup $B \subset G$. The ordered set $S u b_{n}$ is in bijection with the set of parabolics $P \supset B$ (standard parabolics). For $I \in \operatorname{Sub}_{n}$ we denote P_{I} the corresponding parabolic, so that $P_{\emptyset}=B$, and $P_{[n]}=G$.
If $\mu(I)=\mu\left(I^{\prime}\right) \in \mathcal{P}_{n+1}$, the parabolics P_{I} an $P_{I^{\prime}}$ are called associated (Langlands); they are isomorphic.

Let us denote

$$
M_{\emptyset}=M_{\emptyset, q}=\operatorname{Ind}_{B}^{G} 1_{B}=\operatorname{Fun}(G / B, \mathbb{C}) ;
$$

it is a q-analog of the regular representation of S_{n+1}. Its G-submodules are called unitary. Let

$$
\operatorname{Unirep}(G) \subset \operatorname{Rep}(G)
$$

denote the full subcategory of unitary representations.

$$
A_{q}=H_{n+1, q}=\operatorname{Hecke}(G, B)
$$

be the algebra of B-biinvariant functions $f: G \longrightarrow \mathbb{C}$, with the convolution as a multiplication.
Alternatively,

$$
H_{n+1, q}=\operatorname{End}_{G}\left(\operatorname{lnd}_{B}^{G} 1_{B}\right)
$$

This algebra admits as a \mathbb{C}-base, the set $\left\{T_{w}, w \in S_{n+1}\right\}$, with multiplication defined by

$$
\left(T_{s_{i}}+1\right)\left(T_{s_{i}}-q\right)=0
$$

where $s_{i}, 1 \leq i \leq n$, are the standard generators of S_{n+1}, and

$$
T_{w} \cdot T_{w^{\prime}}=T_{w w^{\prime}}
$$

if $\ell\left(w w^{\prime}\right)=\ell(w)+\ell\left(w^{\prime}\right)$, cf.[lw], [L]; it is a q-deformation of $\mathbb{C}\left[S_{n+1}\right]$.

Steinberg - Iwasawa isomorphism
According to Steinberg, [St], one has an algebra isomorphism

$$
\begin{equation*}
\text { st: } A_{q}:=H_{n+1} \cong \mathbb{C}\left[S_{n+1}\right]=A \text {, } \tag{4.11.1}
\end{equation*}
$$

cf. also [L] and references therein.

Morita equivalence
$M_{\emptyset, q}$ is an $A_{q}-G$-bimodule, and it defines a Morita equivalence between two categories. Namely, two functors

$$
H U: \operatorname{Rep}\left(A_{q}\right) \longrightarrow \operatorname{Unirep}(G), H U(N)=M_{\oslash, q} \otimes_{A_{q}} N
$$

and
$U H: \operatorname{Unirep}(G) \longrightarrow \operatorname{Rep}\left(A_{q}\right), U H(L)=M_{\emptyset, q} \otimes_{G} L$
are mutually inverse equivalences of categories.
We have

$$
M_{\emptyset, q} \cong \oplus_{N \in \operatorname{lrrrep}\left(A_{q}\right)} N \otimes H U(N) \cong \oplus_{L \in l \text { rrrep }(G)} U H(L) \otimes L .
$$

4.12. Parabolic induction

For $I \in S u b_{n}$ let $U_{I} \subset P_{I}$ denote the unipotent radical, $L_{I} \subset P_{I}$ a Levi subgroup.
The subspace $L^{U_{1}} \subset L$ is an L_{1}-module since U_{1} normalizes L_{1}; using the canonical projection $P_{1} \longrightarrow P_{I} / U_{I} \cong L_{1}$, we consider it as a P_{I}-module.
Parabolic induction functors

$$
\operatorname{Par}_{\prime}: \operatorname{Rep}(G) \longrightarrow \operatorname{Rep}(G)
$$

are defined by

$$
\operatorname{Par}_{l}(M)=\operatorname{Ind}_{P_{l}}^{G}\left(M^{U_{1}}\right) .
$$

Under the equivalences UH, HU the parabolic induction goes to the parabolic induction.
4.13. Curtis - Alvis duality. Let
$L \in U \operatorname{Unirep}(G), N=H U(L) \in \operatorname{Rep}\left(S_{n+1}\right)$.
The image under the equivalence $s t$

$$
M_{q}(N):=s t_{*}(M(N)) \in H y p\left(\mathcal{S} ; \operatorname{Rep}\left(A_{q}\right)\right)
$$

is a hyperbolic sheaf with values in $\operatorname{Rep}\left(A_{q}\right)$.
Applying the functor $U H$ we get a $\operatorname{Unirep}(G)$-valued hyperbolic sheaf

$$
M_{q}(L):=U H\left(M_{q}(N)\right) \in H y p(\mathcal{S} ; U \operatorname{nirep}(G))
$$

a "hyperbolic localization" of L.
Its (hyperbolic) fibers are induced G-modules, the general fiber being L itself.

Consider the generic fiber of the dual sheaf $M_{q}(L)^{\vee}$ in the main octant, aka its complex of vanishing cycles for the function $f(x)=\sum x_{i}$:

$$
M_{q}(L)_{0}^{V_{\bullet}}
$$

Let us denote by

$$
L^{\vee}:=H^{0}\left(M_{q}(L)_{0}^{\mathrm{V} \bullet}\right.
$$

its only nonzero cohomology.
The operation $L \mapsto L^{\vee}$ is the known Curtis - Alvis duality on $\operatorname{Rep}(G)$.
For example

$$
1_{G}^{\vee}=S t_{G}
$$

(the Steinberg module).
We have

$$
M_{q}\left(L^{\vee}\right)=M_{q}(L)^{\vee}
$$

In other words, the hyperbolic localization takes CA duality to Fourier Sato duality.

References

[BFS] R.Bezrukavnikov, M.Finkelberg, V.Schechtman, Factorizable sheaves and quantum groups.
[FKS] M.Finkelberg, M.Kapranov, V.Schechtman, Fourier transform on hyperplane arrangements, in preparation.
[FS] M.Finkelberg, V.Schechtman, Microlocal approach to Lusztig symmetries.
[KS] M.Kapranov, V.Schechtman, Perverse sheaves over real hyperplane arrangements.
[KaScha] M.Kashiwara, P.Schapira, Sheaves on manifolds.
[L] G.Lusztig, Introduction to quantum groups
[Tits] J.Tits, Normalisateurs de tores I. Groupes de Coxeter étendus
[W] H.Weyl, Classical groups

