FOURIER - SATO TRANSFORM

AND LUSZTIG SYMMETRIES

Hyperbolic calculus

Vadim Schechtman

(joint work with Michael Finkelberg and Mikhail Kapranov)

Arbeitstagung for Yu. I. Manin's 80-th anniversary

Bonn, June 19, 2017

Contents

- §1. Quantum group of a hyperplane arrangement
- §2. Fourier Sato transform
- §3. Lusztig symmetries and vanishing cycles
- §4. Combinatorics of Young tableaux
- and a duality for representations of S_n and of $GL_n(\mathbb{F}_q)$

§1. Quantum group of a hyperplane arrangement

1.1. A quantum group of a hyperplane arrangement. Let $V = \mathbb{C}^n$, $\mathcal{H} = \{H_i\}$ a finite collection of hyperplanes $H_i : f_i(x) = 0$ where f_i are linear functions with *real* coefficients.

This arrangement gives rise to a complex stratification $S_{\mathbb{C}}$ of V and to a real stratification S of $V_{\mathbb{R}} = \mathbb{R}^n$.

For $S, S' \in \mathbb{S}$ we write $S \leq S'$ if $S \subset \overline{S}'$.

Let us call two strata S, S' neighbours if dim $S = \dim S'$, L(S) = L(S'), and there exists S'' (a wall between S and S') $S'' \leq S, S'' \leq S'$, dim $S'' = \dim S - 1$.

A triple of real strata (S_1, S_2, S_3) is called a *collinear triple* if there exist $x_i \in S_i$ lying on the same line, and such that $x_2 \in [x_1, x_3]$.

Let us define a category *Hyp*(S) whose objects will be called *hyperbolic* sheaves over S, which are the following linear algebra data:

- a collection of complex vector spaces $E = \{E_S, S \in S\}$;

— for each $S \leq S'$ we have two linear maps: $\gamma_{SS'} : E_S \longrightarrow E_{S'}$ (generalization), and $\delta_{S'S} : E_{S'} \longrightarrow E_S$ (boundary), transitive wrt $S \leq S' \leq S''$.

They should also sarisfy the following properties:

(i) (idempotence) $\gamma_{SS'}\delta_{S'S} = Id(E_{S'}).$

Let S, S' be arbitrary strata. Choose a stratum $S'' \leq S, S'' \leq S'$, and define a *flopping map*

$$\phi_{SS'} := \gamma_{S''S'} \delta_{SS''}.$$

Due to (i) this definition does not depend on S''.

(ii) (collinearity) If (S, S', S'') is a collinear triple,

$$\phi_{SS''} = \phi_{S'S''}\phi_{SS'}.$$

(iii) (invertibility) If S and S' are neighbours, $\phi_{SS'}$ is an isomorphism. In other words, the category Hyp(S) is a category $Rep(\mathcal{A}(S))$ of representations in Vect of certain associative algebra $\mathcal{A}(S)$ **1.2.** Let $\mathcal{M} \in Perv(V; S_{\mathbb{C}})$. Let $i : V_{\mathbb{R}} \hookrightarrow V$. One can show that

$$Ri^{!}(\mathcal{M}) \in \mathcal{D}^{b}_{c}(V_{\mathbb{R}}, \mathbb{S})$$

which is a priori a complex of sheaves, is actually a single sheaf. Denote by

$$E(\mathfrak{M})_{A} = \Gamma(A; Ri^{!}(\mathfrak{M})) \in Vect, \ A \in S$$

its fibers, and by

$$\gamma_{AB}: E(\mathcal{M})_A \longrightarrow E(\mathcal{M})_B, \ A \leq B$$

the generalization maps.

One can show that

$$E(\mathcal{M}^*)_A \stackrel{\sim}{=} E(\mathcal{M})^*_A$$

where \mathcal{M}^* is the Verdier dual sheaf, whence maps

$$\delta_{BA}(\mathcal{M}):=\gamma_{AB}(\mathcal{M}^*)^*$$
 () () ()

1.3. Theorem, [KS]. The association $\mathcal{M} \mapsto E(\mathcal{M})$ gives rise to a functor

$$E: Perv(V; S_S) \longrightarrow Hyp(S)$$

which is an equivalence of categories.

1.4. $R\Gamma(V; \mathcal{M})$ AND $R\Gamma_c(V; \mathcal{M})$ IN TERMS OF $E(\mathcal{M})$.

Suppose our arrangement is central, i.e. $\{0\}$ is one of its faces. Let $S_i \in S$ denote the subset of faces of dimension *i*.

If $E(\mathcal{M}) = (E_A, \gamma, \delta)$ then

$$R\Gamma_{c}(V; \mathcal{M}): 0 \longrightarrow E_{0} \longrightarrow \oplus_{\ell \in S_{1}} E_{\ell} \longrightarrow \dots,$$

the differential being γ 's with signs. The complex sits in nonnegative degrees.

Dually,

$$R\Gamma(V; \mathcal{M}): \ldots \longrightarrow \oplus_{\ell \in S_1} E_\ell \longrightarrow E_0 \longrightarrow 0,$$

the differential being δ 's with signs. The complex sits in negative degrees.

1.5. Elementary version: the braid groupoid. Let

$$U := V \setminus \cup_i H_i$$

The fundamental groupoid $\Pi(U)$ admits the following description: Objects: *chambers*, i.e. strata *C* of maximal dimension.

Morphisms.

Generators: for each two chambers C, C' we have one generator $\phi_{CC'}: C \longrightarrow C'$.

Relations: for each collinear triple (C, C', C''),

 $\phi_{CC''} = \phi_{C'C''}\phi_{CC'}.$

・ロト ・四ト ・ヨト ・ヨト ・ヨー

§2. Fourier - Sato transform

2.1. Fourier - **Sato transformation**. Cf. [KaScha]. Let V be a complex finite dimensional vector space, V^* its complex dual,

$$P = \{(x, \ell) \in V imes V^* | \ \Re \ell(x) \ge 0\} \subset V imes V^*.$$

Let $p_1: P \longrightarrow V, \ p_2: P \longrightarrow V^*$ be the projections.

Let Perv(V) denote the abelian category of *monodromic* perverse sheaves over V.

The Fourier - Sato transformation

$$\mathit{FS}: \mathit{Perv}(V) \overset{\sim}{\longrightarrow} \mathit{Perv}(V^*)$$

is defined by

$$FS(\mathcal{M}) = p_{2*}p_1^!\mathcal{M} = p_{2!}p_1^*\mathcal{M}$$

see [KaScha], Definition 3.7.8.

2.1.1. Fourier - Sato and vanishing cycles. Let $f \in V^*$, $V_f = \{f^{-1}(0) \subset V\}$, $i_{\{f\}} : \{f\} \hookrightarrow V^*$.

We have the vanishing cycles functor

$$\Phi_f: Perv(V) \longrightarrow Perv(V_f).$$

Then the fiber

$$i_{\{f\}}^*FS(\mathcal{M}) = R\Gamma_c(V_f;\mathcal{M}).$$

(□) (@) (E) (E) (E)

2.2. Let us return to the framework of §1. Let \mathcal{H}^* denote an arrangement in V^* whose hyperplanes are orthogonals $H^* = \ell^{\perp}$ where $\ell = \cap H_j \subset V$ is a line. Let S^* denote the corresponding stratification of $V^*_{\mathbb{R}}$.

Warning: $\mathcal{H} \subset \mathcal{H}^{**}$, but \mathcal{H}^{**} is much bigger if $n = \dim V > 2$.

The Fourier - Sato transformation acts as

$$FS: \mathcal{D}^b_c(V, \mathbb{S}) \longrightarrow \mathcal{D}^b_c(V^*, \mathbb{S}^*).$$

2.2.1. Relation to vanishing cycles. For example, let

$$V^{*o} = V \setminus \bigcup_{H^* \in \mathcal{H}^*} H^*$$

A point in V^{*o} is nothing else as a linear function $f: V \longrightarrow \mathbb{C}$ in general position to \mathcal{H} .

For $\mathcal{M} \in \mathcal{D}^b_c(V, \mathcal{S})$ let

$$\Phi_f(\mathcal{M}) \in D^b(f^{-1}(0))$$

denote the sheaf of vanishing cycles. It is concentrated at $0 \in f^{-1}(0)$, and the fiber

$$\Phi_f(\mathcal{M})_0 = FS(\mathcal{M})_f$$

Thus, over V^{*o} the sheaf $FS(\mathcal{M})$ decribes the variation of the space of vanishing cycles when a function f varies.

- **2.3.** Now let $\mathcal{M} \in Perv(V, S_{\mathbb{C}})$, $E = E(\mathcal{M}) \in Hyp(S)$, $\mathcal{M}^{\vee} = FS(\mathcal{M}) \in Perv(V^*; S^*)$.
- Let us describe $E^{\vee} := E(\mathcal{M}^{\vee})$ in terms of E.
- First let $A^{\lor} \in S^*$ be a chamber. Choose $f \in A^{\lor}$, and denote

$$V_f^+ = \{x \in V_{\mathbb{R}} | f(x) > 0\}.$$

Consider a complex

0

$$\longrightarrow E(A^{+}) :$$

$$\longrightarrow E_{\{0\}} \longrightarrow \bigoplus_{B \subset V_{f}^{+}, \dim B = 1} E_{B} \longrightarrow \bigoplus_{B \subset V_{f}^{+}, \dim B = 2} E_{B} \longrightarrow \dots$$

$$(2.3.1)$$
ntrated in degrees > 0. The boundary maps are γ 's with

- concentrated in degrees ≥ 0 . The boundary m appropriate signs.
- Dually, we can consider a complex

$$E(\mathcal{A}^{\vee})^{\bullet}_{\delta}: 0 \longrightarrow E_{\{0\}} \longleftarrow \oplus_{B \subset V_{f}^{+}, \dim B=1} E_{B} \longleftarrow \oplus_{B \subset V_{f}^{+}, \dim B=2} E_{B} \longleftarrow \dots$$

concentrated in degrees \leq 0, whose boundary maps are δ 's with appropriate signs.

2.4. Main Acyclicity Theorem.

(i) The complexes $E(A^{\vee})^{\bullet}$ and $E(A^{\vee})^{\bullet}_{\delta}$ are acyclic except for degree 0.

(ii) Its zeroth cohomology computes the vanishing cycles

$$E(A^{ee}):=H^0(E(A^{ee})^ullet)\cong E_{A^{ee}}^{ee}\cong H^0(E(A^{ee})^ullet_\delta)$$

2.5. Now let $A^{\lor} \in S^*$ be an arbitrary face, $A^{\lor} \neq 0$.

As previously, choose $f \in A^{\vee}$, and consider a complex similar to (2.3.1):

$$E(A^{\vee})^{\bullet}$$
:

$$0 \longrightarrow E_{\{0\}} \longrightarrow \bigoplus_{B \subset V_f^+, \dim B = 1} E_B \longrightarrow \bigoplus_{B \subset V_f^+, \dim B = 2} E_B \longrightarrow \dots$$
(2.5.1)

concentrated in degrees \geq 0.

The boundary maps are γ 's with signs.

2.6. Theorem. (i) The complex $E(A^{\vee})^{\bullet}$ is acyclic except for degree 0. Its zeroth cohomology computes

$$E(A^{\vee}) := H^0(E(A^{\vee})^{\bullet}) \stackrel{\sim}{=} E_{A^{\vee}}^{\vee}$$

(ii)

$$E^{ee}(0)=E_0.$$

Part (ii) is a version of Braden's theorem.

2.8. EXAMPLE: THREE LINES ON THE PLANE

2.9. EXAMPLE WITH LIE OPERAD

§3. Lusztig symmetries and vanishing cycles

- **3.1. Braid group actions.** Let \mathfrak{g} be a complex semisimple Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra, $R \subset \mathfrak{h}^*$ the set of roots with respect to \mathfrak{h} . Let us fix a Borel subalgebra $\mathfrak{h} \subset \mathfrak{b} \subset \mathfrak{g}$; let $\{\alpha_i\}_{i \in I} \subset \mathfrak{h}^*$ be the corresponding set of simple roots.
- Let *L* be a finite dimensional \mathfrak{g} -module. The Weyl group *W* of \mathfrak{g} acts on the set of weights of *L*.
- This action may be lifted to an action on *L* of an extended Weyl group ("Tits Weyl group") defined by Tits, which is an extension

$$0 \longrightarrow (\mathbb{Z}/2\mathbb{Z})^r \longrightarrow \tilde{W} \longrightarrow W \longrightarrow 1$$

- where $r = \dim \mathfrak{h}$, cf. [Tits].
- This action may be *q*-deformed.

Let $q \in \mathbb{C}^*$; consider the quantum deformation $U_q\mathfrak{g}$ of $U\mathfrak{g}$. Let us suppose for simplicity that q is generic (not a root of unity).

Let

$$\mathfrak{h}^{o} = \mathfrak{h} \setminus \bigcup_{\alpha \in R} \alpha^{\perp}$$

The braid group Br of R (resp. the pure braid group PBr) is defined by

$$Br = \pi_1(\mathfrak{h}^o/W), \ PBr = \pi_1(\mathfrak{h}^o)$$

They fit into an extentsion

$$1 \longrightarrow PBr \longrightarrow Br \xrightarrow{\pi} W \longrightarrow 1.$$

According to Lusztig [L], Prop. 41.2.4, a finite dimensional module L over $U_q\mathfrak{g}$ is acted upon by Br.

The generators T_i , $i \in I$, of Br act as certain combinations of the operators E_i , $F_i \in U_q \mathfrak{g}$.

For $b\in Br$ and a weight subspace $\mathit{L}_{\mu}\subset \mathit{L}$, $\mu\in\mathfrak{h}^{*}$,

whence the pure braid group *PBr* respects weight subspaces $L_{\mu} \subset L$.

3.2. Vanishing cycles and weight components. For a dominant integral weight λ , let $L(\lambda)$ be the irreducible $U_q\mathfrak{g}$ -module with highest weight λ .

Let
$$J \subset I$$
; $\beta_J = \sum_{i \in J} \alpha_i$.

We are going to describe geometrically the weight subspace

$$L(\lambda)_J := L(\lambda)_{\lambda_J}, \ \lambda_J = \lambda - \beta_J.$$

Let us consider the space $\mathbb{A}^J = \mathbb{C}^J$ with coordinates $t_j, j \in J$. Inside it, let us consider hypersurfaces

$$H_j = \{t_j = 0\}, \ H_{jk} = \{t_j = t_k\} \subset \mathbb{A}^J,$$

and the open complement

$$\mathbb{A}^{Jo} = \mathbb{A}^{J} \setminus (\cup H_{j}) \setminus (\cup H_{kl}).$$

We have a one-dimensional local system \mathcal{L}_J over $\mathbb{A}^{J_0}_+$ with monodromies

 $q^{-(\lambda,lpha_j)}$ around H_j ,

and

 $q^{(\alpha_j,\alpha_{j'})}$ around $H_{jj'}$.

Let \mathcal{M}_J denote a perverse sheaf over \mathbb{A}^J , the intermediate extension of \mathcal{L}_J .

Consider a function

$$f: \mathbb{A}^J \longrightarrow \mathbb{A}^1 = \mathbb{C}, \ f((t_j)) = \sum_J t_j.$$

The sheaf of vanishing cycles

$$\Phi_f(\mathcal{M}_J) \in Perv(f^{-1}(0))$$

is supported at the origin $0\in f^{-1}(0)$

One of the main results of [BFS] establishes an isomorphism of vector spaces

$$\Phi_f(\mathcal{M}_J)_0 \stackrel{\sim}{=} L(\lambda)_J.$$
 (i) a distribution of the set of

More generally, for any $J' \subset J$, the component $L(\lambda)_{J'}$ is realized as an appropriate space of vanishing cycles living on a subspace $\mathbb{A}^{J\setminus J'} \subset \mathbb{A}^J$.

The operators

$$\mathsf{var} = E_i : \ L(\lambda)_{\mathsf{K}} \xrightarrow{\longleftarrow} L(\lambda)_{\mathsf{K} \setminus \{i\}} : F_i = \mathsf{can}$$

of the quantum group are being identified with the operators var and can acting on vanishing cycles.

A similar description holds true for any weight component (one has to use the spaces of divisors on \mathbb{A}^1), and for any finite dimensional $U_g\mathfrak{g}$ -module.

3.3. Geometric braid group action. Now let us vary the function *f*. Let

$$\mathfrak{h}_J = \oplus_{j \in J} \mathbb{C} \alpha_j$$

(recall that we have identified \mathfrak{h} with \mathfrak{h}^*).

For each

$$c=\sum_{J}c_{j}\alpha_{j}\in\mathfrak{h}_{J},$$

consider a function

$$f_c: \mathbb{A}^{eta} \longrightarrow \mathbb{A}^1, \ f(t_j) = \sum_{j \in J} c_j t_j.$$

For generic c again the sheaf $\Phi_{f_c}(\mathcal{M}_\beta)$ will be concentrated at $0 \in f_c^{-1}(0)$, and when c varies, we get a local system of vector spaces over some open part of \mathfrak{h}_J , whose fiber at c is $\Phi_{f_c}(\mathcal{M}_\beta)_0$.

One can show that for q sufficiently close to 1, this local system is well defined over \mathfrak{h}_J^0 (a priori it has singularities at a bigger set of hyperpanes).

3.3.1. Theorem. Let q be formal at the infinitesimal neighbourhood of 1. The resulting representation of $\pi_1(\mathfrak{h}_J^o) \subset PBr(\mathfrak{g})$ on $\Phi_f(\mathcal{M}_\beta)_0 = L(\lambda)_\mu$ is equivalent to the Lusztig representation.

3.3.2. Conjecture. The same holds true for any q.

3.4. Comments. Relation to the theory from §1.

Operators

$$\delta \longleftrightarrow E_i$$
$$\gamma \longleftrightarrow F_i$$

§4. Combinatorics of Young tableaux

and duality for representations of S_n and $GL_n(\mathbb{F}_q)$

- **4.1. Representations of symmetric groups.** Let $A = \mathbb{C}[S_{n+1}]$. Denote by:
- $[n] = \{1, \ldots, n\}; Sub_n$ the set of subsets of [n];
- \mathcal{P}_{n+1} the set of partitions of [n+1] = the set of Young diagrams with n+1 boxes;
- \mathfrak{T}_{λ} the set of standard Young tableaux of shape λ , for $\lambda \in \mathfrak{P}_{n+1}$;

$$\mathfrak{T}_{n+1} = \bigcup_{\lambda \in \mathfrak{P}_{n+1}} \text{ for } \mathfrak{T}_{\lambda}.$$

For each $T \in \mathcal{T}_{n+1}$ we have the corresponding Young symmetrizer $y_T \in A$,

$$y_T^2 = y_T, \ y_T y_{T'} = 0 \ T \neq T'.$$

The left ideal

$$L_{\mathcal{T}} := A \cdot y_{\mathcal{T}} \subset A \tag{4.1.1}$$

is an irreducible representation of S_{n+1} ; $L_T \stackrel{\sim}{=} L_{T'}$ iff T and T' have the same shape.

We have

$$A = \oplus_{\mathcal{T} \in \mathfrak{I}_{n+1}} \mathcal{L}_{\mathcal{T}}, \tag{4.1.2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

cf. [W], Theorem 4.3.J.

4.2. A.Postnikov's descent map and projectors. Let T be a standard Young tableau of shape λ . We say that an index i in $\{1, ..., n\}$ is a descent of T if the number i + 1 is located in T below the number i (that is, the row containing i + 1 is below the row containing i).

Let Des(T) denote the set of all descents of T.

For example, for
$$T = \begin{bmatrix} 1 & 2 & 4 & 8 & 9 \\ 3 & 5 & 7 \\ 6 \end{bmatrix}$$
 we have $Des(T) = \{2, 4, 5\}$.

This way we get a map

$$Des: \mathcal{T}_{n+1} \longrightarrow Sub_n.$$
 (4.2.1)

For each $I \in \mathcal{P}_n$, we denote

$$\mathfrak{T}_{I} := Des^{-1}(I),$$

and we define Postnikov projectors

$$p'_{I} = \sum_{T \in \mathfrak{I}_{I}} y_{T} \in A, \qquad (4.2.2)$$

and

$$p_I = \sum_{J \subset I} p'_J \tag{4.2.3}$$

4.3. Kostka numbers and multiplicities.

To each $\lambda \in \mathcal{P}_{n+1}$ there corresponds a subgroup $S_{\lambda} \subset S_{n+1}$ on the one hand, and (an isomorphism class of) an irreducible representation L_{λ} of S_{n+1} on the other, such that

$$M_{\lambda} := \operatorname{Ind}_{\mathcal{S}_{\lambda}}^{\mathcal{S}_{n+1}}(1_{\mathcal{S}_{\lambda}}) \stackrel{\sim}{=} \oplus_{\mu \geq \lambda} L_{\mu}^{K_{\lambda\mu}}, \qquad (4.3.1)$$

with $K_{\lambda\lambda} = 1$, cf. [Ko], [F], [FH], Corollary 4.39.

4.4. Numbers $\kappa_{\lambda,I}$.

We define a map

$$\mu: Sub_n \longrightarrow \mathcal{P}_{n+1} \tag{4.4.1}$$

as follows. Given a subset $J = \{j_1 < j_2 < \ldots < j_r\} \subset \{1, 2, \ldots, n\}$, we consider a decomposition $(j_1, j_2 - j_1, \ldots, j_r - j_{r-1}, n+1-j_r)$ of n+1, and we denote the corresponding partition by $\mu(J)$.

For example, if n = 4, then $\mu(13) = (221)$.

4.4.1. Remark. Let G = GL(n + 1). The set Sub_n may be identified with the set of *G*-conjugacy classes of parabolics $P \subset G$, whereas \mathcal{P}_{n+1} may be identified with the set of *G*-conjugacy classes of nilpotent elements $x \in Lie(G)$.

The map (4.4.1) assigns to P the class of a generic nilpotent $x \in Lie(U(P))$.

Dually, we could assign to P the class of a generic nilpotent $y \in Lie(L(P))$; this would give the conjugate partition.

4.4.2. Definition. We define small Kostka numbers: for $\lambda \in \mathcal{P}_{n+1}$, $l \in Sub_n$,

$$\kappa_{\lambda,I} = \sum_{J \subset I} (-1)^{|J| - |I|} \mathcal{K}_{\lambda,\mu(J)}.$$

4.4.3. Proposition. We have

$$\mathcal{K}_{\lambda,\mu(I)} = \sum_{J \subset I} \kappa_{\lambda,J}.$$
(4.4.3.1)

This formula defines the numbers $\kappa_{\lambda,l}$ uniquely.

4.5. Theorem (A.Postnikov) The number $\kappa_{\lambda,I}$ equals the number of SYT's of shape λ with descent set Des(T) = I.

4.6. A hyperbolic sheaf over \mathbb{R}^n .

4.6.1. Consider $V = \mathbb{C}^n \supset V_{\mathbb{R}} = \mathbb{R}^n$ equipped with the coordinate arrangement

$$\mathcal{H}=\{H_i: x_i=0, \ 1\leq i\leq N\}.$$

Let ${\mathbb S}$ be the corresponding stratification of $V_{\mathbb R}.$ For each $S\in {\mathbb S}$ its linear span

$$L(S) = H_I := \cap_{i \in I} H_i$$

for some $I \subset [n]$.

In this manner we get a surjective map

$$\nu: S \longrightarrow Sub_n$$

We have $|S| = 3^n$, and

$$|\nu^{-1}(I)| = \binom{|I|}{n}.$$

In fact, Sub_n is in bijection with the set of complex strata $\mathcal{S}_{\mathbb{C}}$, and ν is the complexification map.

4.6.2. Recall that for each $T \in \mathfrak{T}_{n+1}$ we have an irreducible constituent

$$L_T \subset A = \mathbb{C}[S_{n+1}],$$

cf. (4.1.1), and for any $I \in Sub_n$ the submodules

$$L_I = \oplus_{T \in \mathfrak{I}_I} L_T$$

and

$$M_I = \oplus_{J \subset I} L_J$$

We define S_{n+1} -modules

$$E_{\mathcal{S}} := M_{\nu(\mathcal{S})}, \ \mathcal{S} \in \mathcal{S}.$$

For $S' \ge S$ we have obvious inclusions

$$\delta_{S'S}: E_{S'} \hookrightarrow E_S$$

and projections

4.6.3. Theorem - definition. The collection

$$\boldsymbol{E} = (\boldsymbol{E}_{\boldsymbol{S}}, \gamma_{\boldsymbol{S}\boldsymbol{S}'}, \delta_{\boldsymbol{S}'\boldsymbol{S}})$$

is a $Rep(S_{n+1})$ -valued hyperbolic sheaf over S We call it the Postnikov sheaf.

HYPERBOLIC FIBERS OF E: INDUCED MODULES

4.6.4. Proposition. Recall the map μ : Sub_n $\longrightarrow \mathcal{P}_{n+1}$, (4.4.1). We have isomorphisms of representations

$$E_{S_I} \stackrel{\sim}{=} M_{\mu(I)}.$$

4.6.5. Let $\mathcal{M} \in Perv(V; S_{\mathbb{C}})$ be the perverse sheaf corresponding to E.

Recall that the poset $S_{\mathbb{C}}$ may be identified with Sub_n , in such a way that [n] corresponds to $\{0\}$, and \emptyset corresponds to the unique open stratum. We denote this bijection $I \mapsto S_I$. For $\lambda \in \mathcal{P}_{n+1}$, $I \in Sub_n$ denote an irreducible perverse sheaf

$$\mathcal{L}_{\lambda,I} := i_{I*}\underline{L}_{\lambda}$$

where $i_l := \overline{S}_l \hookrightarrow V$, and \underline{L}_{λ} is the (shifted) constant sheaf with fiber L_{λ} . Then

$$\mathfrak{M} \stackrel{\sim}{=} \oplus_{I \in Sub_n} \mathcal{L}_{\lambda, I}^{\kappa_{\lambda, I}}$$

is the decomposition of \mathcal{M} into irreducible constituents in *Perv*($V, S_{\mathbb{C}}$; *Rep*(S_{n+1})), and the small Kostka numbers $\kappa_{\lambda,l}$ are the multiplicities.

4.7. DUAL SHEAF AND *Alt*.

The arrangement S is self-dual. The dual hyperbolic sheaf E^{\vee} has a general fiber isomorphic to the alternating representation Alt of S_{n+1} .

More spevifically, its fiber at the main octant is the complex of vanishing cycles

$E_{\emptyset}^{\vee \bullet}$

is a resolution of *Alt* by the induced modules.

4.8. More generally, let $L \in Rep(S_{n+1})$.

For every $\lambda \in \mathcal{P}_{n+1}$ we have

$$M(L)_{\lambda} := \operatorname{Ind}_{S_{\lambda}}^{S_{n+1}}(L) \cong M_{\lambda} \otimes L$$

We define a $Rep(S_{n+1})$ -valued hyperbolic sheaf over S

$$E(L) := E \otimes L$$

with fibers

$$E(L)_I := E_I \otimes L$$

We have

$$E(L)^{\vee} = E(L^{\vee})$$

where

$$L^{\vee} = L \otimes Alt$$

("transposition of a Young diagram").

DEFORMATION: $GL_{n+1}(\mathbb{F}_q)$ STORY

4.9. Let $G = GL_{n+1}(\mathbb{F}_q)$; fix a Borel subgroup $B \subset G$. The ordered set Sub_n is in bijection with the set of parabolics $P \supset B$ (*standard parabolics*). For $I \in Sub_n$ we denote P_I the corresponding parabolic, so that $P_{\emptyset} = B$, and $P_{[n]} = G$.

If $\mu(I) = \mu(I') \in \mathcal{P}_{n+1}$, the parabolics P_I an $P_{I'}$ are called *associated* (Langlands); they are isomorphic.

Let us denote

$$M_{\emptyset} = M_{\emptyset,q} = \operatorname{Ind}_B^G 1_B = \operatorname{Fun}(G/B, \mathbb{C});$$

it is a *q*-analog of the regular representation of S_{n+1} . Its *G*-submodules are called *unitary*. Let

$$Unirep(G) \subset Rep(G)$$

denote the full subcategory of unitary representations. A converse the full subcategory of unitary representations.

Hecke algebra

Let

$$A_q = H_{n+1,q} = Hecke(G, B)$$

be the algebra of *B*-biinvariant functions $f : G \longrightarrow \mathbb{C}$, with the convolution as a multiplication.

Alternatively,

$$H_{n+1,q} = End_G(\operatorname{Ind}_B^G 1_B).$$

This algebra admits as a \mathbb{C} -base, the set $\{T_w, w \in S_{n+1}\}$, with multiplication defined by

$$(T_{s_i}+1)(T_{s_i}-q)=0,$$

where $s_i, 1 \leq i \leq n$, are the standard generators of S_{n+1} , and

$$T_w \cdot T_{w'} = T_{ww'}$$

if $\ell(ww') = \ell(w) + \ell(w')$, cf.[Iw], [L]; it is a *q*-deformation of $\mathbb{C}[S_{n+1}]$.

Steinberg - Iwasawa isomorphism

According to Steinberg, [St], one has an algebra isomorphism

$$st: A_q := H_{n+1} \stackrel{\sim}{=} \mathbb{C}[S_{n+1}] = A, \qquad (4.11.1)$$

cf. also [L] and references therein.

Morita equivalence

 $M_{\emptyset,q}$ is an $A_q - G$ -bimodule, and it defines a Morita equivalence between two categories. Namely, two functors

$$HU: \; \operatorname{\mathsf{Rep}}(A_q) \longrightarrow \operatorname{\mathsf{Unirep}}(G), \; HU(N) = M_{\emptyset,q} \otimes_{A_q} N$$

and

$$UH$$
: Unirep $(G) \longrightarrow \operatorname{Rep}(A_q), \ UH(L) = M_{\emptyset,q} \otimes_G L$

are mutually inverse equivalences of categories.

We have

$$M_{\emptyset,q} \cong \bigoplus_{N \in Irrrep(A_q)} N \otimes HU(N) \cong \bigoplus_{L \in Irrrep(G)} UH(L) \otimes L.$$

4.12. Parabolic induction

For $I \in Sub_n$ let $U_I \subset P_I$ denote the unipotent radical, $L_I \subset P_I$ a Levi subgroup.

The subspace $L^{U_I} \subset L$ is an L_I -module since U_I normalizes L_I ; using the canonical projection $P_I \longrightarrow P_I/U_I \cong L_I$, we consider it as a P_I -module.

Parabolic induction functors

$$Par_I: Rep(G) \longrightarrow Rep(G)$$

are defined by

$$Par_I(M) = \operatorname{Ind}_{P_I}^G(M^{U_I}).$$

Under the equivalences *UH*, *HU* the parabolic induction goes to the parabolic induction.

4.13. Curtis - Alvis duality. Let $L \in \text{Unirep}(G), N = HU(L) \in Rep(S_{n+1}).$

The image under the equivalence *st*

$$M_q(N) := st_*(M(N)) \in Hyp(\mathfrak{S}; \operatorname{Rep}(A_q))$$

is a hyperbolic sheaf with values in $\operatorname{Rep}(A_q)$.

Applying the functor *UH* we get a Unirep(*G*)-valued hyperbolic sheaf

$$M_q(L) := UH(M_q(N)) \in Hyp(S; Unirep(G)),$$

a "hyperbolic localization" of *L*.

Its (hyperbolic) fibers are induced G-modules, the general fiber being L itself.

Consider the generic fiber of the dual sheaf $M_q(L)^{\vee}$ in the main octant, aka its complex of vanishing cycles for the function $f(x) = \sum x_i$:

$$M_q(L)_0^{\vee \bullet}$$

Let us denote by

$$L^{\vee} := H^0(M_q(L)_0^{\vee \bullet})$$

its only nonzero cohomology.

The operation $L \mapsto L^{\vee}$ is the known Curtis - Alvis duality on Rep(G). For example

$$1_G^{\vee} = St_G$$

(the Steinberg module).

We have

$$M_q(L^{\vee}) = M_q(L)^{\vee}$$

In other words, the hyperbolic localization takes CA duality to Fourier -Sato duality.

References

- [BFS] R.Bezrukavnikov, M.Finkelberg, V.Schechtman, Factorizable sheaves and quantum groups.
- [FKS] M.Finkelberg, M.Kapranov, V.Schechtman, Fourier transform on hyperplane arrangements, in preparation.
- [FS] M.Finkelberg, V.Schechtman, Microlocal approach to Lusztig symmetries.
- [KS] M.Kapranov, V.Schechtman, Perverse sheaves over real hyperplane arrangements.
- [KaScha] M.Kashiwara, P.Schapira, Sheaves on manifolds.
- [L] G.Lusztig, Introduction to quantum groups
- [Tits] J.Tits, Normalisateurs de tores I. Groupes de Coxeter étendus [W] H.Weyl, Classical groups