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§1. Quantum group of a hyperplane arrangement

1.1. A quantum group of a hyperplane arrangement. Let
V = Cn, H = {Hi} a finite collection of hyperplanes Hi : fi(x) = 0
where fi are linear functions with real coefficients.

This arrangement gives rise to a complex stratification SC of V and to a
real stratification S of VR = Rn.

For S , S ′ ∈ S we write S ≤ S ′ if S ⊂ S̄ ′.

Let us call two strata S , S ′ neighbours if dim S = dim S ′, L(S) = L(S ′),
and there exists S ′′ (a wall between S and S ′) S ′′ ≤ S , S ′′ ≤ S ′,
dim S ′′ = dim S − 1.

A triple of real strata (S1, S2, S3) is called a collinear triple if there exist
xi ∈ Si lying on the same line, and such that x2 ∈ [x1, x3].

Let us define a category Hyp(S) whose objects will be called hyperbolic
sheaves over S, which are the following linear algebra data:



— a collection of complex vector spaces E = {ES , S ∈ S};
— for each S ≤ S ′ we have two linear maps: γSS ′ : ES −→ ES ′

(generalization), and δS ′S : ES ′ −→ ES (boundary), transitive wrt
S ≤ S ′ ≤ S ′′.

They should also sarisfy the following properties:

(i) (idempotence) γSS ′δS ′S = Id(ES ′).

Let S , S ′ be arbitrary strata. Choose a stratum S ′′ ≤ S , S ′′ ≤ S ′, and
define a flopping map

φSS ′ := γS ′′S ′δSS ′′ .

Due to (i) this definition does not depend on S ′′.

(ii) (collinearity) If (S , S ′, S ′′) is a collinear triple,

φSS ′′ = φS ′S ′′φSS ′ .

(iii) (invertibility) If S and S ′ are neighbours, φSS ′ is an isomorphism.

In other words, the category Hyp(S) is a category Rep(A(S)) of
representations in Vect of certain associative algebra A(S).



1.2. Let M ∈ Perv(V ; SC). Let i : VR ↪→ V . One can show that

Ri !(M) ∈ Db
c(VR, S)

which is a priori a complex of sheaves, is actually a single sheaf. Denote
by

E (M)A = Γ(A;Ri !(M)) ∈ Vect, A ∈ S

its fibers, and by

γAB : E (M)A −→ E (M)B , A ≤ B

the generalization maps.

One can show that
E (M∗)A

∼
= E (M)∗A

where M∗ is the Verdier dual sheaf, whence maps

δBA(M) := γAB(M∗)∗



1.3. Theorem, [KS]. The association M 7→ E (M) gives rise to a functor

E : Perv(V ; SS) −→ Hyp(S)

which is an equivalence of categories.

1.4. RΓ(V ;M) AND RΓc(V ;M) IN TERMS OF E (M).

Suppose our arrangement is central, i.e. {0} is one of its faces. Let
Si ∈ S denote the subset of faces of dimension i .

If E (M) = (EA, γ, δ) then

RΓc(V ;M) : 0 −→ E0 −→ ⊕`∈S1E` −→ . . . ,

the differential being γ’s with signs. The complex sits in nonnegative
degrees.

Dually,
RΓ(V ;M) : . . . −→ ⊕`∈S1E` −→ E0 −→ 0,

the differential being δ’s with signs. The complex sits in negative degrees.



1.5. Elementary version: the braid groupoid. Let

U := V \ ∪i Hi

The fundamental groupoid Π(U) admits the following description:

Objects: chambers, i.e. strata C of maximal dimension.

Morphisms.

Generators: for each two chambers C ,C ′ we have one generator
φCC ′ : C −→ C ′.

Relations: for each collinear triple (C ,C ′,C ′′),

φCC ′′ = φC ′C ′′φCC ′ .



§2. Fourier - Sato transform

2.1. Fourier - Sato transformation. Cf. [KaScha]. Let V be a
complex finite dimensional vector space, V ∗ its complex dual,

P = {(x , `) ∈ V × V ∗| <`(x) ≥ 0} ⊂ V × V ∗.

Let p1 : P −→ V , p2 : P −→ V ∗ be the projections.

Let Perv(V ) denote the abelian category of monodromic perverse
sheaves over V .

The Fourier - Sato transformation

FS : Perv(V )
∼−→ Perv(V ∗)

is defined by
FS(M) = p2∗p!1M = p2!p∗1M

see [KaScha], Definition 3.7.8.



2.1.1. Fourier - Sato and vanishing cycles. Let f ∈ V ∗,
Vf = {f −1(0) ⊂ V },

i{f } : {f } ↪→ V ∗.

We have the vanishing cycles functor

Φf : Perv(V ) −→ Perv(Vf ).

Then the fiber
i∗{f }FS(M) = RΓc(Vf ;M).



2.2. Let us return to the framework of §1. Let H∗ denote an arrangement
in V ∗ whose hyperplanes are orthogonals H∗ = `⊥ where ` = ∩Hj ⊂ V is
a line. Let S∗ denote the corresponding stratification of V ∗R.

Warning: H ⊂ H∗∗, but H∗∗ is much bigger if n = dimV > 2.

The Fourier - Sato transformation acts as

FS : Db
c(V , S) −→ Db

c(V ∗, S∗).



2.2.1. Relation to vanishing cycles. For example, let

V ∗o = V \ ∪H∗∈H∗H∗

A point in V ∗o is nothing else as a linear function f : V −→ C in general
position to H.

For M ∈ Db
c(V , S) let

Φf (M) ∈ Db(f −1(0))

denote the sheaf of vanishing cycles. It is concentrated at 0 ∈ f −1(0),
and the fiber

Φf (M)0 = FS(M)f

Thus, over V ∗o the sheaf FS(M) decribes the variation of the space of
vanishing cycles when a function f varies.



2.3. Now let M ∈ Perv(V , SC), E = E (M) ∈ Hyp(S),
M∨ = FS(M) ∈ Perv(V ∗; S∗).

Let us describe E∨ := E (M∨) in terms of E .

First let A∨ ∈ S∗ be a chamber. Choose f ∈ A∨, and denote

V+
f = {x ∈ VR| f (x) > 0}.

Consider a complex
E (A∨)• :

0 −→ E{0} −→ ⊕B⊂V+
f ,dim B=1 EB −→ ⊕B⊂V+

f ,dim B=2 EB −→ . . .

(2.3.1)
concentrated in degrees ≥ 0. The boundary maps are γ’s with
appropriate signs.

Dually, we can consider a complex

E (A∨)•δ : 0 −→ E{0} ←− ⊕B⊂V+
f ,dim B=1 EB ←− ⊕B⊂V+

f ,dim B=2 EB ←− . . .

concentrated in degrees ≤ 0, whose boundary maps are δ’s with
appropriate signs.



2.4. Main Acyclicity Theorem.

(i) The complexes E (A∨)• and E (A∨)•δ are acyclic except for degree 0.

(ii) Its zeroth cohomology computes the vanishing cycles

E (A∨) := H0(E (A∨)•)
∼
= E∨A∨

∼
= H0(E (A∨)•δ)



2.5. Now let A∨ ∈ S∗ be an arbitrary face, A∨ 6= 0.

As previously, choose f ∈ A∨, and consider a complex similar to (2.3.1):

E (A∨)• :

0 −→ E{0} −→ ⊕B⊂V+
f ,dim B=1 EB −→ ⊕B⊂V+

f ,dim B=2 EB −→ . . .

(2.5.1)
concentrated in degrees ≥ 0.

The boundary maps are γ’s with signs.



2.6. Theorem. (i) The complex E (A∨)• is acyclic except for degree 0.

Its zeroth cohomology computes

E (A∨) := H0(E (A∨)•)
∼
= E∨A∨

(ii)
E∨(0) = E0.

Part (ii) is a version of Braden’s theorem.



2.8. EXAMPLE: THREE LINES ON THE PLANE

2.9. EXAMPLE WITH LIE OPERAD



.
§3. Lusztig symmetries and vanishing cycles

3.1. Braid group actions. Let g be a complex semisimple Lie algebra,
h ⊂ g a Cartan subalgebra, R ⊂ h∗ the set of roots with respect to h.
Let us fix a Borel subalgebra h ⊂ b ⊂ g; let {αi}i∈I ⊂ h∗ be the
corresponding set of simple roots.

Let L be a finite dimensional g-module. The Weyl group W of g acts on
the set of weights of L.

This action may be lifted to an action on L of an extended Weyl group
("Tits - Weyl group") defined by Tits, which is an extension

0 −→ (Z/2Z)r −→ W̃ −→ W −→ 1

where r = dim h, cf. [Tits].

This action may be q-deformed.



Let q ∈ C∗; consider the quantum deformation Uqg of Ug. Let us
suppose for simplicity that q is generic (not a root of unity).

Let
ho = h \ ∪α∈R α⊥

The braid group Br of R (resp. the pure braid group PBr) is defined by

Br = π1(ho/W ), PBr = π1(ho)

They fit into an extentsion

1 −→ PBr −→ Br π−→ W −→ 1.

According to Lusztig [L], Prop. 41.2.4, a finite dimensional module L
over Uqg is acted upon by Br .

The generators Ti , i ∈ I , of Br act as certain combinations of the
operators Ei ,Fi ∈ Uqg.

For b ∈ Br and a weight subspace Lµ ⊂ L, µ ∈ h∗,

b(Lµ) ⊂ Lπ(µ),



whence the pure braid group PBr respects weight subspaces Lµ ⊂ L.

3.2. Vanishing cycles and weight components. For a dominant
integral weight λ, let L(λ) be the irreducible Uqg-module with highest
weight λ.

Let J ⊂ I ; βJ =
∑

i∈J αi .

We are going to describe geometrically the weight subspace

L(λ)J := L(λ)λJ , λJ = λ− βJ .

Let us consider the space AJ = CJ with coordinates tj , j ∈ J. Inside it,
let us consider hypersurfaces

Hj = {tj = 0}, Hjk = {tj = tk} ⊂ AJ ,

and the open complement

AJo = AJ \ (∪Hj) \ (∪Hkl).

We have a one-dimensional local system LJ over AJo with monodromies



q−(λ,αj ) around Hj ,

and

q(αj ,αj′ ) around Hjj ′ .

Let MJ denote a perverse sheaf over AJ , the intermediate extension of
LJ .

Consider a function

f : AJ −→ A1 = C, f ((tj)) =
∑

J

tj .

The sheaf of vanishing cycles

Φf (MJ) ∈ Perv(f −1(0))

is supported at the origin 0 ∈ f −1(0)

One of the main results of [BFS] establishes an isomorphism of vector
spaces

Φf (MJ)0
∼
= L(λ)J .



More generally, for any J ′ ⊂ J, the component L(λ)J′ is realized as an
appropriate space of vanishing cycles living on a subspace AJ\J′ ⊂ AJ .

The operators

var = Ei : L(λ)K
←−−→ L(λ)K\{i} : Fi = can

of the quantum group are being identified with the operators var and can
acting on vanishing cycles.

A similar description holds true for any weight component (one has to use
the spaces of divisors on A1), and for any finite dimensional Ugg-module.



3.3. Geometric braid group action. Now let us vary the function f .
Let

hJ = ⊕j∈JCαj

(recall that we have identified h with h∗).

For each
c =

∑
J

cjαj ∈ hJ ,

consider a function

fc : Aβ −→ A1, f (tj) =
∑
j∈J

cjtj .

For generic c again the sheaf Φfc (Mβ) will be concentrated at
0 ∈ f −1

c (0), and when c varies, we get a local system of vector spaces
over some open part of hJ , whose fiber at c is Φfc (Mβ)0.

One can show that for q sufficiently close to 1, this local system is well
defined over h0

J (a priori it has singularities at a bigger set of hyperpanes).



3.3.1. Theorem. Let q be formal at the infinitesimal neighbourhood of
1. The resulting representation of π1(ho

J) ⊂ PBr(g) on Φf (Mβ)0 = L(λ)µ
is equivalent to the Lusztig representation.

3.3.2. Conjecture. The same holds true for any q.



3.4. Comments. Relation to the theory from §1.

Operators
δ ←→ Ei

γ ←→ Fi



§4. Combinatorics of Young tableaux

and duality for representations of Sn and GLn(Fq)

4.1. Representations of symmetric groups. Let A = C[Sn+1].

Denote by:

[n] = {1, . . . , n}; Subn the set of subsets of [n];

Pn+1 the set of partitions of [n + 1] = the set of Young diagrams with
n + 1 boxes;

Tλ the set of standard Young tableaux of shape λ, for λ ∈ Pn+1;

Tn+1 = ∪λ∈Pn+1 for Tλ.

For each T ∈ Tn+1 we have the corresponding Young symmetrizer
yT ∈ A,

y 2
T = yT , yTyT ′ = 0 T 6= T ′.



The left ideal
LT := A · yT ⊂ A (4.1.1)

is an irreducible representation of Sn+1; LT
∼
= LT ′ iff T and T ′ have the

same shape.

We have
A = ⊕T∈Tn+1LT , (4.1.2)

cf. [W], Theorem 4.3.J.



4.2. A.Postnikov’s descent map and projectors. Let T be a
standard Young tableau of shape λ. We say that an index i in {1, ..., n}
is a descent of T if the number i + 1 is located in T below the number i
(that is, the row containing i + 1 is below the row containing i).

Let Des(T ) denote the set of all descents of T .

For example, for T =
1 2 4 8 9
3 5 7
6

we have Des(T ) = {2, 4, 5}.

This way we get a map

Des : Tn+1 −→ Subn. (4.2.1)

For each I ∈ Pn, we denote

TI := Des−1(I ),

and we define Postnikov projectors

p′I =
∑
T∈TI

yT ∈ A, (4.2.2)



and
pI =

∑
J⊂I

p′J (4.2.3)

4.3. Kostka numbers and multiplicities.

To each λ ∈ Pn+1 there corresponds a subgroup Sλ ⊂ Sn+1 on the one
hand, and (an isomorphism class of) an irreducible representation Lλ of
Sn+1 on the other, such that

Mλ := IndSn+1
Sλ (1Sλ)

∼
= ⊕µ≥λL

Kλµ
µ , (4.3.1)

with Kλλ = 1, cf. [Ko], [F], [FH], Corollary 4.39.

4.4. Numbers κλ,I .

We define a map
µ : Subn −→ Pn+1 (4.4.1)

as follows. Given a subset J = {j1 < j2 < . . . < jr} ⊂ {1, 2, . . . , n}, we
consider a decomposition (j1, j2 − j1, . . . , jr − jr−1, n + 1− jr ) of n + 1,
and we denote the corresponding partition by µ(J).



For example, if n = 4, then µ(13) = (221).

4.4.1. Remark. Let G = GL(n + 1). The set Subn may be identified
with the set of G -conjugacy classes of parabolics P ⊂ G , whereas Pn+1

may be identified with the set of G -conjugacy classes of nilpotent
elements x ∈ Lie(G ).

The map (4.4.1) assigns to P the class of a generic nilpotent
x ∈ Lie(U(P)).

Dually, we could assign to P the class of a generic nilpotent
y ∈ Lie(L(P)); this would give the conjugate partition.

4.4.2. Definition. We define small Kostka numbers: for
λ ∈ Pn+1, I ∈ Subn,

κλ,I =
∑
J⊂I

(−1)|J|−|I |Kλ,µ(J).



4.4.3. Proposition. We have

Kλ,µ(I ) =
∑
J⊂I

κλ,J . (4.4.3.1)

This formula defines the numbers κλ,I uniquely.

4.5. Theorem (A.Postnikov) The number κλ,I equals the number of
SYT’s of shape λ with descent set Des(T ) = I .



4.6. A hyperbolic sheaf over Rn.

4.6.1. Consider V = Cn ⊃ VR = Rn equipped with the coordinate
arrangement

H = {Hi : xi = 0, 1 ≤ i ≤ N}.

Let S be the corresponding stratification of VR. For each S ∈ S its linear
span

L(S) = HI := ∩i∈I Hi

for some I ⊂ [n].

In this manner we get a surjective map

ν : S −→ Subn

We have |S| = 3n, and

|ν−1(I )| =

(
|I |
n

)
.

In fact, Subn is in bijection with the set of complex strata SC, and ν is
the complexification map.



4.6.2. Recall that for each T ∈ Tn+1 we have an irreducible constituent

LT ⊂ A = C[Sn+1],

cf. (4.1.1), and for any I ∈ Subn the submodules

LI = ⊕T∈TILT

and
MI = ⊕J⊂ILJ

We define Sn+1-modules

ES := Mν(S), S ∈ S.

For S ′ ≥ S we have obvious inclusions

δS ′S : ES ′ ↪→ ES

and projections
γSS ′ : ES ↪→ ES ′



4.6.3. Theorem - definition. The collection

E = (ES , γSS ′ , δS ′S)

is a Rep(Sn+1)-valued hyperbolic sheaf over S We call it the Postnikov
sheaf.

HYPERBOLIC FIBERS OF E: INDUCED MODULES

4.6.4. Proposition. Recall the map µ : Subn −→ Pn+1, (4.4.1). We
have isomorphisms of representations

ESI

∼
= Mµ(I ).

4.6.5. Let M ∈ Perv(V ; SC) be the perverse sheaf corresponding to E .

Recall that the poset SC may be identified with Subn, in such a way that
[n] corresponds to {0}, and ∅ corresponds to the unique open stratum.

We denote this bijection I 7→ SI .



For λ ∈ Pn+1, I ∈ Subn denote an irreducible perverse sheaf

Lλ,I := iI∗Lλ

where iI := S̄I ↪→ V , and Lλ is the (shifted) constant sheaf with fiber Lλ.

Then
M
∼
= ⊕I∈SubnL

κλ,I
λ,I

is the decomposition of M into irreducible constituents in
Perv(V , SC;Rep(Sn+1)), and the small Kostka numbers κλ,I are the
multiplicities.

4.7. DUAL SHEAF AND Alt.

The arrangement S is self-dual. The dual hyperbolic sheaf E∨ has a
general fiber isomorphic to the alternating representation Alt of Sn+1.

More spevifically, its fiber at the main octant is the complex of vanishing
cycles

E∨•∅
is a resolution of Alt by the induced modules.



4.8. More generally, let L ∈ Rep(Sn+1).

For every λ ∈ Pn+1 we have

M(L)λ := IndSn+1
Sλ (L)

∼
= Mλ ⊗ L

We define a Rep(Sn+1)-valued hyperbolic sheaf over S

E (L) := E ⊗ L

with fibers
E (L)I := EI ⊗ L

We have
E (L)∨ = E (L∨)

where
L∨ = L⊗ Alt

("transposition of a Young diagram").



DEFORMATION: GLn+1(Fq) STORY

4.9. Let G = GLn+1(Fq); fix a Borel subgroup B ⊂ G . The ordered set
Subn is in bijection with the set of parabolics P ⊃ B (standard
parabolics). For I ∈ Subn we denote PI the corresponding parabolic, so
that P∅ = B , and P[n] = G .

If µ(I ) = µ(I ′) ∈ Pn+1, the parabolics PI an PI ′ are called associated
(Langlands); they are isomorphic.

Let us denote

M∅ = M∅,q = IndG
B 1B = Fun(G/B ,C);

it is a q-analog of the regular representation of Sn+1. Its G -submodules
are called unitary. Let

Unirep(G ) ⊂ Rep(G )

denote the full subcategory of unitary representations.



Hecke algebra

Let
Aq = Hn+1,q = Hecke(G ,B)

be the algebra of B-biinvariant functions f : G −→ C, with the
convolution as a multiplication.

Alternatively,
Hn+1,q = EndG (IndG

B 1B).

This algebra admits as a C-base, the set {Tw , w ∈ Sn+1}, with
multiplication defined by

(Tsi + 1)(Tsi − q) = 0,

where si , 1 ≤ i ≤ n, are the standard generators of Sn+1, and

Tw · Tw ′ = Tww ′

if `(ww ′) = `(w) + `(w ′), cf.[Iw], [L]; it is a q-deformation of C[Sn+1].



Steinberg - Iwasawa isomorphism

According to Steinberg, [St], one has an algebra isomorphism

st : Aq := Hn+1
∼
= C[Sn+1] = A, (4.11.1)

cf. also [L] and references therein.

Morita equivalence

M∅,q is an Aq − G -bimodule, and it defines a Morita equivalence between
two categories. Namely, two functors

HU : Rep(Aq) −→ Unirep(G ), HU(N) = M∅,q ⊗Aq N

and
UH : Unirep(G ) −→ Rep(Aq), UH(L) = M∅,q ⊗G L



are mutually inverse equivalences of categories.

We have

M∅,q
∼
= ⊕N∈Irrrep(Aq) N ⊗ HU(N)

∼
= ⊕L∈Irrrep(G) UH(L)⊗ L.

4.12. Parabolic induction

For I ∈ Subn let UI ⊂ PI denote the unipotent radical, LI ⊂ PI a Levi
subgroup.

The subspace LUI ⊂ L is an LI -module since UI normalizes LI ; using the
canonical projection PI −→ PI/UI

∼
= LI , we consider it as a PI -module.

Parabolic induction functors

ParI : Rep(G ) −→ Rep(G )

are defined by
ParI (M) = IndG

PI
(MUI ).

Under the equivalences UH,HU the parabolic induction goes to the
parabolic induction.



4.13. Curtis - Alvis duality. Let
L ∈ Unirep(G ),N = HU(L) ∈ Rep(Sn+1).

The image under the equivalence st

Mq(N) := st∗(M(N)) ∈ Hyp(S;Rep(Aq))

is a hyperbolic sheaf with values in Rep(Aq).

Applying the functor UH we get a Unirep(G )-valued hyperbolic sheaf

Mq(L) := UH(Mq(N)) ∈ Hyp(S;Unirep(G )),

a "hyperbolic localization"of L.

Its (hyperbolic) fibers are induced G -modules, the general fiber being L
itself.

Consider the generic fiber of the dual sheaf Mq(L)∨ in the main octant,
aka its complex of vanishing cycles for the function f (x) =

∑
xi :

Mq(L)∨•0 .



Let us denote by
L∨ := H0(Mq(L)∨•0

its only nonzero cohomology.

The operation L 7→ L∨ is the known Curtis - Alvis duality on Rep(G ).

For example
1∨G = StG

(the Steinberg module).

We have
Mq(L∨) = Mq(L)∨

In other words, the hyperbolic localization takes CA duality to Fourier -
Sato duality.
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